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Abstract—Deep Packet Inspection (DPI) plays a major role
in contemporary networks, and specifically, in datacenters of
content providers, scanned data may be highly repetitive. Most
DPI engines are based on identifying signatures in packet
payload. This pattern matching process is expensive both in
memory and CPU resources, and therefore, often becomes the
bottleneck of the entire application.

This paper shows how DPI can be accelerated by leveraging
repetitions in the inspected traffic. We first show that such
repetitions exist in many traffic types and present a mechanism
that allows skipping repeated data instead of scanning it again.
In its slow path, frequently repeated strings are identified and
stored in a dictionary along with some succinct information for
accelerating the DPI process. In the mechanism’s data path,
each time the scanning algorithm encounters a string from the
dictionary, it skips it and recovers to the correct state had this
word been scanned byte by byte.

Our solution achieves significant performance boost, especially
when data is of the same content source (e.g. same website).
Our experiments show that for such cases, our solution achieves
throughput gain of 1.25 —2.5 times the original throughput, when
implemented in software.

I. INTRODUCTION

Content providers, such as Internet Service Providers (ISPs),
Google, and Netflix maintain datacenters to host their content,
or their customers’ content. Usually, such providers also main-
tain monitoring appliances such as network intrusion detection
systems (NIDS), content filtering (such as parental control
services), spam filtering, and more. All these appliances scan
the payload of packets in a process known as Deep Packet
Inspection (DPI). In addition, providers sometimes use Layer
7 routing, which relies as well on scanning the application
layer header, and is performed using similar techniques.

Perhaps the most significant technique used in today’s DPI
engines is signature matching, in which the payload of the
packet is compared against a predetermined set of patterns
(with exact strings or regular expressions), which should alert
on protocol non-compliance, viruses, spam, intrusions, and
so on. Signature matching is a well-established subject in
Computer Science since the seventies, and usually involves a
memoryless scanning of the packets. For example, the widely-
used Aho-Corasick algorithm builds a Deterministic Finite
Automaton (DFA) to represent the set of patterns; each byte
of the packet causes a transition in that DFA, and a pattern
is found if the DFA transits to an accepting state in the
automaton. Evidently, when scanning a byte using the Aho-
Corasick algorithm, only the current state of the automaton
is used. Informally speaking, this implies that no information
of other packets, or different fragments of the same packet, is

used to enhance the scanning process. Specifically, even if the
same packet arrives at the DPI engine many times, the engine
will always scan it from scratch.

On the other hand, a closer look at Internet traffic, and
specifically HTTP traffic, clearly indicates many repetitions.
Such repetitions can be classified either as full repetitions,
in which the entire object (e.g., image, stylesheet, javascript)
appears several times, or partial repetitions, in which only
shorter fragments (e.g., shared HTML code) appear in many
packets or sessions.

In content providers’ networks, most of the data is highly
similar and many times it is simply the same files, or files with
minimal modifications, that are being sent over the network.
Moreover, recent trends in content providers’ networks include
Software Defined Networking (SDN), where routing is based
on multiple, arbitrary header fields. Several suggestions to
make SDNs aware of application layer information has been
proposed [1], and thus we envision that DPI will get higher
attention as a new bottleneck for such networks. Another
interesting direction of content providers’ networks is Network
Function Virtualization (NFV), where network functions such
as monitoring appliances are virtualized for higher flexibility
and scalability. In some cases, these virtual appliances scan
traffic from a closed set of servers or even a single server that
serves several virtual machines. Thus, the similarity between
pieces of data to be scanned is relatively very high. Moreover,
using SDN one can make traffic flow so that similar traffic
(from similar sources) flow to the same monitoring appliances.

Our paper presents a mechanism that uses such repetitions
efficiently in order fo accelerate the signature matching com-
ponent of the DPI engine. Our mechanism is based solely on
modifications to the signature matching algorithm, and thus
does not involve any change to the inspected traffic and does
not require any cooperation from any other component in the
network. Conceptually, it is divided to two parts: a slow path
that samples the traffic and creates a dictionary with the fixed-
length popular strings (which we call grams), and a data path
that scans the traffic byte by byte and checks the dictionary
for matches; if a gram is found in the dictionary, the data path
skips the gram and adjusts its state according to an information
saved along this gram.

