
ABSTRACT  
This article pursues speedy packet classification with low 
on-chip memory requirements realized on Xilinx Virtext-6 
FPGA.  Based on hashing round-down prefixes specified in 
filter rules (dubbed HaRP), our implemented classifier is 
demonstrated to exhibit an extremely low on-chip memory 
requirement (lowering the byte count per rule by a factor of 
8.6 in comparison with its most recent counterpart [2]), 
taking only 50% of Virtex-6 on-chip memory to store every 
large rule dataset (with some 30K rules) examined.  In 
addition, it achieves a higher throughput than any known 
FPGA implementation, reaching more than 200 MPPS 
(millions packet lookups per second) with 8 processing units 
and 8 memory banks in the HaRP pipeline to support the line 
rate over 130 Gbps under bi-directional traffic in the worst 
case with 40-byte packets.  By reducing memory probes per 
lookup, enhanced HaRP can further boost the classification 
speed to 255 MPPS. 
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Performance, design, experimentation. 

KEYWORDS 
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1. INTRODUCTION
 

Packet classification is the technique for classifying the 
packets into different categories based on a set of pre-
defined rules according to multiple fields in the packet 
header [13, 15]. It is an essential function for traffic 
management, access control, intrusion prevention, and many 
other network services.  Typical packet header fields 
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involved in a classifier are: source IP (SIP) address, 
destination IP (DIP) address, source port address range, 
destination port address range, protocol type, among others.  
A rule dataset in a core router may contain tens of thousands 
of rules ordered by priority, with each rule having its 
involved header fields specified or unspecified (as a 
wildcard).  Upon receiving a packet, the classifier searches 
over its rule dataset for the matching rule with the highest 
priority, according to packet header field data.  Classification 
tends to be time-consuming because of multiple fields 
involved and of large rule datasets commonly found in core 
routers, which operate at the line rates up to 100Gbps (e.g., 
Juniper’s T160 Core Router [5]). The line rate of 100 Gbps 
requires classification to perform one lookup of a 40-byte 
packet in 6.4 ns (considering equal bi-directional traffic), 
under the worst case with the packet length of 40 bytes.  As 
a result, classification can easily become the performance 
bottleneck of the Internet, calling for fast classifier design. 

Hardware-based solutions are favorable for high-speed 
classification, utilizing ternary content addressable memory 
(TCAM), field programmable gate array (FPGA), or 
application specific integrated circuit (ASIC) in support of 
fast lookups.  TCAM solutions are popular in the industry, 
and algorithms have been introduced to deal with their 
notorious problems related to range expansion [7] and 
incremental updates [14].  However, TCAMs are relatively 
expensive (due to low bit density), slow in operation, and 
inherently power hungry [1], as will be demonstrated by 
examples in Section 2.3.  On the other hand, an ASIC 
solution usually involves considerable development time and 
effort and also suffers from limited flexibility, unable to 
easily adapt to changes to the classification procedure. 

FPGA hardware has gained attention for high-
performance classification lately, due to its potential in 
support of the 100Gbps line rate and its flexibility in 
accommodating various classification algorithms [2, 11].  
For an FPGA-based classifier to achieve the desirable 
performance level, its employed classification algorithm 
ought to address the following design issues thoughtfully: 
  memory efficiency: preferred for housing the rule 

dataset to get high performance, on-chip memory is 
rather limited, thereby favoring a memory-efficient 
classification algorithm so as to fit the whole rule 
dataset in on-chip memory, 
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  parallelism exploitation: memory accesses dominate 
the lookup process, making it essential to exploit their 
available parallelism aggressively,  

 pipelined design: a high clock rate requires the 
algorithm to be implemented in pipelining, with low 
and balanced complexity for pipeline stages. 

A previous FPGA-based packet classification algorithm 
decomposes each lookup into three steps [11], with the first 
step for longest prefix matching over the SIP and the DIP 
fields and the next two steps for mapping LPM (longest 
prefix matching) results to the rule number followed by rule 
validation.  The first step is performed over the compressed 
rule table held in on-chip memory, whereas the mapping step 
involves the hash table stored in off-chip memory and the 
validation step requires the complete rule dataset kept in off-
chip memory as well.  As a result, each packet classification 
requires two external memory accesses in the last two steps 
[11].  As off-chip memory is slower than its on-chip 
counterpart, with its bandwidth constrained, keeping the rule 
dataset in off-chip memory limits its achievable 
classification throughput.  A recent packet classification 
aims to keep the rule dataset entirely in on-chip memory 
without resorting to any off-chip memory for high 
performance, made possible by rule grouping to reduce rule 
duplications for a low memory requirement [2].  It is shown 
on Xilinx Virtex-5 to achieve a high throughput of over 100 
Gbps, without off-chip memory accesses during 
classification lookups. 

Lately, a packet classification algorithm based on 
hashing round-down SIP and DIP prefixes specified in rules, 
dubbed HaRP as shown in Fig. 1, has been introduced [10], 
where superior memory efficiency results from (1)  hashing 
round-down prefixes and (2) collapsing all hash units into 
one lumped hash (LuHa) table.  HaRP takes less than 750KB 
of memory for holding any of the three large filter datasets 
examined (each with 30K rules) [10]. Given its low memory 
requirement, HaRP lends itself particularly suitable for 

FPGA implementation, with an entire rule dataset held in 
FPGA on-chip memory to exhibit high performance 
classification.  Being hash-based, HaRP entails multiple 
table accesses per packet classification and those accesses 
can be parallelized effectively, when the LuHa table is 
composed of multiple memory banks, as will be detailed in 
later sections.  The number of parallel access units involved 
dictates classification performance, and more memory banks 
support more access units to attain higher parallelism.  
Additionally, for the HaRP implementation to get a 
throughput level required by the top line rate of 100Gbps 
present in modern core routers, a balanced pipelining design 
is necessary, with its stages kept simple enough and memory 
banks properly situated near those parallel access units 
(without undesirably long routing paths) to get fast timing.  

