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ABSTRACT

As Intrusion Detection Systems (IDS) utilize more complex
syntax to efficiently describe complex attacks, their pro-
cessing requirements increase rapidly. Hardware and, even
more, software platforms face difficulties in keeping up with
the computationally intensive IDS tasks, and face overheads
that can substantially diminish performance.

In this paper we introduce a packet pre-filtering approach
as a means to resolve, or at least alleviate, the increasing
needs of current and future intrusion detection systems. We
observe that it is very rare for a single incoming packet to
fully or partially match more than a few tens of IDS rules.
We capitalize on this observation selecting a small portion
from each IDS rule to be matched in the pre-filtering step.
The result of this partial match is a small subset of rules
that are candidates for a full match. Given this pruned set
of rules that can apply to a packet, a second-stage, full-
match engine can sustain higher throughput.

We use DefCon traces and recent Snort IDS rule-set, and
show that matching the header and up to an 8-character
prefix for each payload rule on each incoming packet can de-
termine that on average 1.8 rules may apply on each packet,
while the maximum number of rules to be checked across
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all packets is 32. Effectively, packet pre-filtering prevents
matching at least 99% of the SNORT rules per packet and
as a result minimizes processing and improves the scalabil-
ity of the system. We also propose and evaluate the cost
and performance of a reconfigurable architecture that uses
multiple processing engines in order to exploit the benefits
of pre-filtering.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network Monitoring

General Terms
Design, Security.

Keywords

Intrusion Detection, Packet Inspection, Packet Pre-filtering,
Reconfigurable Computing.

1. INTRODUCTION

High speed and always-on network access is commonplace
around the world, creating a demand for increased network
security. Intrusion Detection Systems (IDS) such as Snort
[12] are currently the most efficient solution for network se-
curity. Instead of only checking the header of each incoming
packet, IDS also scan the payload of the packets to detect
suspicious contents. These systems must be able to pro-
cess thousands rules per incoming packet and require update
mechanisms to renew their rule-set with new descriptions of
known attacks. This required flexibility and the fast pro-
cessing rates are a good match for reconfigurable technol-
ogy, rather than for general purpose processors, exploiting
specialized circuitry and parallelism.

In the past years, many researchers have worked on recon-
figurable IDS focusing mostly on the payload scan, which
turns out to be the most computationally intensive task:
Fisk and Varghese report that payload scanning accounts
from 31% up to 80% of Snort’s execution time, the larger



value corresponding to web-intensive traffic [6]. Several tech-
niques for reconfigurable IDS static pattern and regular ex-
pression matching have been proposed [3,4,7,9-11,15, 16].
Additionally, efficient packet classification techniques such
as [13] are also required for the header matching part of the
IDS.

A packet classifier and a content matching engine used to
be efficient enough for low-speed networks when implement-
ing the detection core of an IDS that comes after packet
reassembly and reordering. However, networks becoming
faster and IDS systems, such as Snort, are becoming more
complex supporting more efficient attack descriptions; there-
fore a simple merging of the packet classification and the
content matching is not enough to detect hazardous packets.
More precisely, Snort IDS rules include statements which,
for example, define payload regions where specific patterns
should be matched (depth, offset) or require a pattern to
be matched within a number of bytes after matching another
pattern (within, distance). Consequently, matching each
rule requires a separate specialized module to keep track
of the payload matches and detect which parts of the pay-
load are valid. Even though, in software each rule might
be matched separately (presumably sequentially), in hard-
ware it used to be the case that all payload patterns were
matched in parallel and then a simple AND with the packet
classifier outcome would produce a rule match. However, re-
quiring a separate module per rule to implement these new
IDS syntax features, is not scalable and introduces signifi-
cant overheads.

In this paper we introduce a packet pre-filtering approach
as means to alleviate the above overheads and improve IDS
scalability in terms of area cost and performance. More
precisely, header matching (a 5-tuple filter i.e. Source IP
Address, Destination IP Address, Protocol, Source Port and
Destination Port) and a relatively low-cost pattern matching
module (matching 2-10 bytes per rule) can filter out the
majority of the Snort rules and point out a small subset to
be fully matched.

