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GPU-to-GPU and Host-to-Host
Multipattern String Matching on a GPU

Xinyan Zha and Sartaj Sahni, Fellow, IEEE

Abstract—We develop GPU adaptations of the Aho-Corasick and multipattern Boyer-Moore string matching algorithms for the two
cases GPU-to-GPU (input to the algorithms is initially in GPU memory and the output is left in GPU memory) and host-to-host (input
and output are in the memory of the host CPU). For the GPU-to-GPU case, we consider several refinements to a base GPU
implementation and measure the performance gain from each refinement. For the host-to-host case, we analyze two strategies to
communicate between the host and the GPU and show that one is optimal with respect to runtime while the other requires less device
memory. This analysis is done for GPUs with one 1/O channel to the host as well as those with 2. Experiments conducted on an NVIDIA
Tesla GT200 GPU that has 240 cores running off of a Xeon 2.8 GHz quad-core host CPU show that, for the GPU-to-GPU case, our
Aho-Corasick GPU adaptation achieves a speedup between 8.5 and 9.5 relative to a single-thread CPU implementation and between
2.4 and 3.2 relative to the best multithreaded implementation. For the host-to-host case, the GPU AC code achieves a speedup of 3.1
relative to a single-threaded CPU implementation. However, the GPU is unable to deliver any speedup relative to the best
multithreaded code running on the quad-core host. In fact, the measured speedups for the latter case ranged between 0.74 and 0.83.
Early versions of our multipattern Boyer-Moore adaptations ran 7 to 10 percent slower than corresponding versions of the AC
adaptations and we did not refine the multipattern Boyer-Moore codes further.

Index Terms— Multipattern string matching, Aho-Corasick, multipattern Boyer-Moore, GPU, CUDA

1 INTRODUCTION

IN multipattern string matching, we are to report all
occurrences of a given set or dictionary of patterns in a
target string. Multipattern string matching arises in a
number of applications including network intrusion detec-
tion, digital forensics, business analytics, and natural
language processing. For example, the popular open-source
network intrusion detection system Snort [28] has a
dictionary of several thousand patterns that are matched
against the contents of Internet packets and the open-
source file carver Scalpel [24] searches for all occurrences of
headers and footers from a dictionary of about 40 header/
footer pairs in disks that are many gigabytes in size. In
both applications, the performance of the multipattern
matching engine is paramount. In the case of Snort, it is
necessary to search for thousands of patterns in relatively
small packets at Internet speed while in the case of Scalpel
we need to search for tens of patterns in hundreds of
gigabytes of disk data.

Snort [28] employs the Aho-Corasick (AC) [1] multi-
pattern search method while Scalpel [24] uses the Boyer-
Moore single pattern search algorithm [4]. Since Scalpel
uses a single pattern search algorithm, its runtime is linear
in the product of the number of patterns in the pattern
dictionary and the length of the target string in which the
search is being done. Snort, on the other hand, because of its
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use of an efficient multipattern search algorithm has a
runtime that is independent of the number of patterns in the
dictionary and linear in the length of the target string.

Several researchers have attempted to improve the
performance of multistring matching applications through
the use of parallelism. For example, Scarpazza et al. [25],
[26] port the deterministic finite automata version of the
AC method to the IBM cell broadband engine (CBE) while
Zha et al. [37] port a compressed form of the nondetermi-
nistic finite automata version of the AC method to the CBE.
Jacob et al. [15] port Snort to a GPU. However, in their port,
they replace the AC search method employed by Snort with
the Knuth-Morris-Pratt [16] single-pattern matching algo-
rithm. Specifically, they search for 16 different patterns in a
packet in parallel employing 16 GPU cores. Huang et al. [14]
do network intrusion detection on a GPU based on the
multipattern search algorithm of Wu and Manber [35].
Smith et al. [27] and Vasiliadis et al. [31] use deterministic
finite automata and extended deterministic finite automata
to do regular expression matching on a GPU for intrusion
detection applications. Marziale et al. [18] propose the use
of GPUs and massive parallelism for in-place file carving.
However, Zha and Sahni [38] show that the performance of
an in-place file carver is limited by the time required to read
data from the disk rather than the time required to search
for headers and footers (when a fast multipattern matching
algorithm is used). Hence, by doing asynchronous disk
reads, the pattern matching time is effectively overlapped
by the disk read time and the total time for the in-place
carving operation equals that of the disk read time.
Therefore, this application cannot benefit from the use of
a GPU to accelerate pattern matching.

Our focus in this paper is accelerating the AC and
Boyer-Moore multipattern string matching algorithms
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through the use of a GPU. A GPU operates in traditional
master-slave fashion (see [23], for example) in which the
GPU is a slave that is attached to a master or host processor
under whose direction it operates. Algorithm development
for master-slave systems is affected by the location of the
input data and where the results are to be left. Generally,
four cases-slave-to-slave, host-to-host, host-to-slave, and
slave-to-host-arise depending on whether the input (out-
put) reside initially (at the end) in the slave (GPU) or the
master memory (CPU) [32], [33], [34]. In this paper, we
address the first two cases only. In our context, we refer to
the first case (slave-to-slave) as GPU-to-GPU.

GPU implementations of the AC algorithm have been
proposed earlier [17], [30], [39] and a GPU implementation
of the Boyer-Moore multistring matching algorithm is
described in [39]. Lin et al. [17] and Tumeo et al. [30]
consider the host-to-host case in which the target string
begins in the host CPU and the pattern matches are to be
brought back from the GPU to the host CPU. The AC GPU
implementation of Lin et al. [17] uses one thread for each
position in the target string. This thread determines whether
its assigned position is the start of match. This implementa-
tion, which is called PFAC (Parallel Failureless-AC),
achieved a throughput of almost 4 GBps (Giga bytes per
second) on a GTX295 GPU that has 480 CUDA cores. The
PFAC code is available in the PFAC library [21]. In the GPU
implementations of Tumeo et al. [30] and Zha and Sahni [39]
each thread is assigned a portion of the target string to
search. There is sufficient overlap among the portions
assigned to different threads so that matches that cross
portion boundaries are not missed. Although this approach
was described in [17], it was rejected because of the
overhead associated with portion overlaps. Tumeo et al.
[30] experimented with the NVIDIA Tesla C1060 and the
Fermi C2050 GPUs. On dictionaries with at least 20K
patterns, they achieve a throughput between 1.5 and
12 GBps using a single C1060 and a throughput between
3.3 and 22.7 GBps using a single C2050. The performance
varies with the pattern set as well as with the number of
pattern matches found. Further, four C1060s were able to
match the performance of a single C2050 while four C2050s
were able to achieve a throughput between 2 and 3 times
that of a single C2050. Zha and Sahni [39], which is a
preliminary version of this current paper, considers the
GPU-to-GPU case and achieves a throughput of 30 GBps on
a GT200 using a dictionary with 33 patterns. Their Boyer-
Moore implementation achieves a throughput of 6 GBps.

The contributions of this paper are:

1. Careful analysis of the deficiencies of a base imple-
mentation of the GPU-to-GPU AC and Boyer-Moore
algorithms and a clear description of how these
deficiencies may be overcome. Overcoming the noted
deficiencies speeds the AC implementation by a factor
between 8 and 9. For the Boyer-Moore algorithm, we
did only the first step of a 4-step deficiency elimina-
tion process and achieved a speedup of almost 2. The
remaining steps were not done because it became
evident that the remaining steps would not make the
GPU-to-GPU Boyer-Moore algorithm competitive
with the optimized AC algorithm.

2. For host-to-host computing, we consider two strate-
gies to overlap input-output data transfer between
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host and GPU with GPU computation. The first of
these, which is intuitive and given in [10], requires
more GPU memory than is required by the other.
The performance of each strategy is analyzed for
master-slave systems that have either 1 (e.g., GT200
and C1060) or 2 (e.g., C2050) I/O channels between
master and slave. We prove the optimality of the
first strategy for systems with 1 and 2 I/O channels
and the suboptimality of the second strategy. For
the second strategy, we establish tight performance
bounds relative to optimal performance. These
bounds enable the programmer to evaluate the
tradeoff between GPU memory requirement and
overall application runtime and to possibly use a
hybrid strategy to optimize runtime subject to the
constraint of available GPU memory.

3. We couple our first data transfer strategy with our

optimized GPU-to-GPU AC implementation to ar-
rive at a host-to-host implementation that achieves a
throughput of 10 GBps on a GT200. This throughput
is at the high end of the 1.5 to 12 GBps performance
achieved by the C1060, which is in the same family
as the GT200, implementation of [30].