FPGA has become attractive for realizing real-time 
network processing engines [3, 9, 12], due to its ability to 
reconfigure and to offer massive parallelism.  However, if a 
large data volume is to be stored in on-chip memory for high 
performance (like a rule dataset for classification), it is 
crucial to properly specify those FPGA memory blocks 
which constitute memory banks in support of parallel data 
accesses, given that memory blocks are distributed along 
strips on FPGA chips [16].  Also, LuHa table accesses are 
indexed by hash results and are likely to experience collision 
(when multiple hash results fall into the same memory 
bank). Collisions are unavoidable and will increase the 
average lookup time. In addition, among all physical 
elements on an FPGA chip, memory blocks usually have the 
largest gate delay [11], thus making the routing paths 
from/to the memory blocks dictate the overall speed (and 
thereby lookup performance) of any FPGA design with a 
high on-chip memory requirement. 

This article deals with design and implementation of fast 
classification on the Xilinx Virtext-6 FPGA board based on 
HaRP and its enhanced variant to lower the number of LuHa 
table accesses per packet.  Three real-life seed filter sets 
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Fig. 1.   Overview of the HaRP* data structures implemented for 30K rules.  
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obtained from the public [13], namely, covering Access 
Control List (ACL), Firewall (FW), and IP Chain (IPC), are 
employed to evaluate our implemented classifier.  Due to its 
superior memory efficiency, our implemented classifier 
utilizes only 50% of Virtex-6 on-chip memory to store large 
rule datasets (each with up to 30K rules). It is demonstrated 
by evaluation results to exhibit an extremely low on-chip 
memory requirement (reducing the byte count per rule by a 
factor of 8.6 in comparing with its most recent counterpart 
reported in [2]).  The implemented HaRP pipeline with 8 
processing units and 8 memory banks achieves the highest 
throughput among known FPGA implementations (reaching 
more than 200 MPPS, to support the line rate exceeding 130 
Gbps under bi-directional traffic in the worst case with 40-
byte packets). This is in sharp contrast to earlier 
implementations where memory-efficiency is often traded 
for throughput, rendering our implemented classifier to be 
four times higher in its efficiency (defined as the ratio of 
throughput to byte count per rule) than that of the second 
best implementation known so far [4].  In addition, enhanced 
HaRP is considered by reducing memory probes per lookup 
to further elevate the throughput level, attaining up to 40+% 
throughput gains but subject to far more overflows in the 
hash table.  With an aid of pseudo set-associativity, 
enhanced HaRP can exhibit a lookup speed of 255 MPPS (to 
support the line rate beyond 160 Gbps) while containing 
hash table overflows. 

The rest of this article is organized as follows.  Section 2 
gives pertinent background, including a brief review of 
HaRP packet classification introduced earlier [10].  Our 
FPGA-based design and implementation details are provided 

in Section 3, following by resource use and performance 
results presented in Section 4.  Enhanced HaRP for further 
boosting its lookup performance by lowering the mean 
number of table probes is stated in Section 5, with its 
evaluation results included and discussed therein.  Section 6 
concludes this article. 

2. PERTINENT BACKGROUND 
This section provides brief reviews of HaRP for packet 
classification and the Xilinx Virtex-6 device, pertinent to 
subsequent discussion.  TCAM implementation examples on 
the Xilinx device are also presented. 

 

2.1.  Review of HaRP for Packet Classification 
A classification rule usually involves multiple fields.  This 
work assumes five classification fields present in each rule: 
(1) source network IP prefix of length n, denoted as SIP|n, 
(2) destination network IP prefix of length m, represented by 
DIP|m, (3) source port range, SP[low, high], (4) destination 
port range, DP[low, high], and (5) protocol type range, 
Proto[low, high].   The first two fields specify a pair of 
communicating networks, and the next three fields apply 
application-specific constraints.    

A memory-efficient classification method by means of 
generalized hashing round-down prefixes (denoted by 
HaRP*) following a two-stage pipeline design has been 
demonstrated [10] to outperform earlier software-oriented 
techniques.  In the first stage of HaRP*, a single set-
associative hash table, referred to as the LuHa (lumped hash) 
table is used to keep the network-prefix pair (SIP|ls, DIP|ld) 
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Fig. 2.   Highly parallel and pipelined implementation of HaRP.
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part of the rules.  The other three fields involved in the 
second stage are stored in corresponding ASI (Application 
Specific Information) data structures.  

LuHa Table Construction. Consider the set of designated 
prefix length, DPL: {l1, l2,  …, li, …, lm}, where li denotes a 
prefix length, for the following explanation.  As depicted in 
Fig. 1 and detailed in [10], the LuHa table achieves efficient 
hash table utilization by permitting multiple candidate sets to 
accommodate the prefix pair (SIP|ls, DIP|ld) of a given filter 
rule, and yet maintaining fast search over those possible sets 
in parallel during the classification process.  It is made 
possible by (1) rounding down Prefix P|w to P|lt, for all DPL 

elements lλ ≤ w, λ{1, ..., m}, before used to hash the LuHa 

table for identifying t (= the largest λ) candidate sets, and (2) 

storing (SIP|ls, DIP|ld) of a filter rule in one of those multiple 
LuHa candidate sets identified by either SIP|ls (if not wild 
carded) or DIP|ld (if not wild carded), after being rounded 
down and hashed, as stated in (1).   

