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Abstract

Automata-based representations and related algorithms
have been applied to address several problems in in-
formation security, and often the automata had to be
augmented with additional information. For example,
extended finite-state automata (EFSA) augment finite-
state automata (FSA) with variables to track dependen-
cies between arguments of system calls. In this paper,
we introduce extended finite automata (XFAs) which
augment FSAs with finite scratch memory and instruc-
tions to manipulate this memory. Our primary motiva-
tion for introducing XFAs is signature matching in Net-
work Intrusion Detection Systems (NIDS). Representing
NIDS signatures as deterministic finite-state automata
(DFAs) results in very fast signature matching but for
several classes of signatures DFAs can blowup in space.
Using nondeterministic finite-state automata (NFA) to
represent NIDS signatures results in a succinct repre-
sentation but at the expense of higher time complex-
ity for signature matching. In other words, DFAs are
time-efficient but space-inefficient, and NFAs are space-
efficient but time-inefficient. In our experiments we have
noticed that for a large class of NIDS signatures XFAs
have time complexity similar to DFAs and space com-
plexity similar to NFAs. For our test set, XFAs use
10 times less memory than a DFA-based solution, yet
achieve 20 times higher matching speeds.

1. Introduction

Automata-based representations have found sev-
eral applications in information security. In some of
these applications automata are augmented with addi-
tional information. For example, extended finite state
automata (EFSA) augment finite-state automata (FSA)
with uninterpreted variables and are very useful for cap-
turing dependencies between system calls [23]. A sim-
ilar representation is used in STATL [8] to track de-

pendencies between events. In this paper our primary
goal is to improve the time and space efficiency of sig-
nature matching in network intrusion detection systems
(NIDS).1 To achieve our goal we introduce extended fi-
nite automata (XFAs) which augment traditional FSAs
with a finite scratch memory used to remember various
types of information relevant to the progress of signa-
ture matching. Since an XFA is an FSA augmented with
finite scratch memory, it still recognizes a regular lan-
guage, albeit more efficiently than an FSA. We demon-
strate that representing signatures in NIDS as XFAs sig-
nificantly improves time and space efficiency of signa-
ture matching. We also present algorithms for manip-
ulating XFAs, such as constructing XFAs from regular
expressions and combining XFAs.

In the past signatures in NIDS were simply key-
words, which resulted in extremely efficient signature-
matching algorithms. The Aho-Corasick algorithm [1],
for example, finds all keywords in an input in time linear
in the input size. Because of the increasing complexity
of attacks and evasion techniques [19], NIDS signatures
have also become complex. Therefore, current tech-
niques for generating different types of signatures, such
as vulnerability [4, 31] or session [21, 26] signatures,
generate signatures that use the full power of regular
expressions. Representing NIDS signatures as deter-
ministic finite-state automata (DFAs) results in a time-
efficient signature-matching algorithm (each byte of the
input can be processed in O(1) time), but for certain reg-
ular expressions DFAs blow up in space. Nondetermin-
istic finite-state automata (NFAs) are succinct represen-
tations for regular expressions, but the time complexity
of the signature-matching algorithm increases, i.e., each
byte of the input can take O(m) time to process, where
m is the number of states in the NFA. Therefore, DFAs
are time-efficient but space-inefficient, and NFAs are
space-efficient but time-inefficient. If signatures are rep-

1A NIDS that uses misuse detection matches incoming network
traffic against a set of signatures. This functionality of a NIDS is
called signature matching.



resented as XFAs, the scratch memory has to be updated
while processing some input bytes. However, since the
scratch memory is very small it can be updated very ef-
ficiently (especially if it is cached). Moreover, for many
signatures XFAs are also a very succinct representation.
For a large class of NIDS signatures XFAs have time
complexity similar to DFAs and space complexity simi-
lar to or better than NFAs. The larger the scratch mem-
ory we can use, the smaller the space complexity of the
required automaton (but the time complexity of the ope-
rations for updating the scratch memory may increase).

Recall that XFAs augment traditional FSAs with a
small scratch memory which is used to remember vari-
ous types of auxiliary information. We will explain the
intuition behind XFAs with a short example. Consider
n signatures si (1 ≤ i ≤ n) where si =.*ki.*k′i (ki and
k′i are keywords or strings). Note that si matches an in-
put if and only if it contains a keyword ki followed by
k′i. DFA Di for signature si is linear in the size of the
regular expression .*ki.*k′i. However, if the keywords
are distinct, the DFA for the combination of the signa-
tures {s1, · · · ,sn} is exponential in n. The reason for
this state-space blowup is that for each i (1 ≤ i ≤ n) the
DFA has to “remember” if it has detected the keyword
ki in the input processed so far. The XFA for the set of
signatures {s1, · · · ,sn} maintains a scratch memory of n
bits (b1, · · · ,bn), where bit bi remembers whether it has
seen the keyword ki or not. The space complexity of
the XFA is linear in n and the time complexity is O(n)
because the bits have to be potentially updated after pro-
cessing each input symbol, but this worst case happens
only if n of the keywords overlap in specific ways. For
the actual signatures we evaluated, the time complex-
ity for XFAs is much closer to DFAs. Further, the XFA
for an individual signature si is not much smaller than
the corresponding DFA, but the combined XFA for the
entire signature set is much smaller than the combined
DFA. The reason is not that we use a special combina-
tion procedure, but that the “shape” of the automata the
XFAs are built on does not lead to blowup. We discuss
this example in detail in Section 3.1.

This paper makes the following contributions:

• We introduce XFAs, which augment an FSA with a
small scratch memory to alleviate the state-space ex-
plosion problem characteristic to DFAs recognizing
NIDS signature sets (see Section 3).

• We provide a general procedure for building XFAs
from regular expressions that handles complex ex-
pressions used in modern NIDS (see Section 4).

• We perform a case study that builds XFAs for a real
signature set, and we demonstrate that the matching
performance and memory usage of XFAs is better

than that of solutions based on DFAs which must
resort to multiple automata to fit into memory (see
Section 5). Even with a memory budget 10× larger
than that used for XFAs, DFA-based solutions re-
quire 67 automata and have throughput 20× lower.

2. Related work

String matching was important for early network in-
trusion detection systems as their signatures consisted
of simple strings. The Aho-Corasick [1] algorithm
builds a concise automaton (linear in the total size of
the strings) that recognizes multiple such signatures in
a single pass. Other software [3, 6, 9] and hardware so-
lutions [15, 27, 29] to the string matching problem have
also been proposed. However, evasion [11, 19,24], mu-
tation [13], and other attack techniques [22] require sig-
natures that cover large classes of attacks but still make
fine enough distinctions to eliminate false matches.
Signature languages have thus evolved from simple
exploit-based signatures to richer session [21, 26, 32]
and vulnerability-based [4, 31] signatures. These com-
plex signatures can no longer be expressed as strings,
and regular expressions are used instead.

