Intel® IXP2800 Network
Processor

Hardware Reference Manual

November 2003

Order Number: 278882-007

Intel® IXP2800 Network Processor
Contents -

INtal.

Revision History

Date Revision Description
March 2002 001 First release for IXP2800 Customer Information Book V 0.4
May 2002 002 Update for the IXA SDK 3.0 release.
August 2002 003 Update for the IXA SDK 3.0 Pre-Release 4.
November 2002 004 Update for the IXA SDK 3.0 Pre-Release 5.
May 2003 005 Update for the IXA SDK 3.1 Alpha Release
September 2003 006 Update for the IXA SDK 3.5 Pre-Release 1

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

The IXP2800 Network Processor may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-
548-4725 or by visiting Intel’'s website at http://www.intel.com.

Copyright © Intel Corporation, November

2 Hardware Reference Manual

Intel® IXP2800 Network Processor

n Contents
intgl.

Contents

1 Ta) (e Yo [UTox 1T) o [T P TR 21

O R A o T 10 1 1 L3 I T Yo [4= o | PR UP PR 21

1.2 Related DOCUMENTALIONueiiiiiiiiie ettt s et e e e et e e e e s et e e e e s nnbe e e e enees 21

G T @70 17/=T 0 1o o P EUP PR 22

2 =T g T o= L =TT o]] o) o SRS 23

P N © 1Y =T VT PR 23

2.2 Intel XScale® Core MiCrOarChitECIUIEcveueuieeeeeeeeeeeeeeeee e e 26

221 ARM COMPALDIIILY ..eeeeiiiiiieeiiiiie e 26

2.2.2 B BAIUIS ..o e e e e e e e et e et e e e e e e bbb 26

2.2.2.1 Multiply/Accumulate (MAC).......coooiiiiiieiiiiiiee e 26

2.2.2.2 Memory Management.........ccuuuirieiiiieeeiee ettt 26

2.2.2.3 INStruction CaCheooiiieiieee e 26

2.2.2.4 Branch Target BUffer........cccuuiiiiiiiei e 27

2225 DaAt8 CACNE ..ccciiiieiie e 27

2.2.2.6 Interrupt CONrOlIEr ... e 27

2.2.2.7 AJAreSS MaAP......ceeiiiiiiiiiiie et 27

P2 B \V [Tod (o T=T oo [o =2 O PO P P OPPPPPRPPPPPPPP 29

2.3.1 Microengine BUS AITANGEMENTcvuiieiiiiiieie ettt e et e et e e 31

AR B 0o 111 (o] IS (] (= T PP SUOPPRIR 31

A TR B 000] 4] (=) £ T TP PP PR 31

2.3.4 Datapath REGISIEISuiiiiiii it e 33

2.3.4.1 General-Purpose Registers (GPRS)cceviiiiiiiiiie i 33

2.3.4.2 Transfer REQISIEIS ...cooueiiiieiiiiiee ettt 33

2.3.4.3 Next Neighbor REgIStErS.........cuuiiiiiiie it 34

2.3.4.4 LOCAI MEIMOIY .oeeiiiieeieeiicetiiee et e e e e e e et e e e e e e e e e e et eeeeaeee e e e annnnes 35

2.3.5 AdAreSSING MOUEScciiiiiiiiiii e e e e e e e e s e e e e e e e e s s e s areaeaeeaees 37

2.3.5.1 Context-Relative Addressing Modeccccveeeeieeeieiiiciieeee e 37

2.3.5.2 Absolute AddressSing MOUEccviieeeiiiiiiiiiiiiee e e e e e e 38

