
J Comput Virol (2007) 3:125–134
DOI 10.1007/s11416-007-0047-z

EICAR 2007 BEST ACADEMIC PAPERS

Regular expression matching with input compression: a hardware
design for use within network intrusion detection systems

Gerald Tripp

Received: 12 January 2007 / Accepted: 19 March 2007 / Published online: 11 April 2007
© Springer-Verlag France 2007

Abstract This paper describes an optimised finite state
automata based hardware design for implementing high
speed regular expression matching. Automata based imple-
mentations of regular expression matching can become quite
complex and if table driven can use large amounts of mem-
ory—this can be a problem for hardware based implemen-
tations, as the amount of memory available within standard
Field Programmable Gate Array (FPGA) components can
be quite small as compared with the amount of resources
we expect to find within a software environment. This work
uses an existing ‘packed array’ style of table based automata
implementation, but then adds a form of input compression
to group together characters that are treated identically by the
automata. A hardware design for such a system has been cre-
ated for use within a Xilinx Field Programmable Gate Array
and tested by simulation. The design operates at a fixed scan
rate of 2.0 Gbps independent of the regular expression used
or the input data being scanned. The regular expression rules
are first compiled by software and then loaded into the design
at run time and may be updated dynamically without modi-
fication to the design.

1 Introduction

Network intrusion detection consists of monitoring computer
networks for various forms of attack. This may be on an

Gerald Tripp is a Lecturer in Computer Science at the University
of Kent.

G. Tripp (B)
The Computing Laboratory, University of Kent,
Canterbury, Kent, CT2 7NF, UK
e-mail: G.E.W.Tripp@kent.ac.uk

individual computer system (host based) that just monitors
the traffic arriving at that machine or it could be looking at all
of the traffic on a central part of the network (network based)
for attacks that target any networked computer. The network
based intrusion detection systems are more difficult to build
because of the high data rates these may have to deal with,
but are very useful as they are able to be used to help protect
any machine on the local network, even if it is not capable of
running such software itself—such as a networked peripheral
like a printer.

The first line of defence is usually provided by one or more
firewalls; these examine the headers of network packets and
can allow traffic to proceed (or be dropped) on the basis of
the IP addresses, port addresses and other header fields. This
filtering is usually dynamic, and may be updated on the basis
of outgoing TCP connections, for example.

Intrusion detection systems go further than a basic fire-
wall, in that they look inside the contents of the packets as
well as the header fields. This is more complex, as we may
now not have any particular location within the packet to
inspect and we may have to scan the packet’s entire con-
tents for the data items we are looking for. The most well
known intrusion detection system is probably Snort [14]. This
operates by using a set of intrusion detection rules—the first
part will check for packets on the basis of the header fields
and then we may look inside selected packets for various
‘content’ strings.

The content strings are a fixed set of bytes that we will
need to search the packet for; the only variation in the string
that is allowed is that we can chose to ignore the case of letters
if we wish. A problem here is that there may be minor varia-
tions in input data that will cause the string not to match, such
as the addition of a single space character. This could lead
to us needing to look for multiple content strings to match
all possible variants of the input data. To deal with this, the

123

126 G. Tripp

Snort system also allows the use of regular expressions to
perform matching. These are useful as we can use a single
regular expression to match multiple variants of the pattern
that we may be looking for. Regular expression matching
can, however, be more complex to implement—particularly
if we need to build a hardware implementation rather than
software. The requirement for needing regular expressions
has increased over the last few years and a large number of
Snort rules now use these for matching, often as well as using
content strings.

A lot of intrusion detection systems are implemented in
software. This can be fine for host based systems (so long
as we don’t choose to have too many rules!), but with net-
work based intrusion detection systems this can be a prob-
lem under high network loads, particularly at central points
within large high speed networks. A solution to this problem
can be to use hardware based intrusion detection systems,
or at least provide some form of hardware support. A lot
of existing hardware based systems have targeted the prob-
lem of fixed string matching as this is less complex. Other
systems have implemented regular expression matching, but
they usually fix the rule set at the time the hardware design is
‘synthesised’.

This paper looks at how we can implement the regular
expression matching part of intrusion detection and describes
how a regular expression matching system can be designed
for implementation within a Field Programmable Gate Array
(FPGA). The method used is to build a table based automata
implementation but to use a form of input compression that
groups together input characters that are treated in the same
way by the automata. The table based approach allows the
system to be dynamically updated at run time to allow for
changes in the regular expressions being matched; the input
compression helps to make significant reductions in the auto-
mata memory requirements.

The next section looks at some of the background and
related work both in the hardware based regular expression
and string matching fields. Section 3 describes the auto-
mata implementation mechanism and introduces the com-
pression scheme. The results section gives details of the
memory requirements for standard Snort regular expressions
and describes a hardware design for a regular expression
matching engine that is targeted at an FPGA. The final sec-
tion gives conclusions and ideas for further work.

