
High-performance Packet Classification Algorithm for
Many-core and Multithreaded Network Processor

Duo Liu, Bei Hua, Xianghui Hu, and Xinan Tang†

Department of Computer Science and Technology

University of Science and Technology of China
Hefei, China, 230027

{liuduo, xhhu} @mail.ustc.edu.cn
bhua@ustc.edu.cn

† Intel Compiler Lab
SC12, 3600 Juliette Lane

Santa Clara, California, 95054
xinan.tang@intel.com

ABSTRACT
Packet classification is crucial for the Internet to provide more
value-added services and guaranteed quality of service. Besides
hardware-based solutions, many software-based classification
algorithms have been proposed. However, classifying at 10Gbps
speed or higher is a challenging problem and it is still one of the
performance bottlenecks in core routers. In general, classification
algorithms face the same challenge of balancing between high
classification speed and low memory requirements. This paper
proposes a modified Recursive Flow Classification (RFC)
algorithm, Bitmap-RFC, which significantly reduces the memory
requirements of RFC by applying a bitmap compression
technique. To speed up classifying speed, we experiment on
exploiting the architectural features of a many-core and
multithreaded architecture from algorithm design to algorithm
implementation. As a result, Bitmap-RFC strikes a good balance
between speed and space. It can not only keep high classification
speed but also reduce memory space significantly.

This paper investigates the main NPU software design aspects that
have dramatic performance impacts on any NPU-based
implementations: memory space reduction, instruction selection,
data allocation, task partitioning, and latency hiding. We
experiment with an architecture-aware design principle to
guarantee the high performance of the classification algorithm on
an NPU implementation. The experimental results show that the
Bitmap-RFC algorithm achieves 10Gbps speed or higher and has a
good scalability on Intel IXP2800 NPU.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures; C.2.6
[Internetworking]: Routers: Packet Classification; D.1.3
[Programming Languages]: Concurrent Programming – parallel
programming; D.2.2 [Software Engineering]: Design Tools and
Techniques;

General Terms
Performance, Algorithms, Design, Experimentation

Keywords
Network processor, packet classification, architecture,
multithreading, thread-level parallelism, embedded system design

1. INTRODUCTION
Nowadays the ever-increasing demand for quality of service

(QoS) and network security, such as policy-based routing, firewall,
and virtual private network (VPN), edge and core routers are
required first to classify packets into flows according to a
classifier and then to process them differently. As the new demand
for supporting triple play (voice, video, and data) services arises,
the pressure for the routers to perform fast packet classification
becomes higher and higher. However, it is still challenging to
perform packet classification at 10Gbps speed or higher by an
algorithmic approach, whereas hardware-based solutions are both
expensive and inflexible.

As the network processor unit (NPU) emerges as a promising
candidate for a networking building block, NPU opens a new
venture to explore thread-level parallelism to attack the
performance bottleneck of classification. NPU is expected to
retain the same high performance as that of ASIC and to gain the
time-to-market advantage from the programmable architecture.
Many companies, including Intel[15], Freescale[10], AMCC[3]
and Agere[1] have developed their own programmable NPUs.
Even though the NPU vendors only achieved limited success in
terms of the market value, the NPU based technology has been
widely used in commercial routers[4][7][14]. Therefore, an NPU
based classification algorithm is worth of further study to realize
NPU potential, which promises to provide a total solution for
packet processing including forwarding and classification.

In general, there are four types of packet classification
algorithms: grid-of-tries[22], bit vector linear search[6][18], cross-
producting[22] and recursive flow classification (RFC)[12], and
decision tree approaches[11][20]. All these algorithms focus on
striking balance between space and speed to achieve optimal
algorithmic performance. However, little work has been done in
parallelizing these algorithms on many-core and multithreaded
NPU architectures. Furthermore, the previous performance results

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES'06, October 23-25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-543-6/06/0010...$5.00.

334

collected on a general-purpose CPU cannot be directly applied to
the parallel architectures, especially on the many-core and
multithreaded NPU architecture. New efforts are therefore
required to design parallel packet classification algorithms for the
many-core and multithreaded architecture, which normally
provides hardware-assisted multithreading support to execute
thread-level parallelism for hiding the memory-access latency.

In this paper, we propose an architecture-aware classification
algorithm that exploits the NPU architectural features to reduce
the memory-access times as well as hide the memory-access
latency. Particularly, we adopt a system approach in designing
such an efficient classification algorithm for the Intel IXP2800.
We use the interdisciplinary thinking to find the best solution in
each algorithm decision point, from algorithm design to algorithm
implementation.

A good classification algorithm for an NPU must at least take
into account the following interdisciplinary aspects: classification
characteristics, parallel algorithm design, multithreaded
architecture, and compiler optimizations. We believe that high
performance can only be achieved through close interaction
among these interdisciplinary factors. For example, RFC[12] is so
far the fastest packet classification algorithm in terms of the
worst-case memory access times. Its table read operations form a
reduction tree (root at the bottom), where the matching of a rule
involves walking through the tree from the root to the leaves. The
search of the tree is easy to be parallelized, because

1) nodes on the same level can potentially run in parallel;

2) nodes on different levels can also run in parallel.

On a multithreaded architecture, latency hiding can be utilized
in three ways [23][24][25]. First, two parallel memory accesses
can be issued consecutively, and thus the latency of the first
memory access can be partially hidden by that of the second
memory access. Second, the latency of one memory access of a
thread can be overlapped with another thread's execution. Third,
execution of ALU instructions can be overlapped with time spent
on other outstanding memory accesses.

By taking advantage of the tree characteristics inherited in the
RFC algorithm and the latency hiding ability of multithreaded
architecture, multiple read operations can be issued
simultaneously from a single thread, and the read operations from
different threads can also be issued to overlap their execution. In
doing so, the long latencies caused by multiple memory accesses
can be partially hidden, thus the RFC algorithm is an eligible
candidate for an NPU based parallel implementation.

 Even though the advent of many-core and multithreaded NPU
has given rise to a new paradigm for parallel algorithm design and
implementation, the results of general-purpose multi-processing
research are not directly applicable to such system-on-chip (SOC)
based many-core and multithreaded architectures due to their
specific processing requirements [2][17]. This potential of great
performance improvement motivates the development of an
architecture-aware classification algorithm that exploits the unique
architectural properties of an NPU to achieve high performance.
Bitmap-RFC is such an NPU-aware IPv4 packet classification
algorithm specifically designed to exploit the architectural
features of the SOC based many-core and multithreaded systems.

Because an NPU is an embedded SOC with modest memory
space, reducing memory footprint is the highest priority for almost
every networking application. Furthermore, saving memory space
opens other optimization opportunities for reducing the memory-
access latency. For example, moving data from DRAM to SRAM
on the Intel IXP2800 can save about 150 cycles for each memory
access. Considering that the RFC algorithm requires explosive
memory space when the number of classification rules becomes
large, we introduce bitmap compression[8] to the RFC algorithm
to reduce its table size so that the Bitmap-RFC can take advantage
of faster SRAM for achieving high performance.

