
FPGA Implementation of Lookup Algorithms 
 

Zoran Chicha, Luka Milinkovic, Aleksandra Smiljanic 
Department of Telecommunications 

School of Electrical Engineering, Belgrade University 
Belgrade, Serbia 
zoran.cica@etf.rs 

 
 

Abstract—The pool of available IPv4 addresses is being depleted, 
comprising less than 10% of all IPv4 addresses. At the same time,  
the bit-rates at which packets are transmitted are increasing, and 
the IP lookup speed must be increased as well. Consequently, the 
IP lookup algorithms are in the research focus again because the 
existing solutions were designed for IPv4 addresses, and are not 
sufficiently scalable. In this paper, we compare FPGA 
implementations of the balanced parallelized frugal lookup 
(BPFL) algorithm, and the parallel optimized linear pipeline 
(POLP) lookup algorithm that efficiently use the memory, and 
achieve the highest speeds.  
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I.  INTRODUCTION 
Internet is still fast growing network. The number of hosts 

is still increasing and the IPv4 address space is almost 
exhausted. Actually, the Internet of “things” is being developed 
to include a tremendous number of sensors which might be 
attached to various machines and appliances. As a result of this 
development, transition to longer IPv6 addresses is inevitable. 
Packets generated by the increasing number of things on the 
Internet will be directed through the routers based on their IPv6 
addresses. The output port (i.e. next-hop) of each packet is 
determined based on its IP address using the information from 
the lookup table according to the specified IP lookup 
algorithm. The lookup table contains forwarding information 
for the network addresses that a router learned from other 
routers in network. As the Internet is growing the lookup tables 
are getting larger. Classless network addresses are aggregated 
in these tables in order to consume a minimal amount of 
memory, and the longest prefix match of the given IP address 
should be found. The lookup table is typically split between the 
internal and the external memories. The internal (on-chip) 
memory is on the same chip as the lookup logic. The on-chip 
memory has a large throughput, which allows parallelization 
and pipelining that provide the high lookup speeds. However, 
the on-chip memory is very limited, and should be, therefore, 
carefully used. As the IP addresses get longer, the internal 
memory requirements of the lookup table can become a 
bottleneck. So, the existing internal memory should be used in 
a way that would maximize the lookup speed for the largest IP 
lookup tables. 

In the literature, many lookup algorithms were proposed [1-
8]. Most of the algorithms are based on trees, since the tree 
structure is a natural choice for a lookup table. However, 
search through ordinary binary trees is not fast enough, so there 

are many techniques to improve the lookup speed. Some of 
these techniques are the path compression, multibit trees [3], 
the level compression [8], bitmap techniques [1,3-5], leaf 
pushing [5,9], the priority tree technique [6], hashing [7] etc. 
The path compression is a technique where the paths in a tree 
are compressed if they have no branching. In this way, the 
number of the memory lookups is decreased. In multibit trees, 
one node has 2m children as m bits are used for determining the 
child in the next level, and this technique reduces the tree 
depth. The level compression technique replaces the parts of 
the binary tree that are populated above some threshold with 
the multibit subtrees to efficiently reduce the depth of the tree. 
The bitmap technique uses the compact binary presentation of 
some parts of the tree (a subtree structure is presented with the 
bitmap vector whose positions correspond to the nodes in the 
subtree). It is usually combined with the technique that reduces 
the number of pointers in a multibit tree. Namely, only one 
pointer is kept in a node and it points to the first element of the 
vector of pointers to the node’s children. Leaf pushing is used 
to push the next-hop information from the internal nodes of the 
tree to the leafs of the tree. The priority-tree technique fills 
empty nodes in the early levels of a binary tree with the longer 
prefixes. In this way the total number of nodes is reduced. 
Hashing is a popular technique used to reduce the number of 
memory accesses and increase the lookup speed.  As one can 
see, there are many techniques that can be used to achieve 
higher lookup speeds, but usually they come with a price. For 
example, some internal nodes with the next-hop information 
can be masked with the leaf pushing technique or the multibit 
trees, so updates get more complicated than in ordinary binary 
tree, etc. 