Specifically, our solution is based on the DFA-based Aho-
Corasick algorithm. In the slow path, we save the state of
the automaton after scanning the saved gram from the initial
automaton’s state. In the data path, we show that after skipping



a gram, one should continue scanning from that saved state.!
To accelerate the data path operations, we use a bloom filter
that represents the set of grams in the dictionary. Since bloom
filters are compact data structures, they reside in fast memory
and therefore, reduce the overhead presented by our mecha-
nism in case there is no match in the dictionary. We further
note that our mechanism is generic and can be implemented
either in software or in hardware. In software implementation,
the data path is implemented as a thread, while the slow path is
implemented as another thread, possibly with lower priority. In
a typical multi-core, multi-threaded environment, our solution
uses a single slow-path thread that gets packet samples and
calculates dictionaries, and many data-path threads (possibly
on many cores), each inspecting different packets (or different
connections). On a hardware implementation, on the other
hand, we can parallel the operation in finer granularity (for
example, checking the bloom filter in parallel with scanning
a byte), which can lead to a significant performance boost.
Section IV presents a model for the performance gain by
our mechanism. As we shall show, this gain depends on
various system parameters (such as memory access time),
traffic parameters (such as the amount of repetitions), and
mechanism parameters (such as the length of grams). We
then measure these parameters in our software implementation
(Section VI) and show its performance boost. Finally, by those
measurements we deduce what was the performance gain had
our mechanism implemented in hardware.

One of the significant challenges in implementing our
mechanism is deciding which grams should be saved in the
dictionary at a given time. We chose to implement a variation
of the algorithm suggested in [2] which is able to efficiently
find the most popular strings of variable length. We then chop
the strings to fixed-length grams and those in the dictionary,
as fixed-length grams are easier to handle in the data path.
Naturally, the performance boost gained by our mechanism
depends on the inspected traffic. We provide analysis and
experimental results for several use-cases that describe real-
life situations in which DPI is used, and discuss the potential
speedup of our mechanism when scanning such traffic.

II. RELATED WORK

Deep packet inspection (DPI) relies on a string matching
algorithm, which is an essential building block for numerous
other applications as well. Therefore, it has been extensively
studied [3]. Some of the fundamental algorithms are Boyer-
Moore [4], Aho-Corasick [5] and Wu-Manber [6]. The seminal
algorithm of Aho-Corasick (AC) is the de-facto standard for
pattern matching in bump-in-the-wire. The AC algorithm con-
structs a Deterministic Finite Automaton (DFA) for detecting
all occurrences of a given set of patterns by processing the
input in a single pass. The input is inspected byte by byte. We
describe the algorithm in details in section III-A. The string
matching algorithm is often a bottle-neck of the system.

ISmall modifications, which are explained in Section III-B, are required to
avoid missing patterns in these skips.

There is an extensive research on accelerating the DPI
process, both using hardware and software implementations.
The hardware implementations [7]-[11] usually use some
special-purpose hardware such as FPGA or a CAM/TCAM.
These solutions are usually hard to reprogram, and it is usually
complex to update their signatures set. They also tie the
engine to a specific type of hardware, which might harden
embedding of these solutions. On the other hand, software
implementations [12]-[18] are easy to apply, to reprogram and
to update, yet have obvious performance disadvantage being
implemented on a general purpose system. All of these works
are orthogonal to our work in a sense that all of them can
be applied on top of our engine to further accelerate the DPI
process.

Web traffic has many repetitions as we detail below. In
this paper we leverage these repetitions to accelerate the
DPI process. Another approach that also leverages traffic rep-
etitions is de-duplication. Network data de-duplication is used
to reduce the number of bytes that must be transferred between
endpoints, resulting in reducing the required bandwidth [19]-
[28]. In these works, authors find a redundancy of 35%-45%
in general traffic and up to 90% redundancy in web traffic,
depends on the type of the traffic.

This paper presents an algorithm that accelerates the
DPI process by leveraging the repetitions in plain, non de-
duplicated traffic. Leveraging repetitions in DPI engines is
entirely different than de-duplication. De-duplication requires
extensions and modifications in both server and client sides,
while a DPI engine scans traffic on the route between them and
cannot force de-duplication or assume it is used. Furthermore
leveraging repetition in DPI requires finding the repetitions
on the fly, and repetitions can be short. Note that these
requirements do not exist for de-duplication solutions.

The work presented at [29] provides a limited solution to
accelerate the DPI process using Aho-Corasick algorithm. In
this work, a repetition is defined as a repeated string that
also starts at the same state in the DFA. Thus, this approach
only works when scanning several copies of the exact same
string, or same strings are stored over and over along with
different starting states. However, this approach can miss
a repeated string. Furthermore, this approach only checks
sequential strings of fixed length, thus the solution is limited
and can only take advantage of repetition of big chunks such
as 256-1280 bytes.