NFAs can compactly represent multiple signatures but
may require large amounts of matching time, since the
matching operation needs to explore multiple paths in
the automaton to determine whether the input matches
any signatures. In software, this is usually performed
via backtracking (which opens the NFA up to serious
algorithmic complexity attacks [7]) or by maintaining
and updating a “frontier” of states, both of which can be
computationally expensive. However, hardware solu-
tions can parallelize the processing required and achieve
high speeds. Sidhu and Prasanna [25] provide an NFA
architecture that updates the set of states during match-
ing efficiently in hardware. Further work [5, 28] has
improved on their proposal, but for software implemen-
tations the processing cost remains significant.

DFAs can be efficiently implemented in software, al-
though the resulting state-space explosion often exceeds
available memory. Sommer and Paxson [26] propose
on-the-fly determinization for matching multiple signa-
tures, which keeps a cache of recently visited states and
computes transitions to new states as necessary during
inspection. This approach can be subverted by an ad-
versary who can repeatedly invoke the expensive deter-
minization operations. Yu et al. [33] propose combin-
ing signatures into multiple DFAs instead of one DFA,
using simple heuristics to determine which signatures
should be grouped together. The procedure does re-
duce the total memory footprint, but for complex sig-



nature sets the number of resulting DFAs can be large.
The cost of this approach is increased inspection time,
since payloads must now be scanned by multiple DFAs.
The D2FA technique [14] performs edge compression
to reduce the memory footprint of individual states. It
stores only the difference between transitions in simi-
lar states, and in some sense, extends the string-based
Aho-Corasick algorithm to DFAs. The technique does
not address state space explosion and thus is orthogonal
to our technique which focuses on reducing the number
of states required. The two techniques could be com-
bined to obtain further reductions in memory usage.

Prefilter-based solutions such as those used by Snort
[20] can achieve good average-case performance. The
pre-filter performs string matching on subparts of a sig-
nature, invoking the matching procedure for the full reg-
ular expression only when a subpart has been matched.
Our preliminary results show that this approach is vul-
nerable to algorithmic complexity attacks. By sending
traffic crafted to defeat Snort’s pre-filter and to cause ex-
pensive regular expression processing, an attacker can
slow it down by as much as a factor of 5000.

Other extensions to automata have been proposed in
the context of information security. Extended Finite
State Automata (EFSA) extend traditional automata to
assign and examine values of a finite set of variables.
Sekar and Uppuluri [23] use EFSAs to monitor a se-
quence of system calls. Extensions, such as EFSA,
fundamentally broaden the language recognized by the
finite-state automata, e.g., EFSAs correspond to regular
expression for events (REEs). On the other hand, XFAs
can be viewed as an optimization of a regular DFA, but
XFAs do not enhance the class of languages that can be
recognized. It will be interesting to consider XFA-type
optimizations to EFSAs.

Eckmann et al. [8] describe a language STATL,
which can be thought of as finite-state automata with
transitions annotated with actions that an attacker can
take. The motivation for STATL was to describe attack
scenarios rather than improve the efficiency of signature
matching. Automata augmented with various objects,
such as timed automata [2] and hybrid automata [12],
have also been investigated in the verification commu-
nity. For example, hybrid automata, which combine dis-
crete transition graphs with continuous dynamical sys-
tems, are mathematical models for digital systems that
interact with analog environments. As with EFSAs,
these automata (which are usually infinite-state) funda-
mentally enhance the languages they recognize.

Space-time or time-memory tradeoff is a technique
where the memory use can be reduced at the cost of
slower program execution, or vice versa, the computa-

tion time can be reduced at the cost of increased mem-
ory use. In complexity theory researchers investigate
whether addition of a restriction on the space inhibits
one from solving problems in certain complexity class
within specific time bounds. For example, time-space
tradeoff lower bounds for SAT were investigated by
Fortnow [10]. Time-space tradeoffs have also been ex-
plored in the context of attacks [16, 17]. We are not
aware of existing work on time-space tradeoffs in the
context of signature matching for NIDS.

3. Technical overview

We begin with a discussion of simple signatures
illustrating how XFAs need much fewer states than
DFAs, followed by an overview of the steps for compil-
ing realistic signatures to XFAs suitable for NIDS use.

3.1. Reducing state space with XFAs

Recognizing a signature set with n signatures of the
form .*Si.*S′i, where all Si and S′i are distinct strings,
leads to state space blowup with DFAs. Figure 1 shows
an example for the case where n = 2, S1 =ab, S′1 =cd,
S2 =ef, and S′2 =gh. In the general case, for each of
the n signatures, the combined DFA must “remember”
whether it already found the first string in the input so
that it “knows” whether to accept if it sees the second
string. For example, in Figure 1 the DFA is in state PV
when neither ab nor ef has been observed. Similarly,
it is in state RV when ab but not ef is seen, state PX
when ef but not ab is seen, and state RX when both ab
and ef have been seen. In general, to remember n inde-
pendent bits of information, the DFA needs at least 2n

distinct states. An analysis of the generalized example
shows that if the strings are of length l, then the actual
number of states used by the combined DFA is O(nl2n).

Figure 2 shows the same signatures as in Figure 1
when DFAs are replaced with XFAs. In this figure, the
XFAs for .*ab.*cd and *ef.*gh each use a single
bit of scratch memory that is manipulated by instruc-
tions attached to specific edges (depicted in the figure
as callout boxes). During matching, these instructions
are “executed” each time the corresponding transition is
followed. For each signature of the form .*Si.*S′i, as
long as Si does not overlap with S′i, we can build XFAs
like those in Figure 2 that uses a single bit of scratch
memory.2 This bit explicitly encodes whether Si has
appeared in the input so far, and the shape of the un-
derlying automaton is very similar to that of the com-
bined DFA recognizing .*Si and .*S′i independently.

2If Si and S′i overlap it is still possible to build an XFA recognizing
the signature, but it will use more than one bit.
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Figure 1. The DFA recognizing both .*ab.*cd and .*ef.*gh has state space blowup. For simplic-
ity, we do not show some less important transitions.
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Figure 2. The XFA recognizing both .*ab.*cd and .*ef.*gh without state space blowup. For
simplicity, we do not show some less important transitions.

The combined XFA for the entire signature set uses n
bits and O(nl) states. Thus by adding n bits of scratch
memory we obtain a combined XFA approximately 2n

times smaller than the combined DFA. The initialization
time goes up from O(1) to O(n) and, assuming that the
strings in the signatures are not suffixes of each other,
only a small constant is added to the worst-case per byte
processing cost as at most one bit is updated for any
given byte from the input.

Note that the presence of scratch memory has no
influence on the shape of the underlying automaton for
the combined XFA: the same process for combining
DFAs is used for combining the underlying automata
of XFAs. In reality, the combined XFA (Figure 2) is
smaller than the combined DFA (Figure 1) because the
automata structure in the source XFAs is different than
for DFAs. When combined, these XFAs have benign in-
teractions, just as with DFAs limited to string matching.