The remainder of this paper is organized as follows: In
Section 2, we provide a brief review of single and multi-
pattern string matching with a focus on the AC and Boyer-
Moore algorithms. Sections 3 and 4 describe our GPU
adaptation of these matching algorithms for the GPU-to-
GPU and host-to-host cases. Section 5 discusses our
experimental results and we conclude in Section 6. The
reader unfamiliar with NVIDIA’s Tesla architecture and
CUDA is referred to [10] for details.

2 BoOYER-MOORE AND AC STRING MATCHING

Knuth et al. [16] developed the first linear time algorithm
for string matching and Aho and Corasick [1] did this
for multistring matching. Yao [36] has shown that the
average complexity of the string matching problem is
Q(]S|log,.(|P|)/|P]), where P is the pattern, S is the target
string, and ¢ is the size of the alphabet. Navarro and
Fredericksson [19] have generalized this bound to
Q(]S|1log.(rm)/m), where m is the length of the shortest
pattern, for multipattern string matching. Both lower
bounds are tight [7], [8], [9].

Boyer-Moore [4], Horspool [13], and Galil [12] have
developed pattern matching algorithms Central to these
algorithms is a bad character function for P that specifies
how many characters to shift P right before reexamining
pairs of characters from P and S for a match. More
specifically, the bad character function for P gives the
distance from the end of P of the last occurrence of each
possible character that may appear in S. In practice, many
of the shifts in the bad character function of a pattern are
close to the length, |P|, of the pattern P making the
algorithms of [4], [13], [12] very fast in practice. In fact,
when the alphabet size is large compared to |P|, the
average runtime of the Boyer-Moore algorithm is
O(]S|/|P]). Galil’s [12] variation has a worst case runtime
that is O(|S|) and Horspool’s [13] simplification of the
Boyer-Moore algorithm has a performance that is about the
same as that of the Boyer-Moore algorithm.
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Several multipattern extensions to the Boyer-Moore
search algorithm have been proposed [2], [6], [11], [35].
All of these multipattern search algorithms extend the bad
character function for a single pattern to a bad character
function for a set of patterns. The Set-wise Boyer-Moore
algorithm of [11] performs multipattern matching using this
combined bad function. The multipattern search algorithms
of [2], [6], [35] employ additional techniques to speed the
search further. The average runtime of the algorithms of [2],
[6], [35] is O(|S|/minL), where minL is the length of the
shortest pattern.

The multipattern Boyer-Moore algorithm used by us is
due to [6]. This algorithm employs two additional functions
shiftl and shift2 and a trie, called the reverse trie, which
contains the reverse of the patterns.

There are two versions-nondeterministic and determi-
nistic -of the AC [1] multipattern matching algorithm. Both
versions use a finite state machine/automaton to represent
the dictionary of patterns.! In the deterministic version
(DFA), which is the version we use in this paper, each state
of the finite automaton has a well-defined transition for
every character in the alphabet as well as a list of matched
patterns. The search starts with the automaton start state
designated as the current state and the first character in
the text string, S, that is being searched designated as the
current character. At each step, a state transition is made by
examining the current character of S. A transition to the
state corresponding to the current character is made and the
next character of S becomes the current character. When-
ever a state transition is made, the patterns in the list of
matched patterns for the reached state are output along
with the position in S of the current character. This output
is sufficient to identify all occurrences, in S, of all dictionary
patterns. Aho and Corasick [1] show how to compute the
DFA for a set of patterns. The number of state transitions
made by the DFA when searching for matches in a string of
length n is n. In the nondeterministic (NFA) version finite
automata states have two kinds of transitions success and
failure. Success transitions are defined for characters that
match a pattern character; for the remaining characters, a
failure transition is made. When the NFA version is used,
the number of state transitions in 2n. The NFA version,
however, uses less memory as finite automata states have
few success transitions and so may be better compacted
than DFA states. However, the NFA version results in
thread divergence when failure transitions occur.

3 GPU-To-GPU
3.1 Strategy

The input to the multipattern matcher is a character array
input and the output is an array output of states or reverse-
trie node indexes (or pointers). Both arrays reside in device
memory. When the AC algorithm is used, output[i] gives the
state of the AC DFA following the processing of input|i].
Since every state of the AC DFA contains a list of patterns

1. The use of the terms deterministic and nondeterministic in the
intrusion detection literature for the two versions of the AC algorithm is
unfortunate as both versions of the algorithm actually use deterministic
finite state machines/automata.
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n number of characters in string to be searched
maxL  length of longest pattern
Shiock number of input characters for which
a thread block computes output
B number of blocks = n/Sblock
T number of threads in a thread block
Sthreaa Number of input characters for which
a thread computes output = Spipcr/T
tWord SLh'read/4
T™W total work = effective string length processed

Fig. 1. GPU-to-GPU notation.

that are matched when this state is reached, output[i] enables
us to determine all matching patterns that end at input
character i. When the multipattern Boyer-Moore (mBM)
algorithm is used, output[i] is the last reverse trie node
visited over all examinations of input|i]. Using this informa-
tion and the pattern list stored in the trie node, we may
determine all pattern matches that begin at input[i]. If we
assume that the number of states in the AC DFA as well as
the number of nodes in the mBM reverse trie is no more than
65,536, a state/node index can be encoded using 2 bytes and
the size of the output array is twice that of the input array.

Our computational strategy is to partition the output
array into blocks of size Sy, (Fig. 1 summarizes the
notation used in this section). The blocks are numbered
(indexed) 0 through n/Syew, where n is the number of
output values to be computed. Note that n equals the
number of input characters as well. output[i*Syier : (3 +
1)#Shioer; — 1] comprises the ith output block. To compute
the ith output block, it is sufficient for us to use AC on
input[bxSpioer, — maxL + 1 : (b+ 1)*Spoer — 1], where maxL
is the length of the longest pattern (for simplicity, we
assume that there is a character that is not the first character
of any pattern and set input[—maxzL + 1 : —1] equal to this
character) or mBM on input[bxSpecr : (b4 1)*Spioer +
mazL — 2] (we may assume that input[n : n 4+ mazxL — 2]
equals a character that is not the last character of any
pattern). So, a block actually processes a string whose
length is Sy + maxzL — 1 and produces Sy elements of
the output. The number of blocks is B = n/Syock-

Suppose that an outputblock is computed using T threads.
Then, each thread could compute Siireaa = Stioer/T of the
output values to be computed by the block. So, thread ¢
(thread indexes begin at 0) of block b could compute

OUtPUt [b*Sbluck + t*Sthread : b*Sblock + t*St}LT'Ead + Sthread - 1}

For this, thread ¢ of block b would need to process the
substring

input[b*Shlmk + t%Sipread — marL + 1 : bxSyer
+ t*sthread + Sthrmd - l]

when AC is used and input[bxSyock + t%Sthread : O*Shiock +
t*Sihread + Sthread + mazL — 2] when mBM is used. Fig. 2
gives the pseudocode for a T-thread computation of block ¢
of the output using the AC DFA. The variables used are
self-explanatory and the correctness of the pseudocode
follows from the preceding discussion.

As discussed earlier, the arrays input and output reside
in device memory. The AC DFA (or the mBM reverse tries
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Algorithm basic

// compute block b of the output array using 7" threads
and AC

// following is the code for a single thread, thread ¢,
0<t<T

t = thread index;

b = block index;

state = 0; // initial DFA state

outputStartIndex = b* Spioc + t * Sthread;
inputStartIndex = outputStartIndex — maxL + 1;

// process inputfinputStartIndex : outputStartIndex —
1]
for (int i =
i++)

state = nextState(state, inputli]);

inputStartIndex; i < outputStartIndex;

//compute output
for (int i = outputStartIndex; i < outputStartIndex +
Sthread; 1+ +)
output[i] = state = nextState(state,input[i]);
end;

Fig. 2. Overall GPU-to-GPU strategy using AC.

in case the mBM algorithm is used) resides in texture
memory because texture memory is cached and is suffi-
ciently large to accommodate the DFA (reverse trie). While
shared and constant memories will result in better
performance, neither is large enough to accommodate the
DFA (reverse trie). Note that each state of a DFA has
A transitions, where A is the alphabet size. For ASCII,
A = 256. Assuming that the total number of states is fewer
than 65,536, each state transition of a DFA takes 2 bytes. So,
a DFA with d states requires 512d bytes. In the 16 KB shared
memory that our Tesla has, we can store at best a 32-state
DFA. The constant memory on the Tesla is 64 KB. So, this
can handle, at best, a 128-state DFA. Since the nodes of the
mBM reverse trie are as large as a DFA state, it is not
possible to store the reverse trie for any reasonable pattern
dictionary in shared or constant memory either. Each of the
mBM shift functions, shiftl and shift2, need 2 bytes per
reverse-trie node. So, our shared memory can store these
functions when the number of nodes does not exceed 4K;
constant memory may be used for tries with fewer than
16K nodes. The bad character function B() has 256 entries
when the alphabet size is 256. This function may be stored
in shared memory.