III. ENHANCED AHO-CORASICK ALGORITHM

At the heart of our solution is a modification to the widely-
deployed Aho-Corasick signature matching algorithm. Our
modification enhances the algorithm so that it will be able to
skip previously-scanned bytes, which are saved in a dictionary
along with some auxiliary information. In this section we first
briefly describe the Aho-Corasick algorithm and its properties,
and then describe the required modifications to the algorithm.
We prove that although the modified algorithm skips bytes, it
detects the same patterns as the original algorithm.



Fig. 1. The Aho-Corasick trie corresponding to the signature set
E,BE,BD,BCD,BCAA,CDBCAB}. Solid black edges correspond to forward
transitions, while dashed red edges correspond to failure transitions.

A. Background: The Aho-Corasick Algorithm

The Aho-Corasick (AC) algorithm [5] matches multiple
signatures simultaneously, by constructing a trie that represents
the signatures set. Usually, this trie is then converted into a
deterministic finite automaton (DFA) for better performance
and then, with this DFA on its disposal, the text is processed
in a single pass.

Specifically, the trie construction is done in two phases.
First, all the signatures are added from the root as chains,
where each state corresponds to one byte. When signatures
share a common prefix, they also share the corresponding set
of states in the trie. The edges of the first phase are called
forward transitions. In the second phase, failure transitions are
added to the trie. These edges solve situations where, given an
input byte b and a state s, there is no forward transition from
s using b. In such a case, the trie should follow the failure
transition to some state s’ and take a forward transition from
there. This process is repeated until a forward transition is
found or until the root is reached, leading to possible failure
paths.

Figure 1 shows an example for an AC trie. Let the label of
a state s, denoted by L(s), be the concatenation of bytes along
the path from the root to s. Furthermore, let the depth of a
state s be the length of the label L(s). The failure transition
from s, f(s), is always to a state s', whose label L(s") is the
longest suffix of L(s) among all other trie states.

The trie is traversed starting from root. When the traver-
sal goes through an accepting state, it indicates that some
signatures are a suffix of the input; one of these signatures
always corresponds to the label of the accepting state. Note
that the unique structure of the trie promises that the converted
DFA has exactly the same number of states, but much more
transitions, to take care of all possible inputs without failure
transitions.

The correctness of the AC algorithm essentially stems from
the following simple property (see, e.g., [18, Property 2]):

TABLE I
SAMPLE DICTIONARY: EACH STRING IS ASSOCIATED WITH THE DFA
STATE REACHED BY SCANNING IT FROM ROOT.

string saved state
BYTAFGBC S5
CABXTHGH 50

Property 1 Let by,...b, be the input, and let sg,...,s, be
the sequence of states the AC algorithm goes through, after
scanning the bytes one by one (s is the root of the DFA). For
any i € {1,...,n}, L(s;) is a suffix of by,...,b;; furthermore,
it is the longest such suffix among all other states of the DFA.

B. Enabling Skips within the Execution of the Aho-Corasick
Algorithm

To enable skipping repeating data we add to the Aho-
Corasick algorithm an auxiliary dictionary that contains (pop-
ular) strings. We explain in Section IV how dictionaries are
created, and how they are accessed from the data-path. In this
section, we will show how our modified algorithm uses the
dictionaries in order to skip bytes during execution without
missing signatures.

1) Scanning the dictionary: We assume that the dictionary
is a set of strings. For each string, separately, we initiate a DFA
scan from the initial state sg. If a match is found by the end of
the string, we delete the string from the dictionary”. Otherwise,
we save the state reached by the DFA after scanning this string
along with the string itself.

2) Scanning the data: During DFA traversal, for each input
byte, the algorithm checks whether it can skip subsequent
bytes using one of the strings in the dictionary. More formally,
let (by,...,b,) denote the data; when scanning byte b;, the al-
gorithm looks for the gram gramy(b;) = (b;,bit1,---,biti—1)-
If x is found, the algorithm proceeds in two steps.

First, it performs a left-margin resolution, in which we start
scanning the bytes (b;,b;y1,bi12,...,bi1r—1) one by one, until
when scanning a bytes b;; ; we reach a state in the automaton
whose depth is less than or equal to j.

Then, if ;1 was not reached in the left-margin resolution
step, the algorithm transits to the state which was saved along
with gramy(b;) and continues scanning from byte b; .

3) Correctness proof: The correctness of our algorithm
stems from the fact that after skipping gramy (b;), the algorithm
transits to the same state as if gramy(b;) was scanned byte by
byte. In addition, we need to ensure that if some signature
is detected when gramy(b;) was scanned byte by byte, it will
also be detected in our algorithm.