XFAs can provide large reductions in the number
of states even when recognizing individual signatures.
Figures 3 and 4 show the DFA and XFA, respectively,
recognizing the language defined by .{n} which con-
sists of all strings of length n. Although no NIDS sig-

.q0 .q1 .qn qn+1…� � � �

�

Figure 3. DFA recognizing .{n}.

counter++;�

q0
counter=0 If (counter==n) { accept(); }

Figure 4. XFA recognizing .{n}.

natures have this exact form, signatures detecting buffer
overflows use sequences of states similar to those in
Figure 3 to count the number of characters that follow
a given keyword. The minimal DFA for .{n} needs
n + 2 states, whereas the XFA uses a single state and
a counter. This counter is initialized to 0 and is incre-
mented on every transition, signaling acceptance only
when the value is n. Increment is defined so that once
the counter reaches n + 1 it remains at n + 1. Thus the
counter needs to take only n + 2 values, requiring only
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k = �log2(n + 2)� bits of scratch memory. By adding
these k bits we reduce the number of states by a factor
of close to 2k. Measuring run time in bit operations, the
initialization cost and per-byte processing increase from
O(1) to O(k). If we count instructions, a small constant
is added to both initialization and per byte processing.

3.2. Using XFAs in a NIDS

Figure 5 depicts the steps involved in constructing
XFAs and using them in a NIDS. Crafting NIDS sig-
natures themselves is outside the scope of this paper
since our proposal changes only the representation of
signatures for matching, not the underlying semantics.
Section 4.1 discusses how we extend regular expres-
sions to indicate to the compiler when to use scratch
memory operations. Section 4.2 outlines the compiler
steps that convert an annotated regular expression into
an XFA that recognizes the language defined by the reg-
ular expression. Section 4.3 briefly describes how indi-
vidual XFAs are combined into a single XFA that rec-
ognizes all signatures simultaneously. In our feasibility
study (Section 5) we use a signature set from the open-
source Snort NIDS [20] to compare the performance
of matching with an XFA against the performance of
matching with DFAs.

4. Building XFAs from regular expressions

4.1. Annotating regular expressions

Transforming a regular expression into an XFA re-
quires striking a balance between using states and tran-
sitions on one hand and executing instructions over
scratch memory on the other. At one extreme we can
produce a (possibly large) DFA which uses no scratch
memory and at the other extreme a (possibly slow) pro-
gram that does not rely on state information at all. There
are regular expressions for which the XFA we want to
build lies at one of these extremes. For expressions
such as .*S, where S is a string, a simple DFA with
no scratch memory is ideal. At the other extreme, the
example from Figure 4 which recognizes .{n} gives an
XFA that is effectively just a program: there is a sin-
gle state which does not influence at all how the scratch

memory is updated or when acceptance happens. Dur-
ing construction, we use annotations to control where
the resulting XFA lies along this spectrum.

Two types of constructs cause our compiler to add
scratch memory objects: parallel concatenation, de-
noted with the symbol ‘#’, adds a bit to the nondeter-
ministic form of the scratch memory, and integer ranges
(e.g. ‘{m,n}’) add a counter. Parallel concatenation
introduces a bit and changes the shape of the automa-
ton, but it has the same semantics with respect to the
language recognized as standard concatenation. Fortu-
nately, integer ranges, a form of syntactic sugar, are al-
ready present in the signatures wherever appropriate (al-
though we do re-interpret them to introduce a counter).
Thus we only need to decide where to use the parallel
concatenation operator ‘#’. In our current prototype,
this is a partly manual step.

We use the parallel concatenation operator to
“break up” a regular expression, or parts of one, into
string-like subexpressions that are individually suit-
able for string matching. For example, we annotate
.*S1.*S2, where S1 and S2 are strings, as .*S1#.*S2.
Put another way, we add the ‘#’ operator right before
subexpressions such as ‘.*’ and [ˆ\n]{300} that re-
peat characters from either the whole input alphabet or a
large subset thereof. Table 1 shows examples of regular
expressions representing actual NIDS signatures from
our test set annotated with ‘#’. Note that for signature
2667 we have not used any parallel concatenation as
the expression is sufficiently string-like. This signature
will be compiled to an XFA without any scratch mem-
ory (so it is actually a DFA). For signature 3466, we
do not insert a ‘#’ in front of \s* because the charac-
ter class \s contains few characters (the white spaces).
For signatures such as 1735 which is a union of sub-
expressions we just apply the rules for inserting ‘#’ to
the sub-expressions of the union separately. We do not
insert a parallel concatenation operator in front of the
.* at the beginning of each of these sub-expressions (it
would actually be syntactically invalid).

4.2. Compiling to an XFA

Our XFA compiler takes annotated regular expres-
sions and transforms them into deterministic XFAs. The



Num. Signature

2667 .*[/\\]ping\.asp
3194 .*bat"#.*&
2411 .*\nDESCRIBE\s#[ˆ\n]{300}
3466 .*\nAuthorization:\s*Basic\s#[ˆ\n]{200}
1735 (.*new XMLHttpRequest#.*file://)|(.*file://#.*new XMLHttpRequest)

Table 1. Snort signatures for web traffic annotated with the parallel concatenation operator ‘#’.

stages are the same as for traditional DFA compilers us-
ing the standard Thompson construction [30]: parsing
the regular expression, building a non-deterministic au-
tomaton through a bottom-up traversal of the parse tree,
ε-elimination, determinization, and minimization. We
modify each of these steps to handle the scratch mem-
ory and implement new cases that handle the annota-
tions added to regular expressions.

4.2.1. Definitions. Formally, we represent the scratch
memory used by XFAs as a finite data domain D. Any
configuration of the scratch memory that is possible
during matching is represented as a data value d ∈ D.
With each transition we associate an update function
U : D → D (or for non-deterministic XFAs an update
relation U ⊆ D × D) which specifies how d is to be
updated. For the common special case of the data do-
main not being updated on a transition, we just asso-
ciate the identity function with the transition. Since we
extend the automaton with the data value, the current
state of the computation is no longer fully described
by the current state of the automaton q ∈ Q, but by
what we call the current configuration of the automa-
ton, (q,d) ∈ Q×D. Similarly, the acceptance condition
is not defined as a subset of states, but as a subset of
configurations F ⊆ Q×D. Note that our definition of
XFAs below generalizes the standard DFA definition.

Definition 1 A (deterministic) extended finite automa-
ton (XFA) is a 7-tuple (Q,D,Σ,δ ,Uδ ,(q0,d0),F),
where

• Q is the set of states, Σ is the set of inputs (input
alphabet), δ : Q×Σ → Q is the transition function,

• D is the finite set of values in the data domain,

• Uδ : Q×Σ×D → D is the per transition update func-
tion which defines how the data value is updated on
every transition,

• (q0,d0) is the initial configuration which consists of
an initial state q0 and an initial data value d0,

• and F ⊆ Q×D is the set of accepting configurations.

Nondeterministic XFAs differ from deterministic
XFAs in a number of important ways. Transitions can
be nondeterministic, epsilon (ε) transitions are allowed,

and per-transition update functions are generalized to
update relations which can take a single data domain
value to multiple values. Also, a set of initial config-
urations QD0 replaces the single initial configuration
(q0,d0). We define nondeterministic XFAs as follows.

