
TOKEN-BASED DICTIONARY PATTERN MATCHING FOR TEXT ANALYTICS

Raphael Polig, Kubilay Atasu, Christoph Hagleitner

IBM Research - Zurich
Rueschlikon, Switzerland

email: pol, kat, hle@zurich.ibm.com

ABSTRACT

When performing queries for text analytics on unstructured

text data, a large amount of the processing time is spent on

regular expressions and dictionary matching. In this paper

we present a compilable architecture for token-bound pat-

tern matching with support for token pattern sequence detec-

tion. The architecture presented is capable of detecting sev-

eral hundreds of dictionaries, each containing thousands of

elements at high throughput. A programmable state machine

is used as pattern detection engine to achieve deterministic

performance while maintaining low storage requirements.

For the detection of token sequences, a dedicated circuitry

is compiled based on a non-deterministic automaton. A cas-

caded result lookup ensures efficient storage while allowing

multi-token elements to be detected and multiple dictionary

hits to be reported. We implemented on an Altera Stratix

IV GX530, and were able to process up to 16 documents in

parallel at a peak throughput rate of 9.7 Gb/s.

1. INTRODUCTION

Extracting structured information from large amounts of un-

structured data is becoming an important aspect in today’s

enterprise. This task is referred to as text analytics (TA) and

can be accomplished by software such as SystemT [1]. In

SystemT, a user specifies queries to extract the desired in-

formation from unstructured text data. Formulating these

queries can become a difficult task in itself and their com-

plexity challenges today’s computational systems to process

sufficient data in adequate time.

A common operator in such queries is the detection of

particular sets of words and patterns, which is referred to

as dictionary matching (DM). Before DM is performed, a

document is split into parts called tokens. This tokenization

can be done by splitting the text at whitespaces and/or other

special characters or more complex patterns.

Looking at the runtime of TA queries reveals that often

more than half of the processing time is spent on DM opera-

tors. This is due to the fact that these operators scan the full

document, whereas subsequent steps work on the results and

parts of the document only. With the ever growing amount

Fig. 1. Example applying token based dictionary matching.

of unstructured text data, such as emails, web entries and

machine data logs, performing the task of DM in a time- and

energy-efficient way is becoming increasingly important.

String and pattern matching algorithms and their hard-

ware implementations have been thoroughly studied for over

30 years [2]. Especially as part of network intrusion detec-

tion systems (NIDS) high-performance and large-scale pat-

tern detection engines have been developed to keep track

with the growing network data rates [3]. Besides matching

multiple ten thousand patterns, TA queries require the de-

tection of pattern sequences that cannot be represented as

regular expressions. For this we present a novel architecture

consisting of a deterministic finite-state automaton (DFA)

to detect single token-based patterns and a non-deterministic

finite-state automaton (NFA) to find token sequences or multi-

token patterns. The DFA is realized as a scalable Balanced

Routing Table finite-state machine (BFSM) [4] with addi-

tional controls to operate within single token boundaries de-

fined by an external data stream. The NFA is compiled di-

rectly into FPGA logic emulating the Baeza-Yates [5] NFA

by using shift and AND operations [6].

The main contributions of this paper are:

• A compilable architecture consisting of a programmable

DFA and compiled shift registers to perform pattern

sequence search for text analytics.

978-1-4799-0004-6/13/$31.00 ©2013 IEEE

• The capability to report the start and end offsets of a

pattern found for single and multi-token elements.

• An efficient result lookup structure to report all dic-

tionaries matching a particular pattern and a compiler

minimizing the result memory usage.

The paper is organized as follows. Section 2 gives an

overview on pattern matching in text analytics. We present

our system architecture and the compiler in section 3. Sec-

tion 4 explains implementation details. The performance

and resource evaluation are discussed in section 5. We con-

clude in section 6 and also discuss future work.

2. DICTIONARY MATCHING AND TEXT
ANALYTICS

Exact pattern matching is an important function used in many

applications, such as text search, DNA analysis [7] and anti-

virus software. Given a set of patterns as a dictionary a pat-

tern matching algorithm finds and returns all occurrences of

any given pattern in the data evaluated. The data itself can

be plain text, network traffic or binary files.

Text analytics adds specific details to pattern matching.

One addition is the tokenization mentioned in section 1. The

text data gets split into parts, so-called tokens, by a pre-

processing step. The algorithm responsible for this token-

ziation is unknown to the pattern matching step. The out-

put of the tokenizer is a set of tuples, each consisting of a

start and end offset of a token within the text data. Matches

found by the pattern matching algorithm are only valid if the

start and end offsets of the found pattern match the offsets

for the given token. This is similar to the regular expres-

sion \bJohn\b where John is only valid at word boundaries.