The parallel optimized linear pipeline (POLP) algorithm 
has been proposed in [2]. The main idea of POLP is to split the 
original binary tree into non-overlapping subtrees that are 
distributed across P pipelines which comprise similar numbers 
of nodes. Each pipeline is split into multiple stages, which 
comprise similar numbers of nodes. Nodes are associated to the 
stages so that the parent node must be in a different (and 
earlier) stage than its children nodes. In POLP, the pipeline is 
chosen based on the first I bits of the IP address. Then, the 
longest prefix is searched within the selected subtree. One 
memory is associated to each stage, and it is accessed when the 
search reaches that stage. Multiple IP addresses are processed 
simultaneously using the pipeline technique so that these 
parallel searches use different stages at any point of time. In 
this way high throughput is achieved. 
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In this paper, we propose the balanced parallelized frugal 
lookup (BPFL) algorithm. BPFL is an extension of the PFL 
algorithm [1]. The advantage of BPFL is that it frugally uses 
the memory resources so the large lookup tables can fit the on-
chip memory. As in PFL, the next-hop information is stored in 
the external memory, while the structure of the lookup table is 
stored in the on-chip memory. In this way, BPFL allows 
parallelization and pipelining that achieve faster lookups, as the 
external memory is accessed only once at the end of the lookup 
when the next-hop information is retrieved. The on-chip 
lookup table is organized as a binary tree divided into levels 
that are searched in parallel. Each level stores only non-empty 
subtrees. The subtree prefixes are stored in the corresponding 
balanced trees, unlike the PFL that stores the subtree prefixes 
in registers. Usage of balanced trees significantly reduces the 
number of required registers for lookup tables which enables 
the support for larger lookup tables.  If the subtree prefix is 
found, the subtree bitmap vector is retrieved, and the node with 
the longest prefix match of the given level is found based on 
this subtree vector. In BPFL another improvement over the 
PFL is introduced, as for sparsley populated trees only indices 
of existing nodes are kept instead of complete bitmap vector. 
This significantly reduces total memory requirements. Since 
matches can be found at more than one level, the resulting 
match is the one found at the highest level. Then, the output 
port is found at the appropriate location of the external 
memory. Since the pipelining is used, one IP lookup can be 
performed per a clock cycle. The memory is used frugally by 
storing only non-empty subtrees, and by optimizing the bitmap 
vectors for sparsely populated subtrees. In this way, BPFL 
supports large IPv4 and IPv6 lookup tables. 

In order to provide fast lookups, the IP lookup algorithms 
must be implemented in hardware. In this paper we present the 
FPGA implementations of the BPFL and the POLP algorithms. 
We chose these two algorithms because they consume the 
small amounts of the internal memory which becomes a critical 
resource in the case of IPv6 addresses. Finally, we compare the 
implementations of BPFL and POLP in terms of the resources 
that they consume, and the speeds that they achieve. 

II. BPFL SEARCH ENGINE 
The BPFL search engine will be described in this section. 

First, its architecture comprising multiple levels will be 
described. Then, the design of each level module will be 
explained. A module at each level contains two parts, the 
subtree search engine, and the prefix search engine. The 
subtree search engine finds the location of the subtree which 
contains the longest prefix in one of the balanced trees at the 
given level, provided that such the longest prefix exists. The 
subtree search engine then finds the longest prefix in the 
located subtree. 

Generally, the IP lookup engine comprises the control logic 
and the lookup table. The lookup table contains the information 
about its structure, and the information about the output ports 
to which the incoming packets should be forwarded. These two 
types of information can be split, and stored in the internal and 
the external memories. Typically, the information about the 
lookup structure is stored in the internal memory so that the 
lookup speed could be maximized. It is important that this 

information consumes as little memory as possible, so that it 
can fit the on-chip memory even for very large lookup tables. 
For this reason, BPFL is designed so that it frugally uses the 
memory, and it particularly prudently uses the internal 
memory. Only the next-hop information with the output ports 
is stored in the external memory as it is accessed only at the 
end of the lookup process. 

Figure 1 shows the architecture of the BPFL search engine 
which comprises multiple levels. The number of levels equals 
L=La/Ds, where La is the address length, and Ds is the subtree 
depth. Module of level i processes subtrees whose depths are 
equal to Ds, and which are determined by the (i-1)∙Ds bits long 
prefixes. So, module of level i processes only first i∙Ds bits of 
the the IP address, and finds the prefix whose length is greater 
than (i-1)∙Ds bits and less or equal to i∙Ds bits. The inputs of 
any module are the IP address and the signal Search that 
instructs the module to start looking for the longest prefixes. 
Modules of all levels pass their search results to the final 
selector. Here, a result is the location of the next-hop 
information in the external memory (Next-hop_addr). Signal 
Match_found is used to signal the search success.  If modules 
at more than one level signal the successful searches, then, the 
selector chooses the result calculated at the highest level. 
Finally, the external memory is accessed to retrieve the next-
hop information, i.e. the output port to which the packet should 
be forwarded. 