In the Bitmap-RFC implementation, we carefully investigate
the following optimization opportunities that are directly related
to any NPU-based network algorithm implementations: space
reduction, instruction selection, data allocation, task partitioning,
and latency hiding. For each opportunity, we explore the specific
design space that might have trouble spots in Bitmap-RFC
implementation. After evaluating these design decisions, we come
up with a highly efficient time-space balanced packet
classification algorithm, Bitmap-RFC, which is designed to run
efficiently on the Intel IXP2800. The high-performance of the
resulting algorithm is achieved through a process of design space
exploration by considering application characteristics, efficient
mapping from the algorithm to the target architecture, and
applying source code transformations with both manual and
compiler optimizations.

To summarize, the goal of this paper is to design and
implement a high-performance packet classification algorithm on
a many-core and multithreaded NPU through the system approach.
We identify the key design issues in implementing such an
algorithm and exploit the architectural features to address these
issues effectively. Although we experiment on the Intel IXP2800,
the same high-performance can be achieved on other similar NPU
architectures [1][3][10]. The main contributions of the paper are
as follows:

• A scalable packet classification algorithm is proposed and
efficiently implemented on the IXP2800. Experiments
show that its speedup is almost linear and it can run even
faster than 10Gbps.

• Algorithm design, implementation, and performance
issues are carefully studied and analyzed. We apply the
systematical approach to address these issues by
incorporating architecture awareness into parallel
algorithm design.

To the best of our knowledge, Bitmap-RFC is the first packet
classification implementation that achieves 10Gbps speed on the
Intel IXP2800 for a classifier as large as 12,000 rules. Our
experiences may be applicable to parallelizing other networking
applications on other many-core and multithreaded NPUs as well.

The rest of this paper is organized as follows. Section 2
introduces related work on algorithmic classification schemes
from the NPU implementation point of view. Section 3 formulates
the packet classification problem and briefly introduces the basic
ideas of the RFC algorithm. Section 4 presents the Bitmap-RFC
algorithm and its design space. Section 5 discusses design
decisions made related to NPU-based Bitmap-RFC
implementation. Section 6 gives simulation results and

335

performance analysis of Bitmap-RFC on the Intel IXP2800.
Section 7 presents guidance on effective network application
programming on NPU. Finally, section 8 concludes and discusses
our future work.

2. RELATED WORK
 Prior work on classification algorithms have been reported in
[5][6][11][12][18][20][22][27]. Below we mainly compare
algorithmic classification schemes, especially from the NPU
implementation point of view.

Trie-based algorithms, such as grid-of-tries[22], build
hierarchical radix tree structures where if a match is found in one
dimension another search is started on a separate tree pointing to
another trie. In general, trie-based schemes work well for single-
dimensional searches. However, their memory requirements
increase significantly with the increase in the number of search
dimensions.

Bit vector linear search algorithms[6][18] treat classification
problem as an n-dimensional matching problem and search each
dimension separately. When a match is found in a dimension, a bit
vector is returned identifying the match and the logical AND of
the bit vectors returned from all dimensions identifies the
matching rules. However, fetching the bit vectors requires wide
memory and wide buses, and thus are memory intensive. This
technique is more profitable for ASIC than for NPU because the
NPU normally has limited memory and bus width.

Hierarchical Intelligent Cuttings (HiCuts)[11] recursively
chooses and cuts one searching dimension into smaller spaces, and
then calculates the rules that intersect with each smaller space to
build a decision tree that guides the classifying process.
HyperCuts[20] improves upon HiCuts, in which each node
represents a decision point in the multi-dimensional hypercube.
HyperCuts attempts to minimize the depth of the decision tree by
extending the single-dimensional search into a multi-dimensional
one. On average HiCuts and HyperCuts achieve good balance
between speed and space, however they require more memory
accesses than RFC in the worst case.

 RFC algorithm[12], which is a generalization of cross-
producting[22], is so far the fastest classification algorithm in
terms of the worst-case performance. Because the worst-case
performance is used as one of the most important performance
metrics of network systems[19], we base our classification
algorithm on RFC to guarantee the worst-case performance, and
then apply bitmap compression to reduce its memory requirement
to conquer the problem of memory explosion.

Bitmap compression has been used in IPv4 forwarding[8][9]
and IPv6 forwarding[13]. Recently it is applied to
classification[21], which is the closest in spirit to ours in that all
use bitmaps to compress redundant storage in data structure.
However, previous methods cannot solve the performance
bottleneck caused by searching the compressed tables, and thus
additional techniques have to be introduced to address the
inefficiency of calculating the number of bits set in a bitmap. For
example, the Lulea[8] algorithm introduces a summary array to
pre-compute the number of bits set in the bitmap, and thus it needs
an extra memory access per trie-node to search the compressed
table. The Bitmap-RFC employs a built-in bit-manipulation
instruction to calculate the number of bits set at runtime, and thus

is much more efficient than Lulea’s in terms of time and space
complexity.

3. PROBLEM STATEMENT
Packet classification is the process of assigning a packet to a

flow by matching certain fields in the packet header with a
classifier. A classifier is a database of N rules, each of which, Rj,
j=1, 2 ,…, N, has d fields and an associated action that must be
taken once the rule is matched. The ith field of rule Rj, referred to
as Rj[i], is a regular expression pertaining to the ith field of the
packet header. The expression could be an exact value, a prefix, or
a range. A packet P is said to match a rule Rj if each of the d fields
in P matches its corresponding field in Rj. Since a packet may
match more than one rule, a priority must be used to break the ties.
Therefore, packet classification is to find a matching rule with the
highest priority for each incoming packet.

Table 1. Example of a simple classifier

Rule# F1 F2 F3 Action
R1 001 010 011 Permit
R2 001 100 011 Deny
R3 01* 100 *** Permit
R4 *** *** *** Permit

Let S represent the length of a bit string concatenated by the d
fields of a packet header, then the value of this string falls into [0,
2S-1]. Searching a particular rule based on directly indexing on the
string of concatenated fields (CF-string for short hereinafter) is out
of the question when S is big. The main idea of RFC is to split
such a one-time mapping into multi-phase mapping in order to
reduce a bigger search space into multiple smaller ones. Each
mapping phase is called a reduction, and the data structure formed
by multi-phase mapping is called a reduction tree. After multi-
phase mapping, S-bit CF-string is mapped to a T-bit (T << S)
space.