Our pre-filtering approach is based on the observation
that a single incoming packet usually will not match (even
partially) many attack descriptions. Especially, when part
of the payload is included in the filter, it is unlikely that a
packet matches multiple payload patterns for several rules.
Not excluding other options, our solution could be inte-
grated in a full-featured IDS detection engine as follows:
the pre-filtering module determines a “candidate matching”
rule subset per packet, and then (possibly multiple) special-
ized processing engines are employed to fully match these
rules. This approach exploits parallelism between the match
of different rules, that is not restricted to our proposed re-
configurable architecture; the exact rule processing can also
be assigned to multiple threads on the same or multiple pro-
cessing cores.

Whenever the pre-filtering modules output a rule ID then
a specialized module is reserved to match the rule and af-
terwards released (either at the end of the packet or due
to a match or mismatch before the end of the packet). In
the rare occasion, where there is no available specialized en-
gine to match a rule, the packet should be reported with the
indication that was not fully examined and then policies de-
fined by the user could be applied. We provide experimental
evidence suggesting that our proposal is promising. In this
paper:

e We introduce the packet pre-filtering approach to de-
termine the few rules (out of thousands) that could
possibly match per incoming packet.

e We discuss techniques to integrate the packet prefilter-
ing module into a full-featured hardware or software
IDS detection system.

e We introduce a new priority encoder design which is
pipelined and therefore scales in terms of performance
as the number of inputs increases. In addition, the pri-
ority encoder reports sequentially all the active inputs,
based on a statically defined priority.

e We use DefConll traces and Snort v2.4 ruleset to show
that in the worst case 32 out of about 3,200 rules are
detected for payload match per packet, while the av-
erage number of rules that need to be checked for pay-
load match is another order of magnitude smaller, re-
quiring minimal processing.

e In addition, we provide implementation results of a
reconfigurable packet pre-filtering module and prelimi-
nary results of a complete reconfigurable IDS detection
core.

The remainder of the paper is organized as follows: In sec-
tion 2, we discuss the motivation of our proposal, providing
details about Snort syntax features which make IDS more
complex. In section 3, we present our packet pre-filtering
approach, while in section 4 we describe ways to integrate
the pre-filtering module with hardware and software intru-
sion detection systems. In Section 5 we present simulation
results showing the effectiveness of our solution, and im-
plementation results of a reconfigurable packet pre-filtering
module. Finally, in Section 6 we conclude the paper.

2. SNORT IDS

Before describing our approach in detail, we first discuss
the Snort syntax features which create fundamental difficul-
ties in IDS implementation and motivate our packet pre-
filtering design. Table 1 depicts some of the Snort syn-
tax features which make the IDS rules more complicated.
The above commands change the original meaning of the
payload content Snort rule parts (either static patterns or
regular expressions) adding extra constraints regarding the
placement of the matching patterns in the packet payload.
Consequently, rules might specify the packet payload part
where a pattern should be matched, relative either to the
beginning or the end of a packet or relative to a previously
matched pattern. In addition, commands such as byte_test
and byte_jump select and test a byte payload field using sev-
eral numerical or logical operators. Each Snort rule might
specify different payload constraints, such as the ones men-
tioned above, to describe a suspicious packet. Therefore,
each rule would possibly require a separate FSM-like mod-
ule to keep track of the satisfied conditions, specify the parts
of the payload which are valid for each pattern to match, and
store payload byte fields to be tested using the byte_test
and byte_jump commands. In software, the above features
might not effect the entire implementation of the detection
engine, since the matching is presumably sequential, even
though more processing is required. On the other hand, in



Table 1: Current SNORT syntax features which
make IDS tasks more computationally intensive.

Feature

H Description ‘

depth specifies how far into a packet Snort should
search for the specified pattern.

specifies where to start searching for a pat-
tern within a packet.

specifies how far into a packet Snort should
ignore before starting to search for the
specified pattern relative to the end of a
previous pattern match.

makes sure that at most N bytes are be-
tween pattern matches.