Theorem 1 Let the traffic be (by,...,b,) and let (so,...,sy)
be the sequence of states the traditional Aho-Corasick al-
gorithm goes through, after scanning the bytes one by one
(starting from the root of the DFA). Assume that our modified
algorithm scans the traffic up to byte b;, it is in state s;

2In practice, this rarely happens and does not have any effect on the overall
system performance



TABLE I
EXAMPLE OF SCANNING PROCESS FOR INPUT STRING CDBCABYTAFGBCD.

b; C D B C
dictionary hit/miss | miss | miss | miss | miss
s after scanning b; 87 S8 59 $10

depth 1 2 3 4
Jj (left-margin res.) - - - -

A B Y| T|A|F|G|B|C D
miss | hit - - - - - - - miss
S11 S12 | So - - - - -] Ss S6
5 6 0 - - - - - 2 3
- 1 2 - _ R - R _ R

and it found the string gramy(b;) = (bi,bit1,...,birr—1) in
the dictionary. Let zi1y be the state of our algorithm after
scanning byte b; . Then, (i) Sitx = Zi+k, (ii) if there are one

or more accepting states in states (si,...,si+x), the left margin
resolution does not end before scanning byte b;y j, for which
Sivj s the last accepting state in (si,...,Siik)-

Proof: We distinguish between two cases: If the left-
margin resolution does not end before reaching byte b;
then our modified algorithm operates exactly the same as the
traditional algorithm and therefore reaches the same state.

Otherwise, let j be the index in which the left-margin
resolution ends. By construction this implies that the depth
of s;1; is at most j, which implies that the depth of s; 4 is at
most k (each transition in the automaton increases the depth
by at most 1).

By Property 1, L(s;1x) is the longest suffix of (by,...,b;k)
among all states. Since its depth is at most k, it implies
that L(s;4x) is in fact the longest suffix of gramy(b;) =
(bi,-..,birk). On the other hand, by applying Property 1 on the
Aho-Corasick scan of gramy(b;) (which was performed while
scanning the dictionary), we get that L(z; 1) is also the longest
suffix of gramy(b;), which implies that L(s;1x) = L(zi+x), and
therefore, s;1r = zi1k.

Similarly, assume that j < j’, then the depth of s;;  is
smaller than j/, which implies that the length of the signature
corresponding to s, is smaller than j’. By Property 1, this
signature is a suffix of (b;,...,b;; ), and therefore it is fully-
contained in gramy (b;). This contradicts the construction of the
dictionary, in which strings that contain signatures are deleted.

|

C. Motivating Example

We demonstrate the insights behind our algorithm using
the following motivating example. Assume that the patterns
set is {E,BE,BD,BCD,BCAA,CDBCAB}, whose corresponding
Aho-Corasick automaton is depicted in Fig. 1. In addition,
we assume that the dictionary contains the strings depicted
in Table I. For each such string, the resulting state in the
independent Aho-Corasick scan is also saved.

There are two kinds of matches that involves strings from
the dictionary:

1) Signatures whose prefix is a suffix of a string in the
dictionary, For example, the prefix BC of the signatures
BCD and BCAA is a suffix of the first string.

2) Signatures whose suffix is a prefix of a string in the
dictionary, For example, the suffix CAB of the signature
CDBCAB is a prefix of the second string.

Assume that the input traffic is CDBCABYTAFGBCD. The
first five bytes did not yield any dictionary match and the
Aho-Corasick is in state s;. Next, string BYTAFGBC is in
dictionary. Since the depth of sy; is 5, which is greater than
0, we continue the scan with B. The new current state is s,
whose depth is 6 > 1 and therefore we continue to the next
character, Y. After that, the current state is so, whose depth
is less than 2. Thus, the left-margin resolution is completed,
and we can skip to the saved state ss. The algorithm skips the
rest of the strings’ bytes (in this case k-2 bytes) and continue
the scan with the byte D. Then, the algorithm reaches the
accepting state s¢ and finds the signature BCD. The flow of
the example is presented in Table II and the skipped characters
are marked in bold.

IV. SYSTEM DESIGN

Our system is divided into two components: the slow path
and the data path.

A. The Slow Path

The slow path is responsible of creating a dictionary of
repeated fixed-length strings (namely, k-grams, where k is the
length of the strings). As explained in Section III, for each
stored k-gram, we initiate an Aho-Corasick scan from the
initial state sy and save the DFA state in the end of this scan.
This information is sufficient for the data path to adjust its
state after skipping that gram.

We note that while our dictionaries aim to store the most
popular k-grams, they suffer from inherent inaccuracies, which
sometime reduce the performance gains by our mechanisms;
our experiments show, however, that these inaccuracies are
not significant. Naturally, the most important reason for such
inaccuracies is that the dictionary is built on offline slightly
outdated data. In addition, in a typical multi-core environment,
the slow path runs on a single core and gets only samples
of the packets. Finally, we use off-the-shelf approximate
heavy-hitters algorithm [2], which finds popular k-grams, but
sometimes not the optimal dictionary.