Since elements (called treads) in DPL are determined in 
advance, the numbers of bits in an IP address of a packet 
used for hash calculation during classification are clear and 
their hashed values can be obtained in parallel for 
concurrent search over the LuHa table.  This permits parallel 
access units to look up the table, if multiple memory banks 
constitute the table, arriving at a high performance parallel 
design on the FPGA board. 

HaRP* works because it takes advantage of the 
“transitive property” of prefixes – for a prefix P|w, P|t is a 
prefix of P|w for all t < w, considerably boosting its pseudo 
set-associative degree [8, 10].  Under the special case where 
P|w (with li ≤ w < li+1) is rounded down to P|lb, for i ≤ b ≤ i, 

the method is denoted by HaRP
1
.  When the input prefix is 

further allowed to be rounded down to the next tread li (i.e., 

i-1 ≤ b ≤ i), a scheme called HaRP
2
 results.  It means that 

the input prefix P|w can be stored in hash buckets indexed by 

either P|li or P|li-1.  Accordingly, HaRP* is defined to allow 
as many candidate hash buckets (in existence) as possible for 
holding a given filter rule.  Given DPL with 4 treads: {28, 

16, 12, 8}, for example, HaRP
1
 rounds down the prefix of 

011010010001111001× (w = 18) to 0110100100011110 (ζ = 

16) for hashing, whereas HaRP* rounds down the prefix to 
0110100100011110 (ζ = 16), 011010010001 (ζ = 12), and 
01101001 (ζ = 8) for hashing.  With more candidate sets 

available potentially, HaRP* makes it possible to choose a 
small number of treads, which in turns involves fewer hash 
probes per lookup, thus improving lookup performance [10]. 

Construction of ASI Lists.   The second stage of HaRP* 
comprises an ASI table, keeping the application-specific 
fields of filter rules. If rules share the same IP prefix pair, 
their application-specific fields are stored in contiguous ASI 
entries packed in chunks (of a fixed size) [10].  In essence, 

the ASI table is logically a collection of lists (with various 
lengths), one corresponding to one LuHa table entry, as 
depicted in Fig. 1. 
 

2.2.  Overview of Xilinx Virtex-6 Device 
Our hardware HaRP* design targets the Xilinx Virtex-6 
device (XC6VLX240T) [16], making efficient use of its on-
chip memory and logic cells for high-performance packet 
classification. A Virtex-6 device contains approximately 
240,000 logic cells, forming 37,680 slices, each with four 
LUTs (lookup tables) and eight flip-flops (FFs). A logic cell 
possesses combinational logics for realizing such functions 
as AND, OR, NAND, and addition. Flip flops and the 
connections to adjacent cells are also implemented by logic 
cells. The high-speed logic fabric of Virtex-6 permits 
effective pipelining [16]. 

Every FPGA device includes reconfigurable on-chip 
memory blocks (known as block RAMs) for implementing 
anything from random access storage to dual-port 
architectures, to FIFOs.  There are 416 block RAMs in the 
Virtex-6 (XC6VLX240T) device for use, each containing 
36Kb for a total of 14,976 Kb on-chip memory. Those block 
RAMs are distributed over 8 stripes, so as to have shorter 
routing delay for designs implemented on it.  However, this 
layout of block RAMs can yield a design with excessively 
long connections, thereby hurting its performance, if large 
on-chip memory is required (like packet classification).   
Particular attention has to be paid for such situations. 
 

2.3. TCAM Implementation Examples 
We have employed the Xilinx IP core for implementing the 
TCAM tables of various sizes to find out hardware resource 
utilization and associated access timing details on the Xilinx 
Virtex-6 device (XC6VLX240T).  A TCAM table involving 
32 entries (or 128 entries), each with a 64-bit input (for an SIP 
and a DIP under IPv4) plus a 64-bit mask, consumes 3.1% (or 
6.6%) of FPGA slices available on the Virtex-6 device.  The 
access time to such a TCAM table with 32 entries (or 128 
entries) is 4.80 ns (or 5.94 ns).  If the TCAM table size rises to 
512 (to hold 512 rules), its occupied slice ratio exceeds 24% 
(higher than that of our whole HaRP pipeline implementation 
able to hold some 30K classification rules; see the case of  = 
8 and  = 8 in Table 2) and its access time extends to 6.5 ns 
(limiting its clock rate to 154 MHz, in contrast to 300+ MHz 
for the HaRP pipeline).  Those implementation examples 
confirm that TCAM indeed is expensive and relatively slow, 
suitable only for small-sized implementation (with no more 
than, say, 256 entries). 

51272 51272 51272 51272 1K18

51272 51272 51272 51272 

Fig. 3.  Constitutive memory bank (module) of LuHa table. 
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3. FPGA-BASED DESIGN AND IMPLEMENTATION 
We have implemented HaRP* on a Vertex-6 XC6VLX240T 
device, carefully mapping out constitutive tables to keep 
routing delays checked.  The Xilinx Block memory 
generator [15] was employed to produce appropriate 
interfaces to on-chip memory for high speed memory 
accesses. 