Verify that the payload has data at a spe-
cific location, optionally looking if data rel-
ative to the end of the previous content
match.

test a byte field against a specific value
(with operator i.e. less than (<), greater
than (>), equal (=), not (!), bitwise AND
(&), bitwise OR (" ) and various op-
tions such as value, offset, relative,
endian, string, and number_type). Ca-
pable if testing binary values or converting
representative byte strings to their binary
equivalent and testing them.

allows rules to be written for length
encoded protocols. By having an option
the reads the length of the portion of data,
then skips that far forward in the packet,
rules can be written that skip over specific
portions of length-encoded protocols and
perform detection in very specific loca-
tions. Several options are supported such
as byte_to_convert, offset, relative,
multiplier <value>, big/little
endian, string, HEX/DEC/OCT, align
and from_beginning

dsize tests the packet payload size.

offset

distance

within

isdataat

byte_test

byte_jump

hardware, where the implementation needs to be in paral-
lel (since performance is critical), these syntax extensions
introduce significant cost and might also limit performance.

3. PACKET PREFILTERING

In this section, we present the functionality of our packet
pre-filtering approach and design details of our reconfig-
urable hardware implementation.

In the past, pre-filtering techniques have been applied for
static IDS pattern matching. In order to match multiple
IDS patterns in software, Markatos et al. use a two step
approach that detects whether an incoming stream contains
all the pattern characters (possibly in arbitrary positions)
and only then perform a full match of the search pattern [8].
More recently, they proposed Piranha, that extends the first
checking step with for 32-bit “rare” substrings that will en-
able fewer rules to be matched in the second step [1]. Their
approach is software-based and proposed to replace the main
execution loop of Snort. Baker and Prassana employed a
pre-filtering technique for reconfigurable IDS pattern match-

ing. They modified their “shift-and-compare” design, reduc-
ing the area cost, adding some uncertainty and allowing false
positives, to filter out streams that would not match their
pattern set [2].

Most hardware-based techniques suffer from the limita-
tion that they search the payload for all patterns in the
entire ruleset while ignoring rule headers, i.e. packet header
information. In essence, they search for thousands of pat-
terns while the packet header might specify that we are in-
terested in only a few tens or so patterns. If we consider
that some patterns are only one or two bytes long, one could
easily create packets that cause hundreds of accurate yet in-
consequential matches. Even normal traffic packets would
often trigger invalid rules. If such pre-filtering methods are
used stand-alone, they will often “cry wolf”. On the other
hand, if used in conjunction with a higher-level software IDS
they could be tricked into flooding it with false positive pat-
tern matches, possibly causing it to waste more time “sort-
ing through the garbage” than it would scanning the entire
payload.

Software implementations of IDS,; such as Snort, can group
the rules into different sets based on their rule headers.
Specifically, TCP and UDP rules can be grouped based on
their source and destination ports, ICMP rules based on
their ICMP type and IP rules based on their protocol. This
grouping creates sets of rules that are compatible and may
be activated at the same time. This fact allows software IDS
processing a packet to discover a single rule set that covers
a large portion of possible attacks and perform a single pay-
load scan for the patterns in that set. In practice however,
to minimize processing IDS software may opt for a quick
and not so refined approach; Snort just used the destination
port for TCP and UDP rules [14], resulting in larger groups
but minimal header processing and classification. This rep-
resents a basic tradeoff in software systems between time to
process the header and space since more payload test strings
must be simultaneously checked.

Our key observation in packet pre-filtering is that match-
ing a small part of each rule’s payload combined with match-
ing the header information (Source & Destination IP/Port
and Protocol) can substantially reduce the set of the pos-
sibly matching rules compared to using only header match-
ing as in previously proposed approaches. Using merely the
header description results in multiple applicable IDS rules,
which can be up to several hundreds in the case of a Snort-
like IDS [5]. However, when adding to the filter a few bytes
of payload patterns, this candidate set of IDS rule can be
significantly reduced. That is because it would be relatively
rare for a single incoming packet to match payload search
patterns of multiple rules.

Our IDS packet pre-filtering approach relies on the above
conjunctures to minimize the set of rules required to be
matched per incoming packet. Figure 1 offers the block
diagram of our proposed design. The prefiltering module
is designed for reconfigurable hardware and therefore can
update its supported IDS ruleset via reconfiguration. The
top part of the figure illustrates the overall system arrange-
ment. Incoming packets are first filtered through the packet
pre-filtering module (matches the first part of each rule i.e.
header plus a few bytes of payload pattern); subsequently,
only the remaining part of the candidate rules, reported by
the pre-filtering, are fully matched in a separate hardware
or software module/sub-system. This way, the flow of the
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Figure 1: The Packet Pre-filtering block diagram.

incoming packets is not stalled, since the parts of the rules
matched in the prefiltering phase are not matched again.