Definition 2 A nondeterministic extended finite au-
tomaton (NXFA) is a 7-tuple (Q,D,Σ,δ ,Uδ ,QD0,F),
where

• Q is the set of states, Σ is the set of inputs (input al-
phabet), δ ⊆ Q× (Σ∪{ε})×Q is the nondetermin-
istic relation describing the allowed transitions,

• D is the finite set of values in the data domain,

• Uδ : δ → 2D×D is the nondeterministic update func-
tion (or update relation) which defines how the data
value is updated on every transition,

• QD0 ⊆ Q×D is the set of initial configurations of
the NXFA,

• and F ⊆ Q×D is the set of accepting configurations.

During the construction procedure, we represent D
explicitly as a set of integers, the per transition update
functions as unstructured sets of pairs (di,d f ), and F as
a set of configurations. These are intermediate repre-
sentations. The final XFA that performs the signature
matching uses a much more compact representation,
where D is not represented explicitly and small pro-
grams are associated with states and transitions. Thus,
in the end, the amount of memory required is not much
larger than that for a DFA based on Q and δ . We re-
fer to these data domains used by the final XFAs dur-
ing matching as efficiently implementable data domains
(EIDDs). We define them formally in Section 4.2.4.

4.2.2. From parse trees to NXFAs. Our procedure for
constructing an NXFA from the parse tree extends the
traditional method with provisions for manipulating the
data domains and the data-dependent components of the
NXFAs. We add two new constructs which extend the
data domain: the parallel concatenation construct adds
a bit and integer range constructs add a counter. For
brevity, we only present simplified versions of these
constructs that build on NFAs corresponding to the sub-
expressions they apply to.
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Figure 7. Simplified NXFA construction step for
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Figure 6 shows a simplified version of the construc-
tion step triggered by the parallel concatenation opera-
tor expr1#expr2, where q01 and q f 1 are the start and fi-
nal states for the NFA that results from processing expr1

and q02 and qf 2 are the same for the NFA recognizing
expr2. Acceptance in qf 2 is conditional on the bit be-
ing set to 1, but it is initialized to 0 and no transition
changes it except the ε-transition from q f 1 to q02. Since
there are no transitions from the states of the second au-
tomaton to the states of the first, every accepting input
string must map to a path from q01 to q f 1 through the
first NFA, followed by the transition from q f 1 to q02,
followed by a path from q02 to qf 2 through the second
NFA. Thus the NXFA in Figure 6 recognizes the lan-
guage expr1expr2. Note that structurally it is similar to
the NFA recognizing expr1|(.*expr2) .

Figure 7 shows a simplified version of the con-
struction step triggered by an integer range of the form
(expr1){m,n}. q0 and q f are the start and accepting
states of the NFA that results from processing expr1.
Since acceptance in q+ is conditional on the counter
being between m and n, and the counter is incremented
by the ε-transition from qf to q+, the non-deterministic
XFA in Figure 7 recognizes the correct language. Note
that a single copy of the automaton for expr1 is used,

unlike the traditional construction step which repeats
the automaton n times. Structurally, the NXFAs rec-
ognizing (expr1){m,n} and (expr1)* are identical.
For example, for .{n} the compiler produces the (de-
terministic) XFA shown in Figure 4 which has the same
underlying structure as the DFA recognizing .*. On
the other hand, standard DFA construction produces an
automaton with n+2 states shown in Figure 3.

4.2.3. From NXFAs to XFAs. Epsilon transition elim-
ination, given in Algorithm 1, is the first step after
the NXFA is initially constructed. It extends standard
ε-elimination by composing update functions along
chains of “collapsed” ε transitions from the original
NXFA and places these new relations into the appro-
priate transition in the ε-free NXFA. These composed
functions keep track of the possible changes to the data
domain value along the collapsed edges. After running
Algorithm 1, we reduce the size of the NXFA by re-
moving states that are not accepting and have no paths
leading to accepting states.

EliminateEpsilon(Q,D,Σ,δ ,Uδ ,QD0,F):
δ ′ ← /0;1
U ′

δ ← /0;2

foreach (qi,s,qf ) ∈ δ ∩Q×Σ×Q do3
foreach (di,df ) ∈Uδ (qi,s,q f ) do4

foreach (qreachable,dreachable) ∈5
ComputeEpsilonReachable (q f ,df ) do

δ ′ ← δ ′ ∪ {(qi,s,qreachable)};6
U ′

δ ←U ′
δ ∪{((qi,s,qreachable),(di,dreachable))};7

QD′
0 ← /0;8

foreach (q0,d0) ∈ QD0 do9
QD′

0 ← QD′
0∪ ComputeEpsilonReachable (q0,d0);10

return (Q,D,Σ,δ ′,U ′
δ ,QD′

0,F);11

ComputeEpsilonReachable(q,d) :
Result ←{(q,d)};12
foreach (qi,di) ∈ Result do13

foreach q f ∈ {q|(qi,ε ,q) ∈ δ} do14
Result ← Result ∪{q f }×{df |(di,df ) ∈Uδ (qi,ε,q f )};15

return Result;16

Algorithm 1. ε-elimination for NXFAs.

Determinization is divided into two algorithms,
which determinize transitions first (Algorithm 2) and
update relations second (Algorithm 3). Note that the
output of Algorithm 2 is still an NXFA because nonde-
terminism still exists in the data domain. After consum-
ing an input string, the matching algorithm will know
the exact automaton state it is in, but multiple data do-
main values may be possible. Algorithm 2 is similar to
the algorithm for determinizing NFAs, but to preserve
the semantics of the input NXFA, the data domain D
is replaced by D′ = Q ×D in the output NXFA. Fig-
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Figure 8. Applying algorithm 2 (determinizing transitions) to a simple NXFA.

DeterminizeTransitions(Q,D,Σ,δ ,Uδ ,QD0,F):
D′ ← Q×D;1
// Data value in new NXFA = configuration in old
D′

0 ← QD0 ;2
// New states are sets of old states
q′0 ←{q0|∃d0 ∈ D.(q0,d0) ∈ QD0} ;3
Q′ ← {q′0};4
δ ′ ← /0;5
U ′

δ ← /0;6

foreach q′i ∈ Q′ do7
foreach s ∈ Σ do8

q′f ←{q f |∃qi ∈ q′i.(qi,s,q f ) ∈ δ};9

Q′ ← Q′ ∪{q′f } ; // Accum. reachable sets of old states10

// New states have 1 trans. per symbol
δ ′ ← δ ′ ∪{(q′i,s,q′f )} ;11

U ←{((qi,di),(q f ,df ))|qi ∈ q′i ∧qf ∈ q′f∧12

(di,d f ) ∈Uδ (qi,s,qf )};13
// Update relations preserve semantics
U ′

δ ←U ′
δ ∪{(q′i,s,q′f )}×U ;14

F ′ ← {(q′,(q,d))|q′ ∈ Q′ ∧q ∈ q′ ∧ (q,d) ∈ F} ;15
return (Q′,D′,Σ,δ ′,U ′

δ ,{q′0}×D′
0,F

′);16

Algorithm 2. Determinizing transitions.

ure 8 illustrates Algorithm 2 applied to an NXFA corre-
sponding to .*ab[ˆa]{1} and demonstrates why this
transformation is necessary. By not moving to a new do-
main D′, a naive determinization algorithm would pro-
duce an automaton that moves to state {A,B,C} on in-
put ‘a’, with possible data values being {0,1}. Since in
the input NXFA C accepts on a 1, this incorrectly de-
terminized automaton will accept the string a. But in
the input NXFA, the only way to get into the configura-
tion (C,1) is by going from A to B to C and looping in
C once, thus the language it recognizes is .*ab[ˆa]
and it does not include the string a . The NXFA pro-
duced by Algorithm 2 is in state {A,B,C} after reading
an ‘a’, but the possible values of the data domain are
{(A,0), (B,1),(C,0)}. Since it only accepts on the data
domain value (C,1), this NXFA preserves the original
semantics.

