
Evaluating Network Processors Using
NetBench

GOKHAN MEMIK

Northwestern University

and

WILLIAM H. MANGIONE-SMITH

University of California, Los Angeles

The Network Processor market is one of the fastest growing segments of the microprocessor indus-

try today. In spite of this increasing market importance, there does not exist a common framework

to compare the performance of different Network Processor designs. Our primary goal in this study

is to fill this gap by creating the NetBench benchmarking suite. NetBench is designed to represent

Network Processor workloads. It contains 11 programs that form 18 different applications. The

programs are selected from all levels of packet processing: Small, low-level code fragments as well

as large application-level programs are included in the suite. These applications are representative

of the Network Processor applications in the market. Using the SimpleScalar simulator to model

an ARM processor, we study these programs in detail and compare key characteristics, such as in-

structions per cycle, instruction distribution, cache behavior, and branch prediction accuracy with

the programs from MediaBench. Using statistical analysis, we show that the simulation results

for the programs in NetBench have significantly different characteristics than programs in Medi-

aBench. Finally, we present performance measurements from Intel IXP1200 Network Processor to

show how NetBench can be utilized.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of

Systems—Measurement techniques; C.3 [Computer Systems Organization]: Special-Purpose

and Application-Based Systems—Real-time and embedded systems; I.6 [Computing Methodolo-
gies]: Simulation and Modeling—Simulation Support Systems

General Terms: Design, Measurement, Performance, Standardization

Additional Key Words and Phrases: Embedded systems, benchmarking, network processors

1. INTRODUCTION

Emerging applications in the networking field demand increasingly higher
network bandwidths. In addition, new applications and protocols require the

Authors’ addresses: Gokhan Memik, Department of Electrical Engineering and Computer Science,

Northwestern University, Evanston, IL 60208; email: memik@ece.northwestern.edu; William H.

Mangione-Smith, Department of Electrical Engineering, University of California, Los Angeles, Los

Angeles, CA 90095; email: billms@ee.ucla.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515

Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1539-9087/06/0500-0453 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006, Pages 453–471.

454 • G. Memik and W. H. Mangione-Smith

network to do more than just deliver packets. Instead, these applications
have requirements, such as quality of service guarantees, secure transmis-
sion of data, and intelligent/dynamic routing and switching. These opera-
tions require high processing power. This set of features, coupled with the
higher network link speeds, puts a heavy demand on the network processing
elements.

Traditionally, embedded processors in networks are either custom-designed
ASIC chips or variations of general-purpose processors. Both schemes have
their advantages and disadvantages. ASIC chips have better performance, but
they have higher manufacturing costs and lack the flexibility of programmable
processors. If there is a change in the protocol or application, it is hard to
reflect the change in the ASIC design. General-purpose processors, on the other
hand, are not optimized for networking applications and, hence, do not provide
satisfactory performance for most of the applications.

Network Processors (NPUs) eliminate the drawbacks of general-purpose pro-
cessors and ASIC designs by combining the flexibility of general-purpose pro-
grammable processors and performance of ASIC chips.

Soon after their introduction [MMC Networks], the NPU market became one
of the fastest growing segments of the microprocessor industry. In the last 2
years, more than 40 new vendors have announced their NPU architectures [e.g.,
Improv Inc.; XStream Corp.]. Although these processors aim at the same appli-
cation domains, they vary widely in their architectural designs. Hence, there
is a tremendous need to evaluate the performances of these different designs.

A designer of a product should know the type of applications, based on mar-
keting requirements, for which the processor is optimized. Similarly, customers
benefit from benchmarks by selecting the product that gives the best perfor-
mance for the applications they consider important (when benchmarks are
aligned with commercial workloads). In spite of the rapid increase in use of
NPUs, there still does not exist a common framework or methodology for eval-
uating them. Our goal in this study is to fill this gap. Specifically, our contribu-
tions in this paper are

� Creating a benchmarking suite by defining a set of applications that are
common for NPUs;

� Investigating several characteristics of these networking applications to un-
derstand their nature;

� Comparing the characteristics of these applications with the applications
from MediaBench [Lee et al. 1997a];

� Reporting results for several different cache and branch prediction configu-
rations using an accurate StrongARM simulator [Burger and Austin 1997]
to guide designers in the selection of architectural parameters;

� Demonstrating how NetBench can be utilized by providing a performance
measurement of Intel IXP1200 Network Processor [Halfhill 1999], a repre-
sentative NPU product currently available in the market.

This paper is organized as follows. In the next section, we summarize ar-
chitectural characteristics of NPUs. Section 3 discusses the related work. In

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

Evaluating Network Processors Using NetBench • 455

Fig. 1. A generic NPU design.

Section 4, we present the applications in NetBench. Applications in NetBench
are compared with the MediaBench applications in Section 5. In Section 5.3, we
present experimental results for Intel IXP1200 simulations. Section 6 concludes
the paper with a summary.

2. NETWORK PROCESSOR CHARACTERISTICS

This section discusses important characteristics of NPUs, such as on-chip
caches used in the processors, and techniques for hiding memory latency.