The bottom part of Figure 1 expands in detail the inter-
nals of the pre-filtering block. The incoming packets feed a
field extractor module, which performs header delineation,
field separation, and payload extraction. The packet header
is sent to the Header Matching module that performs the
necessary header classification and reports a bitmask of po-
tential matching rules. The payload is sent to the partial
Payload Match module which also reports a bitmask of po-
tential matching rules. Depending on each rule’s definition,
the two bitmasks are combined to provide the logical AND
of the two pieces of information (the AND gate in the figure)
or can be used directly, i.e. in the case of rules with header
constraints but without payload checks or the opposite. The
list of possible matches is reported to the full match module
using a priority encoder, although in a purely hardware im-
plementation and depending on the implementation of the
full match module it could be reported as a full bitmask.

We have described our proposal in terms of a hardware
implementation; indeed it seems that it better fits a hard-
ware instead of a software implementation. In software,
header matching can be relatively efficient: specific com-
parisons against fixed-location fields can be performed in a
tree-structure and occurs exactly once per packet. However
implementing the pre-filtering technique may require scan-
ning the payload part of the packet twice, first for the pre-
filtering and once more for the actual match. A hardware
implementation overcomes this problem through the use of
parallelism; if such parallel resources are available in a soft-
ware implementation (for example in the form of multi-core
general-purpose processor or a network processor), then our
pre-filtering approach can be proven efficient.

Header Matching: The header fields enter the packet
classification module, which performs a more fine-grained
grouping than Snort. For header classification, we use 3
to 5 of all the packet header fields: source and destination
IP address and protocol type are used for all rules, with the

source and destination ports being additional parameters for
TCP/UDP rules and the ICMP type for ICMP rules. Here
we have to make two observations: (a) these fields involve
the IP header as well as the TCP/UDP headers and the
ICMP header, and (b) additional header fields can be used in
the Snort rules, but are not used for the header classification,
so as to avoid excessive number of small groups. The header
fields are registered and forwarded to a pipelined comparator
module. This module discovers all active rule sets and can
also be used to inform the software of the best applicable rule
set (thus avoiding the cost of software header matching).
Partial Pattern Matching: Similarly, the packet pay-
load is scanned using partial search patterns. From each
Snort rule specifying one or more payload search contents,
we select the first pattern and match a constant number
of its prefix bytes (between 2 and 10 bytes in our experi-
ments). The first pattern of a rule is selected so that our
pre-filtering module will match the first part of each rule.
If the pattern is shorter than the selected number of pre-
fix bytes then the full pattern is matched. The static pat-
tern matching is performed utilizing DCAM, a pre-decoding
technique [15]. All incoming characters are pre-decoded in
a centralized decoder, properly shifted to amount for their
relative positioning, and subsequently AND-ed to produce
the match signal of each pattern. This way, the charac-
ter comparators are shared through the decoder, while each
shifted decoded character value can feed multiple pattern
matching modules (AND gates). In addition, the entire
module as well as the header matching module are fine-
grain pipelined in order to increase its operating frequency.
Since the header matching involves comparisons of fixed lo-
cation fields in each packet, the overall throughput of the
packet pre-filtering module is determined by the throughput
of the partial pattern matching. Consequently, in order to
increase the performance of the packet pre-filtering, the pat-
tern matching module can process multiple incoming bytes
per cycle and increase accordingly the overall throughput.
In our current experiments (section 5) the pre-filtering mod-
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Figure 2: Priority encoder implementation details and a small example.