3.1.  Layouts of Data Structures in Memory Blocks 
There are four major tables involved, the LuHa table, the 
PASI table, the SASI table, and the pointer table, with the 
last three together realizing the ASI functionality of HaRP 
[10] for efficient on-chip memory utilization and fast 
accesses to ASI lists of variable length (as detailed later in 
this subsection).  They are all implemented by on-chip Block 
memory for high-performance classification.  Being the 
largest one, the LuHa table has a total of 8192(sets)4(ways) 
entries. Each entry includes 32b SIP and DIP prefixes and 
two 6-bit prefix length indicators, giving rise to 76 bits in 
total.  The LuHa table shown in Fig. 2 consists of  (= 8 
shown) memory modules, with each module holding 1K 
sets.  Such a design permits as many as  collision-free 
memory accesses to be served by the LuHa table.  Each of 
the memory module is made to output 306 bits per read 
access, rendering four (SIP|n, DIP|m) pairs resided in one set 
of the 4-way LuHa table as depicted in Fig. 3. 

Because the vast majority of ASI lists contain no more 
than one element each, the ASI table is realized by three data 
structures for storage efficiency and fast lookups, as shown 
in Fig. 1. The primary ASI (PASI) table has a 1-1 
correspondence relationship to the LuHa table.  Given a 
LuHa table with k entries, there are k corresponding PASI 
entries.  For each classification, the PASI table is consulted 
only for those entries matched by prefix pair (SIP|ls, DIP|ld) 
during the first HaRP stage.  Each PASI entry is 108-bit 
wide (see Fig. 1).  In our design, each LuHa memory module 
outputs 4 prefix pairs per cycle for comparison, while PASI 
supports a more targeted access for one matched LuHa 
lookup. This discrepancy may require temporary queueing of 
requests to PASI (when there are multiple matches reported 
by the same LuHa set, albeit pretty rare to happen).  As a 
result, an economy-wise decision is made to keep the PASI 
module narrow, instead of widening it to the output of 4108 
bits (which is likely to slow down the pipeline). 

Noticeably, each PASI entry contains a pointer to a 
pointer table.  This pointer is active when multiple filter 
rules share the same (SIP, DIP) prefix pair, resulting in an 
ASI list that has more than one element.  While the PASI 
table keeps the first element, the additional elements of an 
ASI entry are kept in the four secondary SASI component 
tables, which are referred to as the SASI table for simplicity.  
Each of SASI-1 (or SASI-j, for j {2, 4, 8}) entries contains 
1 element  (or  j  elements).   A  PTR  (Pointer  Table)   entry  
 

contains four fields to store the indexes of ASAI-i, for i {1, 
2, 4, 8}, as depicted in Figs. 1 and 2. 

By this flexible design, memory resources are better 
utilized to accommodate ASI lists of varying lengths.  
Together, one PASI entry plus its pointed SASI table entry 
can hold up to 16 filter rules sharing a given (SIP, DIP) 
LuHa entry.   If the number of filter rules for the same (SIP, 
DIP) pair exceeds 16, another (SIP, DIP) LuHa entry is 
created. This can happen, for example, when a large number 
of filer rules are specified to put constraints on accesses to R 
(> 16) applications between two communicating sub-
networks.  During lookups, all (SIP, DIP) LuHa entries are 
matched such that their corresponding ASI lists are all 
examined to identify classification rules with the highest 
priority for use. 

Under our design, an ASI lookup works as follow: (1) it 
fetches the PASI table entry corresponding to the LuHa entry 
indexed by the (SIP, DIP) pair of an arrival packet, compares 
the fields of the fetched PASI entry, and then obtains the 
PTR table pointer, if existing and the compared fields all 
matched, (2) it fetches the PTR entry via the obtained pointer 
for indexes to SASI tables, and (3) it gets access to SASI 
tables via indexes in parallel for all candidate rules, which 
are then examined to identify the one with the highest 
priority for use. 

3.2.  Pipelined Implementation 
Fig. 2 illustrates our highly parallel and pipelined 
implementation under Virtex-6. There are five major 
functionalities, as stated in sequence below. 

Hashing and Tracking States.  Upon a new packet arrival, IP 
addresses, port numbers and the protocol type are stored in 
an available context.  If there are n (= 8 shown in Fig. 2) 
Proc’s in existence, at most n packets can be processed 
simultaneously.  In the first cycle, all hash indices keyed by 
SIP and DIP of any arrival packet are calculated by the hash 
unit under the chosen DPL, as depicted in Fig. 2. For a DPL 
with m treads, totally 2m hashes are performed†. The 2m 
hash indices are written into an allocated Proc, and those 
indices in the Proc are referred to as a context. Given n 
Proc’s, our design can handle n concurrent contexts.   In 
other words, a context and its associated Proc keep track of 
the progress of their assigned packet. 

Scheduling for LuHa Table Accesses.  For n packets each 
with 2m hash table accesses, a two-level scheduler is 
adopted to avoid a time-critical path (when scheduling n2m 
accesses totally).  In the first level, each Proc performs local 
scheduling: at an odd cycle, memory-collision free requests 
out of the m hash accesses keyed by an SIP address are 
chosen; at an even cycle, the same operation is performed for 

                                                           
† Note that different DPLs with different numbers of treads may be chosen 
for SIP and DIP prefixes/addresses.  Using the same DPL for both SIP and 
DIP here is meant to keep our discussion simple and focused. 
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hash accesses keyed by a DIP address.  Thus, every Proc can 
forward at most m access requests to the second-level 
Arbiter in each cycle. The Arbiter selects up to  (being the 
number of memory banks) collision-free accesses from up to 
nm access requests forwarded by those n independent 
Proc’s, and it lunches those selected accesses to the LuHa 
table. Acknowledgements are returned back to Proc’s to 
nullify table access requests being served (see Fig. 2), 
making room for subsequent packets.  As a result, this two-
level scheduler permits up to  LuHa table accesses in one 
cycle, and a larger  tends to yield higher lookup 
throughputs. 