NPUs vary significantly in their design methodologies. Designs span from
single-core superscalar processors (Broadcom SiByte) to system-on-chip designs
containing more than 40 execution cores (EZChip). Their major design method-
ologies can be grouped into three categories: VLIW-based processors [Improv
Inc.], SMT-based processors [XStream Corp.] and chip multiprocessor systems
[C-Port Corp.; Halfhill 1999]. Most of the processors contain multiple execu-
tion cores to take advantage of the data parallelism that exists in many net-
working applications. In addition, most of the NPUs modify RISC-like ISAs
with instructions that efficiently perform operations required by networking
applications. In addition, they employ special-purpose elements to improve the
execution efficiency. These elements are either packet-oriented memory con-
trollers or accelerators that perform certain operations (e.g., table lookup) that
occur frequently in the applications and are not efficient to implement in the
execution cores.

Figure 1 presents a generic NPU design. The processor contains a set of
execution cores, accelerators, and on-chip secondary memory (level-2 cache).
The processors communicate through a global shared bus. Each execution
core is employed with local level-1 instruction and data caches. The execution
cores can be very simple, such as an ALU enhanced with local registers (e.g.,
EZChip), or they can be complex, such as a modified MIPS core (e.g., PMC-Sierra
RM9000).

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

456 • G. Memik and W. H. Mangione-Smith

The most common property among different NPUs is multithreading. Al-
most all the NPUs available in the market today employ a variation of a multi-
threading technique (e.g., Clearwater CNP810SP, Intel IXP, IBM Rainer, MMC
nP7510, Motorola C-5). Clearwater CNP810SP can execute instructions from
eight different threads. Intel IXP family processors, on the other hand, execute
instructions from a single thread, but have hardware support for single-cycle
thread switching between four active threads.

The size of the level 1 instruction and data caches employed in the execution
cores also varies among different designs, but most of the designs employ caches
of 4 to 16 KB. For example, Intel IXP 2800 has a 4 KB instruction store, while
IBM Rainier and Lexra NetVortex have 8 KB and 16 KB level-1 instruction
caches, respectively.

3. RELATED WORK

NPUs are a class of programmable IC’s based on SOC (system-on-chip) tech-
nology that implements communication-specific functions more efficiently than
general-purpose processors. Crowley et al. [2000] evaluate different design
mechanisms for NPU. They measure the performance of a VLIW-based, an SMT-
based, a fine-grain multithreaded multiprocessor, and a single-chip multipro-
cessor. For their study, they use a subset of applications that are in NetBench.
These applications are, however, not available to the public.

Benchmarks play a major role in any product design process. SPEC
[Standard Performance Evaluation Council] benchmarks have been well ac-
cepted and used by several processor manufacturers and researchers to mea-
sure the effectiveness of their design. Other fields have useful benchmarking
suites designed for the specific application domain: TPC [Transaction Process-
ing Council] for database systems, and SPLASH [Woo 1995] for parallel ma-
chine architectures.

The need for a benchmarking suite in the NPU area has been pointed out by
several researchers. Nemirovsky [2000] discusses the requirements and chal-
lenges of a benchmarking suite for NPUs. He defines a set of metrics to be
used with any benchmarking suite and draws the guidelines for defining a
benchmark. Currently, three benchmarking suites contain applications that
might be used in NPUs. EEMBC has a benchmarking suite designed for em-
bedded processors [EEMBC], which contains three networking applications.
However, these applications are control-plane tasks (such as a shortest path
algorithm) and do not form a basis for measuring the effectiveness of NPUs.
MediaBench [Lee et al. 1997a] also contains security and communication ap-
plications that might be used by some of the NPUs. These applications per-
form translations between different data formats and, therefore, are not rep-
resentative of most NPU applications. CommBench [Wolf and Franklin 2000]
is designed for telecommunications NPUs. It contains four header-processing
applications, which effectively represent tasks related to traditional Ipv4
routing, and four payload applications. The payload applications are jpeg,
cast (CAST-128 block cipher algorithm), reed (Reed-Solomon Forward Error-
Correction algorithm), and zip (Lempel-Ziv (LZ77) compression algorithm). Al-
though these applications are representative of telecommunications NPUs, the

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

Evaluating Network Processors Using NetBench • 457

selected applications are limited to this type of NPUs and do not represent
applications employed by majority of NPUs. Similarly, the Network Processor
Forum (NPF) established a set of applications that is used as a benchmarking
suite [Network Processor Forum]. However, all four applications are routing-
related applications.

4. NETBENCH PROGRAMS

In this section, we present the applications in NetBench. Any benchmarking
suite should be representative of the applications in the domain the benchmark
is designed for. This was the most important criterion in our selection of the
applications.

NPU applications contain a large variety of tasks from traditional routing
and switching tasks to much more complicated applications containing intel-
ligent routing and switching decisions. Therefore, any benchmarking suite at-
tempting to represent the applications on NPUs should consider all levels of a
networking application. Instead of using the traditional 7-level OSI model for
categorizing the applications, we have used a three-level categorization. These
levels are:

� Low- or micro-level routines containing operations nearest to the link or
operations that are part of more complex tasks;

� Routing-level applications, which are similar to traditional IP level routing
and related tasks; and

� Application-level programs, which have to parse the packet header and some-
times a portion of the payload and make intelligent decisions about the des-
tination of the packet.