A nice feature of Algorithm basicis that all 1" threads that
work on a single block can execute in lock-step fashion as
there is no divergence in the execution paths of these T'
threads. This makes it possible for an SM of a GPU to
efficiently compute an output block using 7' threads. With
30 SMs, we can compute 30 output blocks at a time. The
pseudocode of Fig. 2 does, however, have deficiencies that
are expected to result in nonoptimal performance on a GPU.
These deficiencies are described below.

Deficiency D1. Since the input array resides in device
memory, every reference to the array input requires a
device memory transaction (in this case a read). There are
two sources of inefficiency when the read accesses to input
are actually made on the Tesla GPU—1) Our Tesla GPU
performs device-memory transactions for a half-warp (16)
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of threads at a time. The available bandwidth for a single
transaction is 128 bytes. Each thread of our code reads
1 byte. So, a half-warp reads 16 bytes. Hence, barring any
other limitation of our GPU, our code will utilize 1/8th the
available bandwidth between device memory and an SM.
2) The Tesla is able to coalesce the device memory
transactions from several threads of a half-warp into a
single transaction. However, coalescing occurs only when
the device-memory accesses of two or more threads in a
half-warp lie in the same 128-byte segment of device
memory. When Sijeqq > 128, the values of inputStartIndex
for consecutive threads in a half-warp (note that two
threads ¢1 and ¢2 are in the same half-warp iff |¢1/16] =
[t2/16]) are more than 128 bytes apart. Consequently, for
any given value of the loop index 4, the read accesses made
to the array input by the threads of a half-warp lie in
different 128-byte segments and so no coalescing occurs.
Although the pseudocode is written to enable all threads to
simultaneously access the needed input character from
device memory, an actual implementation on the Tesla GPU
will serialize these accesses and, in fact, every read from
device memory will transmit exactly 1 byte to an SM
resulting in a 1/128 utilization of the available bandwidth.

Deficiency D2. The writes to the array output suffer from
deficiencies similar to those identified for the reads from the
array input. Assuming that our DFA has no more than 2!¢ =
65,536 states, each state can be encoded using 2 bytes. So, a
half-warp writes 64 bytes when the available bandwidth for
a half-warp is 128 bytes. Further, no coalescing takes place
as no two threads of a half-warp write to the same 128-byte
segment. Hence, the writes get serialized and the utilized
bandwidth is 2 bytes, which is 1/64th of the available
bandwidth.

3.1.1 Analysis of Total Work

Using the GPU-to-GPU strategy of Fig. 2, we essentially do
multipattern searches on BxT' strings of length Syjcaq +
maxL — 1 each. With a linear complexity for multipattern
search, the total work, T'W, is roughly equivalent to that
done by a sequential algorithm working on an input string
of length

TW = BxT*(Sthread + maxL — 1)

=nx*x{1+ !
B S,

thread

“(masL =)

So, our GPU-to-GPU strategy incurs an overhead of
Sﬁim *(maxL — 1)*100% in terms of the effective length of
the string that is to be searched. Clearly, this overhead
varies substantially with the parameters maxL and Sreqa-
Suppose that maxL = 17, Sy, = 14,592, and T' = 64 (as in
our experiments of section 5). Then, Siuewq =228 and
TW = 1.07n. The overhead is 7 percent.

3.2 Addressing the Deficiencies

3.2.1 Deficiency D1-Reading from Device Memory

A simple way to improve the utilization of available
bandwidth between the device memory and an SM is to
have each thread input 16 characters at a time, process
these 16 characters, and write the output values for these
16 characters to device memory. For this, we will need to
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// define space in shared memory to store the input
data
_shared_ unsigned char sInput[Syocr + maxL — 1];

// typecast to uint4
uintd xsInputUint4d = ( uintd x)sInput;

// read as uintds, assume Sy and maxlL — 1
are divisible by 16

int numToRead = (Spiock + maxL —1)/16;

int next = b * Spioer /16 — (maxL — 1)/16 + ¢;

// T threads collectively input a block
for (int i = t; i < numToRead; i+ =T, next+ =1T)
sInputUintd[i] = inputUintd[next];

Fig. 3. T threads collectively read a block and save in shared memory.

cast the input array from its native data type unsigned
char to the data type uint4 as below:

uint4 * inputUint4 = (uint4 *) input;

A variable var of type uint4 is comprised of four
unsigned 4-byte integers var.x, var.y,var.z,and var.w.
The statement

uint4 in4 = inputUint4[i];

reads the 16 bytes input[16*i:16*1+15] and stores
these in the variable in4, which is assigned space in shared
memory. Since the Tesla is able to read up to 128 bits
(16 bytes) at a time for each thread, this simple change
increases bandwidth utilization for the reading of the input
data from 1/128 of capacity to 1/8 of capacity! However,
this increase in bandwidth utilization comes with some
cost. To extract the characters from in4 so they may be
processed one at a time by our algorithm, we need to do a
shift and mask operation on the four components of in4.
We shall see later that this cost may be avoided by doing a
recast to unsigned char.

Since a Tesla thread cannot read more than 128 bits at a
time, the only way to improve bandwidth utilization further
is to coalesce the accesses of multiple threads in a half-warp.
To get full bandwidth utilization at least eight threads in a
half-warp will need to read uint4s that lie in the same
128-byte segment. However, the data to be processed by
different threads do not lie in the same segment. To get
around this problem, threads cooperatively read all the data
needed to process a block, store this data in shared memory,
and finally read and process the data from shared memory.
In the pseudocode of Fig. 3, T' threads cooperatively read
the input data for block b. This pseudocode, which is for
thread ¢ operating on block b, assumes that Sy, and
maxzL — 1 are divisible by 16 so that a whole number of
uintd4s are to be read and each read begins at the start of a
uint4 boundary (assuming that input[—maxL + 1] begins
at a uint4 boundary). In each iteration (except possibly the
last one), T  threads read a consecutive set of T'uint4s from
device memory to shared memory and each uint4 is
16 input characters.

In each iteration (except possibly the last one) of the for
loop, a half-warp reads 16 adjacent uintd4s for a total of
256 adjacent bytes. If input[—maxL + 1] is at a 128-byte
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boundary of device memory, Sy, is a multiple of 128, and T’
is a multiple of 8, then these 256 bytes fall in 2 128-byte
segments and can be read with two memory transactions. So,
bandwidth utilization is 100 percent. Although 100 percent
utilization is also obtained using uint2s (now each thread
reads 8 bytes at a time rather than 16 and a half-warp reads
128 bytes in a single memory transaction), the observed
performance is slightly better when a half-warp reads
256 bytes in two memory transactions.

Once we have read the data needed to process a block
into shared memory, each thread may generate its share of
the output array as in Algorithm basic but with the reads
being done from shared memory. Thread ¢ will need

sInput[t * Sppread : (8 + 1) * Sthread + mazL — 2]

or sInputUintd[t * Sypread/16:(t + 1) * Sipreaa/16 + [(maxL —
1)/16] — 1], depending on whether a thread reads the input
data from shared memory as characters or as uint4s. When
the latter is done, we need to do shifts and masks to extract
the characters from the four unsigned integer components
of auint4.