2 Background and related work

The most well known software intrusion detection system is
probably Snort [14]. Many improvements have been made to
this over the years, particularly introducing schemes to opti-
mise the order in which we check data. A paper by Kruegel
and Toth [12] implements a modified Snort rule engine, which

uses decision trees to reduce the number of comparisons
made against incoming network data.

Abbes et al. [1] use decision trees along with protocol
analysis; this allows comparisons to be made against partic-
ular fields within packets at different protocol layers, which
reduces the numbers of false positives as compared to a sys-
tem that blindly searches an entire network data packet or
uses simple offset and depths constraints.

2.1 String matching systems

A number of pattern matching systems just allow us to search
for a string. This is important, as matching a string of bytes
is usually easier than matching a complex pattern (or regu-
lar expression) of a similar length, and this has implications
on the number of patterns that may be searched for. One of
the most efficient systems is the use of Bloom filters—these
allow a very large number of strings to be searched for in par-
allel, but do suffer from false positives. Work by Attig and
Lockwood [2] show that Bloom filters can be a very efficient
front end system that will remove the large majority of inno-
cent network traffic—this is then followed by a back end
system that identifies the packets that are actually threats.
This system has the advantage that the back end filtering
system is not presented with a high load so may be imple-
mented as a conventional software based intrusion detection
system.

Baker and Prasanna [3] use a pipelined approach whereby
they use a set of comparators to identify the presence of data
bytes that are of interest. The outputs of the comparators are
each fed into a chain of flip-flops, which form a pipeline.
A string can be identified as being present if all of its bytes
are identified as being present in the correct order in the com-
parator output pipelines. They show that this scheme can be
extended to operate with n-byte input data, by having a set
of comparators and pipelines for each input byte and then
looking for all n byte alignments of the string across these n
sets of pipelines.

Sugawara et al. [16] and Tripp [19] use finite state auto-
mata approaches to string matching. These first compress
multi-byte input data into small tokens that represent a group
of characters and then feed these into finite state automata
that record how much of the string or strings have been
matched.

2.2 Pattern matching

Most true pattern matching systems use a search pattern
that is defined as a regular expression. The regular expres-
sion (RE) allows fixed values and also allows various
amounts of choice and repetition. The basic operations are as
follows:

123

Regular expression matching with input compression: a hardware design for use within network intrusion detection systems 127

– Concatenation: abc means “a” then “b” then “c”.
– Alternatives: abc|def means “abc” or “def”.
– Kleene star: a* means either: “”, “a”, “aa”, “aaa”, “aaaa”

etc.

Brackets can also be used to group parts of expressions
together when required. In practice many other operators are
used, particularly to give ways of defining multiple values
for a single byte and for various numbers of repeats. Snort
uses a regular expression standard called the Perl Compatible
Regular Expression (PCRE) [9]. A few of the other operators
that will be referred to later are shown below:

– [abc] = a|b|c.
– [d−g] = d|e| f |g.
– [ˆabc] = any character other than a, b or c.
– {x,y} = repeat previous expression a minimum of x and

a maximum of y times; where x and y are integers and
either x or y (but not both) are optional.

To implement a RE matching system as an automata, we
may go through many stages of processing. The first stage
is to convert the RE into a Non-deterministic Finite Auto-
mata (NFA) usually using Thompson’s algorithm [18]. The
normal procedure here is to break the RE down into sin-
gle operations and then to convert each of these into a small
NFA fragment. The pieces of NFA are built up on a stack and
operators applied to the top elements of the stack to collect
pieces and join these together. The NFA is unusual in that it
may have more than one node active at any time, and there
can be multiple edges leaving a node that are enabled on the
same input data item. As well as this we can have ε-transi-
tions, which are edges taking us from one node to another,
but which do not consume any input data.

As an example, an NFA representation of the regular
expression “a(b|c)d” is shown in Fig. 1, where node 0 is
the initial node and node 7 is the terminal node that indicates
a match.

2.3 Non deterministic finite automata implementation

The NFA is not that efficient to implement in software, as
the current state of the NFA will be the set of nodes that
are currently active. Processing input data then consists of

0 a
1

2

4

7

3

5

6

b

c

d

Fig. 1 Example NFA for “a(b|c)d”

looking at each of these nodes to see what edges are enabled
and hence which set of nodes will next be active. Sidhu and
Prasanna [15] have shown that an NFA can be implemented
quite efficiently in hardware—as each node can be imple-
mented as a flip-flop and the edges can be implemented as
comparators, logic and routing resources to link the nodes
together. This mechanism was used by Franklin et al. [7]
to implement the Snort rule set, which was first converted
into a single large RE. Several papers have followed on from
this, making significant improvements in resource utilisation
and performance. This earlier work used a comparator per
NFA edge, and this required routing resources to take the
input data to lots of distributed comparators—there typically
being large numbers of comparisons against the same input
byte values. Clark and Schimmel [5] improved on this sys-
tem by replacing the distributed comparators with a global
8–256 decoder that generates 256 logic signals that identifies
the presence or absence of each data byte value on the input.
The appropriate logic values (rather than the data) are then
distributed to the edge logic. Further advances to incorporate
multi-byte matching have been made by Sutton [17] and by
Clark and Schimmel [6].

