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ABSTRACT 
Packet classification is crucial for the Internet to provide more 
value-added services and guaranteed quality of service. Besides 
hardware-based solutions, many software-based classification 
algorithms have been proposed. However, classifying at 10Gbps 
speed or higher is a challenging problem and it is still one of the 
performance bottlenecks in core routers. In general, classification 
algorithms face the same challenge of balancing between high 
classification speed and low memory requirements. This paper 
proposes a modified Recursive Flow Classification (RFC) 
algorithm, Bitmap-RFC, which significantly reduces the memory 
requirements of RFC by applying a bitmap compression 
technique. To speed up classifying speed, we experiment on 
exploiting the architectural features of a many-core and 
multithreaded architecture from algorithm design to algorithm 
implementation. As a result, Bitmap-RFC strikes a good balance 
between speed and space. It can not only keep high classification 
speed but also reduce memory space significantly. 

This paper investigates the main NPU software design aspects that 
have dramatic performance impacts on any NPU-based 
implementations: memory space reduction, instruction selection, 
data allocation, task partitioning, and latency hiding. We 
experiment with an architecture-aware design principle to 
guarantee the high performance of the classification algorithm on 
an NPU implementation. The experimental results show that the 
Bitmap-RFC algorithm achieves 10Gbps speed or higher and has a 
good scalability on Intel IXP2800 NPU. 

Categories and Subject Descriptors 
C.1.4 [Processor Architectures]: Parallel Architectures; C.2.6 
[Internetworking]: Routers: Packet Classification; D.1.3 
[Programming Languages]: Concurrent Programming – parallel 
programming; D.2.2 [Software Engineering]: Design Tools and 
Techniques; 

General Terms 
Performance, Algorithms, Design, Experimentation 

Keywords 
Network processor, packet classification, architecture, 
multithreading, thread-level parallelism, embedded system design 
 

1. INTRODUCTION 
Nowadays the ever-increasing demand for quality of service 

(QoS) and network security, such as policy-based routing, firewall, 
and virtual private network (VPN), edge and core routers are 
required first to classify packets into flows according to a 
classifier and then to process them differently. As the new demand 
for  supporting triple play (voice, video, and data) services arises, 
the pressure for  the routers to perform fast packet classification 
becomes higher and higher. However, it is still challenging to 
perform packet classification at 10Gbps speed or higher by an 
algorithmic approach, whereas hardware-based solutions are both 
expensive and inflexible. 

As the network processor unit (NPU) emerges as a promising 
candidate for a networking building block, NPU opens a new 
venture to explore thread-level parallelism to attack the 
performance bottleneck of classification. NPU is expected to 
retain the same high performance as that of ASIC and to gain the 
time-to-market advantage from the programmable architecture. 
Many companies, including Intel[15], Freescale[10], AMCC[3] 
and Agere[1] have developed their own programmable NPUs. 
Even though the NPU vendors only achieved limited success in 
terms of the market value, the NPU based technology has been 
widely used in commercial routers[4][7][14]. Therefore, an NPU 
based classification algorithm is worth of further study to realize 
NPU potential, which promises to provide a total solution for 
packet processing including forwarding and classification. 

In general, there are four types of packet classification 
algorithms: grid-of-tries[22], bit vector linear search[6][18], cross-
producting[22] and recursive flow classification (RFC)[12], and 
decision tree approaches[11][20]. All these algorithms focus on 
striking balance between space and speed to achieve optimal 
algorithmic performance. However, little work has been done in 
parallelizing these algorithms on many-core and multithreaded 
NPU architectures. Furthermore, the previous performance results 
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collected on a general-purpose CPU cannot be directly applied to 
the parallel architectures, especially on the many-core and 
multithreaded NPU architecture. New efforts are therefore 
required to design parallel packet classification algorithms for the 
many-core and multithreaded architecture, which normally 
provides hardware-assisted multithreading support to execute 
thread-level parallelism for hiding the memory-access latency. 

In this paper, we propose an architecture-aware classification 
algorithm that exploits the NPU architectural features to reduce 
the memory-access times as well as hide the memory-access 
latency. Particularly, we adopt a system approach in designing 
such an efficient classification algorithm for the Intel IXP2800. 
We use the interdisciplinary thinking to find the best solution in 
each algorithm decision point, from algorithm design to algorithm 
implementation.  

A good classification algorithm for an NPU must at least take 
into account the following interdisciplinary aspects: classification 
characteristics, parallel algorithm design, multithreaded 
architecture, and compiler optimizations. We believe that high 
performance can only be achieved through close interaction 
among these interdisciplinary factors. For example, RFC[12] is so 
far the fastest packet classification algorithm in terms of the 
worst-case memory access times. Its table read operations form a 
reduction tree (root at the bottom), where the matching of a rule 
involves walking through the tree from the root to the leaves. The 
search of the tree is easy to be parallelized, because 

1) nodes on the same level can potentially run in parallel; 

2) nodes on different levels can also run in parallel. 

On a multithreaded architecture, latency hiding can be utilized 
in three ways [23][24][25]. First, two parallel memory accesses 
can be issued consecutively, and thus the latency of the first 
memory access can be partially hidden by that of the second 
memory access. Second, the latency of one memory access of a 
thread can be overlapped with another thread's execution. Third, 
execution of ALU instructions can be overlapped with time spent 
on other outstanding memory accesses.   

By taking advantage of the tree characteristics inherited in the 
RFC algorithm and the latency hiding ability of multithreaded 
architecture, multiple read operations can be issued 
simultaneously from a single thread, and the read operations from 
different threads can also be issued to overlap their execution. In 
doing so, the long latencies caused by multiple memory accesses 
can be partially hidden, thus the RFC algorithm is an eligible 
candidate for an NPU based parallel implementation. 

 Even though the advent of many-core and multithreaded NPU 
has given rise to a new paradigm for parallel algorithm design and 
implementation, the results of general-purpose multi-processing 
research are not directly applicable to such system-on-chip (SOC) 
based many-core and multithreaded architectures due to their 
specific processing requirements [2][17]. This potential of great 
performance improvement motivates the development of an 
architecture-aware classification algorithm that exploits the unique 
architectural properties of an NPU to achieve high performance. 
Bitmap-RFC is such an NPU-aware IPv4 packet classification 
algorithm specifically designed to exploit the architectural 
features of the SOC based many-core and multithreaded systems. 