Although the input scheme of Fig. 3 succeeds in reading
in the data utilizing 100 percent of the bandwidth between
device memory and an SM, there is potential for shared-
memory bank conflicts when the threads read the data from
shared memory. Shared memory is partitioned into 16 banks.
The ith 32-bit word of shared memory is in bank i mod 16.
For maximum performance, the threads of a half-warp
should access data from different banks. Suppose that
Sihreaa = 224 and sInput begins at a 32-bit word boundary.
Let tWord = Sipread/4 (tWord = 224/4 = 56 for our example)
denote the number of 32-bit words processed by a thread
exclusive of the additional maxL — 1 characters needed to
properly handle the boundary. In the first iteration of the
data processing loop, thread t needs sInput[t* Sinread,
0<t<T. So, the words accessed by the threads in the
half-warp 0 <t < 16 are t * tWord, 0 < t < 16 and these fall
into banks (¢ * tWord) mod 16, 0 < t < 16. For our example,
tWord = 56 and (¢ * 56) mod 16 = 0 when ¢ is even and (¢ *
56) mod 16 = 8 when ¢ is odd. Since each bank is accessed
eight times by the half-warp, the reads by a half-warp are
serialized to eight shared memory accesses. Further, since
on each iteration, each thread steps right by one character,
the bank conflicts remain on every iteration of the process
loop. We observe that whenever tWord is even, at least
threads 0 and 8 access the same bank (bank 0) on each
iteration of the process loop. Theorem 1 shows that when
tWord is odd, there are no shared-memory bank conflicts.

Theorem 1. When tWord is odd, (i*tWord)modl6 #
(jk) mod 16, 0 < i < j < 16.

Proof. The proof is by contradiction. Assume there exist i
and j such that 0 <4 < j < 16 and (i x tWord) mod16 =
(j x tWord) mod 16. For this to be true, there must exist
nonnegative integers a, b, and ¢, a < ¢, 0 <b < 16 such
that ixtWord =16a+b and jx*tWord = 16¢c+b. So,
(j — i) *tWord = 16(c — a). Since tWord is odd and ¢ —
a > 0, j — i must be divisible by 16. However, j —i < 16
and so cannot be divisible by 16. This contradiction
implies that our assumption is invalid and the theorem
is proved. O
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It should be noted that even when tWord is odd, the
input for every block begins at a 128-byte segment of
device memory (assuming that for the first block begins at
a 128-byte segment) provided T is a multiple of 32. To see
this, observe that Sy, = 4 * T * tWord, which is a multiple
of 128 whenever T' is a multiple of 32. As noted earlier,
since the Tesla schedules threads in warps of size 32, we
normally would choose T' to be a multiple of 32.

3.2.2 Deficiency D2-Writing to Device Memory

We could use the same strategy used to overcome
deficiency D1 to improve bandwidth utilization when
writing the results to device memory. This would require
us to first have each thread write the results it computes
to shared memory and then have all threads collectively
write the computed results from shared memory to device
memory using uintd4s. Since the results take twice
the space taken by the input, such a strategy would
necessitate a reduction in Sy, by two-thirds. For example,
when maxzL = 17, and Sy = 14, 6592 we need 14,608 bytes
of shared memory for the array sInput. This leaves us with
a small amount of 16 KB shared memory to store any other
data that we may need to. If we wish to store the results in
shared memory as well, we must use a smaller value for
Shiock- S0, we must reduce Sy, to about 14,592/3 or 4,864 to
keep the amount of shared memory used the same. When
T = 64, this reduction in block size increases the total work
overhead from approximately 7 percent to approximately
22 percent. We can avoid this increase in total work
overhead by first having each thread processes the first
maxL — 1 characters it is to process. This generates no
output and so we need no memory to store output.

Next, each thread reads the remaining Sij,eq.q characters
of input data it needs from shared memory to registers. For
this, we declare a register array of unsigned integers and
typecast sInput to unsigned integer. Since, the T threads
have a total of 16,384 registers, we have sufficient registers
provided Syoer < 4% 16384 = 64K (in reality, Spo would
need to be slightly smaller than 64K as registers are needed
to store other values such as loop variables). Since total
register memory exceeds the size of shared memory, we
always have enough register space to save the input data
that is in shared memory.

Unless Sy, < 4,864, we cannot store all the results in
shared memory. However, to do 128-byte write transactions
to device memory, we need only sets of 64 adjacent results
(recall that each result is 2 bytes). So, the shared memory
needed to store the results is 1287 bytes. Since we are
contemplating 7' = 64, we need only 8K of shared memory
to store the results from the processing of 64 characters per
thread. Once each thread has processed 64 characters and
stored these in shared memory, we may write the results to
device memory. The total number of outputs generated by a
thread is Syjread = 4 ¥ tWord. These outputs take a total of
8 x tWord bytes. So, when tWord is odd (as required by
Theorem 1), the output generated by a thread is a
nonintegral number of uint4s (recall that each uint4 is
16 bytes). Hence, the output for some of the threads does
not begin at the start of a uint4 boundary of the device
array output and we cannot write the results to device
memory as uint4s. Rather, we need to write as uint2s (a
thread generates an integral number tWord of uint2s).
With each thread writing a uint2, it takes 16 threads to
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write 128 bytes of output from that thread. So, T" threads can
write the output generated from the processing of 64 char-
acters/thread in 16 rounds of uint2 writes.

One difficulty is that, as noted earlier, when ¢tWord is
odd, even though the segment of device memory to which
the output from a thread is to be written begins at a uint2
boundary, it does not begin at a uint4 boundary. This
means also that this segment does not begin at a 128-byte
boundary (note that every 128-byte boundary is also a
uint4 boundary). So, even though a half-warp of 16 threads
is writing to 128 bytes of contiguous device memory, these
128-bytes may not fall within a single 128-byte segment.
When this happens, the write is done as two memory
transactions.

The described procedure to handle 64 characters of input
per thread is repeated [Siicqq/64] times to complete the
processing of the entire input block. In case Sipeqq is not
divisible by 64, each thread produces fewer than 64 results in
the last round. For example, when Sipeqd = 228, we have a
total of four rounds. In each of the first three rounds, each
thread processes 64 input characters and produces 64 results.
In the last round, each thread processes 36 characters and
produces 36 results. In the last round, groups of threads
either write to contiguous device memory segments of size
64 or 8 bytes and some of these segments may span 2
128-byte segments of device memory.

As we can see, using an odd tWord is required to avoid
shared-memory bank conflicts but using an odd tWord
(actually using a tWord value that is not a multiple of 16)
results in suboptimal writes of the results to device memory.
To optimize writes to device memory, we need to use a
tWord value that is a multiple of 16. Since the Tesla executes
threads on an SM in warps of size 32, T' would normally be a
multiple of 32. Further, to hide memory latency, it is
recommended that 7" be at least 64. With T" = 64 and a 16 KB
shared memory, Syireqqd can be at most 16 x 1,024/64 = 256
and so tWord can be at most 64. However, since a small
amount of shared memory is needed for other purposes,
tWord < 64. The largest value possible for tWord, that is, a
multiple of 16 is therefore 48. The total work, TW, when
tWord =48 and maxzL =17 is nx* (1 + 25 * 16) = 0.083n.
Compared to the case tWord = 57, the total work overhead
increases from 7 to 8.3 percent. Whether we are better off
using tWord = 48, which results in optimized writes to
device memory but shared-memory bank conflicts and
larger work overhead, or with tWord = 57, which has no
shared-memory bank conflicts and lower work overhead
but suboptimal writes to device memory, can be determined
experimentally.

4 HosTt-TO-HOST

4.1 Strategies

Since the GPUs support asynchronous transfer of data
between device memory and pinned host memory, it is
possible to overlap the time spent in data transfer to and
from the device with the time spent by the GPU in
computing the results. There are at least two ways to
accomplish the overlap of I/O between host and device
and GPU computation. In Strategy A (Fig. 4), which is
given in [10], we have three loops. The first loop
asynchronously writes the input data to device memory
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for (int i = 0; ¢ < numO fSegments; i+ +)
Asynchronously write segment ¢ from host to device
using stream i;

for (int i = 0; ¢ < numO fSegments; i+ +)
Process segment ¢ on the GPU using stream ¢;

for (int i = 0; i < numO fSegments; i+ +)
Asynchronously read segment i results from device
using stream ¢;

Fig. 4. Host-to-host strategy A.

in segments, the second processes each segment on the
GPU, and third reads the results for each segment back
from device memory asynchronously. To ensure that the
processing of a segment does not begin before the
asynchronous transfer of that segments data from host to
device completes and also that the reading of the results for
a segment begins only after the completion of the
processing of the segment, CUDA provides the concept of
a stream. Within a stream, tasks are done in sequence. With
reference to Fig. 4, the number of streams equals the
number of segments and the tasks in the ith stream are:
write segment 4 to device memory, process segment %, read
the results for segment i from device memory. To get the
correct results, each segment sent to the device memory
must include the additional maxL — 1 characters needed to
detect matches that cross segment boundaries.