LuHa Table Accesses.   As demonstrated in Fig. 2 and 
explained before, all  LuHa memory banks may be 
accessed at the same time.  Each memory bank outputs 4 
prefix pairs, which are compared against the packet inputs.   
When a match is found, the corresponding PASI entry is 
then probed.  If multiple entries of the same LuHa set report 
a match, they need to be serialized due to the single port 
PASI memory and a queue is thus provided for such a 
purpose, as shown in Fig. 2.  

PASI Table Accesses.  The  PASI memory banks can accept 
 reads per cycle.  Each memory bank output ASI stored in 
the entry being accessed.  If a match to the port range and 
the protocol type is found, the rule ID is reported.  If the 
range check fails, searches to the secondary ASI tables 
continue, provided that the PASI entry contains a valid 
pointer, which indexes to Pointer Table (as demonstrated in 
Fig. 1 and marked as “PTR (Mem)” in Fig. 2) where the 
SASI table entries are specified.  This way permits as many 
as 16 rules and their associated ASI values to be fetched 
quickly from those SASI tables in parallel, as illustrated in 
Figs. 1 and 2.  Our design preserves superior memory 
efficiency of HaRP and also achieves fast accesses to a 
varying number of candidate rules (associated with one 
LuHa table entry) in a uniform time. 

SASI Table Accesses.  Accesses to the SASI tables are 
targeted, fetching only entries specified by the address 
pointers reported by the pointer table.  Range checking on 
port numbers and the protocol type are performed for all 
fetched entries in parallel. 

4. IMPLEMENTATION EVALUATION 
The LuHa table in our implemented classifier is 4-way set-
associative. Our evaluation is under the default DPL with 4 
treads of {8, 20, 23, 27} for SIP and of {8, 20, 24, 30} for 
DIP, chosen conveniently, not necessary to yield the best 
results. From real filter datasets (containing up to 1,550 
rules) available in the public domain [13], three synthetic 
datasets, each with about 30K rules (see Table 1), have been 
obtained for evaluation, including Access Control List 
(ACL), Firewall (FW), and IP Chain (IPC), for evaluation 
under various numbers of Proc’s and memory banks. 

4.1.  Memory Requirement 
Details of on-chip memory taken by the four tables in 
support of HaRP classification under the three datasets are 
listed in Table 1. Each LuHa entry is 76-bit long, comprising 
two 32b IP address prefixes and two 6b prefix length 
indicators. Each PASI entry needs 10 bytes to keep the port 
ranges and the protocol type, 15-bit rule number (for priority 
decision), and a pointer to the PTR table. Each PTR table 
entry contains 4 pointers for indexing SASI component 
tables, i.e., SASI-1, SASI-2, SASI-4, and SASI-8, whose 
entries each contain 1, 2, 4, and 8 ASI elements of 95 bits, 
respectively (see Fig. 1). The memory sizes of the PTR table 
and the SASI component tables depend on the dataset size.  

 Our FPGA on-chip memory usage results reveal that 
each filter rule (under any one of the three datasets examined) 
on an average takes no more than 26 bytes.  They are far 
favorable in comparison to a recent packet classification 
design based on SPMT (Set Pruning Multi-Bit Trie) [2], 
where 10K FW rules utilize 16.88 Mb on-chip memory on a 
Xilinx Virtex-5 (XC5VFX200T) FPGA device, signifying 
that each FW rule requires 211 bytes.   Our classifier indeed 
has an extremely low memory, thus enabling a far larger rule 
dataset to fit in on-chip FPGA memory for speedy 
classification.  More comparative details among various 
recent FPGA-realized classifiers will be provided in Section 
4.3.  Clearly, overall on-chip memory required by our FPGA 
implementation is dictated solely by rule datasets, 
irrespective of the numbers of Proc’s (denoted by ) and 
memory banks (denoted by ) involved.  On the other hand, 
hardware logic requirement for HaRP implementation is 
proportional to  and , which in turn determine lookup 
throughput outcomes, as stated next. 

4.2.  Requirement of Hardware Logics 
Hardware logics used to realize the HaRP classifier shown in 
Fig. 2 include LUTs and flip flops (FFs), which are from 
FPGA slices.  The numbers of FFs and LUTs consumed by 
the implemented classifier under various  and  are 
depicted in Table 2, where the number of occupied slices 
(out of 37,680 on the VLX240T FPGA device) is also 
included.  An increase in either  or  leads to higher 
consumed slice FF and slice LUT counts monotonically, as 
expected.  When (, ) rises from (4, 4) to (4, 8), the 
numbers (or percentages) of taken slice FFs and slice LUTs 
grow respectively to 18,572 and 21,699 (or to 6% and 14%), 
from 12,414 and 13,977 (or from 4% and 9%), as unveiled in 
the table.  If (, ) is elevated further to (8, 8), 8% of slice 
FFs and 20% of slice LUTs will be occupied.  Given each 
slice contains four LUTs and eight FFs, which are not 
always utilized in full by an implementation, it is useful to 
know the number of slices involved (either partially or fully) 
in our classifier implementation.  From Table 2, the number 

Table 1.  On-chip memory usage  

Rule dataset # of rules 
Taken on-chip 

memory (Kbytes) 
Usage ratio 

ACL 28240 655.2 35.0 % 
FW 28473 697.6 37.3 % 
IPC 29876 776.8 41.5 %
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of involved slices is seen to grow from 4,465 (~ 11%) under 
(, ) = (4, 4)  to 9,374 (~ 24%) under (, ) = (8, 8).  This 
signifies that one Virtex-6 board can easily accommodate 
two copies of HaRP classifier with (, ) = (8, 8).  If  or  
increases to 16, the percentage of occupied slices rises to 
38% or beyond, reflecting that a good portion of available 
slices on the VLX240T FPGA device is taken.  This high 
usage of hardware logics in fact will make the implemented 
HaRP classifier run slower due to longer routing paths 
between its consecutive pipeline stages when mapped to 
FPGA logics and block RAMs, as detailed next. 