Because an NPU is an embedded SOC with modest memory 
space, reducing memory footprint is the highest priority for almost 
every networking application. Furthermore, saving memory space 
opens other optimization opportunities for reducing the memory-
access latency. For example, moving data from DRAM to SRAM 
on the Intel IXP2800 can save about 150 cycles for each memory 
access. Considering that the RFC algorithm requires explosive 
memory space when the number of classification rules becomes 
large, we introduce bitmap compression[8] to the RFC algorithm 
to reduce its table size so that the Bitmap-RFC can take advantage 
of faster SRAM for achieving high performance.  

In the Bitmap-RFC implementation, we carefully investigate 
the following optimization opportunities that are directly related 
to any NPU-based network algorithm implementations: space 
reduction, instruction selection, data allocation, task partitioning, 
and latency hiding. For each opportunity, we explore the specific 
design space that might have trouble spots in Bitmap-RFC 
implementation. After evaluating these design decisions, we come 
up with a highly efficient time-space balanced packet 
classification algorithm, Bitmap-RFC, which is designed to run 
efficiently on the Intel IXP2800. The high-performance of the 
resulting algorithm is achieved through a process of design space 
exploration by considering application characteristics, efficient 
mapping from the algorithm to the target architecture, and 
applying source code transformations with both manual and 
compiler optimizations. 

To summarize, the goal of this paper is to design and 
implement a high-performance packet classification algorithm on 
a many-core and multithreaded NPU through the system approach. 
We identify the key design issues in implementing such an 
algorithm and exploit the architectural features to address these 
issues effectively. Although we experiment on the Intel IXP2800, 
the same high-performance can be achieved on other similar NPU 
architectures [1][3][10]. The main contributions of the paper are 
as follows: 

• A scalable packet classification algorithm is proposed and 
efficiently implemented on the IXP2800. Experiments 
show that its speedup is almost linear and it can run even 
faster than 10Gbps. 

• Algorithm design, implementation, and performance 
issues are carefully studied and analyzed. We apply the 
systematical approach to address these issues by 
incorporating architecture awareness into parallel 
algorithm design. 

To the best of our knowledge, Bitmap-RFC is the first packet 
classification implementation that achieves 10Gbps speed on the 
Intel IXP2800 for a classifier as large as 12,000 rules. Our 
experiences may be applicable to parallelizing other networking 
applications on other many-core and multithreaded NPUs as well. 

The rest of this paper is organized as follows. Section 2 
introduces related work on algorithmic classification schemes 
from the NPU implementation point of view. Section 3 formulates 
the packet classification problem and briefly introduces the basic 
ideas of the RFC algorithm. Section 4 presents the Bitmap-RFC 
algorithm and its design space. Section 5 discusses design 
decisions made related to NPU-based Bitmap-RFC 
implementation. Section 6 gives simulation results and 
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performance analysis of Bitmap-RFC on the Intel IXP2800. 
Section 7 presents guidance on effective network application 
programming on NPU. Finally, section 8 concludes and discusses 
our future work. 

2. RELATED WORK 
     Prior work on classification algorithms have been reported in 
[5][6][11][12][18][20][22][27]. Below we mainly compare 
algorithmic classification schemes, especially from the NPU 
implementation point of view. 

Trie-based algorithms, such as grid-of-tries[22], build 
hierarchical radix tree structures where if a match is found in one 
dimension another search is started on a separate tree pointing to 
another trie. In general, trie-based schemes work well for single-
dimensional searches. However, their memory requirements 
increase significantly with the increase in the number of search 
dimensions. 

Bit vector linear search algorithms[6][18] treat classification 
problem as an n-dimensional matching problem and search each 
dimension separately. When a match is found in a dimension, a bit 
vector is returned identifying the match and the logical AND of 
the bit vectors returned from all dimensions identifies the 
matching rules. However, fetching the bit vectors requires wide 
memory and wide buses, and thus are memory intensive. This 
technique is more profitable for ASIC than for NPU because the 
NPU normally has limited memory and bus width. 

Hierarchical Intelligent Cuttings (HiCuts)[11] recursively 
chooses and cuts one searching dimension into smaller spaces, and 
then calculates the rules that intersect with each smaller space to 
build a decision tree that guides the classifying process. 
HyperCuts[20] improves upon HiCuts, in which each node 
represents a decision point in the multi-dimensional hypercube. 
HyperCuts attempts to minimize the depth of the decision tree by 
extending the single-dimensional search into a multi-dimensional 
one. On average HiCuts and HyperCuts achieve good balance 
between speed and space, however they require more memory 
accesses than RFC in the worst case. 

      RFC algorithm[12], which is a generalization of cross-
producting[22], is so far the fastest classification algorithm in 
terms of the worst-case performance. Because the worst-case 
performance is used as one of the most important performance 
metrics of network systems[19], we base our classification 
algorithm on RFC to guarantee the worst-case performance, and 
then apply bitmap compression to reduce its memory requirement 
to conquer the problem of memory explosion.  

Bitmap compression has been used in IPv4 forwarding[8][9] 
and IPv6 forwarding[13]. Recently it is applied to 
classification[21], which is the closest in spirit to ours in that all 
use bitmaps to compress redundant storage in data structure. 
However, previous methods cannot solve the performance 
bottleneck caused by searching the compressed tables, and thus 
additional techniques have to be introduced to address the 
inefficiency of calculating the number of bits set in a bitmap. For 
example, the Lulea[8] algorithm introduces a summary array to 
pre-compute the number of bits set in the bitmap, and thus it needs 
an extra memory access per trie-node to search the compressed 
table. The Bitmap-RFC employs a built-in bit-manipulation 
instruction to calculate the number of bits set at runtime, and thus 

is much more efficient than Lulea’s in terms of time and space 
complexity.  