For strategy A to work, we must have sufficient device
memory to accommodate the input data for all segments as
well as the results from all segments. Fig. 5 gives an
alternative strategy that requires only sufficient device
memory for two segments (two input buffers INO and IN1
and two output buffers OUT0 and OUT1). In this strategy,
the GPU processes input data that is in INO (IN1) and writes
the results to OUTO0 (OUT1). While the GPU is using buffers
INO and OUTO (or IN1 and OUT1) in this way, the host
writes to IN1 and reads from OUT1 (or INO and OUTO0). We
could, of course, couple strategies A and B to obtain a
hybrid strategy.

Write segment 0 from host to device buffer INO;
for (int i = 1; i < numO fSegments; i+ +)

{

Asynchronously write segment ¢ from host to device
buffer IN1;

Process segment ¢ — 1 on the GPU using INO and
OUTO;

Wait for all read/write/compute to complete;

Asynchronously read segment i — 1 results from
OUTO;

Swap roles of INO and IN1;

Swap roles of OUT0 and OUT1,
}
Process the last segment on the GPU using INO and
OUTOo;
Read last segment’s results from OUTO;

Fig. 5. Host-to-host strategy B.
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number of segments

tw time to write an input data segment
from host to device memory
t, time to read an output data segment
from device to host memory
ty time taken by GPU to process an input data

segment, create corresponding output segment
s—1
Ty Z;:() ty = 8%y

T, St = sty
T, Yoty =sxty
T¥(i) time at which the writing of input segment i

to device memory starts

TP(i) time at which the processing of segment i
by the GPU starts

T7(i) time at which the reading of output segment i
to host memory starts

T} (i) time at which the writing of input segment i
to device memory finishes

Tf(i) time at which the processing of segment i
by the GPU finishes

T7(i)  time at which the reading of output segment i
to host memory finishes

T completion time using strategy A

Tg completion time using strategy B

L lower bound on completion time

Fig. 6. Notation used in completion time analysis.

We analyze the relative time performance of these two
host-to-host strategies in the next section.

4.2 Completion Time-One I/O Channel
In this section, we analyze the performance of strategies A
and B for GPUs such as the GT200 and C1060 that have a
single I/O channel to the host. In this case, it is not possible
to overlap the transfer of input data from host to GPU with
the transfer of results from GPU to host. Fig. 6 summarizes
the notation used in our analysis of the completion time of
strategies A and B.

For our analysis, we make several simplifying assump-
tions as below:

1. The time, t,, to write or copy a segment of input data
from the host to the device memory is the same for
all segments.

2. The time, t,, the GPU takes to process a segment of
input data and create its corresponding output
segment is the same for all segments.

3. The time, ¢,, to read or copy a segment of output
data from the host to the device memory is the same
for all segments.

4. The write, processing, and read for each segment
begins at the earliest possible time for the chosen
strategy and completes t,, t,, and ¢, units later,
respectively.

5. In every feasible strategy, the relative order of
segment writes, processing, and reads is the same
and is segment 0, followed by segment 1,..., and
ending with segment s — 1, where s is the number
of segments.
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tp tp tp tp
— — — —
trotrtrtr
o
(a) case la
tw tw tw tw
[ I I I |
tp tp tp tp
1 [ 1 [ ] [ ]
tr tro tr tr
=
(b) case 2

Fig. 7. Strategy A, t,, > t,, s = 4 (cases 1a and 2).

Writing from the host memory to the device memory
uses the same I/O channel/bus as used to read from the
device memory to the host memory and the GPU is
necessarily idle when the first input segment is being
written to the device memory and the last output segment is
being read from this memory. So, t,, + max{(s — 1)(t, +
t.),sx*t,} +t. is a lower bound on the completion time of
any host-to-host computing strategy.

It is easy to see that when the number of segments s is 1,
the completion time for both strategies A and B is
tw + tp +t,, which equals the lower bound. Actually, when
s = 1, both strategies are identical and optimal. The analysis
of the two strategies for s > 1 is more complex and is done
below in Theorems 2 to 5. We note that assumption 4 implies
that T¥(i) = TV(i) + t,, T0(i) =T0(i) +1,, and T}(i) =
T (i) +t,, 0 < i < s. The completion time is 77 (s — 1).
Theorem 2. When s > 1, the completion time, T4, of strategy A is:

1. T, + T, whenever any of following holds:

a. t,>t,At, <T,—t,
b, ty <ty ATy —ty>1t,At, >t,

o

tw <ty NTy =ty >ty At <A A, 0 <4
< Sltw + (0 + 1), > Ty + ity

2. Ty+t,+t whent, >t,Nt, >T, —t,
tw+t, + T, when t, <ty ATy —t, <t, At, >,
4. ty,+ T, + t, when either of the following holds:

had

a. ty < tp A T;n —ty < tp ANt < tp
b.

ty <ty ATy —ty >t ANt <t, AFi,0 <0
< sty + (i 4+ 1)t, > T,y + ixt,].

Proof. It should be easy to see that the conditions listed in
the theorem exhaust all possibilities. When strategy A
is used, all the writes to device memory complete
before the first read begins (ie., T7(0) > T} (s—1)),
TU(i) = iwty, T¥(i) = (i+1)t,,0<i<s, and T7(0) >
TY(s — 1) = sxty =T

When t, > t,, T'(i) =Ty (i) = (i + 1)t,, (Fig. 7 illus-
trates this for s = 4). Hence,

T2(i) = (i+ Dty +1, <TP(i+1),0< i <5,
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I T

T
(b) case 3

Fig. 8. Strategy A, t,, < t,, T\, — tu, < t,, s =4 (cases 4a and 3).

where T}'(s) is defined to be (s+ 1)t,. So, T7(0) =
max{T,, T{(0)} =T, and T} (i) = max{T}(i — 1), T} (i)},
1<i<s. Since T(i) < Tyyi < s—1, Tj(i) > Tj(i - 1),
1<i<s, and T(0)>T,, TI(i)=Tii-1), 1<i<
s=1 So, Ti(s=2)=Ti(s=2)+t, =T, +(s—1)t, =
T, + T, —t.. Hence, T!(s — 1) = max{T, + T, — t,, T, +
tp} and Ty =T(s = 1) =T{(s = 1) + t, = max{T, + T,
Ty+t,+t}. So, when t, < T,—t, Ty = Tw+1T,
(Fig. 7a) and when t,>T,—t, Ty =T, + t,+1,
(Fig. 7b). This proves cases la and 2 of the theorem.
When t, <t,, T{(i)=t,+(i+1)t, 0<i<s We
consider the two subcases T, —t, <t, and T, —t, >
tp. The first of these has two subsubcases of its own-
t, <t, (theorem case 4a) and ¢, >t, (theorem case 3).
These subsubcases are shown in Fig. 8 for the case of four
segments. It is easy to see that T4 =t, + T, + ¢, when
t <t, and Ty =t, +t,+ 7T, when t, > ¢, The second
subcase (t, <t, and T, —t, > t,) has two subsubcases
as well-t, >t, and t, <t,. When t, >t, (Fig. 9a),
Tr(i) = Ty +it, 0<i<s and Ty=Ti(s—1)="T,+
T, (theorem case 1b). When t, < {,A Ai,0 < i < s[t,, +
(t+1)t, > T, +it,] (theorem case 1c), Ai, 0<i<
s[T7(i) > T}(i — 1)], where T7(—1) is defined to be T,.
So, Ta=Tj(s— 1)+t =T,+ T (Fig. 9b). When ¢, <
t, AN3i,0 <i < sty + (i +1)t, > T, +it,] (theorem case
4b), 3i,0 < i < s[T%(i) > T}(i — 1)) and Ty = t,, + T, + 1,
(Fig. 9¢). O
Theorem 3. The completion time using strategy A is the

minimum possible completion time for every combination of
tw, tp, and t,.