Many heavy-hitter algorithms use a sliding window and
store all popular k-grams. However, this results in a dictionary
pollution, in which m — k + 1 substrings of length k of a
very popular string of length m are stored in the dictionary,
while our mechanism never access all but m/k of them.> The
algorithm presented in [2] solves this problem by trying to

3For example, assume the string abcdefgh is very popular in the traffic,
and k = 4. The dictionary holds the following 4-grams: abcd, bcde, cdef,
defg, and efgh. Most of the time, the data path uses the 4-grams abcd and
then efgh in order to skip over the long popular string.



concatenate k-grams to longer strings, resulting in heavy hitters
of variable length (that is, the parameter & is then the minimal
length of the heavy hitters). Since our data path works on
fixed-size grams better, we split each heavy hitter string of
length m to |m/k| consequential k-grams.

The resulting dictionary is stored as an open hash table,
where colliding keys are chained. Keys are added in the order
of popularity, such that the most popular key is first in the
chain, to improve lookup time on average.

B. The Data Path

The data path uses a sliding window of length k to extracts
k-grams from the data. For each k-gram, the algorithm searches
the dictionary and retrieves the corresponded entry, in case a
match is found. If there is no match, one byte is scanned with
the Aho-Corasick algorithm, the window slides one byte and
the process repeats itself with the next k bytes of the data.
If there is a match, left margin resolution is performed (see
Section III-B): The matched k-gram is scanned byte by byte
until reaching a state whose depth is smaller or equal to the
position of the last-scanned byte in the gram. Then, the data
path adjusts its state to the stored state in the corresponding
dictionary entry and advances to the end of the k-gram.
Namely, if the k-gram has started in the i-th byte of the traffic,
the next byte to be scanned will be the (i+ k)-th one.

Since the dictionaries might not reside in fast memory or
cache, and therefore, may require slower access operations,
we first query a Bloom filter [30] to ensure that the gram is in
the dictionary. A Bloom filter is a compact set representation
(in our case, the set is all the grams in the dictionary) that
enables efficient approximated set membership queries*; thus,
in case the gram is not in the dictionary, the overhead of our
mechanism is reduced by one order of magnitude (see Table III
for exact numbers). We note that Bloom filters sometimes
generate false positives, which in our case imply redundant
accesses to the dictionary. However, this only results in a
performance penalty as the dictionary-miss is detected imme-
diately afterwards. Since the false positive rate is very small,
this performance penalty is usually insignificant. Algorithm 2
describes the data path.

a) Hardware Implementation Analysis: The data path
can be implemented in hardware to utilize parallelism: In such
implementation, a dictionary lookup can be done in parallel
to Aho-Corasick scan, and once a k-gram is found in the
dictionary, a skip can be made.

In addition to parallelism, another benefit of a hardware
implementation is that the Bloom filter and dictionary data
structures can be put into faster memories. Current SRAM
chips, which are limited to at most few megabytes, operate
with access latency of about 1-10 nanoseconds, compared to
DRAM chips that provide access latency of more than 60

4We have implemented the Bloom filter as a bit array. We used the Intel on-
chip instruction crc32q as the hash function. If more than one hash function
is used, we have used different random seeds for CRC to achieve independent
hash functions as described in [31]. Upon Bloom filter hit, the same hash
computation is later used to access the dictionary hash-table.

function SCANGRAM(B = (b, b2, ...,by—1),n)
cur_s < 8o
i< 0
while i < n do
gram < (bi,biy1,...,br_1)
h < Hash(gram)
j<0
if h € BloomFilter then
entry < Dictionary[h]
if gram = entry.gram then
while cur_s.depth > j do
cur_s < AcScanByte(cur_s, gram|j])
i+—i+1
j—Jj+1
i< i+ (k—j)
cur_s < entry.state
else
cur_s <— AcScanByte(cur_s, gram|j])
i+—i+1
else
cur_s < AcScanByte(cur_s, gram|j])
i< i+1

Fig. 2. The data path algorithm

nanoseconds [32]. The data structures for Bloom filter and
dictionary hash table are very small relatively to the AC DFA
(while AC DFA can get to tens or hundreds of megabytes,
Bloom filter and dictionary hash table can take up to a few
megabytes in the worst-case scenario). Thus, they can be
located on an SRAM chip, while most of the AC DFA must
reside in DRAM.