 
Figure 1. BPFL search engine top-level. 

A module at level i contains two parts – the subtree search 
engine and the prefix search engine as shown in Figure 2. The 
subtree search engine processes balanced trees comprising the 
prefixes of non-empty subtrees, in order to find the subtree 
with the longest prefix of the given IP address, if such a subtree 
exists. The prefix search engine processes these non-empty 
subtrees of prefixes in the lookup table, in order to find the 
longest prefix of the given IP address. If the longest prefix 
match is found at the given level, the external memory address 
of the next-hop information is passed to the final selector 
shown in Figure 1. 

 
Figure 2. Module at level i. 

The subtree search engine is shown in Figure 3. It consists 
of B non-overlapping balanced trees that store the subtree 
prefixes. Balanced trees are so called because each node in 
those trees has equal number of descendant nodes through the 
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left and the right branch. A range of prefixes with the length 
equal to (i-1)∙Ds is associated to one balanced tree at level i. A 
balanced tree is chosen by the balanced tree selector depending 
on the range of prefixes to which the IP address belongs. The 
balanced tree selector gives the address of the root of the 
selected balanced tree. The selected balanced tree is traversed 
based on the comparisons of its node entries to the given IP 
address. If the (i-1)∙Ds long prefix of the IP address is greater 
than the subtree prefix stored at the current node, then, the next 
node (at the next level of the balanced tree) is the right node, 
otherwise, the next node is the left node. If the subtree prefix at 
the node equals the IP address prefix, the following balanced 
tree levels are just passed to enable pipelining while carrying 
the address of the balanced tree node with the IP address prefix 
and the balanced tree index. The subtree address is calculated 
using this node address. Signal Found_j  is used to inform the 
succeeding balanced tree levels that the subtree has been found, 
while signal Subtree_found is used to inform the prefix search 
engine that the subtree has been found. In order to frugally use 
the on-chip memory, balanced tree nodes do not store pointers 
to their children. Instead, locations (addresses) of all nodes in 
each balanced tree are predetermined. For the sake of 
simplicity, the left child address is obtained by adding ‘0’ 
before the parent’s address, and the right child address is 
obtained by adding ‘1’. 

 
Figure 3. Subtree search engine at level i. 

The prefix search engine is shown in Figure 4. It consists of 
the bitmap processor and the internal memory block. Elements 
of the complete bitmap vector are ones, if the corresponding 
nodes in a subtree are non-empty. However, if the subtree is 
sparsely populated, the bitmap vector would unnecessarily 
consume large number of memory bits. In this case, it is more 
prudent to store a list of indices of non-empty nodes. In our 
design, if the number of non-empty nodes is below the 

threshold, their indices are kept in the internal memory; 
otherwise, the complete bitmap vector describing the subtree 
structure is stored in the internal memory. In both cases, the 
external subtree address is stored in the internal memory 
together with its bitmap vector. The next-hop information 
related to the nodes of some subtree are stored in the external 
memory starting from the external subtree address. The prefix 
search engine finds the longest prefix of the IP address within 
the subtree based on either the list of non-empty nodes or the 
bitmap vector. The prefix search engine forwards this result to 
the final selector together with the signalization of the search 
success, and the external memory address where the next-hop 
information resides. The external memory address of the next-
hop information is determined based on the external subtree 
address, and the index of the node that corresponds to the 
longest prefix of the IP address at the level in question. 

 
Figure 4. Prefix search engine at level i. 

III. POLP SEARCH ENGINE 
The POLP search engine will be described in this section. 

First, the architecture of the search engine will be described. 
The POLP search engine comprises multiple pipelines. The 
design of these pipelines will be explained as well. 

In POLP, the original binary tree is split into non-
overlapping subtrees. These subtrees are then split among 
multiple pipelines, so that these pipelines contain similar 
numbers of nodes, as shown in Figure 5. The pipeline is 
selected by the pipeline selector based on the first I bits of the 
IP address. Outputs of the pipelines are connected to the final 
selector. It selects the result from the activated pipeline, 
calculates the external memory location of the next-hop, and 
accesses the calculated location to retrieve the next-hop 
information. 