P2
(100)

OIndex

0
1

P1
(010) …

…

0
0
1
0

0

eqID CBM
0
1

0

0
1
0
2
0

0

0

8
9

10
11
12

0

3

0

3

Chunk 0

Phase 0 eqID0

eqID1

Phase 1

2
2
0

0

1
2

4

7

1
2

7

2 0011

0
0

…

0

3
0
1
0

0

1
2

4

7

Chunk 1

Chunk 2

…

Sample packet：P = (010, 100, 100)
OIndex = eqID0 * 6 + eqID1 * 2 + eqID2

1101
0001

2
0

4
5

3
3

…

15
16
17

P3
(100)

Cross-producting
Table A

eqID2

eqID CBM
0
1
2 0111

1001
0001

eqID CBM
0
1 1111

0011

eqID CBM
0
1
2 0101

1001
0001

3 0011

eqID3

Figure 1. A two-phase RFC reduction tree

Let us use a simple example to illustrate the building process of
a reduction tree. Figure 1 is a two-phase RFC reduction tree
constructed from the classifier defined in Table 1, in which each

336

rule has three fields and each field is 3 bits long. The reduction
tree is formed by two phases:

In the first phase (Phase 0), each field (F1-F3) is expanded into
a separate preprocessed table (Chunk 0-2). Each chunk has an
accompanying equivalence class ID (eqID) array, and each chunk
entry is an index to its eqID array (table). Each entry of eqIDi is a
bit vector (Class Bitmap, CBM) recording all the rules matched
as if the corresponding index to the Chunk array is used as input.
For example, the value of the first entry of Chunk 0 is 0, which
points to the first element of array eqID0 whose bitmap is ‘0001’.
Each bit in a bitmap corresponds to a rule, with the most
significant bit corresponding to R1, and the least significant bit to
R4. Each bit records whether the corresponding rule matches or not
for a given input. Thus, bitmap ‘0001’ means only rule R4 matches
when index 0 of Chunk 0 is used as F1 input. Similarly, the first
entry of Chunk 2 has value 0, and it points to the first entry of
eqID2 whose bitmap is ‘0011’, indicating only rules R3 and R4
match if index 0 of Chunk 2 is used as input for field F3.

In the second phase (Phase 1), a cross-producting table (CPT)
and its accompanying eqID table are constructed from the eqID
tables built in Phase 0. Each CPT entry is also an index, pointing
to the final eqID table whose entry records all the rules matched
when the corresponding index is concatenated from
“eqID0eqID1eqID2”. For instance, the index of the first entry of
CPT is 0, calculated from concatenating three bit strings
‘00’+‘00’+‘00’. The rules matched can be computed as the
intersection of eqID0 [0](‘0001’), eqID1 [0](‘0001’), and
eqID2[0](‘0011’). The result is ‘0001’, indicating rule R4 matches
when `000-000-000’ is used as input for the three fields F1, F2, and
F3.

The lookup process for the sample packet P (010,100,100) in
Figure 1 is as follows:

1) use each filed, P1, P2 and P3 (i.e., 010,100,100) to look up
Chunk 0-2 to compute the index of cross-producting table
A by Chunk0[2]*3*2+Chunk1[4]*2+Chunk2[4], which
is 16;

2) the value of CPT[16] is 3 and it is used as an index to
eqID3. The result of ‘0011’ indicates that rules R3 and R4
match the input packet P. Finally, R3 is returned as it has
higher priority than R4 according to the longest match
principle.

Note that eqID tables built in Phase 0 are only used to build the
CPT A and will not be used thereafter. Careful readers may notice
that there are many repetitions in table CPT A. For example, the
first nine entries of CPT A have the same value 0. These
redundant data may occupy a lot of memory space when the
number of rules increases. We will use Independent Element (IE)
to denote distinct eqID index in CPT tables. The most natural way
to reduce the data redundancy is to store a sequence of
consecutively identical entries as one and use other auxiliary
information to indicate the start and end of the sequence.

Normally the compression of the table is usually at the cost of
increased table searching time. Additional techniques must be
used to solve this problem. Moreover, architectural features of
NPU must be exploited to further optimize the algorithm
performance. Therefore, we state our classification problem as
follows:

1) apply a compression technique to RFC’s cross-producting
tables to reduce the data redundancies;

2) exploit the NPU architectural features to achieve high
classification speed, especially at 10Gbps speed or higher
on Intel IXP 2800.

4. BITMAP-RFC ALGORITHM
4.1 Algorithm Description

Figure 2. Illustration of Bitmap-RFC algorithm

Figure 2 illustrates the basic idea of Bitmap-RFC algorithm. A
bit vector called Bitmap is used to track the appearance of
independent elements (IEs) in CPT. A sequence of consecutively
identical elements are compressed and stored as one element in an
array called Element Array. The data structure consisting of
Bitmap and Element Array is called Compact Table.

Each bit of Bitmap corresponds to an entry in CPT, with the
least significant bit (LSB) corresponding to the first entry. Bitmap
is formed starting from the LSB: a bit is set to ‘1’ if its
corresponding entry in CPT has an IE different from its previous
one. Therefore, a bit set in Bitmap indicates that a different
sequence of consecutively identical elements starts at the
corresponding position in CPT. Whenever a bit is set, its
corresponding IE is added in Element Array. ‘010203’ is the
resultant Element Array for CPT A listed in Figure 2.

Since the length of Bitmap increases with the size of CPT, and
scanning longer bit vector (string) introduces higher overhead, we
divide a CPT into segmented sub-CPTs with a fixed size, and
employ the bitmap compression technique to compress each sub-
CPT into an entry of Compact Table.

4.2 Data Structure
Figure 3 shows the data structure used in Bitmap-RFC, which

comprises Compact Table and Accessory Table. We will use
Compressed CPT (CCPT) to denote this data structure in the rest
of this paper. Only one entry of Compact Table is illustrated in
this figure due to space limit. Accessory Table is only needed
when Element Array is full. In that case, the last two units of
Element Array are used as an address field pointing to the
Accessory Table. Second Memory Accesses Ratio (SMAR) is
defined as the ratio of the number of elements in Accessory
Tables to the total number of elements in both tables.

The sizes of sub-CPT and CCPT entry are two important
design parameters, which have great impacts on SMAR of the
algorithm, and also have close relation to both the set of rules and

337

the logical width of memory. Therefore, these two parameters
must be properly chosen before implementing Bitmap-RFC on a
particular platform.

Figure 3. Data structure for Bitmap-RFC algorithm

The reason for putting Bitmap and Element Array together is to
obtain efficient memory access by utilizing a useful feature of
NPU such as the IXP2800. On the IXP2800, adjacent SRAM
locations up to 64 bytes can be fetched in one SRAM read
instruction, so memory accesses can be reduced by putting them
together so that they can be fetched by one SRAM access.

In order to read the Compact Table efficiently from the
memory, the entry size of Compact Table should be a multiple of
the logical width of memory, which is 32 bits for SRAM and 64
bits for DRAM on the IXP2800. Thus in the case of IXP2800, the
size of sub-CPT could be 32, 64, 96, 128 bits and so on.

4.3 Bitmap-RFC Lookup
Figure 4 gives the pseudo code of Bitmap-RFC search

algorithm. Since the searching process of phase 0 in Bitmap-RFC
is similar to that in RFC, we only discuss the search algorithm for
CCPT. Some constants are predefined to facilitate understanding
of the algorithm. We predefine the size of Bitmap as one word (32
bits), the size of Element Array as four words, containing
maximally 8 elements of 16-bits each. The entry size of Compact
Table is five words, which equals to the sum of Bitmap’s and
Element’s size. That means one memory access should fetch 5
words from SRAM into the Compact Table (line 3), and we
borrow an array notation, CompactTable[0..4] to denote the
Bitmap and Element Array defined in Figure 3, i.e.
CompactTable[0] stores Bitmap (line 6) and from
CompactTable[1] to CompactTable[4] store the Element Array
with 8 entries (line 8).