[
(c) case 4b

Fig. 9. Strategy A, t,<t,, T\, — t,>t,, s =4 (cases 1b, 1c, and 4b).
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Proof. First, we obtain a tighter lower bound L than the

bound ¢, + max{(s — 1)(t, + ¢,), sxt,} provided at the
beginning of this section. Since, writes and reads are
done serially on the same I/O channel, L > T,, +T,.
Since, Tf'(s —1) > T,, for every strategy, the processing
of the last segment cannot begin before T,,. Hence, L >
T, + t, +1t,. Since the processing of the first segment
cannot beginning before ¢,,, the read of the first segment’s
output cannot complete before t,, + ¢, + ¢,. The remain-
ing reads require (s — 1)¢, time and are done after the
first read completes. So, the last read cannot complete
before t,, +t, + Tr. Hence, L > t,, +t, + tg. Also, since
the processing of the first segment cannot begin before ¢,,
T]’,’(s —1) > t, +T,. Hence, L > t,, 4+ T, +t,. Combining
all of these bounds on L, we get L > max{T,, +T,,T, +
tp +trotw +tp + Doyt + T, + £}

From Theorem 2, we see that, in all cases, T4 equals
one of the expressions T\, + T;, T,, +t, + t,, t, +t, + 1},
tw + T, + t,. Hence, a tight lower bound on the comple-
tion time of every strategy is L = max{T,, + T,, T, + t, +
ty,ty +t, + T, t, +T,+ 1t }. Strategy A achieves this
tight lower bound (Theorem 2) and so obtains the
minimum completion time possible. ]

Theorem 4. When s > 1, the completion time Tp of strategy B is

Tp = t, + max{t,,t,} + (s — 2)max{t, + t.,t,}
+ max{ty, t,} + .

Proof. When the for loop index i = 1, the read within the

loop begins at ¢,, + max{t,,t,}. For 2 <1i <'s, this read
begins at t, + max{ty,,t,} + (i — 1)max{t, +t.,t,}. So,
the final read, which is outside the loop, begins at t,, +
max{ty, tp} + (s — 2) max{t, + ¢, t,} + max{t,,t,} and
completes ¢, units later. Hence,

Tp = t, + max{ty,t,} + (s — 2)max{t, + t,,{,}
+ max{t,, t,} + t, '

a

Theorem 5. Strategy B does not guarantee minimum comple-

tion time.

Proof. First, we consider two cases when T equals the tight

lower bound L of Theorem 3. The first, is when t, =
min{t,, t,, t,}. Now, Tp = Ty + T, = L. The second case
is when t, > t,, + t,. Now, from Theorem 4, we obtain
Tp =ty +T,+t. = L. When, s =3 and

tw >t >t >0,Tpg=Ty+ (s — t, +1,
:E1J+Tr+tp_tr :Tu,—l-tp—l—Ztr.
When strategy A is used with this data, we are either in
case la of Theorem 2 and Ty =T, + T, = L < T, + T, +

ty—t, =Tp or we are in case 2 of Theorem 2 and
TA:E11+tp+tr:L<T‘u:+tp+2tr:TB- O

The next theorem shows that the completion time when
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Proof. We consider five cases that together exhaust all

possibilities for the relationship among t,, ¢,, and t,:

1. t,>t,At, >t,. From Theorems 2 (case la ap-
plies as t, <t < (s—1)t, =1, —t,) and 4, it
follows that Ty = T =T, + T,. So, (Ts—Ta)/
Ty =0.

2.ty 2>t, ANt <t,. From Theorem 4, Tp =T, + T, +
t, —t.. We may be in either case la or case 2 of
Theorem 2. If we are in case 1a, then Ty = T,, + T,
and T, —t, = (s—1)t, > t,. So, t, >t,/(s—1).
(Note that since we also have ¢, < t,, s must be
at least 3 for case la to apply.) Therefore, ¢, +
t, > (1+1/(s — 1))t, = ;t,. Hence, for s > 2,

Tp—Ta _ bt < ty(1—=15)
TA S(tw + tr) - ss—_l tp
_s—=2 s-2
g2 s2—1°

If we are in case 2 of Theorem 2, then T, =
Ty +t,+t, and t, > t, > T, —t, = (s — 1)t,. So,
Tp—Ta  (s—2)t,
Ty sty+t,+t,

The right-hand side equals 0 when s = 2 and for
s > 2, the right-hand side is

(s —2)t,

< _s5—=2 s5—2
s(s—Dt, +(s—1)t, +t, 2

s2—1°

3.ty <ty At >t, Now, Ip =T, + T, +1t, —t,. For
strategy A, we are in case 1b, 3, or 4a of Theorem 2.
If we are in case 1b, Ty =T, + T, = s(ty, + t,),
ty > t,, and (s — 1)t, =T, —t, > t,. (Note that
since we also have t,, < t,, s must be at least 3 for
case 1b to apply.) So for s > 2,

TB - TA _ tp - tu;

(l-—=5) s—2 s-—2
Ty s(tw+t,) N

s(p+t,) 8T -1

When case 3 of Theorem 2 applies, T4 =
ty +tp, + T, and (s — 1)t, <t, < t,. So,
TB - TA o (8 - Q)tu,
Ta  ty+ty,+st

The right-hand side equals 0 when s =2 and
for s > 2, the right-hand side is

— 2)ty -2 -2
(s—2) <8 s

< .
= $(tw + tr) 52 $2—-1

When case 4a of Theorem 2 applies, Ty =t,, +
T, +ty, (s— 1)ty =Ty —t, <t,, and t, =t,. So,
Ta=ty+ (s+1)t, >ty + (s+1)(s — 1)t, = s’y
and Tp—Ta= (s— Dty +(s+ 1t —t,—(s+
1)t, = (s — 2)ty. Therefore,

using strategy B is less than 13.33 percent more than when

strategy A is used.

Theorem 6. TBT;ATA =0 when s <2 and TBT;4T4 <
when s > 2.

TB—TA<(3—2)tu,_s—2< s—2
—21§2/15 Ty - s%t, 52 s2—-1°

s
52




ZHA AND SAHNI: GPU-TO-GPU AND HOST-TO-HOST MULTIPATTERN STRING MATCHING ON A GPU

4. t, <t, ANt <ty ANty +t.>t,. Now, Tp=T, +
T, + 2t, — t, — t,. For strategy A, we are in case
1c, 4a or 4b of Theorem 2.
If we are in case 1c, Ty = T, + T, and

ty + sty < sty + (s — l)t,,‘.

So, (s — 1)(tw +t,) > st or t, +t, > *7t,. Hence,
Tp—Ta 2y —ty—t _2-35 s5—2
Ty s(ty +t.) — :Tzl s

The right-hand side is 0 when

when s > 2.
For both cases 4a and 4b, T4 =t, + 1, + t,.

When case 4a applies, (s—1)t, <t,. Since,
by +1 2 1),
1 — 2
ty >t — ty th<lf—1) i > (s = Dt
s— s—
Hence,
Tp—Ta . (s =2)(tw +t. — 1)
Ty  tetst,+t

The right-hand side equals 0 when s =2 and
for s > 2, the right-hand side is
5—2
1

- (s = 2)ty B
tw +8(s — Dty + (s — 2)t, 52

When case 4b applies, it follows from ¢, > ¢, and
the conditions for case 4b that ¢, + st, >
Tw+ (s — 1)t, = sty + (s — 1), So,

- 1)(tw =+ tr)

and t,, +t, < :*yt,. Hence,

sty > (s

b+t —ty < tp/(s—1).
From this inequality and t,, + ¢, > t,, we get
Tp—Ta  (5—2)(tw+t, — 1)
Ty  tetst,+t

The right-hand side equals 0 when s =2 and
for s > 2, the right-hand side is

2 s—2
< ity < ity :5_2'
wt sty +t ~ (s+1)t, s$2-1
5. bty <ty Aty <ty Aty,+t, <t,. Now, Tp=t,+

T, +t, =T4. Only cases 1c and 4a of Theorem 2
are possible when t, < t,At. <t, However,
since we also have t,+t. < t,, (s—1)t,>
(s =Dty +(s=Dt,. So, ty+(s— L)t,>T,+
(s — 1)t,. Hence, t,, + st, > T\, + (s — 1)t,. There-
fore, case 1c does not apply and T4 = t, + 1), +
t, = Tp. So, (TB - TA)/TA =0. O

To see that the bound of Theorem 6 is quite tight,

consider the instance s=4, t, =t, =3, and ¢, =1. For
this instance, Ty = t,, + 1), + ¢, = 16 (case 4a) and T = 18.
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tp tp tp tp

— — — —
tr tr tr tr
][ ] 1 ] ]
(a) tu, > tp and ty >ty

tw tw tw tw

[ I [ [ ]

tp tp tp tp
— — — —
tr tr tr tr
[ I I I ]

(b) tw > tp and ty, < tr

twootw tw tw

i 11 il ]
(c) tw <tpand tp, > t,

I I
(@) tw < tp < tr
Fig. 10. Strategy A, enhanced GPU, s = 4.
So, (T4 —1T5)/Ta=1/8. The instance falls into case 3

(subcase 4a of Theorem 2) of Theorem 6 for which we
have shown

Strategy B becomes more competitive with strategy A as
the number of segments s increases. For example, when
5§ =20, (Tp—Ta)/Ta < 18/399 = 0.045.