This categorization is performed by considering the complexity of the appli-
cation, instead of the specific task it is performing. Hence, it is a better cate-
gorization for the designers of the NPUs than the seven-layer categorization.
For example, as we will show in Section 5, applications parsing the packet data
have different characteristics than the applications that only parse header in-
formation regardless of the task they are performing. Note that these three
categories cover all the levels of a traditional seven-level reference model and,
hence, present an inclusive characterization of all networking applications. In
the following, we list the applications in NetBench according to the category
they belong:

4.1 Micro-Level Programs

CRC: The CRC-32 checksum calculates a checksum based on a cyclic re-
dundancy check as described in ISO 3309 [International Organization for
Standardization 1984]. CRC-32 is used in Ethernet and ATM Adaptation Layer
5 (AAL-5) checksum calculation. The code is available in the public domain
[Cell-Relay].

TL: TL is the table lookup routine common to all routing processes. We have
used radix-tree routing table, which was used in several UNIX systems. The
code segment is from FreeBSD operating system [FreeBSD Project].

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

458 • G. Memik and W. H. Mangione-Smith

4.2 Routing-Level Programs

These programs make a decision depending on the source or destination IP
address of the packet.

ROUTE: Route implements IPv4 routing according to RFC 2644 [Senie].
When a router receives a packet, it has to decide the next network hop. Route
implements the table lookup along with internet checksum (for the header).
It makes the necessary changes in the header (for example, the Time-To-Live
value), fragments the packet if necessary, and forwards it. The code is from the
FreeBSD operating system [FreeBSD Project].

DRR: Deficit-round robin (DRR) scheduling [Shreedhar and Varghese 1995]
is a scheduling method implemented in several switches today. In DRR, all the
connections through the router have separate queues. Using these queues, the
router tries to accomplish a fair scheduling by allowing same amount of data
to be passed from each queue. The implementation is based on the algorithm
by Shreedhar and Varghese [1995].

IPCHAINS: IPCHAINS is a firewall application that checks the IP source
of each of the incoming packet and decides either to pass the packet through
the firewall (accept), to deny the packet (deny), to modify it (masq), or to reject
the packet and send information to the sender (reject). The decision is based on
rules given by the user. The implementation is from Rustcorp Inc. [Russell].

NAT: Network Address Translation (NAT) is a common method for IP ad-
dress management. NAT operates on a router, usually connecting two networks,
and translates the private (not globally unique) addresses in the internal net-
work into legal addresses before packets are forwarded onto the public network.
Hence, for any departing packet, the source IP on the packet should be changed.
Similarly, the destination address on any incoming packet should also be modi-
fied. The program accomplishing this task uses several routines from FreeBSD
operating system [FreeBSD Project].

4.3 Application-Level Programs

These programs are the most time-consuming applications in NetBench be-
cause of their processing requirements.

DH: Diffie-Hellman (DH) is a common public key encryption/decryption
mechanism. It is the security protocol employed in several Virtual Private Net-
works (VPNs). The implementation is from RSA Data Security, Inc.

MD5: Message Digest algorithm (MD5) creates a signature for each outgo-
ing packet, which is checked at the destination [Rivest 1992]. The signature is
cryptographically secure, hence, if the received packet does not match the sig-
nature, then the receiver will assume that the packet is unreliable and discard
it. The implementation is from RSA Data Security, Inc.

SNORT: Snort is an open-source network intrusion detection system, capable
of performing real-time traffic analysis and packet logging on IP networks. It
can perform protocol analysis and content searching/matching in order to detect
a variety of attacks and probes, such as buffer overflows, stealth port scans,
and CGI attacks [Roesch]. It uses a user-defined rule set that defines actions
for each packet. We have used the default configuration file (snort.conf) that

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

Evaluating Network Processors Using NetBench • 459

contains 886 rules for the snort-nids application. The logging mode (snort-l)
stores information about the packets.

SSL: SSL (secure sockets layer) is the secure transmission package used in
several UNIX systems. SSL is used by applications, such as ssh [Barrett and
Silverman 2001] and sftp [OpenBSD Project], which perform secure communi-
cation over insecure public networks. The ssl implementation we used is from
the OpenSSL Project. The application interface is modified to perform three
different computations with varying strength: weak performs rc4-40 encryp-
tion without any digest, medium performs DSA authentication, followed by
blowfish encryption and md5 digest for each packet, and strong performs RSA
authentication followed by 168-bit key 3-DES and SHA digest for each packet.

URL: URL implements URL-based destination switching, which is a com-
monly used content-based load balancing mechanism. In URL-based switch-
ing, all the incoming packets to a switch are parsed and forwarded according to
URL. For example, all image requests might be sent to an image server. This
application increases the utility of specialized servers in a server farm. The
implementation is based on the description from PMC-Sierra.

4.4 Discussion

NetBench contains 11 applications implemented in C or C++. Many of the avail-
able NPUs in the market today have corresponding compilers for high-level
languages such as C. For such processors, the implementations can be automat-
ically mapped into the processor. We recommend the usage of the applications
in such a framework to establish a fair comparison of the systems. Neverthe-
less, many NPUs do not provide such compilers and the applications have to
be manually coded. Even in systems with compiler support, either the output
of the compiler should be optimized or library routines should be used to per-
form activation of special hardware structures (e.g., table lookup engines). The
NetBench applications do not employ such special calls. However, the imple-
mentations can be easily modified to perform the necessary operations. First,
the user should locate the segments of the application that perform the specific
task. Once such locations are identified, the code can be modified to perform the
necessary operation in the special structure. For example, consider the route ap-
plication: the table lookup is performed in the rn search procedure. If the NPU
employs a table lookup engine, this procedure can be modified to activate the
engine instead of performing the radix-tree lookup. Although modifications to
the code could be done, the state of the code cannot be changed. For example, the
user can change the method for storing the routing table. However, the routing
table has to include the same information after the modification. In addition,
the same sequence of operations have to be performed.