However, for text analytics it is not sufficient to have sets

of word and non-word characters to define token boundaries

as the token definition can be more complex and is defined

externally.

Patterns consisting of a sequence of tokens are referred

to as multi-token patterns. This is necessary for example

to extract the name John Doe from a text as seen in Fig.

1. Assuming John and Doe are defined as tokens it does not

matter by what characters they are separated as long as these

two tokens appear in sequence. This cannot be represented

by a regular expression as it require knowledge about the

tokenization process.

In contrast to string matching text analytics allows the

use of simple regular expressions in dictionaries. For exam-

ple, a dictionary may contain various date formats. In such

a case, the pattern is not restricted to a specific sequence of

characters but to a sequence of character classes.

Finally text analytics also requires exact operation. This

excludes the use of bloom-filters or other approaches caus-

ing false positive results.

Fig. 2. High-level view of the architecture.

3. ARCHITECTURE

The main idea of our architecture is the use of a decomposed

automaton to detect single token patterns and multi-token

sequences (see Fig. 2). For single token pattern detection,

a DFA-based architecture is used to provide a determinis-

tic scan rate of the document text data. The DFA needs to

detect all single token elements of a dictionary as well as

the individual tokens of multi-token elements. To detect the

sequence of patterns an NFA based circuitry is used which

advances its states on a token by token basis. All its detected

patterns must be reported as a combination of the start off-

set, the end offset and the dictionary identifier value. All

dictionaries must be reported containing the pattern.

The overall hardware architecture of the dictionary matcher

presented consists of three main sections as indicated in Fig.

3. Two individual DMA engines are responsible for retriev-

ing the document text data and the token offset values from

main memory. The text data is stored as 8-bit ASCII char-

acters, whereas the token offsets are defined as a tuple of

two 32-bit integer values representing the start and end off-

sets of a token. A counter is used as character pointer to

keep track of the current position in the document text. The

boundary detector is responsible for determining the start

and end characters of a token by comparing the character

pointer with the incoming offset stream. It controls the op-

eration of the BFSMs by issuing start-of-token and end-of-

token pulses. The operation of the BFSMs is discussed in

more detail in section 3.1.

The results of the BFSMs are passed on to a decoder

which will generate the appropriate transition signals for the

multi-token chains implementing the NFA discussed in sec-

tion 3.2. As a single token may trigger multiple matches on

the multi-token NFA, a priority scheduler is necessary to put

the results into sequence. This scheduler needs to process all

results before the next token can be dispatched by the BF-

SMs to keep the results in order and avoid information loss.

For this purpose it can generate a backpressure halting its

input logic.

The actual results are produced by a cascaded result lookup

described in section 3.3. The Result Generator is responsible

for assembling the correct offsets with the appropriate dic-

tionary id before writing the results to main memory. Like

the scheduler, the generator needs to process all results first

before a new instruction can be consumed.

Fig. 3. Detailed view of the architecture. Dark grey blocks

can cause backpressure when multiple elements or dictio-

naries need to be reported.

3.1. BFSM

A BFSM [4] is used as DFA-based pattern detection engine.

A BFSM is a programmable finite-state machine (FSM) tech-

nology for regular expression matching with deterministic

performance. It uses an AC-DFA to detect the patterns com-

piled for it and stores its transitions as a set of default and

transition rules in local memory. The default rules define the

extra links that are necessary in an AC-DFA to return from

failing patterns and only depend on the incoming character.

Transition rules depend on both the current state and the in-

coming character and define the positive transitions in the

Fig. 4. Multi-token chain

DFA. Using this concept the BFSM achieves a high storage

efficiency, maintaining deterministic performance consum-

ing one character per cycle.

The size of the rule memory is fixed, allowing the im-

plementation to have a stable achievable frequency regard-

less of the dictionary size. If a dictionary is too large to

fit into a single BFSM instance, additional instances can be

used. The compiler will distribute the patterns accross all in-

stances, minimizing the necessary rule memory. By default

four instances are used.

The BFSM is kept in its default state until the start of

a token is detected by the Boundary Detector, which com-

pares the character pointer value to the start offset field for

the current token. If these values match a start of token sig-

nal is activated, allowing the BFSM to leave its default state

using the current character. The subsequent transitions are

carried out without any external interaction. When the end

of a token is detected by the Boundary Detector, an end of

token signal is activated. If the BFSM reaches a match state

with a character marked as end of token then and only then

is the match valid and sent to the output. When the end of a

token is signaled the BFSM will be reset to its default state

regardless of the calculated next state.