DeterminizeData(Q,D,Σ,δ ,Uδ ,{q0}×D0,F):
d′

0 ← D0 ; // New data values = sets of old data values1
D′ ← {d′

0};2
// QD accumulates all reachable configurations
QD ←{(q0,d′

0)} ;3
U ′

δ ← /0;4

foreach (qi,d′
i) ∈ QD do5

foreach s ∈ Σ do6
q f ← δ (qi,s);7
d′

f ←{df |∃di ∈ d′
i .(di,d f ) ∈Uδ (qi,s,q f )};8

D′ ← D′ ∪ {d′
f } ; // Accum. reachable sets of old values9

QD ← QD∪{(qf ,d′
f )};10

// Build deterministic update functions
U ′

δ ←U ′
δ ∪{((qi,s),(d′

i ,d
′
f ))} ;11

F ′ ← {(q,d′)|(q,d′) ∈ QD∧∃d ∈ d′.(q,d) ∈ F};12
return ((Q,D′,Σ,δ ,U ′

δ ,(q0,d′
0),F

′),QD);13

Algorithm 3. Determinizing NXFA data
domains.

Algorithm 3 determinizes the data domain of the
NXFA produced by Algorithm 2, yielding a determinis-
tic XFA. Figure 9 illustrates its operation when applied
to the resulting NXFA in Figure 8. Instead of replac-
ing the data domain with a new domain D′ = 2D, the
algorithm assigns to D′ the (typically small) subset of
2D that is reachable from the start configurations. Note
that while the update functions associated with transi-
tions U ′

δ are not defined on the entire data domain D′,
they are defined on all data values d′ ∈ D′ that can occur
in any state q. Algorithm 3 also computes an auxiliary
data structure QD, the set of configurations reachable
from the initial configuration (q0,d′

0). This data struc-
ture is used by subsequent stages of the compiler.

Minimization, the next step, is not possible for
XFAs as there is no single canonical minimal form for
an XFA. Instead of a minimization stage, we developed
two separate algorithms: one for reducing the number
of data domain values possible in each state, and one
for reducing the number of states. Currently, our com-
piler only uses the data reduction algorithm which is



a

3�3
3�5
5�5
7�6

3�3
3�5
3�4

3�3
3�5
5�5
7�6
4�7

3�3
3�5
3�4

3�3
3�5
5�5
7�6

{3,5}

F={(G,6), (H,6)}

a

[^a]

[^ab]

b

Determinize

Data Domain
G H

{3,5}�{3,5}
{3,5,7}�{3,5,6}
{3,5,6}�{3,5}

{3,4,5}�{3,4,5}

{3,4,5}�{3,5,7}

{3,5}�{3,4,5}
{3,5,7}�{3,4,5}
{3,5,6}�{3,4,5}

{3,4,5}�{3,5}

F={(G,{3,5,6})}

QD={(G,   {3,5}), 
(G,{3,5,7}), 
(G,{3,5,6}), 
(H,{3,4,5})}

a
{3,5} a

[^a]

[^ab]

b
G H

11{3,4,5}

10{3,5,6}

9{3,5,7}

8{3,5}

Renaming 
to simplify 
next figure

Figure 9. Applying algorithm 3 (data determinization) to the NXFA produced in Figure 8.

applied to the XFA produced by Algorithm 3. Due to
space constraints, we eliminate a detailed description of
these algorithms.

4.2.4. Finding efficient implementations. The last
step in the compilation process is to map abstract data
domain operations to efficient, concrete instructions for
manipulating data values. Intuitively, this step deter-
mines the structure of the scratch memory. Figure 10
gives a simplified view of how this step works for the
XFA produced in Figure 9. More formally, in this step
the compiler finds a mapping from data domain ope-
rations in an XFA to an efficiently implementable data
domain (EIDD), which we define as follows:

Definition 3 An efficiently implementable data domain
(EIDD) is a 6-tuple (D,d0,E,UE ,C,AC), where

• D is the finite set of values in the data domain,

• d0 is the initial data domain value,

• E is a set of symbolic names for efficient-to-compute
update functions,

• UE : E → DD is a mapping from these names to fully
defined (deterministic) update functions on D that
can be associated with XFA transitions,

• C is a set of symbolic names for efficient-to-check
acceptance conditions,

• and AC : C → 2D is a mapping from these names
to acceptance conditions that can be associated with
XFA states.

The XFA does not rely explicitly on Uδ and F dur-
ing its operation. Instead, it uses Eδ , which maps each
transition from δ to an update function from E , and CQ,
which maps each state from Q to an acceptance condi-
tion in C. Although definition 3 specifies that the update
functions in E must be “efficient to compute” and the
acceptance conditions from C “efficient to check”, it is
out of scope to give a definition for what it means to be
efficient as this depends strongly on the platform XFAs
run on. For example, on some platforms we may de-
fine efficiency as the use of five or fewer machine code

instructions to perform the update or to check the con-
dition, on others we may use different definitions.

Algorithm 4 presents the basic procedure for map-
ping to EIDDs. Note the use of two unconventional no-
tations. First, for some sets A we use A[0] to denote
an arbitrary element of the set; the correctness of the
algorithm does not depend on which element gets cho-
sen and whenever we use this notation we know that
A 
= /0. Second, the conditions of some while loops and
if-statements are of the form ∃a ∈ A, and in these cases
we assume that inside the body of the loop or the if-
statement a is bound to one of the elements of A. As
above, it is not important for the correctness of the al-
gorithm which element is chosen.

Given an XFA (Q,D,Σ,δ ,Uδ ,(q0,d0),F) and an
EIDD (D′,d′

0,E,UE ,C,AC), this algorithm computes a
mapping that consists of three components: (1) D′

QD :
Q×D→D′ maps all configurations from QD (produced
by Algorithm 3) to values in the new data domain D′, (2)
Eδ : Q×Σ → E maps all transitions to efficient update
functions, and (3) CQ : Q → C maps all states to effi-
cient acceptance conditions. Note that the mapping for
data domain values is from QD to D′, rather than from
D to D′. Thus D′ can be much smaller than D (and typ-
ically is) because different values of D can map to the
same value of D′ without affecting semantics, as long as
there is no state where both values from D can occur. In
Figure 10, for example, the data domain size is reduced
from 4 to 3. Below are the conditions that a valid map-
ping (D′

QD,Eδ ,CQ) satisfies to ensure that it preserves
the semantics of the XFA.