5. PROGRAM CHARACTERISTICS

In this section, we compare several characteristics of NetBench applications
with MediaBench [Lee et al. 1997a] applications. MediaBench is designed for
multimedia and communication systems, which are, in many ways, similar to
NPUs. We have selected MediaBench to compare against NetBench, because

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

460 • G. Memik and W. H. Mangione-Smith

of this similarity of the target processor architectures. Although these applica-
tions are intuitively similar, we show that the applications for these architec-
tures are significantly different, thus validating the need for a separate bench-
marking suite for NPUs.

In Section 5.1, we explain the simulation environment and the applications
from MediaBench. Section 5.2 summarizes the experimental results. Section 5.3
presents the results for the Intel IXP1200 simulations.

5.1 Simulation Environment

In order to compare NetBench and MediaBench applications, we have per-
formed several simulations on the SimpleScalar/ARM simulator [Burger and
Austin 1997]. SimpleScalar is a cycle-accurate simulator that is capable of sim-
ulating a variety of processors. Although it provides detailed information about
instruction count and execution time, we had to modify the simulator to gather
information about the executed instructions. We simulate a processor model
that represents a StrongARM SA-110. We modified the model to represent a
common execution core in NPUs. First, we reduced the instruction decode and
issue rates to 1. We also changed the cache configurations. The simulated pro-
cessor has 4 KB direct-mapped level-1 instruction and data caches and a 512 KB
unified level-2 cache.

Most of the NetBench applications use IP header traces as input. We have
used the traces from Columbia University available in the public domain [The
NLANR Project]. In the experiments, the first 10000 packets are read by the
applications. All the applications use this trace except the DH and snort pro-
grams. DH generates and communicates Diffie–Hellman key pairs and, hence,
does not need any packet trace. Snort, on the other hand, uses defcon-8 trace
generated by the DEFCON during a capture-the-flag event. This trace also has
malicious packets that should be detected by the snort system. The routing
table sizes for Drr, Nat, Route, and Tl is set to 128 for the base applications.
For the large versions of these applications, the routing table size is set to 1024
entries. The input data sets along with the application codes can be obtained
from the NetBench website [Crowley et al. 2000]. The NetBench applications
and the arguments used to execute them are summarized in Table I, which
also presents important characteristics of the applications such as number of
instructions executed and number of cache accesses.

We have simulated 15 programs from MediaBench to make the comparison.
The programs, the data sets we have used, and important characteristics of the
applications are listed in Table II.

5.2 Experimental Results

In this section, we compare the instruction-level parallelism (ILP), dynamic
instruction distribution, branch prediction accuracy, cache hit/miss behavior,
and unique data rate of NetBench applications with MediaBench applications.
These are the key architectural characteristics of an application and, hence,
are used to differentiate between application sets. Each of them is studied in
the following subsections.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

Evaluating Network Processors Using NetBench • 461

Table I. NetBench Applications and Their Propertiesa

IL1 # DL1 # L2 bpred

Inst Cycle Acc Acc Acc Rate

Appl. Argument [M] [M] [M] [M] [M] [%]

crc crc 10000 145.8 262.0 219.0 59.8 0.6 0.1

dh dh 5 64 778.3 1663.1 1009.1 364.7 38.4 21.6

drr drr 128 10000 12.9 33.5 22.8 7.9 1.1 8.1

drr-l drr 1024 10000 34.7 80.2 60.1 23.3 5.0 5.6

ipchains ipchains 10 10000 61.7 160.2 103.9 26.2 3.6 26.1

md5 md5 10000 209.1 474.7 296.8 73.2 11.0 19.6

nat nat 128 10000 11.4 26.7 17.3 5.6 1.2 17.9

nat-l nat 1024 10000 33.2 74.2 55.0 21.1 5.1 8.5

rou route 128 10000 14.2 32.0 23.3 7.1 0.9 11.1

rou-l route 1024 10000 36.8 81.7 62.6 22.8 5.0 7.6

snort-l snort −r defcon −n 10000 343.0 925.6 515.0 132.2 33.4 36.7

−dev −l./log −b

snort-n snort −r defcon −n 10000 545.9 1654.1 893.7 219.7 56.2 28.0

−v −l./log −c sn.cnf

ssl-m openssl NetBench medium 10000 2718.2 5367.0 3260.1 989.7 142.8 35.7

ssl-s openssl NetBench strong 10000 3616.1 8727.5 4453.4 1383.3 426.8 36.1

ssl-w opensll NetBench weak 10000 329.0 832.1 441.1 152.0 31.8 50.8

tl tl 128 10000 6.9 15.7 11.8 3.9 0.7 5.9

tl-l tl 1024 10000 30.3 67.1 52.2 19.9 4.7 5.1

url url small inputs 10000 497.0 956.7 768.9 249.1 10.0 32.8

Mean 523.6 1190.8 681.5 209.0 43.2 19.9

aArguments are the execution arguments, # inst is the number of instructions executed, # cycle is the no. of cycles

required, # il1 (dl1) acc is the no. of accesses to the level-1 instruction (data) cache, # l2 acc is the level-2 cache

accesses, and bpred rate is the branch prediction rate for not taken strategy.