On-chip memory on FPGA devices is organized in 
blocks (i.e., block RAMs/FIFOs), which are scattered over 
the whole Virtex-6 chip.  As hardware logics are to operate 
on dataset contents stored in on-chip memory, the achievable 
memory access rate is critical for the pipeline clock rate, 
dictated by the worst-case routing path delay.  An 
undesirably lengthy delay may result from utilizing FPGA 
slices unduly distant from those block RAMs employed to 
hold the filter dataset.  To avoid an inefficient HaRP 
implementation, the design is constrained within one half of 
the FPGA device to arrive at a compact layout without any 
excessive path delay.  This way makes those occupied FPGA 

slices stay near to slices which realize the HaRP functions, 
rendering a design with the main clock exceeding 300 MHz. 

Our implementation puts constraints on those tables 
basic to HaRP classification, as depicted in Fig. 4(b).  For 
comparison, layout results with and without constraints are 
demonstrated respectively in Fig. 4(a) and Fig. 4(c).  
Without a constraint, on-chip block RAMs are seen to be 
often distant from those taken slices that realize on-chip 
memory access and processing logics, leading to long route 
delays for paths from a pipeline stage to the next, as shown 
in Fig. 4(a), where an exceedingly long path marked by a 
white line with arrow indicates a memory access route (i.e., 
from the arbiter stage to the LuHa table access stage, see Fig. 
2).  If constraints are put to tables realized by blocks of on-
chip memory, as illustrated in Fig. 4(b), an improved layout 
results, with its worst-case path (denoted by the white line 
with arrow in Fig. 4(c) to indicate the routes from the LuHa 
Table output to the comparator in the next pipeline stage) 
shrunk drastically.  Hence, the constrained use of memory 
blocks yields a better layout with more uniform and shorter 
routes, permitting a faster clock to deliver higher lookup 
throughput. 

4.3.  Implementation Results and Discussion 
The major performance metric of interest is lookup 
throughput, which equals the number of classification 
lookups per second.  As mentioned earlier, the line rate of 
100 Gbps necessitates one lookup per 6.4 ns in the worst 
case under bi-directional traffic, amounting to some 156 
MPPS (million packets per second) for the shortest packets 
of 40 bytes in length.  The throughput results under various 
 and  (i.e., numbers of Proc’s and memory banks) are 
listed in Table 3 for the three rule datasets considered, with 
   to avoid unnecessary access conflicts at memory 
blocks, thus capitalizing on parallelism fully.  They indicate 
that the desired lookup speed of 156 MPPS can be achieved 
for  = 8 and  = 8, where the implemented HaRP design 

          
         (a) Layout without constraint                  (b) Imposed memory constraints         (c) Layout with constraints 

 

Fig. 4.  Layout of occupied memory blocks and taken FPGA slices. 

(Taken FPGA slices are denoted in blue, while occupied memory blocks and their access logics are represented by red 
stripes and nearby red dots, respectively.  Those stripes in purple and in green denote respectively unused memory blocks
and the DSP blocks irrelevant to our implementation.  Similarly, objects in other colors are unneeded chip components.) 

 

Table 2.  Usage of hardware logics 

Consumed hardware breakdowns (, ) 
 (no. of proc’s, 
 memory banks) Slice registers Slice LUTs  Occupied slices 

(1, 1) 4,313   (1 %)  5,124   (3 %) 1,763   (4 %) 

(2, 2) 6,995   (2 %) 7,597   (5 %) 2,574   (6 %) 

(2, 4) 9,604   (3 %)  10,954 (7 %)  3,548   (9 %)  

(4, 4) 12,414 (4 %) 13,799 (9 %) 4,465 (11 %) 

(4, 8) 18,572 (6 %) 21,699 (14 %) 6,706 (17 %) 

(8, 8) 25,944 (8 %) 31,048 (20 %) 9,374 (24 %) 

(8, 16) 41,923 (13 %) 49,048 (32 %) 14,452 (38 %) 

(16, 16) 63,856 (21 %) 85,253 (56 %) 24,888 (66 %) 
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operates in excess of 300 MHz.  According to Table 2, the 
occupied slices then account for only 24% of what are 
available on the Virtex-6 FPGA device.  On the other hand, 
the rate of occupied slices rises to 38% for  = 8 and  = 16, 
where the implemented classifier slows down to 220 MHz 
only, resulting in smaller throughputs to drop as despite its 
doubled memory banks for fewer access conflicts (see Table 
3). This is because those slices employed for realizing HaRP 
functions then cannot all be situated near their fetched 
memory blocks.  As a result, detrimentally long routes exist 
in the implementation and thus the main clock rate is 
dropped (to 220 MHz from more than 300 MHz  under  ,  
 8), lowering the overall throughput.  For  = 16 and  = 16, 
a far slower clock rate is obtained because the HaRP 
implementation then occupies 66% of available slices.  
While not covered in this article, a rectified HaRP pipeline 
with one extra stage dedicated to route latency reduction can 
be added under  =  = 16 for improving its throughput 
(assorted to a deep pipelining design for a higher clock rate).  