 First, Oindex is divided by the size of sub-CPT named
(SubLen) in line 2 to compute the index (Cindex) of CCPT
(because each sub-CPT is compressed into one entry in CCPT).
Second, Cindex is used to look up the CCPT and get the data
(Bitmap and Element Array) from a Compact CPT Table entry
(line 3). If the number of bit set in a Bitmap is 1, which is
computed by function POP_COUNT, then there is only one IE in
the Element Array, i.e. Element[0] (lines 9-10) is the final
searching result. Otherwise, BitPos, the position of the bit
corresponding to the searched entry in sub-CPT, is calculated by
Oindex (line 4). Then the number of bits set (PositionNum) from
bit 0 to bit BitPos is calculated by an intrinsic function
POP_COUNT (line 12). PositionNum is used as an index to look
up the Element Array (lines 13-18). If an IE being searched is in
the Element Array (no greater than 8 entries as shown in line 13),

the result is returned from line 14; otherwise, the Accessory Table
needs to be searched (lines 16-19). It is worth mentioning that
each word contains two Element Array elements because the size
of each element is 16 bits.

Let’s take the example given in Figure 2 to illustrate the
searching process, where the size of CPT A is 18. Since each
compact table element can hold as many as 32 CPT entries, one
sub_CPT is enough for such a case. Because only one entry exists
in the Compact Table, Cindex is zero and BitPos and Oindex are
the same. For the input packet P, BitPos equals to 16. The
PositionNum is calculated by counting the number of bits set
from bit 0 to bit 16 (line 12) for the Bitmap listed in Figure 2.

If the element array is organized as shown in Figure 2, in which
six IEs are stored in the Element array, then line 14 will be
executed. On the other hand, if each element array stores less than
six entries, lines 16-19 would be executed, and the Accessory
Table would be visited to locate the corresponding IE. Therefore,
the size of the compact table has dramatic impacts on the number
of memory accesses occurred during the search.

Bitmap-RFC_CCPT_Search (IN Oindex,OUT IE) {
1: Current_Node = CCPT CompactTable;
2: Cindex = Oindex / SubLen; // the index to Compact Table
3: CompactTable[0..4] = Read_CCPT(Current_Node,Cindex);
4: BitPos = GitBitPos(Oindex);
5: //! allocate an array Bitmap[1] to store Bitmap
6: Bitmap[0] = CompactTable[0];
7: //! allocate an array Element[8] to store Element Array
8: Element[0..7] = CompactTable[1..4];
9: if (POP_COUNT(Bitmap[0]) == 1)
10: return Element[0];
11: else {
12: PositionNum = POP_COUNT(Bitmap[0],BitPos) - 1;
13: if (PositionNum < 8) {
14: return Element[PositionNum];
15: }
16: else { // IE being searched is in the AccessoryTable
17: Current_Node =CCPT AccessoryTable;
18: AccessoryIndex=GetAccessoryIndex(PositionNum);
19: return Read_CCPT(Current_Node,AccessoryIndex);
20: }
21: }
} // Bitmap-RFC_CCPT _Search

Figure 4. Pseudo code for Bitmap-RFC search operation

5. NPU-AWARE DESIGN AND
IMPLEMENTATION

Figure 5 draws the components of the Intel IXP2800[15], in
which 16 Microengines (MEs), 4 SRAM controllers, 3 DRAM
controllers, and high-speed bus interfaces are shown. Each ME
has eight hardware-assisted threads of execution, and 640-words
local memory of single-cycle access. There is no cache on each
ME. Each ME uses the shared buses to access off-chip SRAM and
DRAM. The average access latency for SRAM is about 150
cycles, and that for DRAM is about 300 cycles. We implemented
Bitmap-RFC algorithm in the MicroengineC language, which is a
subset of the ANSI C plus parallel and synchronization
extensions, and simulated it on a cycle-accurate simulator. In the
following, we will discuss the crucial issues that have great

338

impacts on algorithm performance when we implement the
Bitmap-RFC on the IXP2800 NPU.

Figure 5. IXP2800 component diagram without I/O interfaces

5.1 Memory Space Reduction
The NPU is generally an embedded SOC whose memory size is

limited. SRAM and DRAM are two types of commonly used NPU
memory, whose size is of megabyte magnitude, and can be used to
store classification tables. On the Intel IXP2800, the size of
DRAM is approximately eight times as large as that of SRAM,
however its latency is approximately twice as long as that of
SRAM. Therefore, the memory access latency can be greatly
reduced if the reduction tree is stored in SRAM. The bitmap
compression is an enabling technique to make it happen.

From the discussion in Section 4.2 and 4.3, the performance of
Bitmap-RFC is greatly affected by the data structure design in
CCPT, especially the size of sub-CPT. We choose the size of
bitmap as 32 bits to match the instruction word width of the NPU
ISA. The size of the Element Array is 4 words containing at most
8 elements, because the number of bits set in a sub-CPT is most
likely no greater than 8. This is an observation we have noticed
for the classification rules we have experimented on (see Figure 7).
Please note that the size of the Element Array affects the second
memory access ratio (SMAR) and the effectiveness of memory
compression. The larger the Element Array is, the less the SMAR
is, and the more memory space is required to store CCPT. The
size of Element Array should be adjustable based on the
distribution of the number of bits set in the bitmap.

5.2 Instruction Selection
Searching CCPT requires computing PositionNum. It is a

time-consuming task in traditional RISC/CISC architecture, as it
usually takes more than 100 RISC/CISC instructions (ADD,
SHIFT, AND, and BRANCH) to compute the number of bits set
in a 32-bit register. Without direct hardware support, calculation
of PositionNum will become a new performance bottleneck in
Bitmap-RFC algorithm.

Fortunately, there is a powerful bit manipulation instruction in
IXP2800 called POP_COUNT, which can calculate the number
of bit set in a 32-bit register in 3 cycles. With POP_COUNT, the
number of instructions used to compute PositionNum is reduced
by more than 97% compared with other RISC/CISC
implementations. This is essential for the Bitmap-RFC algorithm
to achieve the line rate.

NPUs that do not have POP_COUNT normally have another
bit-manipulation instruction, FFS, which can find the first bit set

in a 32-bit register in one clock cycle. With FFS, PositionNum
can be calculated by looping through the 32 bits and continuously
looking for the next first bit set.

Compared with RISC architecture, the NPU normally has much
faster bit-manipulation instructions. Appropriately selecting these
instructions can dramatically improve the performance of NPU-
aware algorithms. However, current compiler technology cannot
always generate such instructions automatically. It is the
programmer’s responsibility to select them manually through
intrinsic or in-line assembly.