4.3 Completion Time-Two I/0 Channels

In this section, we analyze the completion times of
strategies A and B under the assumption that we are using
GPUs such as the Fermi that have two I/O channels/buses
between the host CPU and the GPU and the CPU has a
dual-port memory that supports simultaneous reads and
writes. In this case, the writing of an input data segment to
device memory can be overlapped with the reading of an
output data segment from device memory. When s =1,
GPUs with two I/O channels are unable to perform any
better than the original GPU and T4 =15 = t, +t, + t,.
Theorems 7, 8, 9, 10, and 11 are the enhanced GPU analogs
of Theorems 2, 3, 4, and 5 for the case s > 1. We refer to
GPUs with two I/O channels as enhanced GPUs.

Theorem 7. When s > 1, the completion time, T4, of strateqy A
for the enhanced GPU model is

Tu: + tp + tr tui Z tp A tu,‘ Z tr
Ty={ tw+Ty+t, t,<t,At,>t,
tw+t, + T, otherwise.

Proof. As for the original GPU model, T¥(i) =i *t,,

0<i<s. When tw > tp, TV(i) =Tp(i) = (i + 1) * t, and
T7(i) = T§(i) +t, = (i + 1) * t, + t,. Fig. 10a shows the
schedule of events when s =4, t,, > t,, and t,, > t,. Since
tw > tr, Tr(i) = T"( )= +1)xt,+t, O S 1< 5. So,

T;(s—1);s*tw+tp and Ty = Tj(s — 1) = Ty + 1, + t,.



1166

Fig. 10b shows the schedule of events when s =4,
ty >t, and t, <t,. Since t, <t,, Ti(i)= T}(z -1)=
Tr'(t—1)+t,0 <1< s.Since T;(O) =ty +t,+t,Ti(s—
1) =ty +1t,+ (s — Vt,and Ty = Tj(s — 1) = t,, +t, + T,

When t, < t,and t, > t,, TP(i) =t, +ixt,, 0 < i <s,
and T7(i) = Tj‘f(z’), 0<i<s (Fig. 10c). So, Ty =t, +
s¥ty+t, =ty +T,+t,.

The final case to consider is t, <t, <t, (Fig. 10d).
Now, TP(i) =ty +i%t,, 0 <i<s, and T7(i) = t, + 1, +
i%ty. S0, Ta =ty +t, + T} O

Theorem 8. For the enhanced GPU model, the completion time
using strategy A is the minimum possible completion time for
every combination of t,, t,, and t,.

Proof. The earliest time the processing of the last segment
can begin is T,,. So, Tj'f (s —1) > T, +t,. So, the comple-
tion time L of every strategy is at least T, +t, +t,.
Further, the earliest time the read of the first output
segment can begin is ¢,, + t,,. Following this earliest time,
the read channel is needed for at least sx*t, time to
complete the reads. So, L >t,+t,+T,. Also, since
TP(0) = t,, the earliest time the processing of the last
segment can begin is t,+ (s —1)t,, Hence, L >1t, +
T, + t,. Combining these lower bounds, we get

L > max{T, +t, +tr ty+Ty+trty,+t,+ 1T}

Since T'4 equals the derived lower bound, the lower bound
is tight, L = max{T, +t, +t,, tw+Tp+trty+t,+ T}
and T4 is the minimum possible completion time. O

The next theorem shows that the optimal completion
time using the original GPU model of Section 4.2 is at most
twice that for the enhanced model of this section.

Theorem 9. Let t,,, t,, t,, and s define a host-to-host instance. Let
C1 and C2, respectively, be the completion time for an optimal
host-to-host execution using the original and enhanced GPU
models. C1 < 2« C2 and this bound is tight.

Proof. From the proofs of Theorems 3 and 8, it follows that
Cl =max{T, +T,, Ty +t, + ty, ty, +t, + Tty + T, + 1t}
and C2 = max{T, +t, + &, ty+ 1ty + T, ty + T, + 1}
Hence, when C1 # T, +T,, C1 =C2 < 2% (C2. Assume
that C1 =T, + T,. We consider two cases, T,, < T, and
To,>T,. When, T, <T,, C1=T,+T, <2xT, <2x(C2
(as T, <C2). When, T, >T,, C1=T,+ T, <2xT, <
2xC2 (as T, < C2).

To see that the bound is tight, suppose that ¢, =¢,,
and ¢, =e. Cl=2%sxt, and C2=T,, +t, +e=(s+
1) % t, + € (for e sufficiently small and s > 2). So, C1/
C2=2xs)/(s+14+¢€/t,) —2as s — oo O

Theorem 10. When s > 1, the completion time Ty of strategy B
for the enhanced GPU model is

Tp = t, + max{t,,t,} + (s — 2)max{t,, t,,t,}
+ max{t,,t,} +¢,.

Proof. When the for loop index i = 1, the read within this
loop begins at t,, + max{t,,t,}. For 2 <i < s, this read
begins at t,, + max{t,, t,,,}. So, the final read, which is
outside the loop, begins at t, + max{t,,t,} + (s —
2)max{t,, t,,t,} + max{t,,t,} and completes ¢, units
later. Hence,
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Tp = t, + max{t,,t,} + (s — 2)max{t,, t,,t,}
+ max{ty, t,} + .

a

Theorem 11. Strategy B does not guarantee minimum comple-
tion time for the enhanced GPU model.

Proof. First, we present a case when 73 = L. Suppose, t, >
tw and t, > t,. From Theorem 10, we obtain

Tp=ty+p+(s =2ty +t, +t, =ty +T, +t, =L
However, when ¢, > t, > t,, Tp=t, +t, + (s — 2)t, +
tr+t,= Ty+2t, >T, +t,+t, =T4 = L. O
Theorem 12 is the enhanced GPU analogue of Theorem 6.

Theorem 12. For the enhanced GPU model, (Tg — Ta)/T4 =0

when s=1 and (Tp—Ta)/Tp<1/(s+1)<1/3 when
s > 1. The bound is tight.
Proof. It is easy to see that s = Ty when s = 1. When s > 1,

we consider five cases that together exhaust all possibi-
lities for the relationship among t,, t,, and ¢,:

.ty = max{ty, t,, t,} At, > t,.
For this case, Ts =T\, + t, +t, = Ta.
2.ty =max{ty, ty, i} At, <t
Now, T =T, + 2t, and Ty =T\, + t, + ¢,. So,

Tp—Ts  t—t, _ b _ 1
Ty sty+t,+t, sty+t, s+1

To see that this bound is tight, consider the s
segment instance defined by ¢, =¢,and t,, = t, =
2. For this instance, Tp =2s+4 and T4 = 2s +
e+2. So, (Tp—Ta)/Ta=(2-¢€)/(2s+€+2),
which — 1/(s+1) as e — 0.
3.ty = max{ty, b, b} Aty < tp
Now, Tp =ty + T, +t, = Ty.
4.ty = max{ty, by, b} Aty <t Aty <t Aty >t
For this case, Tp = 2t,, + T, and T4 = t, + ¢, +
T,. Hence,

Tp—Ts  tu—t, _ tw 1
Ty tut+ty,+st, ty+st, s+1

We note that this case is symmetric to case 2
above and the tightness of the bound may be
established using a similar instance:
5.ty =max{ty, tyt,} Aty <t Aty <t, Aty <t
Now, Tg =ty +t, + T, =Ty o

5 EXPERIMENTAL RESULTS

5.1 GPU-to-GPU

For all versions of our GPU-to-GPU CUDA code, we set
maxrL =17, T =64, and Sy = 14,592. Consequently,
Sth'r'cud = Sblock'/T =228 and tWord = Sth’rcud/4 = 57. Note
that since tWord is odd, we will not have shared-memory
bank conflicts (Theorem 1). We note that since our code is
written using a 1D grid of blocks and since a grid dimension
is required to be < 65,536 [10], our GPU-to-GPU code can
handle at most 65,535 blocks. With the chosen block size, n
must be less than 912 MB. For larger n, we can rewrite the
code using a 2D indexing scheme for blocks.
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TABLE 1
Runtime for AC Versions
Optimization Step  10MB ~ 100MB 904MB
ACO 23ms 227ms 2158ms
AC1 12ms 118ms 1107ms
AC2 8ms 80ms 748ms
AC3 6ms 53ms 434ms
AC4 3ms 26ms 249ms

For our experiments, we used a pattern dictionary from
[24] that has 33 patterns. The target search strings were
extracted from a disk image and we used n = 10, 100, and
904 MB.