2.3.5.3 Indexed AAressing MOAEceeveieeieiiiiiiiiieieie e e 38

2.3.6 LOCAI CSRS...ciiiiiitiiiee ettt ea e 39

2.3.7 EXecution Datapathccccuiiiiiiiiiie e 40

2.3.7. 1 BYLE AIGN ittt 40

2 T 2 ©F 1Y SRR 42

G IR T O = L O 1 o | PSPPSR 45

2.3.9 EVENE SIQNAIS ...ceeiiiiiieii it e e eeaaaaeeas 46

R B | A 1 SRR SPPRPRR 47

2.4.1 Size CONFIQUIALIONcoiiiiiieeee et e e e e e e e e e e e as a7

2.4.2 Read and WIEE ACCESS .. .oeiiiiiiiiiie ettt e e e e e e e e e ettt e e e e e e e e e e e enneenbeeeeeeas 48

2.5 SRAM L e e e e e e e et e e e e — it e e e e ettt aee e e traaeeeabreaeeearraeaaaaans 48

251 QDR ClOCKING SChEMEouutiiiiiiieeiie ettt e e e e 49

2.5.2 SRAM Controller ConfigUrationS...........coiiiiuiiiiiiiiieae e 50

2.5.3 SRAM AOMIC OPEIAtIONSeeiiieiiiaaeeeiiiitet et e e e e e e e et e e e e e e e e e e saanbnnbeeeeeeaaaaaeas 51

2.5.4 Queue Data Structure COMMANASccccoieiiieiiiiiiieeeeeecceee e 51

255 Reference OrUeriNGoooiiiuiiiiiiiiiii ettt e e e e e e e e e e e eeeeeas 52

2.55.1 Reference Order TabIeScooiiiiiiiiiiiiii e 52

2.5.5.2 Microengine Software Restrictions to Maintain Ordering....................... 53

Hardware Reference Manual 3

Intel® IXP2800 Network Processor

Contents u
intel.

2 TS Yol v (od g o =T 1Y/ 1= T o o) YU 54
2.6.1 Scratchpad AtOMIC OPEratiONSccuuvviiiiiiieeee e e iisirie e e e e e e s e s arrreeaeee e e s eannnes 54

2.6.2 RING COMMANASuuiiiiiiiiiiiee e e e iecce e e e e e e e s e s s st r e e eeeeaeaee s e s snteteaaereaaaaesesaannnes 55

2.7 Media and Switch Fabric INErface ..o 56
P 8 R S = L SR SRT 58

F B O 1) PRSP 59

2.7.3 RECEBIVE ..utiii ettt ettt e e e e nb e e e e b s 59
2.7.3.1 RBUF ettt e e e anee 60
2.7.3.1.1SPI-4 and the RBUFooiiiiiiiiie e 60

2.7.3.1.2CSIX and RBUFccciiiiiiie et 61

2.7.3.2 FULEIEMENL LISt ..o e e e e e e e e e eeaees 62

2.7.3.3 RX_THREAD_FREELIST ..ciiiiiitiiiies ettt 63

2.7.3.4 Receive Operation SUMIMAIYccooiiiiiemiiiiieeeniiee et e s e 63

N N - 1 a1~ o 1| RS UPUPPPPPRNt 64
N A St I = 1 | R SRT 65
2.7.4.1.1SPI-4 and TBUFcoiiiiiiiie et 65

2.7.4.1.2CSIX aNd TBUFooiiiiiiiiiieie e 66

2.7.4.2 Transmit Operation SUMMAIYcccccuuririrereeeeesiieininirereeeeee e e s e snneennees 67

2.7.5 The Flow Control INtEITACEocuuiiiiiiiiiiee e 68
2.7.5. 1 SPI-d e e e 68

2.7.5.2 G X ittt e e e e e tarae e e s araeeaeeane 68

P T o = 1= o T L o1 PSS SURRPPPP 68
2N I = O I ©o] o1 1 o] 1= C USRS 71
2.9. 1 TAIQET ACCESS ...ttt e ettt ettt et ettt ettt et e e e e e e e e e e e aaaaaaeeeeaeeaareae 71