In general, the throughput figure of an implemented 
design is dictated by four factors: the main clock rate, 
numbers of Proc’s and memory blocks, and effectiveness of 
scheduling memory accesses.  If the slices are not heavily 
utilized (say, with the taken rate < 30%), the main clock rate 
stays almost identically, since the longest route length then 
remains unchanged.  Under that situation (of a low occupied 
rate), the overall throughput depends only on the remaining 
three factors.  Our two-stage scheduler for memory accesses 
intends to select as many conflict-free accesses as possible 
per cycle for maximal throughput, as detailed in Section 3.2.  
Under the given scheduler, a higher throughput value results 
from either a larger  or a larger , provided that  is no 
more than 8.  With  = 4, for example, the implemented 
classifier enjoys a throughput increase of roughly 25% when 
 grows from 4 to 8, as a result of more conflict-free 
accesses to memory blocks per cycle (see Table 3).  
Likewise, for  = 8, its throughput has a leap exceeding 
60%, if  rises from 4 to 8, directly benefiting from twice 
memory access requests generated by Proc’s per cycle. 

In addition to its high throughput, our implemented 
classifier enjoys a much lower on-chip memory requirement 
when compared with a counterpart introduced recently, 
dubbed SPMT (Set Pruning Multi-Bit Trie) [2], as 
mentioned in Section 4.1.  This high throughput plus low 
memory requirement makes our HaRP design especially 

preferred over other known classification approaches 
implemented using FPGA, as reflected by the “efficiency” 
measure (defined in [4] as the ratio of throughput to on-
board memory per rule, accounting for both time and space 
factors) listed in Table 4, where HaRP(8, 8) indicates the 
HaRP classifier with  = 8 and  = 8.  While the table 
includes only the results under the ACL rule dataset, the 
result trends hold under other rule datasets.  Apparently, high 
efficiency may result from an approach with either a large 
throughput or a small memory amount per rule.  Unlike the 
SPMT design which trades the memory requirement for an 
increased throughput in comparison to Improved HyperCuts 
[4] (see the 3rd and 4th rows of Table 4), the HaRP classifier 
enjoys both memory requirement reduction (per rule) and a 
throughput hike when compared with any prior approach, 
yielding significantly better efficiency.  An enhanced HaRP 
design able to further elevate the lookup throughput is 
treated next. 

 
5. ENHANCED HARP AND ITS PERFORMANCE 
The HaRP classifier considered so far always involves 
2×|DPL| memory accesses to the LuHa table for every 
packet during its lookup.  In each cycle, only those non-
conflict accesses to different memory banks are chosen to 
proceed by the developed two-stage scheduling mechanism, 
with those remaining conflict accesses, if any, scheduled in 
the subsequent cycle (together with those 2×|DPL| memory 
accesses of the next packet).  The lookup of a packet is done 
only after its associated memory accesses are all served. 
While a large  or  can yield a higher throughput (as 
demonstrated in the last section), an enhanced HaRP design 
is treated here by lowering the number of memory accesses 
per lookup dynamically (instead of having a fixed 2×|DPL| 
memory accesses for each packet lookup) under given  and 
.  This is made possible by taking advantage of the unique 
property of HaRP in that the filter table lookup process is 
dictated by the filter rule installation procedure, which can 

 
Table 3.  HaRP performance under rule datasets considered  

Lookup Throughput (MPPS) (, ) 
(no. of proc’s, memory banks) ACL FW IPC 

(1, 1) 39.7  42.5 40.6 

(2, 2) 57.4 57.5 58.1 

(2, 4) 69.1 68.3 68.9 

(4, 4) 106 105 105 

(4, 8) 126 127 128 

(8, 8) 204 213 213 

(8, 16) 171 178 177 

Table 4.  Performance comparison of classifiers on FPGA 

Approaches
# of 
ACL 
rules 

Total  memory
taken  (Kbytes)

Memory 
per rule 

Throughput
(Gbps) 

Efficiency
(Gbps/B)

HaRP(8, 8) 28240 655.2 
23.2 
bytes 

per rule 
130.6 5.63 

SPMT [2] 9603 1930 201 bytes 
per rule 

110.7 0.55 

Improved 
HyperCuts 

[4] 
9603 612 

63.7 
bytes 

per rule 
88.2 1.38 

Simplified 
HyperCuts 

[6] 
10000 286 

28.6 
bytes 

per rule 
7.22 0.25 

2sBFCE [9] 4000 178 
44.5 
bytes 

per rule 
2.06 0.046 

Memory-
Based DCFL 

[3] 
128 221 

1727 
bytes 

per rule 
24.0 0.014 
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follows a control guide to lower the number of candidate 
sets dynamically for each rule so that the lookup process 
then involves fewer memory probes accordingly based on 
the same guide. 

In general, the number of candidate sets under enhanced 
HaRP may range from 1 to 2×|DPL|, determined by the 
control guide that specifies which treads in DPL are to be 
“conditioned” before applied for hashing.  Two components 
are involved in the guide: (1) which treads in DPL to be 
conditioned and (2) how to condition those treads.  Let the 
number of conditioned treads in given DPL be denoted by 
(|DPL|  ε), for 0  ε  |DPL|, and the condition simply be 
“rightmost tread bit being “1.” Naturally, other conditions 
are possible for throughput improvement as well, e.g., 
“rightmost tread bit equal to 0” or “rightmost two tread bits 
being ‘01’ (if two bits are for conditioning).”  The following 
deals with only single-bit conditioning as one example 
enhancement.  