∀q ∈ Q,∃c ∈C s.t. (q,c) ∈CQ

∀(q,d) ∈ QD,∃d′ ∈ D′ s.t. ((q,d),d′) ∈ D′
QD

∀(qi,s) ∈ Q×Σ,∃e ∈ E s.t. ((qi,s),e) ∈ Eδ

D′
QD(q0,d0) = d′

0

∀(q,d) ∈ F D′
QD(q,d) ∈ AC(CQ(q))

∀(q,d) ∈ QD−F D′
QD(q,d) /∈ AC(CQ(q))

∀((qi,di),s) ∈ QD×Σ D′
QD(δ(qi,s),Uδ (qi,s)(di)) =

UE (Eδ (qi,s))(D′
QD(qi,di))
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Figure 10. Finding a mapping to an EIDD for the XFA produced in Figure 9.

Algorithm 4 finds a mapping if one exists or de-
clares failure by returning an empty mapping. The
loop at line 11 expands D′

QD when it finds situations in
which a transition t = δ (qi,s) has already been mapped
in Eδ and a configuration (qi,di) of the source state
for t also has been mapped in D′

QD, but the configu-
ration resulting from applying the update function for t,
(q f ,d f ) = (δ (qi,s),Uδ (qi, s)(di)), has not been mapped
in D′

QD yet. In this case (q f ,d f ) can be mapped to the
value from D′ which is the output of Eδ (qi, s) for input
D′

QD(qi,di). Eδ is expanded by choosing an unmapped
transition on line 15 and by trying all possible mappings
for it in the loop on line 16. Some mappings for edges
can lead to conflicting mappings for certain configu-
rations; the FindInconsistency function detects
such mappings.

The recursive calls in FindValidMapping con-
tinue until all transitions are labeled with a symbolic
update function. When this happens (or even earlier)
the loop at line 11 will assign a mapping in D′

QD to all
configurations that are reachable from (q0,d0). Thus if
the function ever returns on line 14, all transitions from
δ have a mapping in Eδ , and all the configurations from
QD have a mapping in D′

QD. Since the loop on line
16 tries all possible update functions, we know that if
there is a mapping from transitions to update functions
that leads to a valid mapping of configurations to values
from D′, the algorithm will find it. Otherwise, it will
signal failure by returning ( /0, /0).

This algorithm has O(|E||δ |) worst-case complex-
ity and thus is not practical, but it is the starting point
for the more complex algorithm used in our implemen-
tation. One improvement, which cuts down unneces-
sary exploration, is to greedily pick the transitions for
which the number of possible symbolic functions that
can be mapped to without leading to inconsistencies is
minimal. We also perform pre-computation to rule out
symbolic functions that cannot map to given transitions
because of mismatches in the number of input values
mapped to an output value. These optimizations are

sound; neither of them can cause the algorithm to miss
an existing solution.

4.3. Combining XFAs

For combining XFAs recognizing individual signa-
tures into a single XFA that recognizes an entire signa-
ture set we extend the algorithm for combining DFAs
with provisions for manipulating the scratch memo-
ries and the associated operations. The example from
Figure 2 illustrates these extensions. The scratch mem-
ory of the combined XFA holds the scratch memories
of the two input XFAs side by side. For each state, the
acceptance condition combines the acceptance condi-
tions of the two states it corresponds to in the two input
XFAs. Similarly, for each transition, the update func-
tion combines the update functions of the corresponding
transitions. Since the combined XFA contains separate
copies of the scratch memories of the input XFAs, the
update functions and update conditions from different
automata never interfere.

There is one exception to this property of
not sharing scratch memory objects. In our
test set there are 338 signatures of the form
.*<OBJECT#[ˆ>]*classid=11cf-9377
that differ only in the hexadecimal class identifier
following the classid string (signature simplified
for presentation purposes). The XFA corresponding
to such a signature resembles those in Figure 2. A bit
is set when <OBJECT is observed and reset whenever
the symbol ‘>’ is seen. The XFA accepts after seeing
classid=11cf-9377 if the bit is set. The bits for
all 338 XFAs corresponding to such signatures encode
the same information (whether the input processed so
far contains a <OBJECT not followed by a ‘>’) and
can actually share a single bit without interference. We
have defined a heuristic that determines when bits in
XFAs such as these and others can safely be shared,
and in such cases this allows us to reduce the amount
of needed scratch memory. We also use this heuristic



MapXFAtoEIDD((Q,D,Σ,δ ,Uδ ,(q0,d0),F),QD,EIDD):
(D′,d′

0,E,UE ,C,AC) ← EIDD;1
Eδ ← /0;2
D′

QD ← {((q0,d0),d′
0)};3

(D′
QD,Eδ ) ←FindValidMapping (D′

QD,Eδ );4

if (D′
QD,Eδ ) = ( /0, /0) then return ( /0, /0, /0) ;5

CQ ← /0;6
foreach q ∈ Q do7

ccorrect ←{c ∈C|∀((q,d),d′) ∈ D′
QD.d′ ∈ AC(c) ⇐⇒8

(q,d) ∈ F}[0];
CQ ←CQ ∪{(q,ccorrect )};9

return (D′
QD,Eδ ,CQ);10

FindValidMapping(D′
QD,Eδ ) :

while ∃(s,((qi,di),d′
i )) ∈ Σ×D′

QD.�d′
f ∈11

D′.((δ (qi,s),Uδ (qi,s)(di)),d′
f ) ∈ D′

QD ∧Eδ (qi,s) ∈ E do
D′

QD ←12
D′

QD ∪{((δ (qi,s),Uδ (qi,s)(di)),UE (Eδ (qi,s))(d′
i))};

if FindInconsistency (D′
QD,Eδ ) then return ( /0, /0);13

if |Eδ | = |Q| · |Σ| then return (D′
QD,Eδ ) ;14

trans ←{(qi,s)|(qi,s) ∈ Q×Σ∧�e ∈ E.((qi,s),e) ∈ Eδ }[0];15
foreach e ∈ E do16

Result ←FindValidMapping (D′
QD,Eδ ∪{(trans,e)});17

if Result 
= ( /0, /0) then return Result;18

return ( /0, /0) ;19

FindInconsistency(D′
QD,Eδ ) :

foreach (qi,s,di) ∈ Q×Σ×D do20
if ∃d′

i ∈ D′,d′
f ∈ D′.((qi,di),d′

i) ∈21

D′
QD ∧ ((δ(qi,s),Uδ (qi,s)(di)),d′

f ) ∈ D′
QD then

if ∃e ∈ E.((qi,s),e) ∈ Eδ ∧ (d′
i ,d

′
f ) /∈UE (e) then22

return true ;23

foreach q ∈ Q do24
if ∀c ∈C.∃((q,d),d′) ∈ D′

QD.¬d′ ∈ AC(c) ⇐⇒ (q,d) ∈ F25
then return true ;

return false ;26

Algorithm 4. Basic algorithm for finding a
mapping of an XFA to a given EIDD.

for combining the 213 signatures from our test set
that are the UNICODE equivalents of some of these
338 signatures. We then use the normal combination
procedure to combine these XFAs with those for the
rest of the signatures.