10 11 12

15 14 13

9

16

2 3 4

7 6 5

1

8

Multi-Threaded (x8) Micro-
engine (ME) Array

Per-Engine Local Memory,
CAM, Signal Interconnect

QDR SRAM Controller
 (4x64) MBytes

RDRAM Controller
(2GBytes)

32b

64b

5.3 Data Allocation
The Intel IXP2800, like other NPUs, has a complex memory

hierarchy that comprises, in the increasing order of memory
access latency, single-cycle local memory, scratchpad, SRAM, and
DRAM. For Bitmap-RFC implementation, the choice of using
SRAM or DRAM, and where and how to distribute the
compressed tables greatly affect the ultimate classification speed.

In addition to the aforementioned size and speed differences
between SRAM and DRAM, different access granularities and
memory alignment must be taken into account as well. For
example, on the Intel IXP2800, SRAM is optimized and aligned
for 4-byte word access, while DRAM is optimized for at least 16-
byte burst access. Therefore, data structures must be optimized for
the specific type of memory.

There are four independent SRAM controllers on the IXP2800
that allow parallel access, and three DRAM controllers, with each
DRAM controller having four memory banks that can be accessed
in an interleaved manner. To evaluate the performance impacts of
parallel SRAM access and interleaved DRAM access, we
designed the following six settings. Experimental results show that
the fourth setting can meet the OC-192 speed even in the worst
case.

• All the tables are stored in one SRAM controller;

• Tables are properly distributed on two SRAM controllers;

• Tables are properly distributed on three SRAM controllers;

• Tables are properly distributed on four SRAM controllers;

• All the tables are distributed on DRAM, and data
structures are redesigned to facilitate the burst access;

• Tables are properly distributed on SRAM and DRAM in a
hybrid manner.

Table 2. Data allocation scheme for the fourth setting

SRAM controller 0 Phase 0 Chunks & All Accessory Tables
SRAM controller 1 Compact Table of CCPT X’
SRAM controller 2 Compact Table of CCPT Y’
SRAM controller 3 Compact Table of CCPT Z’

We experimented on various data allocation schemes for the

fourth setting, however, only the one shown in Table 2 is the best
solution to achieve OC-192 speed. In this setting, three Compact
Cross-producting Tables, CCPT_X’, CCPT_Y’, CCPT_Z’, used in
the second, and the third levels of the reduction tree, are
distributed into three different SRAM controllers.

339

As discussed above, there is another useful feature that can be
effectively exploited on the IXP2800: adjacent SRAM locations
can be fetched in one SRAM read instruction (maximally 64
bytes). By designing the Compact Table size being 20 bytes (less
than 64 bytes), memory vectorization optimization can be applied
to significantly reduce the number of SRAM accesses.

5.4 Task Partitioning
There are two general ways to partition tasks onto multiple

MEs on the Intel IXP2800: multi-processing and context-
pipelining. Multi-processing involves two parallelizing
techniques. First, multi-threading is applied to a task allocated to
one ME. In an Intel IXP2800, a maximum of 8 threads can be
used per ME. Secondly, a task can use multiple MEs if needed.
For example, if a task needs 2 MEs, a maximum of 16 task threads
can run in parallel. Each thread instance runs independently,
assuming no other thread instances exist. Such a run-to-
completion programming model is similar to the sequential one,
and it is easy to be implemented. In addition, the workloads are
easier to be balanced. However, threads allocated on the same ME
must compete for shared resources, including registers, local
memory, and command (data) buses. For example, if a task
requires more local memory than one ME can support, the
context-pipelining approach must be used instead.

Context-pipelining is a technique that divides a task into a
series of smaller sub-tasks (contexts), and then it allocates them
onto different MEs. These contexts form a linear pipeline, similar
to an ASIC pipeline implementation. The advantage of context-
pipelining is to allow a context to access more ME resources.
However, the increased resources are achieved at the cost of
communication between neighboring MEs. Furthermore, it is hard
to perform such partitioning if workloads cannot be determined at
compile time. The choice of which method to use should depend
on whether the resources can be effectively utilized on all MEs.

The workloads of different phases in Bitmap-RFC are
unbalanced, and thus the multi-processing scheme may achieve
higher performance than context-pipelining. The simulation
results shown in section 6.6 confirm this prediction.

5.5 Latency Hiding
Hiding memory latency is another key to achieving high-

performance of Bitmap-RFC implementation. We hide the
memory-access latency by overlapping the memory access with
the ALU instructions calculating the BitPos in Bitmap in the same
thread as well as memory access issued from other threads.

For instance, in Figure 4 operations listed in line 3 and line 4
can run in parallel so that the BitPos computation is hidden
completely by the memory operation Read_CCPT(). Compiler
based thread scheduling should be able to perform such an
optimization automatically [23].

6. SIMULATION AND PERFORMANCE
ANALYSIS

Due to privacy and commercial secrets, it is hard for us to
access sufficient real classifiers. Luckily, the characteristics of
real classifiers have been analyzed in [5][16][26][12]. Therefore,
we could construct the synthetic ones for the core router

accordingly [20]. In order to measure the performance impact of
the Intel IXP2800 on the Bitmap-RFC algorithm, we experiment
with the following implementations discussed from section 6.2 to
6.7.

6.1 Experimental Setup
The RFC algorithm needs six chunks (corresponding to 16 bits

lower/higher src/dst IP address, 16 bits src/dst port number
respectively) in Phase 0, two CPTs (CPT X and CPT Y) in Phase
1, and one CPT (CPT Z) in Phase 2. To compare with the RFC
algorithm, we implemented 4-deminsional Bitmap-RFC packet
classification with the same three phases. The compressed tables
used by Bitmap-RFC are called CCPT X’/Y’/Z’.

Since the searching time of the RFC algorithm depends on the
structure of the reduction tree, the number of memory access
times is fixed for the RFC algorithm (9 times). As a result, more
rules only affect the memory space needed. Therefore, three
classifiers were constructed for the experiments presented in
section 6.3 to 6.7. They are CL#1, CL#2, CL#3, and each has
1000, 2000, 3000 rules respectively.

Each sub-CPT has 32 entries for all experiments. Thus, the
length of Bitmap is 32 bits. We allocate four long words (4*32
bits) for Element Array (eight Element units), so the size of
Compact Table is 5 long words.

We use the minimal packets as the worst-case input [19]. For
the OC-192 core routers a minimal packet has 49 bytes (9-byte
PPP header + 20-byte IPv4 header + 20-byte TCP header). Thus, a
classifying rate of 25.5Mpps (Million Packets per Second) is
required to achieve the OC-192 line rate.

6.2 Memory Requirement of RFC and
Bitmap-RFC

To find out the maximum number of rules that RFC and
Bitmap-RFC can hold on an IXP2800, we use two metrics:

• The minimum number of rules that causes one of tables
lager than 64MBytes (the size of one SRAM controller).

• The minimum number of rules that causes the total size of
all tables larger than 256MBytes (the total size of SRAM).

The results for RFC and Bitmap-RFC are shown in Table 3.