3. PROBLEM STATEMENT 
Packet classification is the process of assigning a packet to a 

flow by matching certain fields in the packet header with a 
classifier. A classifier is a database of N rules, each of which, Rj, 
j=1, 2 ,…, N, has d fields and an associated action that must be 
taken once the rule is matched. The ith field of rule Rj, referred to 
as Rj[i], is a regular expression pertaining to the ith field of the 
packet header. The expression could be an exact value, a prefix, or 
a range. A packet P is said to match a rule Rj if each of the d fields 
in P matches its corresponding field in Rj. Since a packet may 
match more than one rule, a priority must be used to break the ties. 
Therefore, packet classification is to find a matching rule with the 
highest priority for each incoming packet. 

Table 1.  Example of a simple classifier 

Rule# F1 F2 F3 Action 
R1 001 010 011 Permit 
R2 001 100 011 Deny 
R3 01* 100 *** Permit 
R4 *** *** *** Permit 

 

Let S represent the length of a bit string concatenated by the d 
fields of a packet header, then the value of this string falls into [0, 
2S-1]. Searching a particular rule based on directly indexing on the 
string of concatenated fields (CF-string for short hereinafter) is out 
of the question when S is big. The main idea of RFC is to split 
such a one-time mapping into multi-phase mapping in order to 
reduce a bigger search space into multiple smaller ones. Each 
mapping phase is called a reduction, and the data structure formed 
by multi-phase mapping is called a reduction tree.  After multi-
phase mapping, S-bit CF-string is mapped to a T-bit (T << S) 
space.  
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Figure 1. A two-phase RFC reduction tree 

Let us use a simple example to illustrate the building process of 
a reduction tree. Figure 1 is a two-phase RFC reduction tree 
constructed from the classifier defined in Table 1, in which each 
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rule has three fields and each field is 3 bits long. The reduction 
tree is formed by two phases: 

In the first phase (Phase 0), each field (F1-F3) is expanded into 
a separate preprocessed table (Chunk 0-2). Each chunk has an 
accompanying equivalence class ID (eqID) array, and each chunk 
entry is an index to its eqID array (table). Each entry of eqIDi is a 
bit vector (Class Bitmap, CBM) recording all the rules matched 
as if the corresponding index to the Chunk array is used as input. 
For example, the value of the first entry of Chunk 0 is 0, which 
points to the first element of array eqID0 whose bitmap is ‘0001’. 
Each bit in a bitmap corresponds to a rule, with the most 
significant bit corresponding to R1, and the least significant bit to 
R4. Each bit records whether the corresponding rule matches or not 
for a given input. Thus, bitmap ‘0001’ means only rule R4 matches 
when index 0 of Chunk 0 is used as F1 input. Similarly, the first 
entry of Chunk 2 has value 0, and it points to the first entry of 
eqID2 whose bitmap is ‘0011’, indicating only rules R3 and R4 
match if index 0 of Chunk 2 is used as input for field F3. 

In the second phase (Phase 1), a cross-producting table (CPT) 
and its accompanying eqID table are constructed from the eqID 
tables built in Phase 0. Each CPT entry is also an index, pointing 
to the final eqID table whose entry records all the rules matched 
when the corresponding index is concatenated from 
“eqID0eqID1eqID2”. For instance, the index of the first entry of 
CPT is 0, calculated from concatenating three bit strings 
‘00’+‘00’+‘00’. The rules matched can be computed as the 
intersection of eqID0 [0](‘0001’), eqID1 [0](‘0001’), and 
eqID2[0](‘0011’). The result is ‘0001’, indicating rule R4 matches 
when `000-000-000’ is used as input for the three fields F1, F2, and 
F3. 

The lookup process for the sample packet P (010,100,100) in 
Figure 1 is as follows:  

1) use each filed, P1, P2 and P3 (i.e., 010,100,100) to look up 
Chunk 0-2 to compute the index of cross-producting table 
A by Chunk0[2]*3*2+Chunk1[4]*2+Chunk2[4], which 
is 16;  

2) the value of CPT[16] is 3 and it is used as an index to 
eqID3. The result of ‘0011’ indicates that rules R3 and R4 
match the input packet P. Finally, R3 is returned as it has 
higher priority than R4 according to the longest match 
principle.  

Note that eqID tables built in Phase 0 are only used to build the 
CPT A and will not be used thereafter. Careful readers may notice 
that there are many repetitions in table CPT A. For example, the 
first nine entries of CPT A have the same value 0. These 
redundant data may occupy a lot of memory space when the 
number of rules increases. We will use Independent Element (IE) 
to denote distinct eqID index in CPT tables. The most natural way 
to reduce the data redundancy is to store a sequence of 
consecutively identical entries as one and use other auxiliary 
information to indicate the start and end of the sequence. 

Normally the compression of the table is usually at the cost of 
increased table searching time. Additional techniques must be 
used to solve this problem. Moreover, architectural features of 
NPU must be exploited to further optimize the algorithm 
performance. Therefore, we state our classification problem as 
follows: 

1) apply a compression technique to RFC’s cross-producting 
tables to reduce the data redundancies; 

2) exploit the NPU architectural features to achieve high 
classification speed, especially at 10Gbps speed or higher 
on Intel IXP 2800. 

4. BITMAP-RFC ALGORITHM 
4.1 Algorithm Description 

 
Figure 2. Illustration of Bitmap-RFC algorithm 

Figure 2 illustrates the basic idea of Bitmap-RFC algorithm. A 
bit vector called Bitmap is used to track the appearance of 
independent elements (IEs) in CPT. A sequence of consecutively 
identical elements are compressed and stored as one element in an 
array called Element Array. The data structure consisting of 
Bitmap and Element Array is called Compact Table.  

Each bit of Bitmap corresponds to an entry in CPT, with the 
least significant bit (LSB) corresponding to the first entry. Bitmap 
is formed starting from the LSB: a bit is set to ‘1’ if its 
corresponding entry in CPT has an IE different from its previous 
one. Therefore, a bit set in Bitmap indicates that a different 
sequence of consecutively identical elements starts at the 
corresponding position in CPT. Whenever a bit is set, its 
corresponding IE is added in Element Array. ‘010203’ is the 
resultant Element Array for CPT A listed in Figure 2. 

Since the length of Bitmap increases with the size of CPT, and 
scanning longer bit vector (string) introduces higher overhead, we 
divide a CPT into segmented sub-CPTs with a fixed size, and 
employ the bitmap compression technique to compress each sub-
CPT into an entry of Compact Table.  