 
Figure 5. POLP search engine top-level. 

The inputs of the pipeline selector are the IP address and 
the signal Search that activates the search engine as in the case 
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of BPFL. The pipeline selector, then, activates the pipeline that 
holds the subtree of interest, and passes the relevant part of the 
IP address (remaining 32-I bits) to it as shown in Figure 5. The 
pipeline selector is a simple memory block addressed with I 
bits. Each location corresponds to one subtree, and contains the 
pipeline ID that holds the subtree, and its root node location. If 
the subtree does not exist, then, a specific constant is stored in 
corresponding location to signal that the subtree does not exist. 
The pipeline selector also holds the bitmap vectors for subtrees 
which are shorter than I bits, so that the lookup for short 
prefixes is performed by the pipeline selector. In the case of 
longer IP addresses, the output of the pipeline selector is passed 
to the selected pipeline. Activated pipeline searches the 
selected binary subtree based on the remaining 32-I bits. Since 
the pipelining is used, a new search can begin in the next clock 
cycle. 

Each pipeline consists of F stages. Each node is assigned to 
one stage of the pipeline, while its children cannot be in the 
same stage to enable pipelining. Nodes are balanced over the 
stages, so that similar numbers of nodes are assigned to all 
stages. Children nodes of the given node do not have to be in 
the next stage. To enable this feature, a pointer in the subtree 
node holds the stage information where its child is placed, as 
well as its memory location. To avoid using of two pointers, 
we place the children of one node into two successive locations 
so that only one pointer is used. The pipeline structure is given 
in Figure 6. Each stage sends to the next stage the first 32-I bits 
of the IP address, the position of a bit in the subtree that is next 
to be processed, the stage and the location of the next node, the 
current result of the search, and the Search indicator that 
signals that the search is in progress. Signal Next-hop_addr 
carries the address of the next-hop information in the external 
memory of the best match found in the previous stages. Control 
signal Match_found denotes whether the information in Next-
hop_addr is valid or not. The last stage in the pipeline will pass 
only these two signals to the final selector. 

 
Figure 6. Pipeline structure. 

Each stage contains a memory block that holds the nodes of 
the subtrees assigned to the pipeline under observation. One 
memory location contains the next-hop bit, the left-child bit, 
the right-child bit and the children pointer, shown in Figure7. 
The next-hop bit is set to ‘1’ if the corresponding node holds 
the next-hop information, otherwise it is set to ‘0’. The left-
child bit and the right-child bit determine the existence of the 
left child and the right child, respectively. Children pointer 
contains addresses of the stage and of the memory location of 

the children nodes. Besides the memory block, each stage 
contains also the control logic and the delay element. The 
control logic processes the data read from the memory or 
passes the signals from the previous stage to the next stage if 
the next node does not reside in the current stage. If the current 
stage is the addressed stage, and its node carries the next-hop 
address, this next-hop information should replace the next-hop 
address received from the previous stage. The next-hop address 
in the external memory is calculated based on the stage and the 
(internal) memory location of the node that carries the best 
match. The delay element is needed when the current stage is 
addressed (holds the node of interest) to delay signals from the 
previous stage as the memory read cycle introduces delay. The 
delay element is used even when the stage is not addressed to 
enable efficient pipelining without queues. 

 
Figure 7. Stage i structure. 

IV. PERFORMANCE ANALYSIS 
In this section, we analyze the performance of the BPFL 

and POLP implementations. In the analysis we used three 
realistic lookup tables of different sizes (71K, 143K and 309K 
entries) to evaluate the performance of these two lookup 
algorithms for smaller and larger tables. The FPGA chip used 
for implementation is the Altera’s Stratix II EP2S180F1020C5 
chip [10]. The SRAM memory is used as the external memory. 
Since the existing IPv6 lookup tables are still small [11], we 
anticipated future large IPv6 lookup tables according the 
methodology proposed in [12]. The IPv6 lookup tables are 
derived from the existing IPv4 lookup tables [13]. Length of 
each prefix in the IPv4 lookup table is doubled, and 25% of 
them are moved to the closest odd number. Bits are added to 
the IPv4 addresses so that the desired density of non-empty 
subtrees in the IPv6 lookup table is achieved. The density of 
subtrees is set to be 2-4 times lower than in the IPv4 lookup 
tables because they occupy the larger address space. 