5.2.1 Instruction Level Parallelism. The first characteristic we explore is
the instruction-level parallelism (ILP) measured in instructions per cycle (IPC).
It is well known that the networking applications tend to exhibit data-level par-
allelism, because, in most cases, the packets are independent of each other and,
hence, can be processed in parallel. However, dependency between the instruc-
tions that process the same data is not studied in detail. We first study this
characteristic in a realistic environment. Figure 2 presents the instructions
per cycle values for NetBench and MediaBench applications. The average IPC
value of NetBench applications is 0.437, which is 21.5% lower than the average
of MediaBench applications. A statistical analysis of the results is presented
in Appendix A, where we show that the NetBench applications have, indeed,
a lower IPC value using a 99% confidence interval. This result indicates the
complexity in achieving high instruction-level parallelism in networking appli-
cations and motivates usage of data-level parallelism in the NPUs.

5.2.2 Instruction Distributions. In these simulations, we have counted the
number of instruction types in the NetBench and MediaBench applications.
The results are summarized in Figure 3. The figure presents the number of
instructions executed from each of the major instruction categories. The two
benchmarking suites differ in almost all instruction categories, but we con-
centrate on the load/store and conditional branch operations, because they are

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

462 • G. Memik and W. H. Mangione-Smith

Table II. MediaBench Applications and Their Propertiesa

IL1 # DL1 # L2 bpred

Inst Cycle Acc Acc Acc Rate

Appl. Argument [M] [M] [M] [M] [M] [%]

adp-c rawcaudio < clinton.pcm > out.adpcm 8.1 10.2 9.3 1.1 0.0 49.6

adp-d rawdaudio < clinton.adpcm > out.pcm 6.5 8.5 7.7 1.1 0.0 49.9

epic-e epic test image.pgm –b 25 60.7 108.5 89.2 18.9 0.3 45.3

epic-u unepic test image.pgm.E 10.1 19.0 14.8 1.9 0.2 28.0

g72-e decode -4 –l -f clinton.g721 369.2 753.5 510.4 118.3 13.4 47.7

g72-d encode -4 –l -f clinton.pcm 386.9 785.9 536.8 125.0 13.7 46.7

gsm-t toast –fpl clinton.pcm 294.4 436.5 333.8 92.4 1.7 11.7

gsm-u untoast –fpl clinton.pcm.gsm 102.7 162.3 141.0 19.8 0.4 32.6

jpg-c cjpeg –dct int –progressive –opt 16.0 32.3 23.3 5.8 0.5 14.5

testimg.ppm

jpg-d djpeg –dct int –ppm –opt testimg.jpg 4.2 7.6 5.3 1.8 0.1 25.4

mpg-e mpeg2encode options.par out.m2v 158.3 342.1 252.1 57.6 5.6 34.5

mpg-d mpeg2decode –bmei16v2.m2v –r 1032.3 1830.8 1293.9 354.2 23.8 20.5

–f –o0 rec

pegwit-e pegwit –e my.pub pgtest.plain pegwit. 19.1 35.4 23.9 6.6 0.8 47.4

enc

pegwit-d pegwit –d pgtest.enc pegwit.dec 38.9 72.9 48.3 13.3 1.7 46.1

rasta rasta –A –J –S 8000 –n12 –f weights. 16.2 42.2 23.8 7.4 1.2 31.3

dat

Mean 168.2 309.8 220.9 55.0 4.2 35.4

aSee Table I for explanation of abbrevation.

Fig. 2. Instructions per cycle (IPC) values for the NetBench and MediaBench applications mea-

suring instruction level parallelism (ILP).

more important than other instructions in determining the nature of an appli-
cation and its performance. On average, NetBench applications have a higher
load/store frequency (34.4 versus 29.8%). This shows the data-intensive nature
of these applications. In addition, the NetBench applications have a higher
conditional branch instruction percentage (14.0 versus 8.9%). These two prop-
erties cause the lower IPC values observed in NetBench applications. A statis-
tical analysis, similar to the study for the IPC values, shows that with a 95%

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

Evaluating Network Processors Using NetBench • 463

Fig. 3. Distribution of dynamic instructions for MediaBench and NetBench applications (byte

includes arithmetic operations, such as rotate as well as data movement and comparison operations,

such as mov; bit is for logical operations, such as xor; fp includes floating-point operations).

confidence interval NetBench applications have higher load/store instruction
frequency. In addition, we can claim with 99% confidence interval that Net-
Bench applications have more frequent branch instructions. In addition, Net-
Bench applications contain significantly more bit-wise operations (e.g., shift,
rotate instructions) than the MediaBench applications and no floating-point
operations.