4.2 Data Structure 
Figure 3 shows the data structure used in Bitmap-RFC, which 

comprises Compact Table and Accessory Table. We will use 
Compressed CPT (CCPT) to denote this data structure in the rest 
of this paper. Only one entry of Compact Table is illustrated in 
this figure due to space limit. Accessory Table is only needed 
when Element Array is full. In that case, the last two units of 
Element Array are used as an address field pointing to the 
Accessory Table. Second Memory Accesses Ratio (SMAR) is 
defined as the ratio of the number of elements in Accessory 
Tables to the total number of elements in both tables. 

The sizes of sub-CPT and CCPT entry are two important 
design parameters, which have great impacts on SMAR of the 
algorithm, and also have close relation to both the set of rules and 
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the logical width of memory. Therefore, these two parameters 
must be properly chosen before implementing Bitmap-RFC on a 
particular platform. 

 
Figure 3. Data structure for Bitmap-RFC algorithm 

The reason for putting Bitmap and Element Array together is to 
obtain efficient memory access by utilizing a useful feature of 
NPU such as the IXP2800. On the IXP2800, adjacent SRAM 
locations up to 64 bytes can be fetched in one SRAM read 
instruction, so memory accesses can be reduced by putting them 
together so that they can be fetched by one SRAM access. 

In order to read the Compact Table efficiently from the 
memory, the entry size of Compact Table should be a multiple of 
the logical width of memory, which is 32 bits for SRAM and 64 
bits for DRAM on the IXP2800. Thus in the case of IXP2800, the 
size of sub-CPT could be 32, 64, 96, 128 bits and so on. 

4.3 Bitmap-RFC Lookup 
Figure 4 gives the pseudo code of Bitmap-RFC search 

algorithm. Since the searching process of phase 0 in Bitmap-RFC 
is similar to that in RFC, we only discuss the search algorithm for 
CCPT. Some constants are predefined to facilitate understanding 
of the algorithm. We predefine the size of Bitmap as one word (32 
bits), the size of Element Array as four words, containing 
maximally 8 elements of 16-bits each. The entry size of Compact 
Table is five words, which equals to the sum of Bitmap’s and 
Element’s size. That means one memory access should fetch 5 
words from SRAM into the Compact Table (line 3), and we 
borrow an array notation, CompactTable[0..4] to denote the 
Bitmap and Element Array defined in Figure 3, i.e. 
CompactTable[0] stores Bitmap (line 6) and from 
CompactTable[1] to CompactTable[4] store the Element Array 
with 8 entries (line 8). 

 First, Oindex is divided by the size of sub-CPT named 
(SubLen) in line 2 to compute the index (Cindex) of CCPT 
(because each sub-CPT is compressed into one entry in CCPT). 
Second, Cindex is used to look up the CCPT and get the data 
(Bitmap and Element Array) from a Compact CPT Table entry 
(line 3). If the number of bit set in a Bitmap is 1, which is 
computed by function POP_COUNT, then there is only one IE in 
the Element Array, i.e. Element[0]  (lines 9-10) is the final 
searching result. Otherwise, BitPos, the position of the bit 
corresponding to the searched entry in sub-CPT, is calculated by 
Oindex (line 4). Then the number of bits set (PositionNum) from 
bit 0 to bit BitPos is calculated by an intrinsic function 
POP_COUNT (line 12).  PositionNum is used as an index to look 
up the Element Array (lines 13-18). If an IE being searched is in 
the Element Array (no greater than 8 entries as shown in line 13), 

the result is returned from line 14; otherwise, the Accessory Table 
needs to be searched (lines 16-19). It is worth mentioning that 
each word contains two Element Array elements because the size 
of each element is 16 bits. 

Let’s take the example given in Figure 2 to illustrate the 
searching process, where the size of CPT A is 18. Since each 
compact table element can hold as many as 32 CPT entries, one 
sub_CPT is enough for such a case. Because only one entry exists 
in the Compact Table, Cindex is zero and BitPos and Oindex are 
the same. For the input packet P, BitPos equals to 16. The 
PositionNum is calculated by counting the number of bits set 
from bit 0 to bit 16 (line 12) for the Bitmap listed in Figure 2.   

If the element array is organized as shown in Figure 2, in which 
six IEs are stored in the Element array, then line 14 will be 
executed. On the other hand, if each element array stores less than 
six entries, lines 16-19 would be executed, and the Accessory 
Table would  be visited to locate the corresponding IE. Therefore, 
the size of the compact table has dramatic impacts on the number 
of memory accesses occurred during the search. 

 

Bitmap-RFC_CCPT_Search (IN Oindex,OUT IE) { 
1: Current_Node = CCPT CompactTable;  
2: Cindex = Oindex / SubLen; // the index to Compact Table 
3: CompactTable[0..4] = Read_CCPT(Current_Node,Cindex); 
4: BitPos = GitBitPos(Oindex);  
5: //! allocate an array Bitmap[1] to store Bitmap 
6: Bitmap[0] = CompactTable[0]; 
7: //! allocate an array Element[8] to store Element Array 
8: Element[0..7] = CompactTable[1..4]; 
9: if (POP_COUNT(Bitmap[0]) == 1)  
10:       return Element[0];  
11: else { 
12:       PositionNum = POP_COUNT(Bitmap[0],BitPos) - 1; 
13:       if ( PositionNum < 8)  { 
14:           return Element[PositionNum]; 
15:       } 
16:       else { // IE being searched is in the AccessoryTable 
17:            Current_Node   =CCPT AccessoryTable; 
18:            AccessoryIndex=GetAccessoryIndex(PositionNum); 
19:            return Read_CCPT(Current_Node,AccessoryIndex); 
20:       } 
21: } 
} // Bitmap-RFC_CCPT _Search 

Figure 4. Pseudo code for Bitmap-RFC search operation 

5. NPU-AWARE DESIGN AND 
IMPLEMENTATION 

Figure 5 draws the components of the Intel IXP2800[15], in 
which 16 Microengines (MEs), 4 SRAM controllers, 3 DRAM 
controllers, and high-speed bus interfaces are shown. Each ME 
has eight hardware-assisted threads of execution, and 640-words 
local memory of single-cycle access. There is no cache on each 
ME. Each ME uses the shared buses to access off-chip SRAM and 
DRAM. The average access latency for SRAM is about 150 
cycles, and that for DRAM is about 300 cycles. We implemented 
Bitmap-RFC algorithm in the MicroengineC language, which is a 
subset of the ANSI C plus parallel and synchronization 
extensions, and simulated it on a cycle-accurate simulator. In the 
following, we will discuss the crucial issues that have great 
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impacts on algorithm performance when we implement the 
Bitmap-RFC on the IXP2800 NPU. 