WA B Y = U =] g A oo =11 U PT 71

2.9.3 DMA CRANNEIS....eueiiiiiiiie 72
22N R T B 1Y VN B =T ox o] (o | PP UUURPT 72

2.9.3.2 DMA Channel Operation............oooiuuiiiiieiieaee e 73

2.9.3.3 DMA Channel End Operationuueeeeiiieeaaiiiiiiiiiiiiee e e e 74

2.9.3.4 Adding Descriptors to an Unterminated Chain............cccccccveviiiiiivvnnnen. 74

2.9.4 Mailbox and MeSSage REQISIEIS.........uuuuiiiiiieeeeeiiiiiiie e e e e e e s rrrr e e e e e e e e s e anes 74

P2 ST = O Y o1 (= O SRR 75

2.10 Control and Status RegiSter ACCESS PrOXYuuuuuiiiiieeiiiiiiiiiiiieeieeee s e e sssirsieeareaseeessasnnnnees 76
2.11 Intel XSCale® COre PErPNEIALSc.c.oviveeeeeeeeeeeeeeeeeeeeeeeeee et 76
2.11.1 INterrupt CONLIOIEIuuiiiieeiiee e er e e e e e e e s e e e e e e e e e s eenanes 76

P2 5 O 1 1 1= = PP 77
2.11.3 GeNEral PUrPOSE /Ouuiiiiiiee ettt et a e e e e s e st ae e e e e e e e e e s eennnes 77
2.11.4 Universal Asynchronous Receiver/ TranSmitter.........cccvvvvereeeeeeiiiciiieiiieee e e e e es e 77
2.10.5 SIOW POR ettt ettt e et e e st e e s et e e e e nb e e e e nree s 77

pZ N 1@ I (=1 TV SRR 78
2.13 Performance MONITOKuuiii ittt e e e s et e e s e nbe e e e e eneees 78
3 INEEI XSCAIET COTE ...ttt 79
7% N [1 {0 To [F T o o SRR 79
I T 1T 1 (=T TP 80
3.2.1 Multiply/ACCUMUIALE (MAC)...iiii i ittt ee st r e e e e e s e e e e e e e e e s e e annes 80

3.2.2 MemMOIY MaNaAgEMENT iiiiiiiii ettt e e et e e e et e et e e e e e e e e eant s 80

3.2.3 INSIIUCLION CACNEcci ittt st e e e e 81

3.2.4 Branch Target BUfEIueeiieiii et e e e e 81

3.2.5 DAtA CACNE ...t 81

3.2.6 Performance MONITONNGueuiiiieeeie e icciiiieir et e e e e e s s e e e e e e e e e s st arnreeeaaeeeseeannes 81

Hardware Reference Manual 4

Intel® IXP2800 Network Processor

intel.

3.3

3.4

3.5

3.6

Contents

3.2.7 POWEE MANAGEIMENT. . ..ttt ettt e e e e e e e e e e e e e e eat e e e e eerebaneaeaaees 81
B.2.8 DBDOUQ i 81
02 N N X C PSPPI 82
MEMOIY MaNAGEIMENTottt et e ettt e e e e et e e e e e eae b e e e e eetbbe s e e e eeeanan 82
3.3.1 ArchiteCture MOUEI.........uuiiiiiiiiie e e 83
3.3.1. 1 Version 4 VS. VEISION 5...cccoiiuiiiiiiiiiiiiee ettt 83

3.3.1.2 MemOry AHDULEScoiiiiiiieiieiee et 83
3.3.1.2.1Page (P) Atribute Bitcoccuviiiiiiiiieeeeiee e 83
3.3.1.2.2InStruction Cachec.euuiiiiiiiieeee e 83

3.3.1.2.3Data Cache and Write BUffer........cccccevviiiieeiiiiie e 83

3.3.1.2.4Details on Data Cache and Write Buffer Behavior................... 84

3.3.1.2.5Memory Operation Orderingccccvrrrrreeeeeeieeiiiiiririrrereaaeeens 84

TR I b (o= o] o] = PRE 85
3.3.3 Interaction of the MMU, Instruction Cache, and Data Cache.................cccceeeennne. 85
I 20 S O o o1 1 (o] I PP URPPTTPRRPTN 85
3.3.4.1 Invalidate (FIush) OPeration..........ccccceeveciiiiiiieeie e e e 85