V. ANALYSIS

In this section we analyze the various parameters that
influence the performance of our system. Given traffic of
length n bytes, let k be the length of grams. Let b; be the
i-th byte of the traffic, and let gramy(b;) = (bi,...,Diti—1)-
We denote the dictionary as the set D and the Bloom filter
that represents it as BF (D). With slight abuse of notations,
X € BF(D) if the Bloom filter indicates that the gram x is in
D.

We first classify the bytes of the traffic according to the
way our system scans the bytes. Specifically, byte b; is a miss
byte if the algorithm queries the dictionary and find out that
grami(b;) ¢ D. A byte is a left-margin byte if the algorithm
scans this byte as part of a left-margin resolution of a matched
gram. Finally, a byte is a skipped byte if it is neither a miss
byte nor a left-margin byte. For ease of presentation, we refer
to left-margin and skipped bytes collectively as in-gram bytes.
Finally, we call byte b; a hit byte if the algorithm queries the
dictionary and found out that gramy(b;) € D; notice that a hit
byte can be either a skipped byte or a left-margin byte.

We define p as the probability that a byte is an in-gram
byte. This immediately implies that the number of miss bytes
is n(1— p) and that the number of hit bytes is np%, since only



the first byte of each matched gram is a hit byte. We further
note that the number of Bloom filter queries when processing
the traffic is exactly n (1 —-p+ %) We then define ¢ as the
average number of Aho-Corasick scan iterations until the left
margin resolution is completed, thus the number of left-margin
bytes is given by n-c- £.

The false positive rate of the Bloom filter is defined as
follows:

FPRpp(p) = Prlx € BF(D) and x ¢ DJ.

We note that unlike previous parameters, FPRgr(p) does not
depend on the inspected traffic and is solely a parameter
describing the accuracy of the Bloom filter. Since the Bloom
filter is called n (1 —-p+ %) times, the number of times it will
result in a false positive is FPRpp(p) -1t (1 —p+ %) When it
is clear from the context, we will refer to FPRpr(p) as FPR.
We next quantify the processing times of each operation:

e AC - The average processing time of a single byte scan
using the Aho-Corasick algorithm.

e DICT - The average processing time of accessing the
dictionary and retrieving the entry of a specific k-gram.

e BF - The average query time of a Bloom filter query.

We now attach the different processing time for each type of
a byte: A miss byte requires AC + BF time, a hit byte requires
BF + DICT time, a left-margin byte requires AC time, and
skipped bytes do not require any processing time. In addition,
each Bloom filter query that results in a false positive imposes
a penalty of DICT. Note that some of the bytes belong to two
categories and their processing time is the sum of both terms.

Putting all terms together implies that the average per-byte
processing time is:

L(n(1-p)(Ac+BF) +nZ (BF +DICT)+
+n-c-P-AC+FPR-n(1—p+2)DICT) =

(c:AC+BF+DICT)

(1—p)(AC+BF)+ £ T +FPR(1 — p+ £)DICT

This processing time immediately yields that in order to
accelerate the regular signature matching process (whose av-
erage per-byte processing time is AC), the ratio of in-gram
bytes, denoted pmin, should be at least:

k(BF+FPR - DICT)
k—1)(BF+FPR-DICT) + (k — ¢)AC — DICT

Pmin > (

A. Hardware Implementation Analysis

When the data path is implemented in hardware, Bloom
filter and dictionary lookups can be done in parallel with
Aho-Corasick scans. This implies a significant reduction in
scanning of miss bytes: max{AC,BF} instead of AC+ BF in a
software implementation. In addition, left-margin resolution of
a gram can be done in parallel with the corresponding hit byte
processing. When no bytes are scanned in the left boundary
of a gram, still one Aho-Corasick scan is performed (since
the BF query result is not known). This effectively results in

slightly higher value of average number of in-gram bytes scan,
denoted by ¢’; note that ¢’ <c+1.

(1—p)(max{Ac,BF + FPR(1 + 55pICT} )+
Pmax{c’- AC,BF +DICT})

For all reasonable parameter values, the hardware imple-
mentation outperforms the naive Aho-Corasick implementa-
tion that does not leverage traffic repetitions.

VI. EXPERIMENTAL RESULTS

Our experimental code for the data path is based on the
multi-pattern matching code of Snort [33] intrusion detection
and prevention system, that implements the Aho-Corasick
DFA. We added to the basic DFA code the ability to receive
a dictionary, to build a Bloom filter and a dictionary hash
table, and to perform skips according to our mechanism. In our
experiments we limit the number of k-grams in the dictionary
to about 45K. We found that in most cases, this is enough to
achieve high skip ratio while keeping the dictionary lookup
process relatively fast. For this number of elements, we use
a Bloom filter with one hash function and 0.5M-1M bits. For
HTTP traffic, we use Snort’s pattern-set (~ 4K patterns).