The approaches above are very efficient in terms of logic
resources, but have the disadvantage of a certain amount of
inflexibility. The NFAs are implemented as interconnected
pieces of logic and flip-flops—changes to the set of REs will
therefore require changes to the logic inside the FPGA. In
the field this would be likely to be made by rebuilding the
logic we need and then performing a partial (or full) recon-
figuration of the FPGA.

2.4 Deterministic finite automata implementation

We can convert our NFA into a Deterministic Finite Auto-
mata (DFA) using a standard set of operations [11] which
are outlined in the remainder of this paragraph. The DFA can
only have one node active at a time, and can only one edge
leaving any particular node on a given input character value.
The DFA also does not have any ε-transitions. The DFA is
simpler to implement as its state consists of which single
node is currently active. The DFA can be implemented as a
piece of sequential logic in various ways or can be based on
one or more lookup tables. There are two stages in convert-
ing an NFA into a DFA. The first is referred to as ‘subset
construction’ and consists of creating nodes for the DFA that
each represents a set of nodes that may be active in the NFA;
edges are then added to the DFA to correspond to the tran-
sitions made within the NFA. The resulting DFA may have
large numbers of equivalent nodes, and a ‘DFA minimisa-
tion’ stage is needed to combine these together.

As an example, Fig. 2 shows an example DFA implemen-
tation of the regular expression “a(b|c)d”. This has been
modified to allow matching to restart part way through a

123

128 G. Tripp

a

a
3

b | c

b | c | d | z

d

a

b | c | z
d | z

0 21

a
b | c | d | z

Fig. 2 Example DFA for “a(b|c)d”

failed match and has been minimised to remove redundant
nodes. The character z is used here to refer to all other char-
acters (if any) other than those covered by the regular expres-
sion. All edges are shown including those leading to the initial
node. A DFA approach to hardware based RE matching was
used by Moscola et al. [13] who converted Spam Assassin
rules into DFAs and then output these in a VHDL finite state
automata format, which would then be synthesised and built
into an FPGA design.

3 Regular expression implementation

Much of the existing work on hardware based regular expres-
sion implementation has converted the RE into a piece of
logic for implementation within an FPGA. A problem with
this approach is that changes to the REs require changes to
the FPGA design. An alternative approach is to use a table
based implementation; with careful design we can build sys-
tems that can be configured at run time by simply writing
new data to the table. However, simple table based imple-
mentations can require quite a lot of memory resources. One
problem is caused by the REs themselves that often cre-
ate automata with more nodes (and edges) than might be
expected; a second problem is that the tables required for
implementing automata can have a high level of redundancy.

A basic table based implementation would require a two
dimensional array (the ‘state transition table’), with the cur-
rent state (representing the currently active node) as one index
and the current input value as the other. We use these to
index into the table to give us a value for the next state and
any output data. There may be redundancy in the table as
we will typically only be interested in a subset of possible
input values in any state, the others probably taking us to
the initial state or the ‘first character matched’ state of the
automata.

Assuming we implement this as a piece of memory, with
each index used as part of the address bus input, then the
amount of memory M in bits for a DFA with s states, i input
bits and o output bits will be as shown in Eq. 1.

M = (⌈
log2 s

⌉ + o
)

. 2i+�log2 s� (1)

The simple version based on a two dimensional state
transition table will be referred to as the ‘baseline’ design,
and any new implementation should aim to improve on this.

3.1 Packed array DFA implementation

From the work described by Sugawara et al. [16] we can see
that efficient implementation of DFAs for fixed string match-
ing can be performed by using a hardware based ‘packed
array’ implementation. This uses a technique known as ‘row
displacement’ which is commonly used in compiler lexical
analyzers—a good review of these techniques is given by
Grune et al. in [8]. The particular style used by Sugawara is
referred to as row displacement with state marking, and this
is explained below.

With this type of design we first generate a default array,
which contains the default next state for each input value—
this is typically equivalent to the next state when in state 0. We
then create a difference array which contains the differences
between the state transition table and the default array. We
can use the default array and the difference array together to
find the next state: we first look in the difference array for the
next state; if there is no entry in the difference array then we
use the value from the default array for that input character.
A simple example of a state transition table and its associ-
ated difference and default arrays is shown in Table 1—as
with the example in Sect. 2.4, the character z represents any
characters other than those covered by the RE.