3.2. Multi-token NFA

For detecting multi-token elements, an NFA circuit using

single token transitions is used. It is compiled as custom

hardware logic as described by Sidhu and Prasanna [6]. Each

multi-token element has its own small machine consisting of

registers connected by AND gates, as shown in Fig. 4. The

number of registers in such a chain is equal to the number

of tokens in the multi-token element. The data is shifted at

each end of a token when a potential single token has been

detected. A single token match id is decoded and fed to the

individual register chains, where it is combined with the pre-

vious matches. When a set of single token matches appears

in the correct sequence, a multi-token match is signalled.

An advantage of this approach is the ability to share re-

sources among multi-token elements using the same prefix.

For example, the multi-token elements John Doe and John
Wayne will share the first register for John.

Fig. 5. Cascaded result lookup: The pointer memory selects

a block of results in the results memory.

3.3. Result reporting

After the successful detection of a dictionary element the

results need to be produced. A single result is composed

of a 32-bit dictionary identifier and the start and end offset

position of the element found in the current document. As

a single element may be contained in multiple dictionaries,

multiple results need to be produced. This implies that the

amount of data generated by the dictionary matcher may ex-

ceed the size of the actual document processed. A cascaded

result lookup is used to efficiently store the information in

which dictionaries an element is contained in.

A match in the pattern detection engine results in an ad-

dress derived from its matching state to the pointer memory.

This memory contains a single entry for each match from

the BFSM. Each entry consists of an address to the result

memory and a result length. The result memory contains

the actual dicionary IDs, which are grouped by a particular

element appearing in such a group. For instance if an ele-

ment appears in dicionaries A, B and C then these form a

continous group in the result memory. A second element

appearing in dictionaries D, E and F forms a separate conti-

nous group. But for a further element appearing in B, C, D

and E, the compiler will create a group overlapping the pre-

viously created ones, thus minimizing the necessary storage.

The result generator recieves the base address and the re-

sult length and generates the addresses to the result memory.

It also assembles the correct token offsets from the token

shift register and writes the result back to main memory.

3.4. Compiler

The compiler for the architecture presented takes the dictio-

naries as plain text files as input. Each file is considered as

one dictionary, and each line in a file as a dictionary ele-

ment. Multi-token sequences are defined in a dictionary file

by separating the tokens by a whitespace character.

The compiler first consolidates all single tokens that have

to be detected. It then determines the number of necessary

BFSM instances to implement the AC-DFA and calls the

BFSM compiler [8]. After the BFSM compiler has finished,

the multi-token chains are generated as Verilog files. The

compiler combines the BFSM match states to form the cor-

responding token sequences as a multi-token chains. It then

generates a decoder transforming the match state to a sin-

gle bit signal activating the token transition. Next, the result

lookup memory is generated. The compiler tries to opti-

mize the use of the result memory by overlapping as many

dictionary combinations as possible. Finally the compiler

assembles the pointer memory and inserts the pointers into

the BFSM rule lines.

4. IMPLEMENTATION

Our reference system is implemented in Verilog on an Al-

tera Stratix-IV GX530 FPGA with a target frequency of 250

MHz. The primary goal is to maximize the aggregated through-

put of document data. This means that latency can be ne-

glected if a continuous stream of document data can be main-

tained at high frequency. To achieve the desired frequency

of 250 MHz, the BFSM was modified to run in a stream-

interleaved fashion.

The use of dual-port BlockRAM allows the reuse of the

same transition rule memory for a second BFSM instance.

In this way only the logic resources need to be duplicated to

process twice as many streams in parallel while memory us-

age stays the same. Depending on the dictionary size, multi-

ple such dual BFSMs are instantiated to further increase the

number of parallel streams.

The multi-token NFAs need to be instantiated per stream

and run pipelined at full frequency. The number of pipeline

stages is determined by the single token decoder and the

multi-token result multiplexer. The decoder grows with the

number of single token patterns used in the multi-token pat-

terns, and the size of the multiplexer is determined by the

number of multi-token patterns.

5. EVALUATION

To evaluate our system, we compiled various dictionaries

[9] with different sizes and properties to hardware. We used

the Altera Quartus 12.1 software to generate the FPGA bit-

streams. The resource numbers were generated using a two-

threaded dual BFSM capable of processing two by two in-

terleaved streams. For the performance tests, we used a set

of test documents with sizes ranging from 100 B to 10 MB.