5. Feasibility study

We examined the feasibility of XFAs with a case
study that applied them to HTTP signatures used by the
Snort NIDS. We focus on two aspects of XFAs: feasibil-
ity of construction and memory usage and performance.
We briefly summarize the results of this study:

Feasibility of construction. In Section 5.2 we describe
the process in which 1450 Snort HTTP signatures are
converted into efficient XFAs. Construction of this test
set required one day of manual effort, but this is a one-

time cost in general, and our experience suggests that
new XFAs can often be constructed and incorporated
within a matter of minutes.

Memory usage and performance. In Section 5.3,
we compare the memory usage and performance of
our test-set XFA to DFAs and multiple DFA-based ap-
proaches. Despite inefficiencies in our prototype, our
results shows that the combined XFA was 20× faster
and 10× smaller than the next-best result.

5.1. Experimental methodology

We have implemented a fully-functional evaluation
prototype divided into two main applications: re2xfa
and trace apply. re2xfa implements all of the XFA
construction algorithms described earlier and produces
XFAs for annotated regular expressions supplied as in-
put. trace apply requires an XFA and a tcpdump-
formatted trace and applies the XFA to HTTP payloads
in the trace. Instructions on edges and states are ex-
ecuted using an interpreter we implemented and built
into trace apply. Since our primary goal is to study
the feasibility of XFAs, standard NIDS operations such
as defragmentation and normalization are beyond the
scope of the experiments performed here.

We also compare against multiple-DFA (MDFA)
techniques using the combination heuristics proposed
by Yu, et al. [33]. MDFAs trade memory usage for
time by enforcing an upper limit on the available mem-
ory and producing as many groups of combined DFAs
as necessary to stay within that limit. To facilitate a
fair comparison, all automata use the same format and
evaluation environment (trace apply), except that only
XFAs have edge-based instructions. We model DFA ac-
cepting states with an instruction that unconditionally
accepts when the state is reached.

For our test set we used a Snort signature set ob-
tained in March 2007. We gathered traces of live traffic
gathered at the edge of our department network and col-
lected at different times, with each trace containing be-
tween 17,000 and 86,000 HTTP packets. We measure
performance as the number of CPU cycles per payload,
scaled to seconds per gigabyte (s/GB). All experiments
were performed on a standard Pentium 4 Linux work-
station running at 3 GHz with 3 GB of memory.

5.2. Constructing XFAs

In this section we describe the steps used to con-
struct our test set. First, we used the Snort2Bro tool
(included in the Bro [18] software distribution) to do
an initial parsing and conversion of Snort’s HTTP sig-
natures into Bro format, which we then passed through



Examples (some simplified) # Sigs EIDD name Scratch mem.

.*calendar(|[- ]admin)\.pl 814 null nothing

.*cmd"#.*& 5 set-only bit 1 bit

.*<OBJECT#[ˆ>]*classid=11cf-9377 341 bit 1 bit

.*<\0O\0B\0#([ˆ>]\0)*c\0l\0s=\01\0c\0-\09\03\0 213 bit plus parity 2 bits
(.*[\\/]cgi60#.*auth)|(.*auth#.*[\\/]cgi60) 56 two set-only bits 2 bits
(.*/st\.cgi#.*\.\./)|(.*\.\./#.*/st\.cgi) 21 2 bits plus overlap 3 bits

Table 2. Description of common kinds of signatures and their mappings to XFAs.

# Instrs 0 1 2 3 4 5 6 7 8 9 10 11 12

% Edges 1.0 94.8 2.7 0.47 0.80 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0
% States 78.9 20.0 0.9 0.03 0.00 0.00 0.00 0.00 0.05 0.05 0.00 0.00 0.00

Table 3. Distribution of instructions on edges and states. Entries marked 0.00
contribute less than .01%.

scripts that created the individual regular expressions.
These scripts also inserted the parallel concatenation
operator into approximately 97% of the applicable sig-
natures. We indiscriminately gathered both client-side
and server-side signatures, yielding 1556 signatures in
total. We eliminated 106 signatures for reasons dis-
cussed below, giving us a signature set size of 1450.

In Step 2, we manually selected the appropriate in-
struction template (EIDD) and added the remaining par-
allel concatenation operators where necessary. In many
cases, this process required just a few seconds per signa-
ture and was aided by the fact that many signatures have
similar formats. Some signatures required the construc-
tion of a new EIDD when observed, which typically in-
duced a one-time cost of up to an hour. In total, we
spent approximately one day on this phase, not includ-
ing EIDD creation time.

Next, we fed each Run time Number
(seconds) of sig.

< 1 37.1%
1..10 48.1%

10..100 0.1%
100..1,000 1.2%

1,000..10,000 13.5%

Table 4. Distribution of
XFA construction times.

signature and its match-
ing EIDD to the re2xfa
application, which pro-
duced an XFA. XFA
construction time var-
ied by EIDD: some
completed within sec-
onds whereas others re-
quire an hour or more,
as summarized by Table 4. In our test set, 85% of the
signatures completed within 10 seconds each.

Finally, Step 4 combines each of the XFAs pro-
duced in the previous step using the incremental combi-
nation algorithm outlined in Section 4.3. Combination
of all individual XFAs into a single equivalent XFA re-
quired just over 10 minutes. Table 3 characterizes the
number of instructions on edges and states in the com-
bined XFA. 95% of the transitions have exactly one in-
struction, and 98% of the states have at most one in-

struction. The final XFA had 41,994 states (requiring
43 MB), used 193 bits (25 bytes) of scratch memory,
and required 3.5 MB of instruction memory.

In general, the most manual-labor-intensive aspect
of this process occurs when EIDDs are selected for
regular expressions. For existing signature sets this is
a one-time process, and our experience indicates that
when new signatures are produced, a security expert
(i.e., someone who writes the initial signatures) famil-
iar with our approach could easily annotate a regular
expression, produce an XFA, and add it to an existing
combined XFA within a matter of minutes, depending
on the XFA construction time in Step 3. Even if a novel
signature requires a new EIDD to be defined,3 this is
also a one-time cost.

Signatures were removed from our test set for
two reasons. First, some complex signatures com-
pose bits and counters in ways that are prohibitively
time-consuming to map to EIDDs using our prototype.
Second, there are some signatures whose individual
DFAs consume exponential amounts of memory and for
which our construction algorithms also run out of mem-
ory, even though a compact XFA does exist. Signatures
of the form .*a.{n}b among others fall into this cat-
egory, for example. In both cases, the difficulties arise
from using signatures that are not necessarily designed
for deterministic automata. Thus, although many signa-
tures with counters are straightforward to compile and
map to EIDDs, for this experiment we eliminated all
counter-based signatures from our test set. We discuss
these difficulties and possible workarounds in more de-
tail in Section 6.

In summary, these results demonstrate that XFAs
can be readily constructed for large numbers of real-

3EIDDs are declarative and parsed by our prototype, so that they
can be supplied at runtime and do not require a recompile.



Automata Num Exec
Type Total Mem Automata (s/GB)

XFA 43MB + 3.5MB 1 75.6
DFA > 15GB n/a ∼11.6

432 MB 67 1,458
397 MB 107 2,690

MDFA 277 MB 147 3,780
191 MB 346 8,570
98 MB 587 14,889
66 MB 786 20,865

Table 5. Machine size and execution times
for XFAs, DFAs, and Multiple DFAs for several
memory settings. XFAs approach DFA perfor-
mance at small memory sizes.

world signatures. We produced efficient XFAs for 93%
of Snort’s HTTP signatures. Construction of this set
required a day of manual effort, but our experience sug-
gests that new XFAs can be quickly constructed and in-
corporated in many cases.