3.3.4.2 Enabling/Disablingccccuiiiiiiiiiee e 86

3.3.4.3 LOCKING ENLMES ...eeeiiiiiiiii ettt 86

3.3.4.4 Round-Robin Replacement AlQOrithmcooccveeiiiiiiiiiiiiiee e, 88
INSEIUCHION CACNE ...ttt e e e e e e e e e e et eeeeeaaaeeeeaannnes 89
3.4.1 Instruction Cache OPEratioNccueiieiiiiiiiee it 20
3.4.1.1 Operation When Instruction Cache is Enabledccccociiieriinnenn, 90

3.4.1.2 Operation When The Instruction Cache Is Disabled..............c............. 90

3.4.1.3 FEICh POlICY .uvvviiiiiiiie ettt e e e e 90

3.4.1.4 Round-Robin Replacement Algorithmcccccceeiiiiiiiiiiiiree e, 91

3.4.1.5 Parity ProteCHON......ccoi it eee ettt e e e s e e e e e e e e ennnanes 91

3.4.1.6 Instruction Cache CONEIENCY........ccoeiiiiiiiiiiiiiiie e 92

3.4.2 Instruction Cache CONLIOlcciiiiiiiiiiii et e e e 92
3.4.2.1 Instruction Cache State at ReSetccuuviiiiiiiiieiiie e 92

3.4.2.2 ENAbliNg/DiSabliNgceieiiiiiiiieiiiiiie e 92

3.4.2.3 Invalidating the Instruction Cache............ccuueiiiiiiiiiiiiiiee e, 93

3.4.2.4 Locking Instructions in the Instruction Cacheccccccviviviveeeeeennnns 93

3.4.2.5 Unlocking Instructions in the Instruction Cachecccccovviveeeeeeennnn. 95

Branch Target BUTTEE ...t r e nneanens 95
3.5.1 Branch Target Buffer (BTB) OPEerationcceeeeeiiisiiiiiniieieeeieeeieesisiininnereeeaaeees 95
35,11 RSB s 96

T U1 o T -1 (=T o] o3 PR 96
3.5.3 BTB CONMIOl ..ciiiiiiiiiie ettt ettt e e et e e e e 96
3.5.3.1 Disabling/ENabliNgcccciiuiiiiiiei i 96

3.5.3.2 INVAIAALION ...coiiiiiiiiie e 97

D=1 v O T o = PR SURRP 97
G G TR R @ 1T Y1 Y S PRTPPRR 97
3.6.1.1 Data Cache OVEIVIEWcccciiuuiiiieiiiiiiie ettt e e 97

3.6.1.2 Mini-Data Cache OVEIVIEWcceeiiiiiiiiiiiiiieeeee e eee e e e e e 98

3.6.1.3 Write Buffer and Fill Buffer OVerviewcccccciieiiiiiiiiiiieiiieeeeeeee 99

3.6.2 Data Cache and Mini-Data Cache Operationc.coooccuuiiiiiiiieeeee e 100
3.6.2.1 Operation When Caching is Enabled.............ccccccoiiiiiiiiiiii, 100

3.6.2.2 Operation When Data Caching is Disabledccccoooiiiiiiennnnn. 100

3.6.2.3 CAChE POICIESeeeiiiiiiiii et 100
3.6.2.3.1Cacheabilitycccoiiiiiiiiiiiii e 100

3.6.2.3.2Read MisS POIICYcccvuviiiiiiiie e 100

Hardware Reference Manual 5

Intel® IXP2800 Network Processor

Contents

3.7
3.8

3.9

3.10

3.11

3.6.2.3.3WIrite MISS POIICY....cuvvvieiieeii i e e 101
3.6.2.3.4Write-Back Versus Write-Throughcccccviiveeeieeeeiieins 101