 

 
Figure 5. IXP2800 component diagram without I/O interfaces 

5.1 Memory Space Reduction 
The NPU is generally an embedded SOC whose memory size is 

limited. SRAM and DRAM are two types of commonly used NPU 
memory, whose size is of megabyte magnitude, and can be used to 
store classification tables. On the Intel IXP2800, the size of 
DRAM is approximately eight times as large as that of SRAM, 
however its latency is approximately twice as long as that of 
SRAM. Therefore, the memory access latency can be greatly 
reduced if the reduction tree is stored in SRAM. The bitmap 
compression is an enabling technique to make it happen. 

From the discussion in Section 4.2 and 4.3, the performance of 
Bitmap-RFC is greatly affected by the data structure design in 
CCPT, especially the size of sub-CPT. We choose the size of 
bitmap as 32 bits to match the instruction word width of the NPU 
ISA. The size of the Element Array is 4 words containing at most 
8 elements, because the number of bits set in a sub-CPT is most 
likely no greater than 8.  This is an observation we have noticed 
for the classification rules we have experimented on (see Figure 7). 
Please note that the size of the Element Array affects the second 
memory access ratio (SMAR) and the effectiveness of memory 
compression. The larger the Element Array is, the less the SMAR 
is, and the more memory space is required to store CCPT. The 
size of Element Array should be adjustable based on the 
distribution of the number of bits set in the bitmap. 

5.2 Instruction Selection 
Searching CCPT requires computing PositionNum. It is a 

time-consuming task in traditional RISC/CISC architecture, as it 
usually takes more than 100 RISC/CISC instructions (ADD, 
SHIFT, AND, and BRANCH) to compute the number of bits set 
in a 32-bit register. Without direct hardware support, calculation 
of PositionNum will become a new performance bottleneck in 
Bitmap-RFC algorithm. 

Fortunately, there is a powerful bit manipulation instruction in 
IXP2800 called POP_COUNT, which can calculate the number 
of bit set in a 32-bit register in 3 cycles. With POP_COUNT, the 
number of instructions used to compute PositionNum is reduced 
by more than 97% compared with other RISC/CISC 
implementations. This is essential for the Bitmap-RFC algorithm 
to achieve the line rate. 

NPUs that do not have POP_COUNT normally have another 
bit-manipulation instruction, FFS, which can find the first bit set 

in a 32-bit register in one clock cycle. With FFS, PositionNum 
can be calculated by looping through the 32 bits and continuously 
looking for the next first bit set. 

Compared with RISC architecture, the NPU normally has much 
faster bit-manipulation instructions. Appropriately selecting these 
instructions can dramatically improve the performance of NPU-
aware algorithms. However, current compiler technology cannot 
always generate such instructions automatically. It is the 
programmer’s responsibility to select them manually through 
intrinsic or in-line assembly.  
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5.3 Data Allocation 
The Intel IXP2800, like other NPUs, has a complex memory 

hierarchy that comprises, in the increasing order of memory 
access latency, single-cycle local memory, scratchpad, SRAM, and 
DRAM. For Bitmap-RFC implementation, the choice of using 
SRAM or DRAM, and where and how to distribute the 
compressed tables greatly affect the ultimate classification speed. 

In addition to the aforementioned size and speed differences 
between SRAM and DRAM, different access granularities and 
memory alignment must be taken into account as well. For 
example, on the Intel IXP2800, SRAM is optimized and aligned 
for 4-byte word access, while DRAM is optimized for at least 16-
byte burst access. Therefore, data structures must be optimized for 
the specific type of memory. 

There are four independent SRAM controllers on the IXP2800 
that allow parallel access, and three DRAM controllers, with each 
DRAM controller having four memory banks that can be accessed 
in an interleaved manner. To evaluate the performance impacts of 
parallel SRAM access and interleaved DRAM access, we 
designed the following six settings. Experimental results show that 
the fourth setting can meet the OC-192 speed even in the worst 
case. 

• All the tables are stored in one SRAM controller; 

• Tables are properly distributed on two SRAM controllers; 

• Tables are properly distributed on three SRAM controllers; 

• Tables are properly distributed on four SRAM controllers; 

• All the tables are distributed on DRAM, and data 
structures are redesigned to facilitate the burst access; 

• Tables are properly distributed on SRAM and DRAM in a 
hybrid manner. 

Table 2. Data allocation scheme for the fourth setting 

SRAM controller 0 Phase 0 Chunks & All Accessory Tables 
SRAM controller 1 Compact Table of CCPT X’ 
SRAM controller 2 Compact Table of CCPT Y’ 
SRAM controller 3 Compact Table of CCPT Z’ 

 
We experimented on various data allocation schemes for the 

fourth setting, however, only the one shown in Table 2 is the best 
solution to achieve OC-192 speed. In this setting, three Compact 
Cross-producting Tables, CCPT_X’, CCPT_Y’, CCPT_Z’, used in 
the second, and the third levels of the reduction tree, are 
distributed into three different SRAM controllers.  
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As discussed above, there is another useful feature that can be 
effectively exploited on the IXP2800: adjacent SRAM locations 
can be fetched in one SRAM read instruction (maximally 64 
bytes). By designing the Compact Table size being 20 bytes (less 
than 64 bytes), memory vectorization optimization can be applied 
to significantly reduce the number of SRAM accesses. 