ule matches only static patterns; however, it can be extended
to support also regular expressions. In case the first payload
content of a rule is a regular expression, the pre-filtering
module could match a first part (prefix) of the regular ex-
pression, which may include wild cards or any other syntax
features. The full match engine would then be responsible
to match the remaining portion of the regular expression.
Bitmask: Both header and partial pattern matching out-
puts feed a bitmask which indicates all possible matching
rules. Each bit of the mask corresponds to a single rule. For
some rules, the pre-filtering module may match only the
packet header, if no payload patterns are included (e.g. nu-
merical check of some payload bytes might be performed).
In this case, the output of the header matching alone de-
termines the value of this bit in the bitmask. Other rules
may match packets of any header and therefore only match-
ing a payload content may determine the outcome of the
filter. Furthermore, in case of a rule which needs both the
header and the payload pattern, a subsequent AND between
the corresponding header and payload pattern matching re-
sults produce the outcome of the bitmask. Finally, when
the header and pattern matching performed in pre-filtering
module is equivalent to a complete IDS rule, this rule should
be directly reported and no further matching is required.
Priority Encoder: The bitmask feeds a priority en-
coder, which outputs sequentially all the positions of the
active bits in the bitmask (possibly matching rules IDs).
Our priority encoder is fine-grain pipelined and therefore
scales well in terms of performance as the number of inputs
increases. Figure 2(a) depicts the basic building block of
the priority encoder that selects one out of two inputs to
be encoded in the output. The above basic block is used to
construct the binary-tree-like structure of the priority en-
coder. In the first pipeline stage, the valid and encode
inputs are the same bit. In each pipeline stage of the en-
coder, an input is selected over the other to be sent out
(when ever possible). When a partially encoded value is
forwarded to the next pipeline stage, then is subsequently
deleted from the previous stage. To do so, we use extra logic
to produce “load enable” signals for the registers of every
pipeline stage. Consequently, all the inputs of the prior-
ity encoder are encoded and forwarded to the output based
on their priority/position, and reported sequentially. Figure

2(b) illustrates an example of a 4-input priority encoder. In
order to accomplish fine-grain pipeline an encoded value of
stage N cannot be deleted/overwritten by the next value
coming from the stage N-1 before it is verified that is for-
warded in stage N+1. Therefore, each input is reported in
the output of the priority encoder for 2 cycles. However, in
our packet pre-filtering design this is not an issue, since only
a few rules are expected to partially match, and this way we
achieve performance scalability for large bitmasks.

Our proposed packet pre-filtering shares common ideas
with the Piranha approach [1]. However, there are several
important differences between the two. First, Piranha is
a software-based technique targeting only on IDS payload
pattern matching, and does not use full header matching
information as we do. Second, our pre-filtering technique
works for all search pattern lengths from 1 up to the max-
imum supported, and provides exact matches for rules up
to that length. The Piranha approach is restricted for per-
formance reasons to 4 character (1 word) substrings. The
implication of this restriction is that increasing the width
in Piranha is likely to reduce efficiency since shorter rule
patterns are not covered and at the same time increase pro-
cessing requirements, while reducing the width would again
reduce efficiency due to increased conflicts. Our approach
does not suffer from these constraints, but only from an in-
creased implementation cost as the prefix length increases.

4. INTEGRATING PRE-FILTERING IN AN
INTRUSION DETECTION SYSTEM

In this section, we describe integrating techniques of the
proposed packet pre-filtering module into a complete Intru-
sion detection Engine. The pre-filtering module will actually
match the first part of each IDS rule (i.e. header and partial
payload pattern). Consequently, the rest of the system is re-
quired to match the remaining parts of the detected possibly
matching rules, instead of matching again the parts already
matched in the pre-filtering stage.

In software based platforms, the packet pre-filtering mod-
ule reports the ID of the rules needed to be fully matched,
and subsequently, software is employed to continue the pro-
cessing of these rules. As described below in section 5.1, at
least 99% of the rules can be excluded and therefore, the
workload of the software can be significantly reduced.
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Figure 3: A Reconfigurable Intrusion Detection System utilizing packet pre-filtering.