3.6.2.4 Round-Robin Replacement AlQOrithmoccocviiiiiiiiiiniiiee e 102

3.6.2.5 Parity Prot@ClON........ccuuviiiiiiiiie sttt 102

3.6.2.6 ALOIMIC ACCESSES. .. i iiiieiittieeiieee e e e e e ettt e et e e e e e e e e e aeeabbeeeeeaaaeaeeaaannnes 102

3.6.3 Data Cache and Mini-Data Cache Controlccooooiiiiiiiiiiie e 103
3.6.3.1 Data Memory State After RESEet.........ccoviiiiiiiiiiiiiei e 103

3.6.3.2 Enabling/Disablingccuuiiiiiieie e 103

3.6.3.3 Invalidate and Clean OpPerationS...........cccccvvrrirreeeeeeiesisiiirineeeeeee e e 103
3.6.3.3.1Global Clean and Invalidate Operation...........ccccccvvveeeereiienns 103

3.6.4 Re-configuring the Data Cache as Data RAM...........cccccciiviiee e, 105
3.6.5 Write Buffer/Fill Buffer Operation and Controlccccccvvveveeeeees i 106
(@] o178 r=\1 4o) o [PREPRR 106
Performance MONITOTING . ..uuuiie it s e e e e e e e e s e s s r e e e e e e e e e s nnnnrenaeees 107
3.8.1 Performance Monitoring EVENLSccc.uviiiiiiiiieiee e e e ea e e 107
3.8.1.1 Instruction Cache Efficiency Mode...........cccouvveiveeeeeiiiiiiiiiiiiieeeee e 108

3.8.1.2 Data Cache EfficienCcy MOGE..........ccoeeiiiiiiiiiiiiiiece e ee e 109

3.8.1.3 Instruction Fetch Latency MOde............cccuveveiiiiiiiiiiiiiiiee e 109

3.8.1.4 Data/Bus Request Buffer FUll MOdEccoviiiiiiiiiiiiiiiee e 109

3.8.1.5 Stall/Writeback StatiStiCS........ucvuiiiiiiiiiiiiiiiieee e 110

3.8.1.6 Instruction TLB Efficiency Modeccoccviiiiiieieee s 110

3.8.1.7 Data TLB EffiCiency MOUEccceviiiiiiiiiiiiiineeee e ee e e 111

3.8.2 Multiple Performance Monitoring Run StatistiCS.........cccccvvviiveee s, 111
Performance CONSIAEIALIONSuuiiiiiiiie ettt e e e e s e e e snaeeees 111
3.9.1 INTEITUPL LAENCY ..uniie ettt e e et e e e e e e aab e e e e eeaenan 111
3.9.2 Branch PrediCtion ...t e 112
3.9.3 AdAressing MOESccuuiiiiiiiiiee et e e e et r e e e e e e e e s s arreeaeaees 112
3.9.4 INSIIUCLION LAENCIES ... cuiiiiiiiiiiie ittt e e e e e e 112
3.9.4.1 PerfOrmance TEIMMScouiiiiiiiiee ittt e eeesnneeeas 113

3.9.4.2 Branch INStruction TIMINGSccceveeiiiiiiiiiiiiieeee e er e e e e e 114

3.9.4.3 Data Processing Instruction TimiNgsccccceeeieriiiiiiiiiiiiiiee e 115

3.9.4.4 Multiply INStruction TiMINGS.....ccueeieaiiiiiiiiiiie e 115

3.9.4.5 Saturated Arithmetic INStrUCtIONScccvuiiiiiiiiiee e 117

3.9.4.6 Status Register ACCESS INSLIUCLIONSuvviiiiiieeeeeiiiiiiiiiieer e 117

3.9.4.7 L0oAd/Store INSrUCLIONScuuviiie ittt 118

3.9.4.8 Semaphore INStrUCLIONSuuuiiiiiiiee e 118

3.9.4.9 CoprocesSOr INSIIUCLIONScciiiiiiiiiiiiiiiiieee e e 118
3.9.4.10 Miscellaneous INStruction TiMING.........cccuuvieiiiiieeai e 119
3.9.4.11 Thumb INSLIUCLIONS ... e 119