5.2.3 Branch Prediction Accuracy. Branch prediction has not been exten-
sively studied in the context of NPUs. This is partly because of the relatively
small branch misprediction penalty in NPUs (execution cores usually have a
shallow pipeline, making the branch misprediction penalty low) and partly due
to the area complexity of designing efficient branch prediction mechanisms. The
branch predictor we have used in the base experiments assumes that all the
branches are “not taken” (i.e., the instructions following the branch is scheduled
as if the branch condition will not be met) similar to the StrongARM processors
[Intel Corp.]. Note that, “not taken” is easier to implement than taken, be-
cause, in case of a taken strategy, the destination address has to be calculated
early in the pipeline (or should be predicted) complicating the instruction fetch
unit. The branch misprediction penalty is set to two cycles in all the experi-
ments. To see the effects of branch prediction, we have simulated three addi-
tional branch prediction mechanisms: two-level [Yeh and Patt 1992], bimodal
[Lee et al. 1997b], and combined (combining these two approaches). The bi-
modal predictor uses a 2-KB branch target buffer and the two-level branch
predictor uses a 2-KB first level buffer and a 4-KB, 4-way associative level-2
buffer.

Figure 4 reports the address prediction accuracy for different mechanisms.
All the branch predictors have high prediction rates for both MediaBench and
NetBench applications showing that the branches are well behaved. The branch
predictors have better performance for NetBench applications, correctly pre-
dicting the next address with up to 99.79% success rates. A statistical analysis

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

464 • G. Memik and W. H. Mangione-Smith

Fig. 4. Branch prediction ratios (address prediction) for different mechanisms.

Fig. 5. Effect of branch prediction mechanisms on the execution cycles.

shows that the branch address misprediction for all prediction techniques is
smaller for NetBench applications with 90% confidence interval.

The reduction in the execution cycles for different branch prediction mecha-
nisms are presented in Figure 5. All mechanisms are successful in improving
the execution efficiency. In spite of the small misprediction penalty (two cycles),
even the relatively simple bimodal prediction mechanism reduces the execution
time by 15.7%, on average. These results motivate the usage of branch predic-
tion mechanisms in the NPUs.

5.2.4 Cache Behavior. Another characteristic we have examined is the
cache behavior. The architectural values for the cache sizes in the base processor
were explained in Section 5.5.1. We have performed additional simulations for
larger level-1 data and instruction caches. The miss ratios for the different data
and instruction cache sizes are presented in Figures 6 and 7, respectively. Each
bar in the figures represents the miss ratio for all the cache sizes simulated. As

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

Evaluating Network Processors Using NetBench • 465

Fig. 6. Level-1 data cache miss ratios for different sizes of the cache.

Fig. 7. Level-1 instruction cache miss ratios for different sizes of the cache.

the cache size is increased, the miss ratio naturally decreases. Therefore, the top
of each bar corresponds to the miss ratio of the base architecture. The following
portions of each bar correspond to increasing sizes of caches. For example, for
the SSL-S application, the base architecture has 7.29%, the architecture with
8 KB L1 data cache has 5.79%, and the architecture with 16 KB L1 data cache
has 0.88% data cache miss ratios. For data caches, we see that increasing the
cache size from 16 to 32 KB has a significant effect (on average the miss ratio
drops from 4.2 to 1.0%). For the instruction caches, on the other hand, increas-
ing the cache size above 32 KB has almost no effect for NetBench applications:
the 32 KB instruction cache results in 0.34% miss ratio, whereas the 256 KB
cache results in 0.06% miss ratio. A statistical analysis shows that with 95%
confidence interval, the base cache miss ratios are different for NetBench and
MediaBench applications for both data and instruction cache misses.

The effect of different data cache sizes on the execution cycles are presented
in Figure 8. The results reveal that data cache sizes have relatively small effect
on the execution efficiency of NetBench applications: the 256 KB data cache
reduces the execution cycles by 3.2% on average. The results for the instruction

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

466 • G. Memik and W. H. Mangione-Smith

Fig. 8. Effect of increasing level-1 data cache size on the execution cycles.

Fig. 9. Effect of increasing level-1 instruction cache size on the execution cycles.

caches are summarized in Figure 9. Increasing the instruction cache size affects
the NetBench applications more than it affects the MediaBench applications.
In addition, an increase in the instruction cache size results in better execution
efficiency than an increase in the data cache size.

5.2.5 Unique Data Rate . The final property that we wish to discuss is the
unique data rate. Unique data rate is defined as the unique memory locations
accessed by the processor for each instruction executed. Figure 10 presents
the results. It plots the amount of unique memory locations accessed by the
application divided by the number of instructions executed. This indicates
the streaming nature of the applications. In other words, if this ratio is
high, that means the application accesses large amount of data that is pro-
cessed with small number of instructions. The results reveal that NetBench
applications have three times larger unique data rates. On average, every
instruction accesses 0.03 bytes1 of new data for NetBench applications and

1Assuming that each load/store accesses 4 bytes, on average, one in every 130 instructions in

NetBench applications is a load/store to an address that has not been accessed before.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

Evaluating Network Processors Using NetBench • 467

Fig. 10. Unique data rate measured in unique memory locations accessed per instruction executed

in MediaBench and NetBench applications.

0.01 bytes for MediaBench applications. A statistical analysis shows that with
99% confidence interval, NetBench applications have a higher unique data
rate.

5.2.6 Discussion. In the previous sections, we studied important charac-
teristics of NetBench and MediaBench applications. In all these categories,
NetBench applications had significantly different values than the MediaBench
applications. This shows the need for a separate application set for the NPUs.
One important property of NetBench applications is their data-intensive na-
ture. As seen in the load/store instruction ratios, the NetBench applications
make high number of memory accesses. They also contain more conditional
branch operations, reducing the effectiveness of traditional instruction-level
parallelism techniques.