5.4 Task Partitioning 
There are two general ways to partition tasks onto multiple 

MEs on the Intel IXP2800: multi-processing and context-
pipelining. Multi-processing involves two parallelizing 
techniques. First, multi-threading is applied to a task allocated to 
one ME. In an Intel IXP2800, a maximum of 8 threads can be 
used per ME. Secondly, a task can use multiple MEs if needed. 
For example, if a task needs 2 MEs, a maximum of 16 task threads 
can run in parallel. Each thread instance runs independently, 
assuming no other thread instances exist. Such a run-to-
completion programming model is similar to the sequential one, 
and it is easy to be implemented. In addition, the workloads are 
easier to be balanced. However, threads allocated on the same ME 
must compete for shared resources, including registers, local 
memory, and command (data) buses.  For example, if a task 
requires more local memory than one ME can support, the 
context-pipelining approach must be used instead. 

Context-pipelining is a technique that divides a task into a 
series of smaller sub-tasks (contexts), and then it allocates them 
onto different MEs. These contexts form a linear pipeline, similar 
to an ASIC pipeline implementation. The advantage of context-
pipelining is to allow a context to access more ME resources.  
However, the increased resources are achieved at the cost of 
communication between neighboring MEs. Furthermore, it is hard 
to perform such partitioning if workloads cannot be determined at 
compile time. The choice of which method to use should depend 
on whether the resources can be effectively utilized on all MEs. 

The workloads of different phases in Bitmap-RFC are 
unbalanced, and thus the multi-processing scheme may achieve 
higher performance than context-pipelining. The simulation 
results shown in section 6.6 confirm this prediction. 

5.5 Latency Hiding 
Hiding memory latency is another key to achieving high-

performance of Bitmap-RFC implementation. We hide the 
memory-access latency by overlapping the memory access with 
the ALU instructions calculating the BitPos in Bitmap in the same 
thread as well as memory access issued from other threads.  

For instance, in Figure 4 operations listed in line 3 and line 4 
can run in parallel so that the BitPos computation is hidden 
completely by the memory operation Read_CCPT(). Compiler 
based thread scheduling should be able to perform such an 
optimization automatically [23]. 

6. SIMULATION AND PERFORMANCE 
ANALYSIS 

Due to privacy and commercial secrets, it is hard for us to 
access sufficient real classifiers. Luckily, the characteristics of 
real classifiers have been analyzed in [5][16][26][12].  Therefore, 
we could construct the synthetic ones for the core router 

accordingly [20]. In order to measure the performance impact of 
the Intel IXP2800 on the Bitmap-RFC algorithm, we experiment 
with the following implementations discussed from section 6.2 to 
6.7. 

6.1 Experimental Setup 
The RFC algorithm needs six chunks (corresponding to 16 bits 

lower/higher src/dst IP address, 16 bits src/dst port number 
respectively) in Phase 0, two CPTs (CPT X and CPT Y) in Phase 
1, and one CPT (CPT Z) in Phase 2. To compare with the RFC 
algorithm, we implemented 4-deminsional Bitmap-RFC packet 
classification with the same three phases. The compressed tables 
used by Bitmap-RFC are called CCPT X’/Y’/Z’.  

Since the searching time of the RFC algorithm depends on the 
structure of the reduction tree, the number of memory access 
times is fixed for the RFC algorithm (9 times). As a result, more 
rules only affect the memory space needed. Therefore, three 
classifiers were constructed for the experiments presented in 
section 6.3 to 6.7. They are CL#1, CL#2, CL#3, and each has 
1000, 2000, 3000 rules respectively. 

Each sub-CPT has 32 entries for all experiments. Thus, the 
length of Bitmap is 32 bits. We allocate four long words  (4*32 
bits) for Element Array (eight Element units), so the size of 
Compact Table is 5 long words.  

We use the minimal packets as the worst-case input [19]. For 
the OC-192 core routers a minimal packet has 49 bytes (9-byte 
PPP header + 20-byte IPv4 header + 20-byte TCP header). Thus, a 
classifying rate of 25.5Mpps (Million Packets per Second) is 
required to achieve the OC-192 line rate. 

6.2 Memory Requirement of RFC and 
Bitmap-RFC 

To find out the maximum number of rules that RFC and 
Bitmap-RFC can hold on an IXP2800, we use two metrics: 

• The minimum number of rules that causes one of tables 
lager than 64MBytes (the size of one SRAM controller). 

• The minimum number of rules that causes the total size of 
all tables larger than 256MBytes (the total size of SRAM). 

The results for RFC and Bitmap-RFC are shown in Table 3. 

Table 3. Comparison of memory requirements 

Memory Requirement of 
 CPT and CCPT (MB) 

Total Memory 
Requirement (MB)Num. 

of 
Rules X X’ Y Y’ Z Z’ RFC Bitmap-

RFC 
5,700 59.2 18.5 25.8 8.1 64.1 16.0 149.9 43.4
8,050 80.7 25.2 64.3 20.1 127.7 39.9 273.5 86.0
12K 106.5 33.3 106.3 33.2 284.9 71.2 498.6 138.5
17K 191.0 59.7 185.0 57.8 570.7 178.4 947.6 296.7
 
When the number of rules exceeds 5,700, RFC cannot be 

implemented on IXP2800, since the memory requirement of table 
Z is bigger than 64MBytes. In addition, the total memory 
requirement of RFC will be bigger than 256MBytes when 8,050 
rules are used.  
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When the number of rules exceeds 12,000, Bitmap-RFC cannot 
be implemented on IXP2800 when the size of sub-CPT is 32, 
since the memory requirement of table Z’ is bigger than 
64MBytes. In addition, the total memory requirement of Bitmap-
RFC will be bigger than 256MBytes when 17,000 rules are used.  

Since SRAM space required for Z’ bank is over 64MBytes 
when 12,000 rules are used, the corresponding CPT must be split 
into two sub-tables appropriately to fit into two SRAM banks. 
Such a split is doable but at the cost of increasing the searching 
complexity. Therefore, the maximal number of rules should be 
less than 12,000 when the Bitmap-RFC algorithm is used in 
practice. 

6.3 Relative Speedups 
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Figure 6. Bitmap-RFC classifying rates and relative 

speedups 
Figure 6 shows the classifying rates and relative speedups of 

Bitmap-RFC using the minimal packet size on the Intel IXP2800 
based on CL#1. The data were collected after all optimizations 
previously mentioned were applied and the RFC reduction tree is 
stored in four SRAM channels. The speedup is almost linear and 
classification speed reaches up to 25.65Mpps for 32 threads. The 
reason of sub-linear speedup is partially caused by the saturation 
of command request FIFOs and SRAM buses. The SRAM bus 
behavior is illustrated in Table 4, in which the FIFO fullness ratio 
can be used to indicate the degree of saturation. 