Table 3. Comparison of memory requirements

Memory Requirement of
 CPT and CCPT (MB)

Total Memory
Requirement (MB)Num.

of
Rules X X’ Y Y’ Z Z’ RFC Bitmap-

RFC
5,700 59.2 18.5 25.8 8.1 64.1 16.0 149.9 43.4
8,050 80.7 25.2 64.3 20.1 127.7 39.9 273.5 86.0
12K 106.5 33.3 106.3 33.2 284.9 71.2 498.6 138.5
17K 191.0 59.7 185.0 57.8 570.7 178.4 947.6 296.7

When the number of rules exceeds 5,700, RFC cannot be

implemented on IXP2800, since the memory requirement of table
Z is bigger than 64MBytes. In addition, the total memory
requirement of RFC will be bigger than 256MBytes when 8,050
rules are used.

340

When the number of rules exceeds 12,000, Bitmap-RFC cannot
be implemented on IXP2800 when the size of sub-CPT is 32,
since the memory requirement of table Z’ is bigger than
64MBytes. In addition, the total memory requirement of Bitmap-
RFC will be bigger than 256MBytes when 17,000 rules are used.

Since SRAM space required for Z’ bank is over 64MBytes
when 12,000 rules are used, the corresponding CPT must be split
into two sub-tables appropriately to fit into two SRAM banks.
Such a split is doable but at the cost of increasing the searching
complexity. Therefore, the maximal number of rules should be
less than 12,000 when the Bitmap-RFC algorithm is used in
practice.

6.3 Relative Speedups

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Thread Number

C
la

ss
iy

in
g

R
at

e(
M

pp
s)

0

2

4

6

8

10

12

14

16

S
pe

ed
up

Classifying Rate Speedup

Figure 6. Bitmap-RFC classifying rates and relative

speedups
Figure 6 shows the classifying rates and relative speedups of

Bitmap-RFC using the minimal packet size on the Intel IXP2800
based on CL#1. The data were collected after all optimizations
previously mentioned were applied and the RFC reduction tree is
stored in four SRAM channels. The speedup is almost linear and
classification speed reaches up to 25.65Mpps for 32 threads. The
reason of sub-linear speedup is partially caused by the saturation
of command request FIFOs and SRAM buses. The SRAM bus
behavior is illustrated in Table 4, in which the FIFO fullness ratio
can be used to indicate the degree of saturation.

Table 4. Bus behavior measured by fullness ratio

Num. of
Threads

ME CMD Request FIFO
Fullness Ratio (%)

SRAM Controller Read
FIFO Fullness Ratio

(%)
1 11.7 2.7
8 40.1 11.1

16 41.5 20.9
24 41.4 36.9
32 41.3 47.9

Bitmap-RFC is a memory-bound algorithm in which each

thread issues multiple outstanding memory requests per packet. If
these memory requests cannot be processed in time, the
classification performance will drop. Taken CL#1 as an example,
the ME CMD Request FIFO fullness ratio increases from 11.7%
for one thread to 40.1% for eight threads. That is, in the 8-thread
mode, a read memory request stays almost four times longer in the
FIFO than it does in the 1-thread mode. Similarly, the SRAM
Controller Read FIFO fullness ratio increases from 2.7% for one
thread to 47.9% for 32-threads, that is, in 32-thread, a read
memory request stays nearly 18 times longer in FIFO than it does

in the 1-thread mode. This architectural constraint prevents the
Bitmap-RFC algorithm from having a 100% linear speedup.

Because our implementation is well over the line-rate speed
when 4 MEs (32 threads) are fully used, we want to know the
exact minimum number of threads required to meet the OC-192
line rate. Table 5 shows the minimum number of threads required
for the three classifiers. On average all of the classifiers need 20
threads to reach OC-192 line rate.

Table 5. Minimal threads required for supporting line rate

Classifying rate (Mpps) Classifier Minimum Number
of Threads Single thread Multithreads

CL#1 20 1.97 26.65
CL#2 20 1.94 25.74
CL#3 20 1.95 25.77

 Considering there are sixteen MEs on the Intel IXP2800, three

MEs for IPv4 packet classification use only less than 1/5 of the
entire ME budget. Therefore, Bitmap-RFC leaves enough room
for other networking applications, such as packet forwarding and
traffic management, to meet the line-rate performance.

6.4 Instruction Selection
Table 6. Classifying rates (Mpps) of POP_COUNT vs. FFS

 1 ME 2 MEs 4 MEs 8 MEs
FFS 5.04 10.07 20.03 33.15
POP_COUNT 6.54 12.85 25.65 33.35 CL#1
Improvement 30% 29% 28% 1%
FFS 4.49 9.03 17.85 32.87
POP_COUNT 6.38 12.77 25.09 33.33 CL#2
Improvement 42% 41% 41% 1%
FFS 4.48 8.96 17.54 32.55
POP_COUNT 6.38 12.77 25.09 33.33 CL#3
Improvement 43% 43% 43% 2%

Table 6 shows the classifying rates of the worst-case input

packets by using two different instructions: POP_COUNT and
FFS respectively. The testing is done for three rule sets. In general,
the classifying rate of POP_COUNT based implementation is
higher than that of FFS based implementation. On average, the
performance improvement using POP_COUNT can be as high as
43% compared to FFS based implementation. The exception is on
8MEs, because the utilization rate of four SRAM controllers has
reached 96% in both cases, and the SRAM bandwidth becomes a
new performance bottleneck, which shadows other performance
improvement factors. The same impact can also be observed in
other performance tables reported in section 6.6, and 6.7.

The lower classifying rate of FFS is because computational
time of PositionNum depends on the number of bits set in the
Bitmap. The more bits are set, the more instructions are executed
at runtime. This shows that an architecture-aware algorithm needs
to consider the instruction selection to facilitate its implementation
because those instructions might have a significant impact on the
performance of the algorithm.

According to the three classifiers we experimented, we found
out the number of bits set in Bitmap did not exceed three on
average. The distribution of the number of bits set in Bitmap is
provided in Figure 7 in which it shows that

341

• the majority of Bitmaps have only one bit set;

• most likely the number of bits set is less than 8.

Otherwise, the speed improvement of POP_COUNT vs. FFS
should be even higher.

Figure 7. Distribution of the number of bits set in Bitmap

6.5 Memory Impacts
The simulation shows that our algorithm cannot support the

OC-192 line rate in the worst case if DRAM alone is used. The
culprit is the DRAM push bus, which is shared by all MEs for
reading CCPT. Instead, we simulated the following six data
allocation schemes using the worst-case minimal-packet input on
the IXP2800. Table 7 shows the simulation results. We found out:

Table 7. Classifying rates (Mpps) on different data allocations

 1 ME 2 MEs 4 MEs 8 MEs
1-SRAM 6.49 9.65 9.63 9.576
2-SRAM 6.50 12.94 18.63 18.15
3-SRAM 6.50 12.99 20.40 20.10
4-SRAM 6.54 12.85 25.65 33.35
Hybrid-1 7.03 12.66 12.66 12.63
Hybrid-2 7.13 12.82 12.80 12.78

• The 1-SRAM/2-SRAM/3-SRAM table allocation schemes

cannot support OC-192 line rate if the number of MEs is no
greater than 4. Because the utilization rate of a single SRAM
controller is up to 98% at 4 MEs and 8 MEs, the single
SRAM bandwidth is the performance bottleneck of these
schemes.