TABLE I 
RESOURCE USAGE FOR BPFL IN THE CASE OF IPV4  

Table 
Size LE Memory 

[Mb] 
SRAM 
[MB] 

fmax 
[MHz] 

71K 15.1K 
(11%) 

1.93 
(21%) 0.61 119 

143K 19.4K 
(13%) 

2.8 
(30%) 0.8 113.6 

309K 27.9K 
(19%) 

5.6 
(60%) 1.68 96.1 
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TABLE II 
RESOURCE USAGE FOR BPFL IN THE CASE OF IPV6  

Table 
Size LE Memory 

[Mb] 
SRAM 
[MB] 

fmax 
[MHz] 

71K 52.1K 
(36%) 

4.03 
(43%) 0.32 110.5 

143K 61.1 
(43%) 

6.33 
(67%) 0.76 106.3 

309K 89.7 
(63%) 

8.86 
(94%) 0.95 99.9 

 
Tables I and II show the chip resources required for the 

BPFL implementation in the case of IPv4 and IPv6 lookup 
tables, respectively. In both tables, the stride length is Ds=8, so 
that the IPv4 tables have up to four levels, while the IPv6 
lookup tables have up to eight levels. One can observe that the 
chip resources are fully utilized only in the case of the largest 
IPv6 lookup table. So, the larger IPv4 tables can be supported 
by the selected FPGA chip, while for the larger IPv6 tables a 
more advanced FPGA chip would be needed. It can be 
observed that more internal chip resources are used in the IPv6 
case, due to the longer IPv6 addresses. But, the SRAM 
memory requirements are lower in the IPv6 case, because more 
subtrees have the lower density, and, their storage is more 
efficient. Since pipelining is used, one lookup can be 
performed per one clock cycle. So, even in the worst tested 
case, the throughput of around 96 millions lookups per second 
was achieved. 

TABLE III 
RESOURCE USAGE FOR POLP IN THE CASE OF IPV4  

Table 
Size LE Memory 

[Mb] 
SRAM 
[MB] 

fmax 
[MHz] P No of 

FPGA 

71K 9.8K 
(7%) 

8.81 
(94%) 0.48 110.6 10 2 

143K 6.6K 
(5%) 

9.17 
(98%) 0.76 107.6 9 3 

309K 6.6K 
(5%) 

9.17 
(98%) 1.18 107.6 15 5 

 
TABLE IV 

RESOURCE USAGE FOR POLP IN THE CASE OF IPV6  
Table 
Size LE Memory 

[Mb] 
SRAM 
[MB] 

fmax 
[MHz] P No of 

FPGA 

71K 29.3K 
(20%) 

3.4 
(36%) 0.43 146.5 6 2 

143K 10.4K 
(7%) 

9.08 
(97%) 1.9 123.2 9 9 

309K 10.4K 
(7%) 

9.08 
(97%) 3.08 123.2 15 15 

 
Tables III and IV show the chip resources required for the 

POLP implementation for IPv4 and IPv6 lookup tables, 
respectively. In our design we did not use I=8, like in [2]. We 
used I=16 to lower the total number of the stage memories as 
they are limiting the scalability of the POLP implementation on 
the FPGA chips. Because of its large memory requirements, 
the complete POLP design cannot fit one FPGA chip. For 
example, in the IPv4 case, one pipeline must contain at least 
F=17 stage memories when I=16 to fit the deepest possible 
subtrees. Size of the stage memory decreases when the number 
of pipelines increases, because the nodes are balanced over the 
pipelines and the stages. By changing the number of pipelines, 
the stage memories can be adjusted to better fit the available 
FPGA memory blocks.  For each lookup table, we found the 

optimal number of pipelines in the POLP design for which the 
minimal number of the FPGA chips is needed, as shown in 
Tables III and IV. In both tables, the required chip resources 
are given per one FPGA chip, and the last two columns show 
the total number of pipelines, P, and FPGAs. The capacities of 
the external SRAM memories required for different lookup 
tables are also shown in tables. 