For performance evaluation we use a system with Intel
Sandybridge Core i7 2600 CPU with 32 KB L1 data cache
(per core), 256 KB L2 cache (per core), and 8 MB L3 cache
(shared among cores). The system runs Linux Ubuntu 11.10.

A. Traffic Sources
We use the following traffic traces for the experiment:

o Popular Websites: we crawled several worldwide and
local popular websites and downloaded pages up to depth
2. We repeated this process every 1.5 hours to track
changes in HTTP responses. For our experiments we only
considered HTML content.

o General HTML Traffic: HTML responses from a set of
HTTP traffic traces, as described in Section VI-B.

o Cache-Miss Attack Traffic: In a cache-miss attack,
attacker sends a large amount of similar patterns, multiple
times, in order to make the AC DFA get out of its
locality area in the cache, and thus have much more cache
misses [34]. These traces mix general HTTP traffic with
cache-miss attack packets, in increasing attack intensity
(bandwidth), as described in [35].

B. HTTP Content Characteristics

In order to examine the potential gain from our mechanism
on general HTTP and HTML traffic we analyze the charac-
teristics of HTTP content. We use a 9 GB trace collected
from a campus wireless network. The trace contains 348,094
HTTP flows, where an HTTP flow is defined by a request and
its corresponding response.

We noticed that when we analyze the entire HTTP traffic as
a whole, there are relatively not so many repetitions. However,
different content-types behave very differently. For example,
partial repetitions are very popular in text/html or text/plain
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Fig. 3. CDF of Number of Appearances of 16 Bytes Sequences by Content-
Type

types, and entire files repetitions are mainly found in images.
Some of the types do not contain repetitions at all (except
some random strings), e.g. application/zip. 1t is clear that we
have to treat each type differently.

For each content type, we count the repetitions of each k-
gram in the data. Figure 3 presents the cumulative distribution
functions (CDFs) of the number of repetitions per type for k =
16. As presented in the figure, for type application/zip, almost
100% of the strings appear only once and a few strings appear
up to 10 times. However for the type fext/html 40% of the
strings appear more than once, 10% appear more than 10 times
and some of them appear more than 10,000 times. Similar
numbers can be found for text/plain. Figure 4 present the total
repetitions of the different types. The types in the figure are
sorted by their popularity in our traces (also presented by the
gray line). The potential skip ratio is calculated as the number
of bytes in all grams that appear more than once, divided by
the total number of bytes of the specific type. This is presented
in the figure by the black right bar at each pair. The left white
bar presents the potential skip ratio out of the whole data, i.e.
the black bar times the gray line at each point. As we can
see from the figure, 90% of the HTML data and 85% of the
plain data can be potentially skipped, which means that our
mechanism has high potential for performance improvement,
either in software or in hardware.

There are more types in which high percentage of the traffic
can be skipped, e.g. xml, asm and c, but their popularity in
our traces is low, and therefore their impact on the global skip
ratio is almost negligible. By skipping only HTML and plain
data, we achieve more than 35% skip ratio out of all data.

C. Potential Performance Analysis

To asses the potential gain of our mechanism we first
isolate each component of the model described in Section V.
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Fig. 4. Skip ratio per content type when using grams of width 32 bytes.

TABLE III
SAMPLE MEASUREMENTS FOR MODEL COMPONENTS.

Traffic Component | Rate
BF 2.8 ns/byte
AC 4.2 —4.3 ns/byte
Popular Website DICT 27 — 28 ns/byte
(youtube.com) P (Pmin) 79% (53%)
FPR 2.46%
c 1.87 bytes
BF 2.7—2.8 ns/byte
AC 5.6 —5.8 ns/byte
Attack Traffic DICT 28 — 40 ns/byte
(100% intensity) P (Pmin) 84% (13%)
FPR 32-3.7%
c 10.1 bytes
BF 2.02 —2.3 ns/byte
AC 4.35—4.5 ns/byte
General HTML DICT 25 — 28 ns/byte
Traffic P (Pmin) 47% (63%)
FPR 3.39%
c 1.8 bytes

We measure times for each operation separately (e.g. Bloom
filter lookup, Aho-Corasick DFA lookup, dictionary hash table
search) in units of nanoseconds per input byte. Each operation
is isolated and timed using a different timer, in separate runs.
Note that the different components have different values with
each traffic source as traffic induces different AC behavior and
different dictionaries. That is, different traffic traces also affect
the size of dictionary and Bloom filter differently.