• Only the 4-SRAM configuration obtains almost linear
speedup from 1 ME up to 8 MEs. Additionally, the utilization
rates of four SRAM controllers are all approximately 96%
when 8 MEs are used, indicating the potential speedup could
be even greater if the system could have more SRAM
controllers.

• We experimented two kinds of hybrid table allocations. The
Hybrid-1 configuration stores the preprocessing tables
(Chunks 0-5) in SRAM and CCPT X’/Y’/Z’ in DRAM. The
Hybrid-2 configuration stores Chunks 0-5 and CCPT X’/Y’
in SRAM and CCPT Z’ in DRAM. The simulation shows
that both of them cannot support the OC-192 line rate in the
worst case either.

6.6 Task Partitioning
The communication method in context-pipelining could be a

scratch ring or a next-neighbor ring (FIFO). Two types of context-
pipelining partitioning were implemented based on next-neighbor
ring. We divided the whole classifying task into pieces according
to (1) the algorithm logic; (2) the number of memory accesses
required per ME. The partitioning configurations are as follows:

1) The first ME is for the search of all preprocessed tables in
Phase 0 and the second is for search the CCPT X’/Y’/Z’
in the following phases.

2) The first ME is for the search of half preprocessed tables,
the second ME is for the search of rest preprocessing
tables and CCPT X’, and the third ME is for the search of
CCPT Y’/Z’.

Because the task of Bitmap-RFC in any stage is not well-
balanced, it is extremely difficult to partition the workload evenly.
In addition, the communication FIFOs also add the overhead.
Each ME must check whether the FIFO is full before a put
operation and whether it is empty before a get operation. These
checks take many clock cycles when context-pipelining stalls.
Table 8 shows the simulation results using different task allocation
policies.

Table 8. Classifying rates (Mpps) of multi-processing vs.
context-pipelining

 2 MEs 3MEs 4 MEs 6 MEs
Multi-processing 12.85 19.32 25.65 33.73
Context-pipelining-1 12.31 -- -- --
Context-pipelining-2 -- 15.41 -- --
Context-pipelining-3 -- -- 22.37 33.03
Context-pipelining-4 -- -- -- 29.88

Context-pipelining-3 & 4 are the mixing scheme of Context-

pipelining-1 & 2, in which each stage is replicated using multi-
processing. For example, context-pipelining-3 uses 4 MEs, in
which 2 MEs are allocated for the first stage of context-pipelining-
1 and the remaining 2 MEs are allocated for the second stage of
context-pipelining-1, It is clear that both multi-processing and
context-pipelining-3 & 4 can support the OC-192 line rate with
four MEs and six MEs respectively on the Intel IXP2800.
However multi-processing is preferable for Bitmap-RFC
algorithm because of the dynamic nature of the workload.

6.7 Latency Hiding
Table 9 reports the performance impact of various latency

hiding techniques. The MicroengineC compiler provides only one
switch to turn latency hiding optimizations on or off. We reported
the combined effects after applying those latency hiding
techniques. The MicroengineC compiler can schedule ALU
instructions into the delay slots of a conditional/unconditional
branch instruction and a SRAM/DRAM memory instruction.

Table 9. Improvement from latency hiding techniques (Mpps)

 1 ME 2 MEs 4 MEs 8 MEs
Overlapped 6.54 12.85 25.65 33.35
Without overlapped 6.10 12.13 23.94 33.10
Improvement 7.11% 7.15% 7.14% 0.64%

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

1 2 3 4 5 6 7 8 9 10 11
The number of bit sets

A
pp

ea
ra

nc
e

tim
es

 in
 M

C
C

P
Ts

MCCPT X' MCCPT Y' MCCPT Z'

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

1 2 3 4 5 6 7 8 9 10 11
The number of bit sets

A
pp

ea
ra

nc
e

tim
es

 in
 M

C
C

P
Ts

MCCPT X' MCCPT Y' MCCPT Z'

C
C

PT
s

CCPT X’ CCPT Y’ CCPT Z’

bits set

342

By performing static profiling, we found that seventeen ALU
instructions were scheduled into delay slots. On average, we
obtained a performance improvement of approximately 7.13% by
applying the latency hiding techniques.

7. PROGRAMMING GUIDANCE ON NPU
We have presented Bitmap-RFC implementations and analyzed

performance impacts on the Intel IXP2800. Based on our
experiences, we provide the following guidelines for creating an
efficient network application on an NPU.

1) Compress data structures and store them in SRAM
whenever possible to reduce memory access latency.

2) Multi-processing is preferred to parallelize network
applications rather than context pipelining because the
former is insensitive to workload balance. Unless the
workload can be statically determined, use a combination
of both to help distribute loads among different
processing stages fairly.

3) In general, the NPU has many different shared resources,
such as command and data buses. Pay attention to how
those shared resource are used because they might
become a bottleneck in algorithm implementation.

4) The NPU supports powerful bit-manipulation instructions.
Select appropriate instructions to meet the application
needs without waiting for the compiler automation
support.

5) Use compiler optimizations to schedule ALU instructions
to fill the delay slots to hide latency whenever possible.

8. CONCLUSIONS AND FUTURE WORK
This paper proposed a high-speed packet classification

algorithm Bitmap-RFC and its efficient implementation on the
Intel IXP2800. We studied the interaction between the parallel
algorithm design and architecture mapping to facilitate efficient
algorithm implementation on the NPU architecture. We
experimented with an architecture-aware design principle to
guarantee the high-performance of the resulting algorithm.
Furthermore, we investigated the main software design issues that
have most dramatically performance impacts on networking
applications. Based on detailed simulation and performance
analysis, we identified the limits of classification algorithm on an
IXP2800. We effectively exploited the thread-level parallelism on
many-core and multithreaded architectures to enable an efficient
algorithm mapping.

Our experiences show that developing networking applications
on a many-core and multithreaded architecture requires applying a
system method to address the performance bottleneck. The
architecture-aware method promoted in this paper advocates of
considering the architectural features and constraints in the
algorithm development phases as early as in algorithm design.
Furthermore, in each development phase from algorithm design to
algorithm implementation, the design decisions made should be
based on the application characteristics as well as the architectural
features. For example, the bitmap-RFC relies on the following
application characteristics and the architecture features to achieve
10Gbps speed:

• the RFC algorithm can be easily parallelizable;

• uncompression of the bitmap compressed tables can be
efficiently performed on the IXP2800 using special bit-
manipulation instructions;

• execution of the multiple outstanding memory accesses
can be overlapped with other useful computation in the
multi-threaded architecture.

By exploiting the application characteristics and the
architectural features, the high-performance classification
algorithm bitmap-RFC has been developed on the IXP2800.