Figure 3, depicts the block diagram of an envisioned re-
configurable IDS, part of which has been implemented and
presented in section 5.2. Incoming packets enter the packet
pre-filtering module, which detects the possibly matching
rules. In case there are already detected rules in this stage,
they are reported. The IDs of the detected candidate rules
(that require further processing - full match) are sent in an
array of specialized engines. Subsequently, for each one of
these rules a firmware is downloaded to a single processing
engine, which is reserved to fully match the rule. A process-
ing engine (PE) is reserved whenever a rule is detected by
the pre-filtering stage, and released in case of a match, mis-
match or end of packet. In case there are no available PEs
to match a rule, then the packet should be reported and af-
terwards the policies set by the system administrator should
be applied. We should note here, that this can only occur
when a single packet partially matches the descriptions of
multiple rules (more than the threshold defined by the sys-
tem designer i.e. 32 PEs). Each PE keeps track of the stages
a rule should pass through in order to produce a match. The
processing engines do not perform payload pattern match-
ing. Instead, centralized coprocessors are utilized to match
all the static patterns and regular expressions included in
the IDS ruleset. An interface between the coprocessors and
the PEs should be used to feed the PEs with the payload
matches and their exact position in the packet payload. Fi-
nally, the ID of a rule matched by a PE is reported at the
output.

S. EXPERIMENTAL RESULTS

In this section, we present experimental results of our
packet pre-filtering approach. First, we utilize the DefCon
traces [17] to evaluate the effectiveness of our proposal. We
then provide implementation and performance results of the
packet pre-filtering module using Xilinx Virtex2-4000-6 and
Virtex4-40-12 FPGA devices and preliminary implementa-
tion results of a complete intrusion detection engine.

5.1 Simulation Results

To evaluate the effectiveness of our proposed packet pre-

filtering module we use trace-driven execution. We use the
Snort v2.4 ruleset and Defconl1 traces. For each Snort rule,
the pre-filtering module matches the header of the packet
(IP header as well as the TCP/UDP headers (source and
destination ports), and the ICMP header) and a prefix of
a payload pattern (whenever included in a rule). In our
experiments, we match 2, 4, 6, 8 or 10 prefix characters
of the payload pattern. When the rule payload pattern is
shorter than the prefix length, then the entire, exact pattern
is matched.

The Snort v2.4 ruleset consists of a total of 3191 rules,
out of which 2271 rules (or 71.2%) require content match-
ing, while the remaining 920 rules (or 28.8%) check only
header parameters. The rules were grouped into 381 rule
sets using a fine-grained header classification that takes into
account up to 5 fields as described in section 3. For our
tests, we configured the symbolic addresses of the rule-set in
the following manner: SHOME_NET was set to the /24 (or
a class-C) subnet matching most traffic in the used traces,
$EXTERNAL_NET was set as ISHOME_NET, i.e. anything
but the home net, and all other symbolic addresses (apart
from $AIM_SERVERS) were the same as SHOME_NET.

We evaluated our architecture using Defconll traces. De-
fconl1 contains 9 trace files, 10 million packets in total, out
of which 4.6 million packets have payload. The mean pay-
load length is 698 bytes and the maximum payload length is
1460 bytes. Figure 4 plots a break-down of the total number
of packets according to the trace files, and also distinguishes
between packets with and without payload.

During the IDS execution, each packet activated an av-
erage of 3.7 sets of rules (or header groups). This result is
interesting since it shows that even complete header match-
ing is not refined enough, and leaves opportunities for our
pre-filtering step to refine the search space. In addition,
out of the 2271 rules that specify pattern matching, the
header classification process of the packet determined that
an average of ~45 rules (1.9%) were applicable to be con-
tent matched. The maximum number of rules that required
string matching for a single packet is an impressive 142 rules
(4.5%). Figure 5 shows the pattern length cumulative distri-
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bution in our Snort rules. We can observe that more than
half of all patterns have length above 11 characters, and
that 10% of the rules have length exceeding 34 characters.
These numbers show that we would need very wide prefix
lengths to guarantee exact matching in the majority of the
rules. Small prefixes, in the range of the ones we consider,
achieve exact match for 40% of the rules for prefix of size
10, a value that drops quickly to 30% for length of 8, and
20% for length 4 characters. This full matching however
is one of the advantages of our prefiltering technique, since
full matches can be directly reported and avoid loading the
heavier full-match module that would provide no additional
useful information.