TS FRATUIES. ...t e e e e e e e e e e e e e et e e et et ae e bbb et et aanaa e e e as 119
3.10.1 IXP2800 Network Processor ENAIANNESS......cccouiaiiiiiiiiiiiiiiiieee e 119
3.10.1.1 Read and Write Transactions Initiated by the Intel XScale® Core....... 121
3.10.1.1.1Reads Initiated b% the Intel XScale® Coreccccceevivveeennne 121

3.10.1.1.2The Intel XScale™ Core Writing to the IXP2800................... 123

INtel XSCale® GasKet UNit.........cueiiiiiiiiiiie ettt e et sraeee e e 126
o 0 R @ V= o T PP TTPRPR 126
3.11.2 Intel XScale® Gasket Functional DesCriptionccccvviiiirieeeee e e e 127
3.11.2.1 Command Memory Bus to Command Push/Pull Conversion............... 127

R 700 I I T @ AN 1Y @ o T= 1 1o 1o SRR 128
3.11.4 ALOMIC OPEIALIONS ...cceeeiiiiiiee e e e e e e e e e et e e e e e e e e s ss e s b e e e e e aeeeeessnnsnnnrasaeeeaaeaees 128
3.11.4.1 Intel XScale® Core Access to SRAM Q-AITay........ccccevvvvrerrreeeeesiininnns 130

0 Y ST 1@ T I = g T T i o o PR PR 130

Hardware Reference Manual 6

In

4

Intel® IXP2800 Network Processor

Contents
tel.

116 HASN ACCESS ..o iiiieii ittt ettt et e e e e sttt e e e s e e e e e nnbaeeeeeann 131
3.11.7 Gasket LOCAI CSRciiiiiiiiiiiii ettt e e e 131
00 I S T 1 11T ¢ (] o | S PP UPPPPRR 132
3.12 Intel XScale® Core Peripheral INterface..........cccvvvviiiiiieeie e 135
B.12. 1 XPI OVEIVIEW .ttt ettt et e e e ettt e e e st e e e e st e e e e bbb e e e s enbeeeeeanneee 135
3.12.1.1 Data TranSEIS c..veeeii i 136
3.12.1.2 Data AlIGNMENTuiiiiiiiiiee ettt et 136
3.12.1.3 Address Spaces for XPI Internal DeVICEScccuvveeriiiiieeiniiiieeeeeine 137
3.12.2 UART OVEIVIBW ..ttt e e e ettt et e e e e e e e s e e ettt e e e e eeaeeaaeeaaannneeeeneeeaas 138
3.12.3 UART OPEIALION ...eiieiitiiieeiiiieee e ettt e ettt e ekttt e e sttt e e e s nbbe et e e st bbeeeeeannneeeeeane 139
3.12.3.1 UART FIFO OPERATIONcttitiiiiiiiieeeeiiiee e sie et ae e eien e 139
3.12.3.1.1UART FIFO Interrupt Mode Operation - Receiver Interrupt.139
3.12.3.1.2FIFO Polled Mode Operationcoccvveeernveeeeeninieee s 140
3.12.4 Baud RaAte GENEIALON......cccuueiiiiieiieia e e e ettt e e e e e e ettt e e e e e e e e e e e s annreeeaeeeeeas 141
3.12.5 General PUrpPoSe /O (GPIO)oiiiiiiiiiiieiiiiie ettt 141
0 220 G T T2 = = SRR 142
3.12.6.1 TiMEr OPEIALIONceiiiitiiie ettt e 142
3.12.7 SIOWPOIT UNIL ...ttt e et e e e e e e e e e e snnnenbeeeees 144
3.12.7.1 PROM DEVICE SUPPOIT....eteiiiitiiiieiiiiiiie e ettt e st 144
3.12.7.2 pP interface support for the Framer.........cccccoviiiii i 145
3.12.7.3 SlowPort Unit INTEIfACESccuvveiieiiiiiie e 146
3.12.7.4 AdArESS SPACE....ciiiiiei ittt et ee e e e e aa e e 146
3.12.7.5 SlowPort Interfacing TOPOoIOGYcccvveeeeiiiiiieiiiee e 147
3.12.7.6 SlowPort 8-bit Device Bus ProtoColsccceeeeiiiiiiiiiiiiiiiiieeeeeeen, 148
3.12.7.6.1Mode 0 Single Write Transfer for Fixed-Timed Device......... 148
3.12.7.6.2Mode 0 Single Write Transfer for a Self-timing Device......... 149
3.12.7.6.3Mode 0 Single Read Transfer for Fixed-timed Device.......... 150
3.12.7.6.4Single Read Transfer for a Self-timing Device..................... 151
3.12.7.7 SONET/SDH Microprocessor ACCESS SUPPOItccovurrereririireeeennnnns 151