The difference array is typically very sparse and we can
take advantage of this by using a more compact method of
storage. We can treat the difference array as a set of ‘state vec-
tors’ and pack the state vectors together (overlapping) into
a one dimensional ‘packed array’—this is done carefully so
as to avoid any collisions between entries in different state
vectors. This is performed as a search operation; we will try
increasing values of the start position of each state vector
until we find one that does not cause collisions with any of
the existing data. Finding the best way of packing the state
vectors into the table is an NP-complete problem and heuris-
tics are often used as a simple way to find solutions that are
‘sub-optimal’ [8].

The entries in the packed array are tagged with state that
they belong to, with (−1) being used to show that the table

Table 1 State transition table, default and difference arrays for RE
“a(b|c)d”

123

Regular expression matching with input compression: a hardware design for use within network intrusion detection systems 129

entry is unused. We can find an entry by first finding the start
of the state vector for the current state and then indexing from
this position with the input value. If the entry we fetch has
the same tag value as the current state, then we have found
a valid entry for that combination of current state and input,
if not then there is no valid entry in the packed array and we
fetch the next state for the input value from the default array.

The indexing system used by Sugawara et al. was a sim-
ple addition operation; this was modified by Tripp [20] who
substituted the ‘add-based’ indexing for a faster bitwise
exclusive or operation.

In practice we also have a base address (BA) entry in each
of the default and packed arrays that act as a look-ahead
operation to define the start address of the state vector for
the next state (NS) value—thus avoiding the need to have a
separate table that stores the BA for each state. A very sim-
ple example is shown in Table 2 for the regular expression
“a(b|c)d”; in practice this particular example has all state
vectors at offset 0. More details of the original implemen-
tation are described by Sugawara et al. in [16]; the bitwise
exclusive or based indexing variation is described by Tripp
in [20]. We would hope that this packed array implementa-
tion would give a reduction in the memory requirements, as
compared with the baseline model. A difference however is
that the automata for REs are often far more complex than
those for fixed string matching.

3.2 Input compression

The fixed string matching algorithms by Sugawara et al. [16]
and Tripp [19] use input compression to reduce the redun-
dancy in the input data from multi-byte input words, so as
to generate a smaller input word size to the finite state auto-
mata. If we build a system for matching regular expressions,
we potentially have a very different type of automata design
to consider. Here we may have multiple characters that take
us from one state to another, we can think of this as being
multiple edges between states—or as an edge that is enabled
on a set of different input values. A problem now is that our
difference array may no longer be sparse, as there may be
many different entries for each current state that take us to
the same next state on different input values. We should be

Table 2 Default and Packed arrays for RE “a(b|c)d”

Default array Packed array

Input Input

z a b c d z a b c d

NS 0 1 0 0 0 NS 2 2 3

BA 0 0 0 0 0 BA 0 0 0

TAG −1 −1 1 1 2

able to reduce the number of different input values using
compression—however, simple schemes such as compress-
ing each input character of interest into a different value will
often give little or no improvement because expressions such
as “a[∧a]a” will force all characters into the ‘alphabet’ of
characters we are interested in.

Instead, we compress input characters to the same value
if they are treated in the same way by the automata. This is
more complex than it sounds as there may be different over-
lapping groups of characters that are treated differently by
different parts of the DFA. To be able to compress our input
data, we need to form the smallest set of disjoint sets of input
characters. We then compress the input value by identifying
which set it belongs to.

Given a DFA M = (S, I, O, δ, λ), where: S is the set of
states, I is the set of inputs, O is the set of outputs, δ is the
state transition function and λ is the output function.

We obtain details of the sets of characters enabling edges
of the DFA from the state transition function δ. If we receive
input value i in current state s then the next state is given by
δ(s, i).

We define Esn as the set of characters enabling the edge or
edges between current state s and next state n. This is shown
in Eq. 2.

Esn = {i ∈ I |δ(s, i) = n}. (2)

We then determine the complete set of edge sets Pa as shown
in Eq. 3.

Pa = {Esn|s, n ∈ S}. (3)

We now have a set Pa that gives us the sets of characters
that we are interested in for all DFA edges. These sets may
however have overlaps, which will not enable us to define
an input value as belonging to a single set. We now create a
new set Pd , which is a set of disjoint sets of input characters,
and such that each member of Pa can be created by either a
single member of Pd or the union of two or more members
ofPd .