5.1. Resource utilization

First we examine the impact of the size of the dictionary

containing single token elements only. The number of sin-

gle token elements dominates the size of the transition rule

memory. If the number of transition rules gets too large

Fig. 6. Resources for a four-stream implementation: Sin-

gle token (ST) resources are dominated by memory us-

age whereas detecting multi-token patterns (MT) requires

a large number of lookup tables (LUTs).

Table 1. Total resource usage of single token dictionaries

Dictionary Elements Size LUTs Mbit

Given-Names 8608 67.2kB 18477 1.648

Roget 17474 186kb 24672 5.202

CRL 44880 471kB 23935 7.338

Antworth 89523 947kB 29295 14.962

the compiler will instantiate an additional BFSM instance,

increasing lookup table (LUT) consumption. But Fig. 6

shows that the logic resources are negligible compared with

the memory requirements of the DFA.

To analyze the impact of multi-token elements on the re-

source consumption, we compiled artificial dictionaries in

such a way that no multi-token element shares a sub-token

with another one. This ensures that no register merge oc-

currs. Figure 6 shows the resulting strong increase of logic

resources for token sequences. The memory resources fol-

low a similar pattern as for the single token detection. The

additional memory cost comes from the decoder structure to

enable the token-chains.

5.2. Throughput

For a single stream, a character is consumed every second

cycle. Thus the core throughput rate can be calculated as

follows: T = f
2 ∗ n, where T is the throughput in Bytes per

second for ASCII characters, f denotes the frequency and n
is the number of streams processed. A single instance of the

dual BFSM implementation is able to process four streams,

resulting in a theoretical peak throughput rate of 4 Gb/s at

250 MHz.

We have measured the system throughput for 4, 8 and 16

parallel document streams by measuring the time from send-

ing the documents to the FPGA to the arrival of the interrupt

Fig. 7. Throughput for different parallel streams vs. docu-

ment size. Smaller documents imply a higher DMA setup

cost.

signaling the end of processing. This includes all penalties,

such as DMA setup and control communication. The results

are shown in Fig. 7 in respect of the test documents size. It

can be seen that only for documents larger than 100 kB can

the full performance be achieved because of the overhead of

control communication.

5.3. Comparison with original software

As performance baseline, the original software implemen-

tation is used. When running the same dictionaries on an

Intel R© XEON R© 1 E5530 with 2.40 GHz using 16 threads

we achieved a maximum throughput of 6.43 MB/s regard-

less of the document size. Compared with the four stream

implementation that is a 14x to 75x improvement, depend-

ing on the document size.

5.4. Comparison with related work

We compare the architecture presented with related work

using three key figures. The throughput is an indicator of

the performance for a given architecture, but depends on

the technology available at implementation time. Storage

efficiency is characterized using logical cells per character

(LC/char) and memory bits per character (bit/char). Table 2

summarizes various architectures.

The architecture presented behaves similar to the MN-

FAU [10] architecture in terms of storage efficiency because

both architectures are based on a decomposed automaton.

Keeping the additional resources need to implement the DFA

control and result reporting structures in mind, the efficiency

decrease is justifiable. The MNFAU architecture can be used

to detect regular expressions and could be used to replace the

single token pattern matching stage. To enable token-bound

1Intel and Intel Xeon are registered trademarks of Intel Corporation or

its subsidiaries in the United States and other countries. Other product or

service names may be trademarks or service marks of IBM or other com-

panies.

Table 2. Comparison with related work

Method Type Gb/s LC/char bit/char

Sourdis 05 [13] Dict 12.67 16.86 n.a.

Brodie 06 [14] Regx 4.0 22.22 3182.2

Bispo 06 [15] Regx 2.9 1.28 0

Le 10 [16] Dict 3.5 n.a. 8.4

Nakahara 11 [10] Regx 1.6 0.25 21.4

Agarwal 13 [11] Dict 17.8 0.4 21.2

BFSM+NFA Regx 9.7 0.35 25.5

matching on the MNFAU architecture all shift registers need

to be flushed at the end of a token.

In terms of performance the implementation by Agarwal

[11] tops the chart. It uses a hash-based approach for dictio-

nary matching. Although it uses special characters to iden-

tify token boundaries, it could be easily extended to use the

external token definition stream. A limitation is the limited

width of a single dictionary element.