5.3 Intel IXP1200 Performance Measurements

In this section, we give an example of how to utilize NetBench by presenting
experimental results with the Intel IXP1200 network processor [Halfhill 1999].
We have used the Intel IXP simulator to perform these simulations. The next
section explains the Intel IXP1200 architecture, while the following section
summarizes the results.

5.3.1 Architecture. Intel IXP1200 processor is one of the most commonly
used NPUs. It is a highly integrated, hybrid data processor that delivers high
performance parallel processing power and flexibility to a wide variety of net-
working, communications, and other data-intensive applications. IXP1200 com-
bines the StrongARM microprocessor with six 32-bit RISC data engines having
hardware multithread support that provide 1 giga-operations per second with
200-MHz clock speed. The microengines possess the power to perform tasks
that previously required high-speed ASICs.

5.3.2 Simulation Results. In order to simulate the IXP1200, we have con-
verted codes from NetBench applications to Intel IXP Microcode. Because of the

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

468 • G. Memik and W. H. Mangione-Smith

Fig. 11. Maximum supported bandwidth for Intel IXP1200 and a general-purpose processor

similar to Intel Pentium III.

complexity of programming the IXP1200, we have selected three representative
programs, one from each category: crc from micro-level programs, route from
IP-level programs, and md5 from application-level programs. These codes are
manually converted into the IXP microcode. To make a fair comparison, we also
hand-optimized the applications used for simulating the general-purpose pro-
cessor. In all the simulations, all the microengines are used (six microengines)
and they execute the same application.

We compare the performance of IXP1200 with a general-purpose processor
(GCPU), similar to Intel Pentium III, having a 1-GHz clock speed. We wanted
to make sure that the simulated GCPU has more transistors than the Intel
IXP1200 so that the comparison is fair: Intel IXP1200 has 6.5 million transis-
tors [Halfhill 1999], an Intel Pentium III processor similar to the simulated pro-
cessor that can run a 1-GHz clock has 28.1 million transistors [Intel Corp. 2000].

To gather information about the general-purpose processor, we used Sim-
pleScalar simulator [Burger and Austin 1997]. Figure 11 summarizes the re-
sults. The figure gives the maximum amount of traffic the processor can handle.
This value is calculated by finding the total number of bytes manipulated in the
program and dividing this value to the simulated time required to execute the
program. An example calculation is given in Appendix B. Figure 11 illustrates
the power of the IXP processor. Although the simulated IXP processor had a
clock speed of 200 MHz, it outperformed the GCPU in all programs: by 51% for
crc, by 44% for md5, and by 80% for route.

The results also show how NetBench can be utilized. It shows that the IXP
is more suitable for route than it is for MD5, because the relative performance
improvement over GCPU is much higher with the route application. In addition,
it gives the maximum amount of traffic the IXP1200 can handle for a given
application. A customer can decide whether this supported bandwidth meets
his/her requirements.

6. CONCLUSION

In this paper, we introduced a benchmarking suite for NPUs. In spite of the
increase in demand and supply for NPUs, there still does not exist a common

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

Evaluating Network Processors Using NetBench • 469

framework for evaluating them. Many designers still use benchmarks designed
for other purposes, such as MediaBench and SPEC2000. We have shown that
the applications for NPUs are significantly different from the applications for
Media Processors; hence, a specific benchmarking suite is a necessity. In addi-
tion, we have presented simulation results for different cache sizes and branch
prediction mechanisms indicating the bottlenecks and improvement opportu-
nities in a representative RISC core executing the NetBench applications. We
have also presented a performance study of a popular NPU showing how Net-
Bench can be utilized.

APPENDIX A

To statistically show that the result sets for the IPC values are different we
test the hypotheses

H0 : μ1 − μ2 ≥ 0 and H1 : μ1 − μ2 < 0

where μ1 is the population mean of the IPC from MediaBench applications and
μ2 is the mean of the IPC from NetBench applications. The above hypotheses
are best tested using a one-tailed test with the sampling distribution of (avg.
x1 – avg. x2) i.e., we accept H0 if,

avg.x1 − avg.x2 ≥ tα/2 ∗ Savg.x1−avg.x2

where tα/2 is the value based on t distribution with (n-1) degrees of freedom,
avg. x1 is the mean IPC of the MediaBench applications, and avg. x2 is the
mean IPC of the NetBench applications. Savg.x1–avg.x2 is calculated by,

Savg.x1−avg.x2 = √((
s21/n1

) + (
s22/n2

))

= √((
s21/n1) + (

s22/n2
))

≈ √
((4.5 ∗ 10−2/15) + (2.9 ∗ 10−3/18))

= 5.6 ∗ 10−2

Using the values from Figure 2 and a confidence interval of 99%, we see that

avg.x1 − avg.x2 = 0.119 ≥ 2.947 ∗ 5.6 ∗ 10−2

≈ 0.092

Therefore, with a 99% confidence interval we conclude that the NetBench
applications have a lower IPC value.