5.3. Performance and memory usage

We compared XFAs to traditional DFAs and to
multiple DFA-based solutions, using the same 1450 sig-
natures for each of these techniques that were used for
XFA construction. Our attempt to build a single, com-
bined DFA for all signatures failed after only 88 out of
1450 signatures had been processed, at which time over
15 GB of memory was needed for the partial automaton.
We produced MDFAs for several memory limits rang-
ing from 66 MB (the smallest memory size that could
hold all signatures) to 512 MB.

Table 5 summarizes the performance and memory
usage individually for each of the techniques. DFAs, if
realizable, would have the best performance with the
largest memory consumption; the reported execution
time was obtained using the largest partially combined
DFA that could be fit into our test machine’s memory.
The six MDFA points shown exhibit the tradeoffs be-
tween increased memory vs. increased time, with their
execution time being largely a function of the number of
created automata. The combined XFA compares favor-
ably as these results show: compared to the next-best
data point (the penultimate MDFA entry), the XFA re-
quires 10× less memory and is 20× faster. On average,
the XFA executed 1.12 instructions per byte, roughly
consistent with the data in Table 3.

Figure 11 compares the MDFAs to XFAs graphi-
cally. In the plot, the y-axis reflects total memory usage
and for XFAs includes both instruction and scratch
memory (46.5 MB). Both axes are on a logarithmic
scale. The plus marks (’+’) in the plot show the points
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Figure 11. Memory vs. run-time for MDFAs and
XFAs. XFAs are both smaller and faster than
MDFAs for many memory ceilings.

for several MDFA instances and in a sense represent
the true cost of realizable DFA-based approaches. The
points hint at the tradeoffs obtained through pure DFA
approaches and suggest lower bounds given specific
time or memory requirements. The DFA point, if we
could plot it, would reside close to the left edge, several
orders of magnitude beyond the extent of the graph.

The XFA result, represented by a star, is below and
to the left of the curve suggested by the DFA-based ap-
proaches, indicating that XFAs require fewer resources
overall. Even with the inefficiencies of our prototype
system, the XFA yields superior results as compared to
MDFAs both in memory usage and performance.

6. Limitations and discussion

6.1. Mapping to EIDDs

The basic procedure for mapping an XFA with ab-
stract data domains to an appropriate EIDD, given in
Algorithm 4, uses a backtracking algorithm that we
have enhanced to aggressively identify and prune fruit-
less searches. Even so, some mappings require an hour
or more of computation time to complete. Further, each
EIDD must specify all the high-level scratch memory
types (typically just bits and counters in various forms)
to be used by an XFA. Common expressions that sim-
ply need one or more bits or counters have standard
patterns and can be mapped quickly. However, com-
plex regular expressions in which bits and counters are
composed into complex data types require equally com-
plex EIDDs. These are difficult to specify. In princi-
ple, we could define a fully generic EIDD that provides
many compositions of bits and counters from which Al-



a

b

[^ab]

S Tbmap[0..k-1]=F 
ctr=0

if (bmap[ctr%k]) {
accept();

}

bmap[ctr%k]=T;
ctr++;

bmap[ctr%k]=F;
ctr++;

[^ab]

a b

bmap[ctr%k]=F;
ctr++;

bmap[ctr%k]=F;
ctr++;

bmap[ctr%k]=F;
ctr++;

bmap[ctr%k]=T;
ctr++;

Figure 12. The XFA recognizing .*a.{n}b
where k = n+2.

gorithm 4 selects only those that it needs. But in our
prototype, the resulting mapping times would be infea-
sible. We are working to address this issue.

6.2. Expressions with exponential state

Some signatures require exponential amounts of
space during the construction process, even though they
have a compact XFA representation. For example any
deterministic automaton recognizing .*a.{n}b needs
to remember which of the previous n+1 bytes in the in-
put were ‘a’ so that it knows to accept if it sees a ‘b’ in
the next n + 1 input characters. DFAs require at least
2n+1 states for this case. Similarly, during construc-
tion an XFA also needs at least 2n+1 distinct configu-
rations, although ultimately these can be contained par-
tially in scratch memory rather than only in explicit au-
tomaton states. For example, an XFA corresponding to
this regular expression, given in Figure 12, needs only
two states, a counter, and a bitmap with k = n + 2 bits
of scratch memory. The number of configurations is ex-
ponential, but the number of distinct states is small. For
small values of n, we can annotate the regular expres-
sion (as .*a#.{n}b), construct an EIDD, and build
the XFA in Figure 12. However, since the number of
configurations is exponential in n, we quickly run out
of memory during construction as n grows. We found
dozens of such regular expressions among Snort’s web
rules, such as rule 3519, which recognizes the regular
expression .*wqPassword=[ˆ\r\n&]{294} .

We are working to develop techniques that address
the difficulties described above and expand the class of
signatures that can be readily mapped to compact, effi-
cient XFAs. Fortunately, XFAs are not an exclusive so-
lution and can be easily combined with other techniques
to achieve full generality. For instance, we may use
substring-based filters [20, 22] that identify only sub-

parts of signatures and invoke full signature evaluation
using DFAs, NFAs, or other techniques when the sub-
parts are matched. Alternatively, MDFAs [33] may also
be used.

In general, we observe that signatures are written
with an understanding of the underlying matching en-
gine’s capabilities. Signatures that are written for an
NFA-based engine (such as .*a.{n}b) are not neces-
sarily appropriate for a deterministic engine and vice-
versa. As shown, signatures that can be represented
compactly for nondeterministic automata may require
exponential state for deterministic automata. In many
cases, small changes to a regular expression turn it into
something we can build XFAs for efficiently. For ex-
ample, it is possible to recognize .*a[ˆa]{n}b as an
XFA with two states and a data domain of size n + 2
used essentially as a counter. Of course, whether such
changes are possible without changing the intent of the
rule requires human judgment and is best performed by
the signature writer.

7. Conclusion and future work

In this paper we have introduced Extended Fi-
nite Automata (XFAs), which augment traditional fi-
nite state automata with a scratch memory that is ma-
nipulated by instructions attached to edges and states.
We provide a formal definition for XFAs and present
a technique for constructing them from regular expres-
sions. We performed a feasibility study using a set of
HTTP signatures from Snort and observed that XFAs
have matching speeds approaching DFAs yet memory
requirements similar to NFAs. Compared to multiple
DFA-based techniques, our tests used 10× less mem-
ory and were 20× faster.

The techniques and results we have presented here
are preliminary in many respects and we are actively
working to refine them. Some aspects of our construc-
tion procedure require some manual input, and some
signatures require inordinately long construction times.
In addition, there is still some missing functionality and
inefficiencies in our interpreter and execution environ-
ment. We are investigating techniques for addressing
these and other issues. Notwithstanding these open
problems, we are hopeful that in the end XFAs will lead
to better solutions for high speed signature matching.
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