It can be seen from Tables I, II, III, and IV, that the BPFL 
algorithm uses much smaller internal memory than the POLP 
algorithm. In addition, the memory blocks are better utilized in 
the case of the BPFL algorithm. As a result, the total on-chip 
memory requirements are significantly lower for BPFL than for 
POLP, so that the BPFL design can fit one FPGA chip, while 
the POLP design requires multiple FPGA chips which makes it 
costly and impractical. BPFL uses more logical elements due to 
the balanced tree selector that requires a large number of 
registers and comparators. However, logic elements required 
for the BPFL design can fit a single FPGA chip even for the 
largest IPv6 lookup table. The speeds of both algorithms are 
similar. The pipelines in POLP can serve multiple ports 
simultaneously, which would reduce the required number of 
FPGA chips per port. But then, a portion of the internal 
memory must be allocated to each pipeline for keeping the 
search requests. Also, in order to achieve full parallelization, 
the external SRAM memory should be allocated to each 
pipeline, which stores the next-hops corresponding to the 
prefixes in that pipeline. Since the POLP design requires 
multiple chips, it increases the complexity of the board design, 
and the overall router’s cost. 

TABLE V 
COMPLEXITY OF THE WORST CASE UPDATE 

Table Size IPver BPFL POLP 

71K IPv4 8K 28K 
IPv6 16K 42K 

143K IPv4 8K 48K 
IPv6 33K 80K 

309K IPv4 16K 48K 
IPv6 65K 80K 

 
Updates of the lookup tables are typically processed at the 

control plane of the router, and then, modified lookup tables 
are downloaded to the packet processors which are 
implemented in hardware. In this way, a complex update logic 
at the data plane for each search engine is avoided. The central 
processor can process the updates sequentially since they are 
much less frequent than the lookups. Updates in both 
algorithms typically have a moderate complexity. In BPFL, an 
update is easy in the case when a subtree already exists, and 
only its bitmap needs to be changed. When a subtree itself 
needs to be added or deleted, a balanced tree might need to be 
restructured, i.e. the nodes in the balanced tree might need to 
be moved to new positions. In the case of fully populated 
balanced trees, one fourth of nodes need to be moved on 
average. In the case of POLP, adding a new node can trigger a 
migration of multiple nodes to the earlier stages in order to 
provide sufficient number of stages for the path that includes 
the newly added node. The complexity in this case depends on 
the subtree size. Also, when the first prefix of some subtree 
needs to be added to the lookup table, it would require F/2 
memory accesses on average, where F/2 is the number of 
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stages. Finally, in order to keep the pipelines balanced, subtrees 
might need to be moved from pipeline to pipeline. The 
processing complexities in mentioned realistic cases, are 
similar for POLP and BPFL algorithms. 

The worst case update of the lookup table in BPFL is when 
there is only one empty node in the subtree search engine so 
that all the nodes must be moved when a new prefix is to be 
added at the given level. The processing complexity in this 
worst case comprises (2Db-1)∙B memory accesses, where Db is 
the balanced tree depth in the level with the largest number of 
nodes, and B is the total number of balanced trees in the same 
level. The worst case for updates in POLP is  when two largest 
subtrees need to exchange their places in two different 
pipelines so that a new prefix could be added to one these 
subtrees.  We estimate the size of these large subtrees to be    
(F-log2Nn+1)∙Nn. Namely, the upper levels of these trees double 
in each stage, until they reach the size of the stage memory; 
then, the lower levels comprise Nn nodes. So, the worst case 
processing complexity comprises 2∙(F-log2Nn+1)∙Nn memory 
accesses when POLP is used. It should be noticed that in both 
algorithms, the probability of the described worst cases is very 
low. Table V gives the worst case complexity for the lookup 
tables used in this paper. It can be seen that BPFL has the 
lower worst case complexity of the lookup table updates. 
However, the described worst cases are not very likely, while 
in more probable cases the update complexities are 
significantly lower for both algorithms. 

V. CONCLUDING REMARKS 
In this paper we presented FPGA implementations of two 

lookup algorithms, POLP and BPFL, and compared them. 
FPGA chips are attractive devices for implementation of the 
data plane functionalities because of their speed and flexibility. 
Both algorithms achieve high lookup speeds. However, our 
BPFL algorithm more scalable than the recently proposed 
POLP algorithm. Namely, POLP requires multiple chips even 
for the lookup tables of a moderate size, while  BPFL requires 

only one FPGA chip for the largest lookup tables on the 
Internet. Since the implementation complexity of the BPFL 
algorithm is fairly low, it is a promising lookup algorithm 
which can support the IPv6 addresses that are spreading on the 
Internet. 
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