APPENDIX B

Assuming the application processed 100 packets, with an average size of 100
bytes, the total amount of traffic handled is

100 (packets) ∗ 100 (bytes/packet) ∗ 8 (bits/byte) = 80,000 bits

We obtain the number of cycles it took to complete the application from the
simulator. Assuming an execution of 100,000 cycles with a clock speed of
1 GHz, this corresponds to

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

470 • G. Memik and W. H. Mangione-Smith

100,000 (cycles)/1,000,000,000 (cycles/sec) = 0.1 ms

Then, the maximum bandwidth supported equals

80,000 bits/0.1 ms = 800 megabits/s

REFERENCES

BARRETT, D. AND SILVERMAN, R. 2001. SSH: The Secure Shell, The Definitive Guide. O’Reilly Pub-

lishers, Sebastopol, CA.

BURGER, D. AND AUSTIN, T. 1997. The SimpleScalar Tool Set, Version 2.0. University of Wisconsin,

Technical report.

CELL-RELAY. CRC-32 Calculation, Test Cases and HEC Tutorial. http://cell.onecall.net/cell-relay/

publications/software/.

C-PORT CORP. C-5 Digital Communications Processor Product Brief. http://www.cportcorp.com/

products/pdf/c5brief.pdf.

CROWLEY, P., FIUCZYNSKI, M. E., BAER, J. L., AND BERSHAD, B. N. 2000. Characterizing Processor

Architectures for Programmable Network Interfaces. In Proceedings of International Symposium
on Supercomputing, Santa Fe, NM.

EEMBC. An Industry Standard Benchmark. http://www.eembc.org/Benchmark/networking.asp

FREEBSD PROJECT. FreeBSD Operating System. http://freebsd.org

HALFHILL, T. R. 1999. Intel Network Processor Targets Routers. Microprocessor Report 13–12,

1–26.

IMPROV INC. The Jazz PSA platform. http://www.improvsys.com/Products/Jazz.

INTEL CORP. 2000. Intel Pentium III Processor and Intel 815E Performance Brief.
INTEL CORP. SA-110 Microprocessor Technical Reference Manual. ftp://download.intel.com/design/

strong/applnots/27819401.pdf.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. 1984. ISO Information Processing Systems—
Data Communication High-Level Data Link Control Procedure—Frame Structure.

LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. H. 1997a. MediaBench: A Tool for Eval-

uating and Synthesizing Multimedia and Communications Systems. In Proceedings of In-
ternational Symposium on Microarchitecture, Research Triangle Park, NC, December. 330–

335.

LEE, C.-C., CHEN, I.-C. K., AND MUDGE, T. N. 1997b. The bi-mode branch predictor. In Proceedings
of International Symposium on Microarchitecture, Research Triangle Park, NC, December. 4–

13.

MEMIK, G. AND MANGIONE-SMITH, W. H. The NetBench Web Site, http://istanbul.icsl.ucla.edu/

NetBench.

MMC NETWORKS. Leading the Network Processor Revolution, http://www.mmcnet.com/Solutions.

NEMIROVSKY, A. 2000. Towards Characterizing Network Processors: Needs and Challenges,

XStream Logic Inc.

NETWORK PROCESSOR FORUM. Network Processor Forum, http://www.npforum.org.

PMC-SIERRA INC. URL-based Switching, PMC-2002232, http://www.pmcsierra.com.

RIVEST, R. 1992. The MD5 Message-Digest Algorithm.

ROESCH, M. The Open Source Network Intrusion Detection System Web Site, http://www.snort.org.

RSA DATA SECURITY. RSA Security Downloads, http://www.rsasecurity.com/download.

RUSSELL, P. IPCHAINS version 1.3.10, http://netfilter.filewatcher.org/ipchains.

SENIE, D. Changing the Default for Directed Broadcasts in Routers. Request for Comment (RFC)
2644.

SHREEDHAR, M. AND VARGHESE, G. 1995. Efficient Fair Queuing using Deficit Round Robin. In
Proceedings of SIGCOMM’95, Cambridge, MA, Aug/Sep.

STANDARD PERFORMANCE EVALUATION COUNCIL. Spec CPU2000: Performance Evaluation in the New
Millennium, Version 1.1.

THE NLANR PROJECT. NLANR Network Traffic Packet Header Traces, http://moat.nlanr.net/Traces.

THE OPENBSD PROJECT. Manual pages: sftp(1), http://www.openbsd.org.

THE OPENSSL PROJECT. The Open Source Toolkit for SSL/TSL, http://www.openssl.org.

TRANSACTION PROCESSING COUNCIL. TPC Benchmarks, http://www.tpc.org.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

Evaluating Network Processors Using NetBench • 471

WOLF, T. AND FRANKLIN, M. 2000. CommBench—A Telecommunication Benchmark for Network

Processors. In Proceedings of IEEE International Symposium on Performance Analysis of Systems
and Software, Austin/TX, (April).

WOO, S. E. A. 1995. The SPLASH-2 Programs: Characterization and Methodological Considera-

tions. In Proceedings of International Symposium on Computer Architecture, Santa Margherita

Ligure, Italy, June. 24–36.

XSTREAM CORP. XStream Logic Packet Processing Core, http://www.xstreamlogic.com/architectural

files.

YEH, T. H. AND PATT, Y. 1992. Alternative implementations of two-level adaptive branch pre-

diction. In Proceedings of International Symposium on Computer Architecture, Queensland,

Australia, May. 124–134.

Received January 2002; revised April 2004; accepted May 2005

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