Another possibility for string matching is to keep the en-

tire dictionary in a content addressable memory (CAM). An

implementation using a TCAM [12] has achieved good re-

sults in terms of memory efficiency and deterministic through-

put rate. But the number of dictionary patterns is directly

limited by the size of the CAM, which limits it to a few

thousand patterns.

6. CONCLUSION

A compilable architecture for dictionary matching in text an-

alytics was presented that supports operation on predefined

tokens. Furthermore it supports the detection of token se-

quences that cannot be expressed using regular expressions.

Results show throughput rates up to 9.7Gb/s for 12 paral-

lel streams. The implemented architecture can to hold up

to 100.000 single token and around 30.000 multi-token ele-

ments.

These results encourage us to further improve our ap-

proach. Next steps are an efficient enablement for UTF-8

support and possible multi-character consumption. Another

interesting requirement by text analytics is the detection of

a regular expression across a specified range of tokens. This

implies starting a new scan operation at each token start

while continuing from the scan state reached by preceeding

tokens.

7. REFERENCES

[1] R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss,

S. Vaithyanathan, and H. Zhu, “SystemT: a system for

declarative information extraction,” ACM SIGMOD Record,

vol. 37, no. 4, pp. 7–13, 2009.

[2] A. V. Aho and M. J. Corasick, “Efficient string matching: an

aid to bibliographic search,” Communications of the ACM,

vol. 18, no. 6, pp. 333–340, 1975.

[3] C. J. Coit, S. Staniford, and J. McAlerney, “Towards faster

string matching for intrusion detection or exceeding the speed

of snort,” in DARPA Information Survivability Conference &
Exposition II., vol. 1. IEEE, 2001, pp. 367–373.

[4] J. Van Lunteren, “High-performance pattern-matching for in-

trusion detection,” in IEEE INFOCOM, vol. 6, 2006, pp.

1409–1421.

[5] R. Baeza-Yates and G. H. Gonnet, “A new approach to text

searching,” Communications of the ACM, vol. 35, no. 10, pp.

74–82, 1992.

[6] R. Sidhu and V. K. Prasanna, “Fast regular expression match-

ing using fpgas,” in Symposium on Field-Programmable Cus-
tom Computing Machines. IEEE, 2001, pp. 227–238.

[7] D. Herath, C. Lakmali, and R. Ragel, “Accelerating string

matching for bio-computing applications on multi-core

cpus,” in International Conference on Industrial and Infor-
mation Systems (ICIIS). IEEE, 2012, pp. 1–6.

[8] J. Rohrer, K. Atasu, J. van Lunteren, and C. Hagleitner,

“Memory-efficient distribution of regular expressions for fast

deep packet inspection,” in Proc. CODES+ISSS, 2009, pp.

147–154.

[9] CERIAS, “Purdue university dictionary

collection,” 2013. [Online]. Available:

ftp://ftp.cerias.purdue.edu/pub/dict/wordlists/dictionaries/

[10] H. Nakahara, T. Sasao, and M. Matsuura, “A regular expres-

sion matching circuit based on a decomposed automaton,”

Reconfigurable Computing: Architectures, Tools and Appli-
cations, vol. 6578, pp. 16–28, 2011.

[11] K. Agarwal and R. Polig, “A high-speed and large-scale dic-

tionary matching engine for information extraction systems,”

in Application-specific Systems, Architectures and Proces-
sors (ASAP2013) (to be published), 2013.

[12] F. Yu, R. H. Katz, and T. V. Lakshman, “Gigabit rate packet

pattern-matching using tcam,” in International Conference
on Network Protocols (ICNP). IEEE, 2004, pp. 174–183.

[13] I. Sourdis and D. Pnevmatikatos, “Fast, large-scale string

match for a 10 gbps fpga-based nids,” New Algorithms, Ar-
chitectures and Applications for Reconfigurable Computing,

pp. 195–207, 2005.

[14] B. C. Brodie, D. E. Taylor, and R. K. Cytron, “A scalable

architecture for high-throughput regular-expression pattern

matching,” in ACM SIGARCH Computer Architecture News,

vol. 34, no. 2. IEEE Computer Society, 2006, pp. 191–202.

[15] J. Bispo, I. Sourdis, J. M. Cardoso, and S. Vassiliadis, “Reg-

ular expression matching for reconfigurable packet inspec-

tion,” in IEEE Conference on Field Programmable Technol-
ogy (FPT). IEEE, 2006, pp. 119–126.

[16] H. Le and V. K. Prasanna, “A memory-efficient and modu-

lar approach for string matching on fpgas,” in International
Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM). IEEE, 2010, pp. 193–200.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