Our performance analysis indicates that we need spend more
effort on eliminating various hardware performance bottlenecks,
such as the SARM and DRAM buses. In addition, how to select an
appropriate size of sub-CPT to make Bitmap-RFC run faster
requires more study. We will do more research along these two
directions.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their

valuable comments. This work was supported by the Intel China
IXA University Program, the National Natural Science
Foundation of China, and the Anhui Province-MOST Co-Key
Laboratory of High Performance Computing and Its Application.

REFERENCES
[1] Agere, “Network Processors”,

http://www.agere.com/telecom/network_processors.html.
[2] J. R. Allen, B. M. Bass, C. Basso, R. H. Boivie, J. L.

Calvignac, G. T. Davis, L. Frelechoux, M. Heddes, A., et al.,
“IBM PowerNP Network Processor: Hardware, Software,
and Applications”, IBM J. Res. & Dev., Vol. 47 No. 2/3
MARCH/MAY 2003.

[3] AMCC, “Network Processors”,
https://www.amcc.com/MyAMCC/jsp/public/browse/controll
er.jsp?networkLevel=COMM&superFamily=NETP.

[4] Avici, “Avici Intros Multiservice Line Cards”,
http://www.lightreading.com/document.asp?doc_id=34665&
site=supercomm

[5] F. Baboescu, S. Singh, and G. Varghese, “Packet
Classification for Core Routers: Is there an alternative to
CAMs”, Technical Report, University of California, San
Diego, 2003.

[6] F. Baboescu and G. Varghese, “Scalable Packet
Classification”, in Proc. of ACM SIGCOMM, 2001, pp.199-
210.

[7] Cisco Systems, “Cisco CRS-1 Carrier Routing System”,
http://www.cisco.com/en/US/products/ps5763/

[8] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small
Forwarding Tables for Fast Routing Lookups”, in Proc. of
ACM SIGCOMM ’97, Cannes, France, 1997, pp.3-14.

[9] W. Eatherton, G Varghese, and Z Dittia, “Tree Bitmap:
Hardware/Software IP Lookups with Incremental Updates”,
in Proc. of ACM SIGCOMM on Computer Communication
Review, Vol. 34, Issue 2, Apr. 2004, pp.97-122.

343

[10] Freescale, “C-Port Network Processors”,
http://www.freescale.com/webapp/sps/site/homepage.jsp?nod
eId=02VS0lDFTQ3126.

[11] P. Gupta and N. McKeown, “Packet Classification Using
Hierarchical Intelligent Cuttings”, IEEE Micro, Vol. 20, No.
1, Jan.-Feb. 2000, pp.34-41.

[12] P. Gupta and N. McKeown, “Packet Classification on
Multiple Fields”, in Proc. of ACM SIGCOMM, Computation
Communication Rev., Vol. 29, Sep. 1999, pp.147-160.

[13] Xianghui Hu, Xinan Tang, and Bei Hua, “A High-
performance IPv6 Forwarding Algorithm for a Multi-core
and Multithreaded Network Processor”, in Proc. of ACM
PPoPP’06, Mar. 2006, pp.168-177.

[14] Huawei, “Huawei Launches NetEngine80 Core Router At
Networld Interop 2001 Exhibition in US”,
http://www.huawei.com/news/view.do?id=88&cid=-1001

[15] Intel, “IXP2XXX Network Processors”,
http://www.intel.com/design/network/products/npfamily/ixp2
xxx.htm.

[16] M. Kounavis et al., “Directions in Packet Classification for
Network Processors”, in Proc. of Second Workshop on
Network Processors (NP2), Feb. 2003.

[17] C. Kulkarni, M. Gries, C. Sauer, and K. Keutzer,
“Programming Challenges in Network Processor
Deployment”, in Proc. of the International Conference on
Compilers, Architecture, and Synthesis for Embedded
System, San Jose, USA, 2003, pp.178-187.

[18] T. V. Lakshman and D. Stiliadis, “High-speed Policy-based
Packet Forwarding Using Efficient Multi-dimensional Range
Matching”, in Proc. of ACM SIGCOMM98, Sep. 1998, pp.
191-202.

[19] T. Sherwood, G. Varghese and B. Calder, “A Pipelined
Memory Architecture for High Throughput Network
Processors”, in Proc. of ACM ISCA’03, 2003.

[20] S. Singh, F. Baboescu, G. Varghese, and Jia Wang, “Packet
Classification Using Multidimensional Cutting”, in Proc. of
ACM SIGCOMM’03, ACM Press, 2003, pp.213-224.

[21] E. Spitznagel. “Compressed Data Structures for Recursive
Flow Classification”, Technical Report, WUCSE-2003-65,
May 2003.

[22] V. Srinivasan, S. Suri, G. Varghese, and M. Waldvogel, “Fast
and Scalable Layer Four Switching”, in Proc. of ACM
SIGCOMM’98, Sep. 1998, pp. 203-14.

[23] Xinan Tang and Guang R. Gao, “Automatically Partitioning
Threads for Multithreaded Architectures”, in Journal of
Parallel Distributed Computing, 1999,58(2) pp.159-189.

[24] Xinan Tang and Guang R. Gao, “How hard is thread
partitioning and how bad is a list scheduling based
partitioning algorithm?'', in Proc. of the tenth annual ACM
symposium on Parallel Algorithms and Architectures, pp.
159-189, 1998.

[25] Xinan Tang, J. Wang, K. Theobald, and Guang R. Gao,
“Thread partitioning and scheduling based on cost model”, in
Proc. of the ninth annual ACM symposium on Parallel
Algorithms and Architectures, pp. 272-281, 1997.

[26] D. E. Taylor and J. S. Turner, “ClassBench: A Packet
Classification Benchmark”, Technical Report, WUCSE-
2004-28, Department of Computer Science & Engineering,
Washington University in Saint Louis, May 2004.

[27] Yaxuan Qi and Jun Li, “Towards Effective Packet
Classification”, in Proc. of IASTED Conference on
Communication, Network, and Information Security (CNIS),
2006.

344

http://www.sigmod.org/dblp/db/journals/jpdc/jpdc58.html#TangG99
http://www.sigmod.org/dblp/db/journals/jpdc/jpdc58.html#TangG99

	1. INTRODUCTION
	2. RELATED WORK
	3. PROBLEM STATEMENT
	4. BITMAP-RFC ALGORITHM
	4.1 Algorithm Description
	4.2 Data Structure
	4.3 Bitmap-RFC Lookup

	5. NPU-AWARE DESIGN AND IMPLEMENTATION
	5.1 Memory Space Reduction
	5.2 Instruction Selection
	5.3 Data Allocation
	5.4 Task Partitioning
	5.5 Latency Hiding

	6. SIMULATION AND PERFORMANCE ANALYSIS
	6.1 Experimental Setup
	6.2 Memory Requirement of RFC and Bitmap-RFC
	6.3 Relative Speedups
	6.4 Instruction Selection
	6.5 Memory Impacts
	6.6 Task Partitioning
	6.7 Latency Hiding

	7. PROGRAMMING GUIDANCE ON NPU
	8. CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