We create the new set Pd as shown below, treating Pa as
a list that we can modify at will:

Repeat the following sequence whilst |Pa | > 0:

• Take the head element h from set Pa .
• If there is no overlap between h and any other member of

Pa , then move h to Pd

Otherwise, we search through Pa for the first member
S0, such that h ∩ S0 �= Ø, we then:
∗ Remove h and S0 from Pa .
∗ Add sets: h ∩ S0, h − S0 and S0 − h to the end

of Pa .

123

130 G. Tripp

We only add a new character set to Pd when we can see
that the set has no overlap with any other set, so at the end
Pd will contain a set of disjoint character sets.

From Pd we can create a simple compression table that
maps any input character into a numeric value k that repre-
sents which member of Pd the character belongs to. The DFA
can then be modified to replace each edge or edges between
a pair of nodes with a new edge that is enabled on the set
of values of k that represents the members of Pd that enable
that edge.

3.3 Example

As a very simple example, we have the following regular
expression:

‘‘g[e-m][j-s][n-w]x’’

This gives the sets shown in Eqs. 4 and 5.

Pa = {{z}, {g}, {e, f, g, h, i, j, k, l, m},
{ j, k, l, m, n, o, p, q, r, s},
{n, o, p, q, r, s, t, u, v, w}, {x}} (4)

Pd = {{z}, {e, f, h, i}, {g}, { j, k, l, m}, {n, o, p, q, r, s},
{t, u, v, w}, {x}} (5)

The characters contained in each set for this example along
with the set numbers and values of each character (in hexa-
decimal) are shown in Table 3. Using the information in
Table 3, we can generate a 256 element lookup table to per-
form the compression. The table is created by taking each of
the possible characters as an index into the table and storing
its set number at that position in the table. The compression
table for this example is shown in Table 4.

3.4 Memory minimisation

In computer systems we have seen the amount of memory
available rise by several orders of magnitude over the years;
so for software the amount of memory used is not too much of
an issue. What we have are large blocks of heavily pipelined

Table 3 Disjoint set membership and character values

Set Number Set Members: character with (value in hex).

0 z = all characters not listed below

1 e(0x65), f(0x66), h(0x68), i(0x69)

2 g(0x67)

3 j(0x6A), k(0x6B), l(0x6C), m(0x6D)

4 n(0x6E), o(0x6F), p(0x70), q(0x71), r(0x72), s(0x73)

5 t(0x74), u(0x75), v(0x76), w(0x77)

6 x(0x78)

Table 4 Input compression table

Most
significant
4-bits of
input
(in hex)

Least significant 4-bits of input (in hex)

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 1 1 2 1 1 3 3 3 3 4 4

7 4 4 4 4 5 5 5 5 6 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

memory that are accessed via one or more levels of processor
cache. With custom hardware designs we often seek to obtain
high throughput by having multiple instances of individual
components that operate in parallel. If these each need access
to memory then this could be provided via normal memory
components, but this can lead to bottlenecks in the interface
to that memory which may not be able to support the total
aggregated bandwidth requirements. There is also an issue
that the hardware component’s performance may be affected
by the latency in obtaining items from memory; this is even
more of an issue if multiple components were contending for
access to the same block of memory.

FPGAs normally have multiple blocks of internal mem-
ory. These blocks of memory are independent and can be
closely coupled with individual components. Access to the
memory within the FPGA is also very fast, with data typi-
cally being accessible within a single clock cycle. The prob-
lem, however, is that the amount of memory available within
FPGAs is quite small when compared with the amounts we
are used to in computer systems. For example: the Xilinx
Virtex 4 FPGA [21] with the largest amount of memory (the
XC4VFX140) has a total of 9,936 Kbits in 18 Kbit blocks and
987 Kbits in 16 bit blocks; over two orders of magnitude less
than the memory available in a cheap desktop PC. Memory
minimisation is therefore an important issue when designing
systems targeted at FPGAs, both to maximise the amount

123

Regular expression matching with input compression: a hardware design for use within network intrusion detection systems 131

that can be implemented within a given FPGA and to enable
the smallest (and cheapest) FPGA to be used for a particu-
lar commercial product. The next section shows the effect of
the input compression scheme described in Section 3.1 on
the memory requirements for a ‘packed array’ based regular
expression matching system and describes a VHDL design
targeted at an FPGA.