The following two figures show the effectiveness of the pre-
filtering technique. Figure 6 shows the average number of
patterns that are determined as eligible or candidate for a
full match by our pre-filtering step. As mentioned earlier,
we consider pattern prefixes of 2, 4, 6, 8 and 10 characters.
The pre-filtering result is a small number of rules which are
eligible that depending on the trace and the prefix length

ranges from below 1 up to 10 rules. It is noteworthy that,
when matching more than 2 payload pattern bytes the aver-
age number of candidate rules is significantly reduced down
to about 1-3 rules per packet. For 8-character prefix width
the maximum value across all traces is only about 3 candi-
date rules, while the overall average is 1.8 rules. This corre-
sponds directly to the amount of work that the full-match
module would have to perform to determine the final match.
The effect of pre-filtering is more than an order of magni-
tude reduction in the number of candidate rules compared
to simply using header match information which would have
checked 45 rules.

Figure 7 shows the maximum number of patterns that
were indicated as candidates by our pre-filtering according
to the trace files and the prefix length. This results are
important to measure the maximum amount of work that
the full match module will experience. For a best-effort
implementation that can delay packets while the processing
is not completed, these maximum values offer an indication
of the maximum jitter in packet latency. For a fixed latency
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Figure 6: Average number of candidate rules per packet after the pre-filtering step as a function of the

pre-filtering length.
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Figure 7: Maximum number of candidate rules per single incoming packet after the pre-filtering step as a
function of the pre-filtering length (length 2 was omitted for clarity due to exceedingly large values).

implementation, the maximum values indicate the degree of
parallelism that must be provided to guarantee maximum
processing throughput under all circumstances. We note
that for small prefixes the maximum values are indeed very
high (up to 63 when prefix length is 2 bytes). However
for more than 2 character prefixes, all trace files result in
a maximum value of no more than 32 rules. We should
emphasize again here that these numbers are rare since the
average numbers are much smaller, and indicate the worst
and infrequent case.

The above analysis indicates that (i) pre-filtering can be
very effective in reducing the search space for a full-match
module, and (ii) that it can achieve this goal using rela-
tively small prefix lengths. In general, larger prefix length
would result in marginally better results but at increased
pre-filtering cost. Narrower prefixes will reduce the pre-
filtering cost, but increase the load of the full match unit.
Since the pre-filtering performance does not improve notice-
ably when increasing the prefix length from 8 to 10 charac-

ters, we believe that a good tradeoff for the prefix length is
4-8 characters and we proceed to evaluate the system im-
plementation cost and performance with a prefix length of
8 characters.

5.2 Implementation Results

Next, we present the implementation results of two packet
pre-filtering designs. In addition, we estimate the area re-
quirements of a complete intrusion detection detection en-
gine as described in section 4.

For the evaluation of our packet pre-filtering designs we
used the Xilinx ISE 8.1 tools for synthesis and place and
route operations. We used two devices from different FPGA
families: a Virtex2-4000-6, a Virtex4-40-12. The internal
cell structure of these devices is similar and the results both
for the area cost are practically identical. Table 2 lists the
area cost of our designs in terms of flip-flops, LUT's and to-
tal device slices. The header matching part of the design
involves comparisons between numerical values and fixed lo-



Table 3: Payload Scanner Coprocessors: matching Regular Expressions and Static patterns.

Input Throu-| MEM# RegExp|
Description bits | Device | ghput |Slices|LC/ chaeri b or
/cycle (Gbps) Patterns
RegExp Engzng [3] Virtex2 12,537 1.39 0 509
Regular Expressions -4000/
Static Pattern 8 Virtex4 2/29
Matching [16] 40 4,733| 0.28 | 630 | 2,188
Coprocessors Virtex2/
(Total) 8 Virtexd 2/2.9 (17,270 630 [509+42,188
. results of the coprocessor modules which match the payload
Vi dTa;ble 2: Packet Pre-ﬁlt;rFlng Af{‘?; COStS’l_ regular expressions and static patterns included in the rule-
l ocdu e. H S [ 5 [ 1ces ‘ set of Snort v2.4. When processing 8 bits per cycle the co-
Header Field Extractor 120 49 64 processor is able to support 2 Gbps throughput and requires
Header Matching 1352 778 946 about 17,000 slices. For 32-bit datapaths, our preliminary
Static Pattern Matching 3,226 2,929 1,688 results show that the area cost of the coprocessors would be

DCAM [15] (8 bits/c.c.)
Static Pattern Matching 12,164 | 11,276 6,103
DCAM [15] (32 bits/c.c.)