5.1.  Example Enhancement Guide and Results 
Under enhanced HaRP, an IP prefix (or address) determines 
its candidate sets for holding the prefix (or for probing the 
best filter rule to apply) according to the given guide.  
Apparently, fewer candidate sets result in a higher lookup 
throughput and also in more LuHa table overflows (during 
rule installation, since fewer alternative sets are then 
available for a given prefix) as well. Installing filter rules 

without excessive overflows thus calls for a larger ε, which 
in turn contains the throughput as a result.  The overflow 
rates under different ε values will be explored. 

The guide may be in different forms, with one 
considered as follows.  Given DPL = {l1, l2, …, lm} with m 
elements, HaRP rounds down Prefix P of length w (or IP 

address of length 32) to P|lt, for all DPL elements lλ ≤ w, λ 

{1, ..., m}, before employed to hash the LuHa table for 
identifying candidate sets, provided that the rightmost bit of 
P|lt equal to 1 for t > ε.  For Prefix P during filter rule 
installation (or IP address P during filter lookup) under DPL 
= {8, 20, 23, 27} and ε = 1, as an example, enhanced HaRP 
considers only those candidate sets (1) indexed by P|20 with 
its rightmost bit equal to 1, by P|23 with its rightmost bit 
equal to 1, and by P|27 with its rightmost bit equal to 1 and 
(2) indexed by P|8, regardless of their rightmost bits (i.e., no 

conditioning).  This guide for rule installation and lookups 
lowers the mean number of LuHa table probes (thereby 
elevating the lookup throughput). 

Enhanced HaRP can be accommodated easily in the 
“Hash Unit” of the implementation pipeline shown in Fig. 2, 
with the unit deciding whether or not a round-down address 
should be used for probing a candidate set in the LuHa table. 
The miss rate versus ε values for the three filter datasets 
(listed in Table 1) during filter rule installation under 
enhancement HaRP is shown by the top three curves in Fig. 
5, where the LuHa table is 4-way set-associative with 8K 
sets for a total of 32K entries and the DPL for source IP (or 
destination IP) prefixes/addresses is {8, 20, 23, 27} (or is {8, 
20, 24, 30}).  As expected, a larger ε leads to a lower 
overflow rate for every rule dataset, thereby requiring a 
smaller TCAM to store those overflow rules (if a small 
TCAM is assumed to handle the spillovers).  Given its |DPL| 
equal to 4, enhanced HaRP becomes regular HaRP under ε = 
4, where all treads are used for indexing candidate sets.   The 
overflow rates of three datasets all drop quickly when ε 
exceeds 1. 

Throughput as a function of ε during lookups under 
enhanced HaRP with  = 8 and  = 8 is shown in Fig. 6.  As 
seen in the figure, the throughput of every filter dataset is 
lower for a larger ε, and it reaches the result of regular HaRP 
with ε = 4 (i.e., being the value listed in the row of (, ) = 
(8, 8) in Table 3).  Enhanced HaRP with ε = 0 (or 1) under 
ACL, for example, enjoys some 36% (or 25%) improvement 
in the lookup throughput, at the expense of a far higher 
overflow rate (see Fig. 5), and thus a substantially larger 
spillover TCAM, during LuHa table installation.  

5.2.  Enhanced HaRP with Pseudo Set-Associativity 
A pseudo associative technique [8] can be applied to contain 
overflows during rule installation, making the 4-way set-
associative LuHa table behave like 8-way set-associativity 
by treating both a set (indexed by a hash value) and its 
companion (indexed by the 2’s complement of the hash 
value) as candidates to store a filter rule during installation, 
thus lowering the overflow rate.  A companion candidate set 
is checked only if its associated candidate set is unavailable 
to hold the rule.  During rule lookups, an indexed candidate 
is probed first before its companion candidate set is 
examined in the next cycle, should the earlier probe fail to 
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match a rule.  When both candidate sets are unavailable for a 
filter rule (or fail to match any rule), an overflow (or a miss) 
happens during rule installation (or lookups). 

With pseudo set-associativity, enhanced HaRP exhibits 
far smaller overflow rates under the three filter datasets 
examined throughout the ε range shown in Fig. 5.  The 
bottom three curves in the figure clearly signify that 
doubling candidate sets for each filter rule avoids the need of 
large TCAMs to hold overflow rules for enhanced HaRP.   
Meanwhile, pseudo set-associativity is seen to let enhanced 
HaRP outperform its regular HaRP counterpart smartly for a 
small ε (say,  1), as demonstrated by the bottom three 
curves in Fig. 6.  Under ACL, for example, enhanced HaRP 
with pseudo set-associativity still enjoys a throughput gain 
of some 27% with ε = 0, reaching a lookup rate of 255 
MPPS (to support the wire speed over 160 Gbps under bi-
directional traffic in the worst case with 40-byte packets).  
Despite elevating the bandwidth requirement for LuHa table 
accesses upon classification lookups (due to the possible 
need of examining companion candidate sets), pseudo set-
associativity indeed benefits enhanced HaRP in both 
overflow reduction and throughput improvement. 

 
6. CONCLUSION 
This article has investigated into design and implementation 
of speedy classification based on HaRP, whose constitutive 
lookup tables are mapped carefully onto on-chip block 
RAMs of an Xilinx Vertex-6 FPGA device (XC6VLX240T) 
to keep routing delays checked.  The implemented classifier 
has an extremely low memory requirement, based on 
evaluation results obtained using three large datasets 
generated by real-life seed filter sets available to the public 
[13].  Its efficiency (defined as the ratio of throughput to byte 
count per rule) is four times higher than that of the second 
best FPGA implementation known so far [4].  An enhanced 
variant to lower the number of hash table accesses per packet 
is considered, shown to further elevate the classification 
throughput with overflows in the hash table contained via 
pseudo set-associativity.   
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