4 Results

Software was written to take a regular expression and to cre-
ate a minimised DFA, using standard techniques as outlined
in Sects. 2.2 and 2.4 above. The software was then mod-
ified to enable the creation of data for packed array auto-
mata as described in Sect. 3.1, with no input compression.
As test data, regular expressions were extracted from the 22
Nov 2006 ‘CURRENT’ version of the Snort community rule
set. These rules were sorted to create a set of 340 unique
regular expressions. From this basic set, 319 were chosen,
which are all of the regular expressions apart from 21 that
used the {x, y} PCRE repeat operator that was not imple-
mented as part of the regular expression processing software.
Each regular expression was processed by the software to
create the required sets of data for use within a finite auto-
mata implementation and the memory requirements noted
in each case. The distribution of memory requirements for
this first set of measurements is shown in Fig. 3b with the
requirements for the baseline design shown in Fig. 3a for
comparison. The graphs in Figs. 3 and 4 have a logarith-
mic x-axis and show the memory requirements in bands of
increasing powers of 2. As an example, the value 8 on the
x-axis refers to all memory sizes m in the range: 4 Kbits <

m ≤ 8 Kbits. The average memory use per RE for the first
experiment is 80% of the memory required for the baseline
version. This is as expected because of the complexity of
some of the REs in the snort rule set; much of the gain of
the packed array approach is offset by the greater imple-
mentation complexity. The software was then modified to

use the input compression scheme described in Sect. 3.2 and
then run again to measure the memory requirements when
the input compression scheme was used. The results for this
are shown in Fig. 4. This time we can see that the large
majority of the REs now have a memory requirement that is
8 Kbit or less. The average memory requirements per RE
is now 17% of the memory needed for the baseline ver-
sion. The average memory requirements data is given in
Table 5.

4.1 Hardware design

An example hardware design was written in VHDL for a sin-
gle regular expression matching engine with a maximum of
255 states and a packed array with a total of 256 words. This is
suitable for implementing a single rule from 95% of the 319
different regular expressions processed. The design is tar-
geted at a Xilinx XC4VLX25 [21] FPGA and is implemented
in a single 18 Kbit Block RAM primitive (out of which
12.5 Kbits are actually used)—the two memory ports pro-
vided in the Block RAM primitive allow this to be treated as
two separate blocks of memory, one of which is used for the

 Packed DFA with compression
Memory use distribution

0

50

100

150

200

1 2 4 8 16 32 64 128

Memory (Kbit)

In
st

an
ce

s

Fig. 4 Distribution of memory use per RE for packed array implemen-
tation with input compression

Fig. 3 Distribution of memory
use per RE for a Baseline model,
b Packed array implementation
with no input compression

Baseline DFA
Memory use distribution

0

50

100

150

200

(a) (b)

1 2 4 8 16 32 64 128

Memory (Kbit)

In
st

an
ce

s

 Packed DFA no compression
Memory use distribution

0

50

100

150

200

1 2 4 8 16 32 64 128

Memory (Kbit)

In
st

an
ce

s

123

132 G. Tripp

Table 5 Average memory use per regular expression

DFA Implementation Average memory Memory used as a
used (bytes) proportion of that

used for the baseline
design (%)

Baseline design. 4,194 100

Packed array with no input 3,343 80

compression

Packed array with input 702 17

compression

packed array and the other of which is used as a single table
that merges together both the input compression table and
the default array. Pipeline registers are used in various places
to provide the correct data alignment or to improve the clock
speed. A boot port is provided to allow the table information
to be written to memory, and this can be used whilst hold-
ing the reset input to the DFA active. There is only a single
match output and this is also generated by these two blocks
of memory as a look-ahead operation. A schematic of the
design is shown in Fig. 5. The VHDL design was tested by
selecting a number of different regular expressions to check
different parts of the hardware and software implementation
and then testing the design via simulation with large amounts
of artificially generated input data to determine that the reg-
ular expression matching operates correctly. The design was
also simulated ‘post place and route’ to check the timing of
the resulting FPGA design. In addition, to look at a real life
example, the design was simulated using a day’s web logs
from a departmental web server as input—a regular expres-
sion being used to identify the number of HTTP GET requests
for one of the author’s technical reports. The simulations per-
formed correctly in all cases.

The resource requirements of the FPGA build are as
follows:

Target device: XC4VLX25-12SF363

– 1 Block RAM component (out of a total of 72).
– 35 logic slices (out of a total of 10,752).

The logic resource utilisation is trivial, and the number of
instances of the design that can be implemented in a sin-
gle chip is limited by the amount of Block RAM resources
available. The largest device (in terms of Block RAM) in the
Xilinx Virtex4 series (XC4VFX140) has a total of 552 Block
RAM primitives. We would expect to be able to use such a
device to provide over 500 regular expression engines run-
ning in parallel, and still leave memory resources for other
operations.

The regular expression matching engine could be created
with a number of different memory sizes if required. If larger
DFAs were used for the remaining 15 REs that wouldn’t fit in
the example implementation then we can calculate that 326
Block RAMs would be required in total for all 319 regular
expressions that were used for these measurements.

The Xilinx tools were used to measure the timing of the
design created, and these report a minimum clock period of
3.969 ns. The system is designed to operate at a deterministic
input rate of one input word per clock cycle. At an input word
size of 8-bits we therefore have a scan rate of 2.0 Gbps—this
is independent of the regular expression used or the input
data being scanned.