Priority encoder 12,804 15,986 8,020
Control 112 112 56
Total (8 bits/c.c.) 17,614 | 19,854 | 10,774
Total (32 bits/c.c.) 26,552 | 28,201 | 15,189

cation fields of the packet which is implemented in parallel.
Consequently, the supported throughput of our designs is
determined by the payload pattern matching module. We
implemented two alternative pattern matching designs to
be integrated with the rest of the packet pre-filtering mod-
ule. The first one processes one incoming payload byte per
cycle, while the second processes four bytes per cycle and
thus supports higher throughput (about 4x higher). The
overall area cost of the packet pre-filtering module is 10,774
and 15,189 slices for 8 and 32-bits datapaths respectively,
which easily fits in a small/medium FPGA device'. Table
2 also offers a break-down of this area cost per module, and
as expected the majority of the flip-flops and logic is con-
sumed by the payload pattern matching module and the
priority encoder. The total cost is dominated by the prior-
ity encoder, since a 3,191-bit bitmask (which corresponds to
3,191 Snort v2.4 rules) has to be encoded. The priority en-
coder is about 75% of the entire pre-filtering module, when
8-bits per cycle are processed, and 50% when the datapath
width is 32 bits. All the packet pre-filtering sub-modules are
fine-grain pipelined and therefore the operating frequency of
the designs is relatively high: 335 MHz (8-bits/cycle) and
303 MHz (32-bits/cycle) for Virtex2-4000-6, supporting 2.7
and 9.7 Gbps throughput respectively. For Virtex4-40 the
performance is about 50% higher, that is 4 and 14 Gbps for
8 and 32 bits datapaths respectively.

Apart from the packet pre-filtering, an intrusion detec-
tion engine, as depicted in figure 3, consists of the payload
matching coprocessors and the specialized engines. In our
previous work, we have designed and implemented the regu-
lar expressions and static pattern matching modules [3,16].
Table 3 shows the post place & route performance and area

!Current Xilinx (Virtex4d) FPGA devices contain up to
90,000 Slices.

about 65K slices and 1,4 Mbits memory. Finally, valuating
the cost of the specialized engines, we can estimate that a
complete IDS design which processes 8-bits per cycle would
require about 35K slices and 3-5 Mbits Block RAM, while
for 32-bit datapaths it would occupy about 90K slices and
4-6 Mbits RAM. The above designs would be able to fit in
a single current FPGA device.

6. CONCLUSIONS

We have presented Prefiltering, a powerful hardware-based
technique aim to reduce the processing requirements for in-
trusion detection. We claim that implementing the header
matching portion of a NIDS system together with a small
prefix match (in the range of 4-8 characters) can eliminate
most of the rules and determine a handful of applicable rules,
that can then be checked more efficiently by a full-match
module. The technique is amenable to various kinds of par-
allelism at the full-match module whether implemented in
hardware or in software.

We also implement the pre-filtering and the full-match
modules, including support for the more recent Snort fea-
tures such as regular expressions. We analyze the cost of
all components and show that the entire system would fit in
a current high-end FPGA device, while achieving process-
ing bandwidths of about 2.5 and 10 Gbps (Virtex2) and 4
and 14 Gbps (Virtex4) processing one character and four
characters per cycle respectively.

We can further optimize pre-filtering by supporting vari-
able prefix length per rule. This flexibility would allow us
to select an “optimal” prefix length at the rule granularity
with two potential benefits: (i) cost savings from smaller
lengths when possible, and (ii) better accuracy when selec-
tively longer prefixes are used. Furthermore, we can general-
ize the Piranha approach [1] and select arbitrary substrings
instead of prefixes as we do in this paper, possibly improv-
ing the accuracy of pre-filtering. However, this improvement
will come at a cost, since in this case the full match unit will
have to re-scan the packet for scratch, while in our prefix im-
plementation it can pick up from the last matched character.
Finally, we plan to evaluate the impact of the more advanced
rule structures (distances, regular expressions, etc) on the
complexity and performance of intrusion detection systems.
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