Table III shows sample measurements for different traffic
sources we used. Also, for each traffic source, we show the
value of p, required for performance gain in the software
implementation. By plugging these numbers into the corre-
sponding equations in Section V (for software or hardware
implementations), we can retrieve the model prediction of
speedup for each traffic source, for both software and hardware
implementation, as shown in Table IV. Note that due to
compiler and CPU optimizations, the values in Table III are
only rough estimations. This explains the differences we got
between actual results and model’s predictions. Also, note that
when implementing the solution in hardware, Bloom filter and
dictionary data structures may be put into a faster memory, not
being subject to cache replacement, and thus provide better



TABLE IV
MODEL PREDICTED SPEEDUPS FOR SOFTWARE AND HARDWARE
IMPLEMENTATIONS, AND ACTUAL SPEEDUP ACHIEVED BY OUR SOFTWARE
IMPLEMENTATION, FOR VARIOUS TRAFFIC SOURCES.

Potential Actual Potential
Traffic Software | Software | Hardware
Speedup | Speedup Speedup
Popular Website 62% 53% 256%
(youtube.com)
Attack Traffic
(100%) 112% 117% 235%
General HTML
Traffic —16% —15% 145%

rates. However, for the comparison we assume that rates are
equal, and if faster memory is used then the potential speedups
on hardware are even faster than those displayed here.

D. Speedup with Software Implementation

Figure 5 shows the actual speedup that our software im-
plementation achieved on traffic from three worldwide and
local® popular websites. All websites we tested gained a pos-
itive speedup in all the experiments we performed. Achieved
speedup was very close to the model prediction.

Our mechanism also improves DPI performance when the
system is under a cache-miss attack [34], [35]. Such attacks
can drop the throughput of the AC DFA by a factor of 7 [34].
As displayed in Table III, the potential number of bytes to skip
(p) is very high in such cases. During an attack, the depth in
the AC DFA is deeper, as a result of the attack itself. Thus,
in most cases, left boundary scan (c) will be longer. However,
as can be deduced from the analytical model, there is still a
very high potential for throughput gain using our technique.
Figure 6 shows the actual speedup achieved using our software
implementation on traffic with various attack intensities.

E. Determining the Dictionary Width

The width of grams in the dictionary, denoted k, is an
important parameter of our technique. On one hand, when
using fixed width dictionary, the larger k is, the longer are
the skips we can do when a gram is in the dictionary. On the
other hand, if k is too large, the amount of grams that can be
put into the dictionary is reduced. Also, our experiments show
that variable width dictionary does not always perform better,
due to the longer dictionary lookup process.

Figure 7 shows how throughput of the software implemen-
tation changes with k on a fixed width dictionary (k = 0 means
no dictionary is used). In this example, the traffic is of a cache-
miss attack of 33% intensity, and k = 32 gives the highest
speedup, of 33%.

F. Dictionary Creation and Update

Dictionary is first computed in the slow path when a first
chunk of data is available, as described in Section IV-A.
Dictionary can be computed again at each predefined interval,

SThe details of the news website were omitted to ensure the anonymity
required in the double-blind process.

on the new incoming data. In our experiments, we computed
a new dictionary every 10MB-20MB.

When polling the same site repeatedly every predefined
interval, we create the dictionary based on several samples
together (in our experiments, we polled websites every 90
minutes and created a new dictionary every six hours, on four
different samples).

In most cases, a dictionary that was computed once provides
a steady speedup for long time, and thus it is not necessary
to compute a new dictionary frequently. For example, in the
popular websites we studies, we found that even when not
updating the dictionary for days, potential skip and actual
speedup remain almost as they were if we computed a new
dictionary over and over again. Figure 8 shows the speedup
of the software implementation when scanning youtube.com
traffic, similarly to Figure 5(b), but this time, dictionary is
only being updated every 6 hours (after computing the first
dictionary) and 72 hours (after computing another dictionary,
three days later).

VII. CONCLUSIONS

In this work we show how repetitions in network traffic
can be used to enhance DPI performance. We analyze the
potential improvement using a simple, yet accurate, model,
and demonstrate the effectiveness of our mechanism in a set
of experiments.

Our mechanism changes the legacy Aho-Corasick algo-
rithm, adding a dictionary of repeating data. The slow path of
our mechanism uses an off-the-shelf algorithm to recognize
repeating strings and create dictionaries from them. Then, in
the data path, instead of simply traverse the Aho-Corasick
DFA, at each step, we first try to find whether a skip can be
done, and if so, avoid scanning the string again.

We show that on certain common traffic types, for various
use-cases, our mechanism achieves very high performance
gain, when implemented in software or in hardware. We
believe that our approach can improve the throughput of DPI
in network middleboxes, cloud services and SDN.
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