4.2 Related work

Work to implement regular expressions using the algorithm
from Sugawara et al. has also been done by Hickman [10].

Fig. 5 Schematic of regular
expression engine
implementation–derived from
[16]

Next State

=?

Next S

Reset

Base

Next S

Tag

RAM

REG

Clock

Base Address

0

0

REG

Match

Match

RAM

Base

Comp I/P Reset

REG
REGA

DI

Input

Compressed Input

BootD

BootA

DI

A

WE

BootWE

WE

Match

Reset

Clock

123

Regular expression matching with input compression: a hardware design for use within network intrusion detection systems 133

Hickman’s work takes a regular expression and creates first
an NFA and then a non minimised DFA, the operation of
which is simulated in Java.

The work described in the current paper goes further than
the work by Hickman, as it: performs minimisation of the
DFA; it uses the idea of using disjoint sets of characters to per-
form input compression; creates a VHDL design for imple-
mentation within an FPGA and tests this via simulation. As
seen in Table 5, the addition of the compression stage make a
major impact on resource utilisation, using 17% of the mem-
ory for the baseline design, as compared with 80% for an
implementation just using the basic packed array automata
implementation.

High speed regular expression matching has also been
done by Brodie et al. [4]. They compress their state tran-
sition table by the use of run length encoding and have a
fast system to decompress this during operation. Their sys-
tem handles multiple bytes per FSM cycle by the use of an
input compression system that creates an Equivalence Class
Identifier (ECI)—this classifies the input data into one of a
number of sets of input data patterns, where each member
of a given set would have the same effect on the FSM. This
has similarities to the multi-byte input classification systems
used by Sugawara et al. [16] and Tripp [19] for fixed string
matching, although the system used by Brodie et al. is more
complex in that it deals with sets of different combinations of
characters rather than the fixed character groups with lead-
ing or trailing wild cards characters that were considered by
Sugawara et al. and by Tripp.

The system by Brodie et al. was implemented as a FPGA
based system with a 32-bit input and operates at 4 Gbps with
a memory use of 96 Kbits per engine. (This compares to
2.0 Gbps and a memory use of 18 Kbits per engine in this
current paper.) They calculate that if their system was imple-
mented in an Application Specific Integrated Circuit (ASIC),
then they should be able to achieve speeds of 16 Gbps, with
a 500 MHz clock rate.

5 Conclusion and future works

This regular expression matching system uses a DFA imple-
mentation based on the design by Sugawara et al. [16], but
modifies this to use a different form of input compression
which classifies input data depending on the way in which the
characters enable edges of the automata. This compression
is important, even for a system with a single byte wide input,
because automata for implementing regular expressions com-
monly have edges that are enabled on multiple characters; as
compared to fixed string matching for a single string where
apart from failure paths there is generally a simple route from
initial to terminal states. A set of regular expressions from
the Snort community rule set have been processed, and the

algorithm has an average memory resource utilisation of 17%
of a simple baseline design as compared with 80% when the
input compression is not used.

This work has produced a VHDL model of a high speed
regular expression matching engine for implementation
within an FPGA. The design has been tested by simulation,
both at the behavioural level and ‘post place and route”. The
design is capable of running at a scan rate of 2.0 Gbps inde-
pendent of the regular expression being scanned for or the
input data that is being scanned.

The current design could be expanded to enable the rule
processing software to handle the {x, y} repeat operator that
is used in PCRE; we would then need to examine the
resources required by the rules that use this operation. It may
be that some rules would require large amounts of resources
for their implementation because of the likely DFA complex-
ity caused by using expressions such as [ˆ\n]{1000,}
which are just searching for long lines of text without line
breaks.

A new challenge will be to look at the effect on resource
utilisation as we increase the input word size. There may be
problems when moving to large word sizes because of the
potential problem of having a very large number of input
symbols to deal with—however it will be interesting to find
out at what point this becomes a problem. Another area to
look at is how the system could be modified to operate with
multiple REs per matching engine. The current system could
be modified quite easily to allow multiple match outputs from
each regular expression engine and it would be interesting to
see what density of REs we could obtain per engine, possibly
with careful grouping of REs.