5.1.1 AC Algorithm

We evaluated the performance of the following versions of
our GPU-to-GPU AC algorithm:

e ACO: This is Algorithm basic (Fig. 2) with the DFA
stored in device memory.

e ACI: This differs from ACO only in that the DFA is
stored in texture memory.

e AC2: The ACI code is enhanced so that each thread
reads 16 characters at a time from device memory
rather than 1. This reading is done using a variable
of type unint4. The read data are stored in shared
memory. The processing of the read data are done
by reading it one character at a time from shared
memory and writing the resulting state to device
memory directly.

e AC3: The AC2 code is further enhanced so that
threads cooperatively read data from device mem-
ory to shared memory as in Fig. 3 time. The read
data are processed as in AC2.

e AC4: This is the AC3 code with deficiency D2
eliminated using a register array to save the input
and cooperative writes as described in Section 3.2.2.

We experimented with a variant of AC3 in which data
were read from shared memory as uints, the encoded four
characters in a uint were extracted using shifts and masks,
and DFA transitions done on these four characters. This
variant took about 1 to 2 percent more time than AC3. Also,
we considered variants of AC4 in which tWord = 48 and 56
and these, respectively, took approximately 14.78 and
7.8 percent more time that AC4. We do not report on these
variants further.

Table 1 gives the runtime for each of our AC versions. As
can be seen, the runtime decreases noticeably with each
enhancement made to the code. Table 2 gives the speedup
attained by each version relative to ACO and Fig. 11 is a plot
of this speedup. Simply relocating the DFA from device
memory to texture memory as is done in AC1 results in a

TABLE 2
Speedup of AC1, AC2, AC3, and AC4 Relative to ACO
Optimization Step 10MB 100MB 904MB
ACO 1 1 1
AC1 1.93 1.92 1.95
AC2 2.80 2.83 2.89
AC3 411 426 497
AC4 7.71 8.58 8.68
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Fig. 11. Graphical representation of speedup relative to ACO.

speedup of almost 2. Performing all of the enhancements
yields a speedup of almost 8 when n = 10 MB and almost 9
when n = 904 MB.

5.1.2 Multipattern Boyer Moore Algorithm

For the multipattern Boyer Moore method, we considered
only the versions mBMO and mBM1 that correspond,
respectively, to ACO and AC1. In both mBMO and mBM]1,
the bad character function and the shiftl and shift2
functions were stored in shared memory. Table 3 gives
the runtimes for mBMO and mBM1. Once again, relocating
the reverse trie from device memory to texture memory
resulted in a speedup of almost 2. Note that mBM1 takes
between 7 and 10 percent more time than is taken by ACI.
Since the multipattern Boyer-Moore algorithm has a some-
what more complex memory access pattern than used by
AC, it is unlikely that the remaining code enhancements
will be as effective as they were in the case of AC. So, we do
not expect versions mBM2 through mBM4 to outperform
their AC counterparts. So, we did not consider further
refinements to mBM1.

5.1.3 Comparison with Multicore Computing on Host

For benchmarking purposes, we programmed also a multi-
threaded version of the AC algorithm and ran it on the
quad-core Xeon host that our GPU is attached to. The
multithreaded version replicated the AC DFA so that each
thread had its own copy to work with. As shown in Table 4,
for n =10 MB and 100 MB we obtained best performance
using eight threads while for n = 500 MB and 904 MB best
performance was obtained using four threads. The 8-threads
code delivered a speedup of 2.67 and 3.59, respectively, for
n = 10 MB and 100 MB relative to the single-threaded code.
For n =500 and 904 MB, the speedup achieved by the
4-thread code was, respectively, 3.88 and 3.92!

AC4 offers speedups of 8.5, 9.2, and 9.5 relative to the
single-thread CPU code for n =10, 100, and 904 MB,
respectively. The speedups relative to the best multi-
threaded quad-core codes were, respectively, 3.2, 2.6, and
2.4, respectively.

TABLE 3
Runtime for mBM Versions
Optimization Step  10MB ~ 100MB 904MB
mBMO 25ms 252ms 2343ms
mBM1 13ms 127ms 1184ms
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TABLE 4
Runtime for Multithreaded AC on Quad-Core Host
number of threads  10MB speedup  100MB speedup
1 24ms 1 243ms 1
2 14ms 1.81 126ms 1.94
4 11ms 217 69ms 3.54
8 9ms 2.67 68ms 3.59
16 11ms 2.30 68ms 3.58
number of threads ~ 500MB speedup  904MB speedup
1 1238ms 1 2370ms 1
2 617ms 2.00 1206ms 1.96
4 319ms 3.88 605ms 3.92
8 367ms 3.37 677ms 3.50
16 356ms 3.47 621ms 3.82

5.2 Host-to-Host

We used AC3 with the parameters stated in Section 5.1 to
process each segment of data on the GPU. The target string
to be searched was partitioned into equal size segments. As
a result, the time to write a segment to device memory was
(approximately) the same for all segments as was the time
to process each segment in the GPU and to read the results
back to host memory. So, the assumptions made in the
analysis of Section 4.2 apply. From Theorem 3, we know
that host-to-host strategy A will give optimal performance
(independent of the relative values of t,, t,, and t,) though
at the expense of requiring as much device memory as
needed to store the entire input and the entire output.
However, strategy B, while more efficient on memory when
the number of segments is more than 2, does not guarantee
minimum runtime. The values of t,,, t,, and ¢, for a segment
of size 10 MB were determined to be 1.87, 2.73, and 3.63 ms,
respectively. So, t,, < t, < t, and this relative order will not
change as we increase the segment size. When the number
of segments is more than 2, we are in case 1b of strategy A.
So, Ty =T\, + T... For strategy B, Tp = T, + T,. + t, — t,, and
strategy B is suboptimal. Strategy B is expected to take ¢, —
t, = 0.86 ms more time than taken by strategy A when the
segment size is 10 MB. Since t,, t,, and t, scale roughly
linearly with segment size, strategy B will be slower
by about 8.6 ms when the segment size is 100 MB and by
77.7 ms when the segment size is 904 MB. Unless the value
of n is sufficiently large to make strategy A infeasible
because of insufficient device memory, we should use
strategy A. We experimented with strategy A and Table 5
gives the time taken when n =500 and 904 MB using a
different number of segments. This figure also gives the
speedup obtained by host-to-host strategy A relative to
doing the multipattern search on the quad-core host using
four threads (note that four threads give the fastest quad-
core performance for the chosen values of n). Although the
GPU delivers no speedup relative to our quad-core host,
the speedup could be quite substantial when the GPU is a
slave of a much slower host. In fact, when operating as a
slave of a single-core host running at the same clock-rate as
our Xeon host, the CPU times would be about the same as
for our single-threaded version and the GPU host-to-host
code would deliver a speedup of 3.1 when n = 904 MB and
the number of segments is 1.

6 CONCLUSION

AC and mBM adaptations for the host-to-host and GPU-to-
GPU cases were considered. For the host-to-host case, we
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TABLE 5
Runtime for Strategy A Host-to-Host Code
segments  segment size ~ GPU quadcore  speedup
100 9.04MB 817ms  605ms 0.74
10 90.4B 786ms  605ms 0.77
2 452MB 789ms  605ms 0.77
1 904MB 770ms  605ms 0.78
50 10MB 413ms  319ms 0.82
10 50MB 388ms  319ms 0.82
5 100MB 385ms  319ms 0.83
1 500MB 396ms  319ms 0.81

suggest two strategies to communicate data between the
host and GPU and showed that while strategy A was
optimal with respect to runtime (under suitable assump-
tions), strategy B required lees device memory (when the
number of segments is more than 2). Experiments show that
the GPU-to-GPU adaptation of AC achieves speedups
between 8.5 and 9.5 relative to a single-thread CPU code
and speedups between 2.4 and 3.2 relative to a multi-
threaded code that uses all cores of our quad-core host. For
the host-to-host case, the GPU adaptation achieves a
speedup of 3.1 relative to a single-thread code running on
the host. However, for this case, a multithreaded code
running on the quad core is faster. Of course, performance
relative to the host is quite dependent on the speed of
the host and using a slower or faster host with fewer or
more cores will change the relative performance values.
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