Table 4.  Bus behavior measured by fullness ratio 

Num. of 
Threads 

ME CMD Request FIFO 
Fullness Ratio (%) 

SRAM Controller Read 
FIFO Fullness Ratio 

(%) 
1 11.7   2.7 
8 40.1 11.1 

16 41.5 20.9 
24 41.4 36.9 
32 41.3 47.9 

 
Bitmap-RFC is a memory-bound algorithm in which each 

thread issues multiple outstanding memory requests per packet. If 
these memory requests cannot be processed in time, the 
classification performance will drop. Taken CL#1 as an example, 
the ME CMD Request FIFO fullness ratio increases from 11.7% 
for one thread to 40.1% for eight threads. That is, in the 8-thread 
mode, a read memory request stays almost four times longer in the 
FIFO than it does in the 1-thread mode. Similarly, the SRAM 
Controller Read FIFO fullness ratio increases from 2.7% for one 
thread to 47.9% for 32-threads, that is, in 32-thread, a read 
memory request stays nearly 18 times longer in FIFO than it does 

in the 1-thread mode. This architectural constraint prevents the 
Bitmap-RFC algorithm from having a 100% linear speedup.  

Because our implementation is well over the line-rate speed 
when 4 MEs (32 threads) are fully used, we want to know the 
exact minimum number of threads required to meet the OC-192 
line rate. Table 5 shows the minimum number of threads required 
for the three classifiers. On average all of the classifiers need 20 
threads to reach OC-192 line rate.  

Table 5. Minimal threads required for supporting line rate 

Classifying rate (Mpps) Classifier Minimum Number 
of Threads  Single thread Multithreads

CL#1  20 1.97 26.65 
CL#2 20 1.94 25.74 
CL#3 20 1.95 25.77 

 
 Considering there are sixteen MEs on the Intel IXP2800, three 

MEs for IPv4 packet classification use only less than 1/5 of the 
entire ME budget. Therefore, Bitmap-RFC leaves enough room 
for other networking applications, such as packet forwarding and 
traffic management, to meet the line-rate performance. 

6.4 Instruction Selection 
Table 6. Classifying rates (Mpps) of POP_COUNT vs. FFS 

 1 ME 2 MEs 4 MEs 8 MEs
FFS 5.04 10.07 20.03 33.15 
POP_COUNT 6.54 12.85 25.65 33.35 CL#1
Improvement 30% 29% 28% 1% 
FFS 4.49 9.03 17.85 32.87 
POP_COUNT 6.38 12.77 25.09 33.33 CL#2
Improvement 42% 41% 41% 1% 
FFS 4.48 8.96 17.54 32.55 
POP_COUNT 6.38 12.77 25.09 33.33 CL#3
Improvement 43% 43% 43% 2% 

 
Table 6 shows the classifying rates of the worst-case input 

packets by using two different instructions: POP_COUNT and 
FFS respectively. The testing is done for three rule sets. In general, 
the classifying rate of POP_COUNT based implementation is 
higher than that of FFS based implementation. On average, the 
performance improvement using POP_COUNT can be as high as 
43% compared to FFS based implementation.  The exception is on 
8MEs, because the utilization rate of four SRAM controllers has 
reached 96% in both cases, and the SRAM bandwidth becomes a 
new performance bottleneck, which shadows other performance 
improvement factors. The same impact can also be observed in 
other performance tables reported in section 6.6, and 6.7. 

The lower classifying rate of FFS is because computational 
time of PositionNum depends on the number of bits set in the 
Bitmap. The more bits are set, the more instructions are executed 
at runtime. This shows that an architecture-aware algorithm needs 
to consider the instruction selection to facilitate its implementation 
because those instructions might have a significant impact on the 
performance of the algorithm. 

According to the three classifiers we experimented, we found 
out the number of bits set in Bitmap did not exceed three on 
average. The distribution of the number of bits set in Bitmap is 
provided in Figure 7 in which it shows that  
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• the majority of Bitmaps have only one bit set; 

• most likely the number of bits set is less than 8. 

Otherwise, the speed improvement of POP_COUNT vs. FFS 
should be even higher. 

 
Figure 7.  Distribution of the number of bits set in Bitmap 

6.5 Memory Impacts 
The simulation shows that our algorithm cannot support the 

OC-192 line rate in the worst case if DRAM alone is used. The 
culprit is the DRAM push bus, which is shared by all MEs for 
reading CCPT. Instead, we simulated the following six data 
allocation schemes using the worst-case minimal-packet input on 
the IXP2800. Table 7 shows the simulation results. We found out: 

Table 7. Classifying rates (Mpps) on different data allocations 

 1 ME 2 MEs 4 MEs 8 MEs 
1-SRAM 6.49 9.65 9.63 9.576 
2-SRAM 6.50 12.94 18.63 18.15 
3-SRAM 6.50 12.99 20.40 20.10 
4-SRAM 6.54 12.85 25.65 33.35 
Hybrid-1 7.03 12.66 12.66 12.63 
Hybrid-2 7.13  12.82 12.80 12.78 

 
• The 1-SRAM/2-SRAM/3-SRAM table allocation schemes 

cannot support OC-192 line rate if the number of MEs is no 
greater than 4. Because the utilization rate of a single SRAM 
controller is up to 98% at 4 MEs and 8 MEs, the single 
SRAM bandwidth is the performance bottleneck of these 
schemes. 

• Only the 4-SRAM configuration obtains almost linear 
speedup from 1 ME up to 8 MEs. Additionally, the utilization 
rates of four SRAM controllers are all approximately 96% 
when 8 MEs are used, indicating the potential speedup could 
be even greater if the system could have more SRAM 
controllers.  

• We experimented two kinds of hybrid table allocations. The 
Hybrid-1 configuration stores the preprocessing tables 
(Chunks 0-5) in SRAM and CCPT X’/Y’/Z’ in DRAM. The 
Hybrid-2 configuration stores Chunks 0-5 and CCPT X’/Y’ 
in SRAM and CCPT Z’ in DRAM. The simulation shows 
that both of them cannot support the OC-192 line rate in the 
worst case either.   