References

1. Abbes, T., Bouhoula, A., Rusinowitch, M.: Protocol analysis in
intrusion detection using decision tree. In: Proceedings of Interna-
tional Conference on Information Technology: Coding and Com-
puting (ITCC’04), vol 1, pp 404–408. Las Vegas, Nevada (2004)

2. Attig, M., Lockwood, J.W.: SIFT: snort intrusion filter for TCP. In:
Proceedings of IEEE Symposium on High Performance Intercon-
nects (Hot Interconnects-13). Stanford, California (2005)

3. Baker, Z.K., Prasanna, V.K.: A methodology for synthesis of effi-
cient intrusion detection systems on FPGAs. In: Proceedings of
IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM ’04). Napa, California (2004)

4. Brodie, B., Cytron, R., Taylor, D.: A scaleable architecture for high-
throughput regular-expression pattern matching. In: Proceedings
of 33rd Annual International Symposium on Computer Architec-
ture (ISCA 2006), Boston, pp 191–202 (2006)

5. Clark, C., Schimmel, D.: Efficient reconfigurable logic circuits
for matching complex network intrusion detection patterns. In:
Proceedings of Field Programmable Logic and Applications, 13th
International Conference (FPL 2003), Lecture Notes In Com-
puter Science, LNCS 2778, pp 956–959. Springer, Heidelberg
(2003)

123

134 G. Tripp

6. Clark, C., Schimmel, D.: Scalable multi-pattern matching on high-
speed networks. In: Proceedings of IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM ’04). Napa,
California (2004)

7. Franklin, R., Carver, D., Hutchings, B.L.: Assisting network
intrusion detection with reconfigurable hardware. In: Proceed-
ings of IEEE Symposium on Field-Programmable Custom Com-
puting Machines (FCCM ’02), pp 111–120. Napa, California
(2002)

8. Grune, D., Bal, H.E., Jacobs, C.J.H., Langendoen, K.G.: Modern
Compiler Design. Wiley, Chichester (2000)

9. Hazel, P.: PCRE - Perl-compatible regular expressions. Retrieved
11 January 2007 from http://www.pcre.org/pcre.txt (2006)

10. Hickman, A.: High Speed regular expression matching for intru-
sion detection. MSc Dissertation, University of Kent, Canterbury
(2006)

11. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to auto-
mata theory, languages and computation, 2nd edn. Addison-
Wesley, Reading (2001)

12. Kruegel, C., Toth, T.: Using decision trees to improve signature-
based intrusion detection. In: Proceedings of the 6th Symposium
on Recent Advances in Intrusion Detection (RAID 2003), Lecture
Notes in Computer Science, LNCS 2820, pp 173–191. Springer,
Heidelberg (2003)

13. Moscola, J., Lockwood, J., Loui, R.P., Pachos, M.: Implemen-
tation of a content-scanning module for an internet firewall. In:
Proceedings of IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM ’03). Napa, California (2003)

14. Roesch, M.: Snort—lightweight intrusion detection for networks.
In: Proceedings of LISA ’99: 13th Systems Administration Con-
ference, pp 229–238. USENIX, Seattle (1999)

15. Sidhu, R., Prasanna, V.K.: Fast regular expression matching using
FPGAs. In: Proceedings of the 9th International IEEE symposium
on FPGAs for Custom Computing Machines (FCCM’01). Rohnert
Park, California (2001)

16. Sugawara, Y., Inaba, M., Hiraki, K.: Over 10 Gbps String Match-
ing Mechanism for Multi-stream Packet Scanning Systems. In:
Proceedings of Field Programmable Logic and Applications,
14th International Conference (FPL 2004), pp 484–493. Springer,
Heidelberg (2004)

17. Sutton, P.: Partial character decoding for improved regular
expression matching in FPGAs. In: Proceedings of 2004 IEEE
International Conference on Field-Programmable Technology
(FPT2004), pp 25–32 (2004)

18. Thompson, K.: Regular expression search algorithm. Commun.
ACM 11(6), 419–422 (1968)

19. Tripp, G.: A finite-state-machine based string matching system
for intrusion detection on high-speed networks. In: Paul Turner,
Vlasti Broucek, (eds) EICAR Conference Best Paper Proceedings,
pp 26–40. Saint Julians, Malta (2005)

20. Tripp, G.: A parallel “String Matching Engine” for use in high
speed network intrusion detection systems. J. Comput. Virol. 2(1),
21–34 (2006)

21. Xilinx Virtex-4 Family Overview, DS112 v1.6, Preliminary Prod-
uct Specification. (2006). Xilinx Inc. Retrieved 11 January 2007
from http://direct.xilinx.com/bvdocs/publications/ds112.pdf

123

http://www.pcre.org/pcre.txt
http://direct.xilinx.com/bvdocs/publications/ds112.pdf

	Regular expression matching with input compression: a hardwaredesign for use within network intrusion detection systems
	Abstract
	Introduction
	Background and related work
	String matching systems
	Pattern matching
	Non deterministic finite automata implementation
	Deterministic finite automata implementation
	Regular expression implementation
	Packed array DFA implementation
	Input compression
	Example
	Memory minimisation
	Results
	Hardware design
	Related work
	Conclusion and future works

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