6.6 Task Partitioning 
The communication method in context-pipelining could be a 

scratch ring or a next-neighbor ring (FIFO). Two types of context-
pipelining partitioning were implemented based on next-neighbor 
ring. We divided the whole classifying task into pieces according 
to (1) the algorithm logic; (2) the number of memory accesses 
required per ME. The partitioning configurations are as follows: 

1) The first ME is for the search of all preprocessed tables in 
Phase 0 and the second is for search the CCPT X’/Y’/Z’ 
in the following phases. 

2) The first ME is for the search of half preprocessed tables, 
the second ME is for the search of rest preprocessing 
tables and CCPT X’, and the third ME is for the search of 
CCPT Y’/Z’. 

Because the task of Bitmap-RFC in any stage is not well-
balanced, it is extremely difficult to partition the workload evenly. 
In addition, the communication FIFOs also add the overhead. 
Each ME must check whether the FIFO is full before a put 
operation and whether it is empty before a get operation. These 
checks take many clock cycles when context-pipelining stalls. 
Table 8 shows the simulation results using different task allocation 
policies.  

Table 8. Classifying rates (Mpps) of multi-processing vs. 
context-pipelining 

 2 MEs 3MEs 4 MEs 6 MEs 
Multi-processing 12.85 19.32 25.65 33.73 
Context-pipelining-1 12.31 -- -- -- 
Context-pipelining-2 -- 15.41 -- -- 
Context-pipelining-3 -- -- 22.37 33.03 
Context-pipelining-4 -- -- -- 29.88 

 
Context-pipelining-3 & 4 are the mixing scheme of Context-

pipelining-1 & 2, in which each stage is replicated using multi-
processing. For example, context-pipelining-3 uses 4 MEs, in 
which 2 MEs are allocated for the first stage of context-pipelining-
1 and the remaining 2 MEs are allocated for the second stage of 
context-pipelining-1, It is clear that both multi-processing and 
context-pipelining-3 & 4 can support the OC-192 line rate with 
four MEs and six MEs respectively on the Intel IXP2800. 
However multi-processing is preferable for Bitmap-RFC 
algorithm because of the dynamic nature of the workload. 

6.7 Latency Hiding 
Table 9 reports the performance impact of various latency 

hiding techniques. The MicroengineC compiler provides only one 
switch to turn latency hiding optimizations on or off. We reported 
the combined effects after applying those latency hiding 
techniques. The MicroengineC compiler can schedule ALU 
instructions into the delay slots of a conditional/unconditional 
branch instruction and a SRAM/DRAM memory instruction. 

Table 9. Improvement from latency hiding techniques (Mpps) 

 1 ME 2 MEs 4 MEs 8 MEs 
Overlapped 6.54 12.85 25.65 33.35 
Without overlapped 6.10 12.13 23.94 33.10 
Improvement 7.11% 7.15% 7.14% 0.64% 
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By performing static profiling, we found that seventeen ALU 
instructions were scheduled into delay slots. On average, we 
obtained a performance improvement of approximately 7.13% by 
applying the latency hiding techniques. 

7. PROGRAMMING GUIDANCE ON NPU 
We have presented Bitmap-RFC implementations and analyzed 

performance impacts on the Intel IXP2800. Based on our 
experiences, we provide the following guidelines for creating an 
efficient network application on an NPU. 

1) Compress data structures and store them in SRAM 
whenever possible to reduce memory access latency.  

2) Multi-processing is preferred to parallelize network 
applications rather than context pipelining because the 
former is insensitive to workload balance. Unless the 
workload can be statically determined, use a combination 
of both to help distribute loads among different 
processing stages fairly. 

3) In general, the NPU has many different shared resources, 
such as command and data buses. Pay attention to how 
those shared resource are used because they might 
become a bottleneck in algorithm implementation.  

4) The NPU supports powerful bit-manipulation instructions. 
Select appropriate instructions to meet the application 
needs without waiting for the compiler automation 
support. 

5) Use compiler optimizations to schedule ALU instructions 
to fill the delay slots to hide latency whenever possible. 

8. CONCLUSIONS AND FUTURE WORK 
This paper proposed a high-speed packet classification 

algorithm Bitmap-RFC and its efficient implementation on the 
Intel IXP2800. We studied the interaction between the parallel 
algorithm design and architecture mapping to facilitate efficient 
algorithm implementation on the NPU architecture. We 
experimented with an architecture-aware design principle to 
guarantee the high-performance of the resulting algorithm. 
Furthermore, we investigated the main software design issues that 
have most dramatically performance impacts on networking 
applications. Based on detailed simulation and performance 
analysis, we identified the limits of classification algorithm on an 
IXP2800. We effectively exploited the thread-level parallelism on 
many-core and multithreaded architectures to enable an efficient 
algorithm mapping. 

Our experiences show that developing networking applications 
on a many-core and multithreaded architecture requires applying a 
system method to address the performance bottleneck. The 
architecture-aware method promoted in this paper advocates of 
considering the architectural features and constraints in the 
algorithm development phases as early as in algorithm design. 
Furthermore, in each development phase from algorithm design to 
algorithm implementation, the design decisions made should be 
based on the application characteristics as well as the architectural 
features. For example, the bitmap-RFC relies on the following 
application characteristics and the architecture features to achieve 
10Gbps speed:  

• the RFC algorithm can be easily parallelizable;  

• uncompression of the bitmap compressed tables can be 
efficiently performed on the IXP2800 using special bit-
manipulation instructions;  

• execution of the multiple outstanding memory accesses 
can be overlapped with other useful computation in the 
multi-threaded architecture.  

By exploiting the application characteristics and the 
architectural features, the high-performance classification 
algorithm bitmap-RFC has been developed on the IXP2800.   

Our performance analysis indicates that we need spend more 
effort on eliminating various hardware performance bottlenecks, 
such as the SARM and DRAM buses. In addition, how to select an 
appropriate size of sub-CPT to make Bitmap-RFC run faster 
requires more study. We will do more research along these two 
directions. 
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