3.12.7.7.1Mode 1: 16-bit Microprocessor Interface Support with
16-bit AAress LINEScooeiiiiiiiiee e 152
3.12.7.7.2Mode 2: Interface With 8 Data Bits and 11 Address Bits......156

3.12.7.7.3Mode 3: Support for the Intel and AMCC 2488 Mbps
SONET/SDH Microprocessor Interfacec.ccooevcvvvvvvveennnennn. 158
Y TTed foT=T o Yo [q L= PP PRPR 167
o R O 1V oY PP EP TSP 167
o Ot R ©70 ¢ (0] IS (o] PR 169
o A ©70] 1 (=) (TR TP PP 169
4.1.3 Datapath REGISIEISccciiiiiiiieitiie ittt 171
4.1.3.1 General-Purpose Registers (GPRS)cccvveiiiiiiiieiiiiiece e 171
4.1.3.2 Transfer REQISIEIScooiiiiiiiiiiee e 171
4.1.3.3 Next Neighbor REgISters.......ccvuviiiiiiieee e 172
o O T S W o To= LN 1Y/ 1= o o) Y PSR 172
4.1.4 AdAresSing MOUEScceeiiiiiiiiieiiie e e e e e e e e s e eeaaeeeesassnnreereaeeees 173
4.1.4.1 Context-Relative Addressing Modeccccccvvvivieiieeeic e, 173
4.1.4.2 Absolute Addressing MOAEuuuuviieeeiiiiiiiiieeie e 174
4.1.4.3 Indexed Addressing MOoeueiiiiaiiiiiiiiieee e 174
A W o o7 | O3] 3PP RUP TP 174
4.3 EXECUtiON DAt@Pathceeeiiiiiiiiiie it e e e e e e e s 174

Hardware Reference Manual 7

Intel® IXP2800 Network Processor

Contents

4.4

4.5

5.6

5.7
5.8
5.9
5.10

5.11

5.12

4.3.1 BYEE AlIGN i 174
4.3.2 CAM e 177
(O 2 (O U o S PP PTPP SRR 180
EVENE SIGNAIS ... et 180
4.5.1 Microenging “ENGIANNESS”ccouiiiiiiiiiiiiiie ettt 181

4.5.1.1 Read from RBUF (64-DitS)cooiuiiiiiiiiiiiie i 181

4.51.2 WIE 10 TBUF ..ottt 182

4.5.1.3 Read/Write from/to SRAMccoiiiiiiiiiii s 182

4.5.1.4 Read/Write from/to DRAMcoociiiiiiiiiiiei e 182

4515 Read/Write from/to SHAC and Other CSRSccccovvveeriiieniienineeens 182

4.51.6 WIrite t0 Hash UNit.........coooiiiiiioniiie e 183
4.5.2 MEAIA ACCESS ...oiiiieieiite ittt ettt ettt e e a e 183

4521 Read from RBUFccccooiiiiii e 184

4522 WIHE IO TBUFR ..ot e 185

4.5.2.3 TBUF t0 SPI-4 Transferccuuiiiiiiiie et 186
.. 187
OVEIVIEW ...ttt ettt ekttt ettt e 4kttt £ o4 a bbbt o4 a ket £ a4 n bbbt e e e aab e e e e e e nbbe e e e ennes 187
SIZE CONFIGUIALION .ottt e bbbt s b e e e e e e e e enane s 188
DRAM ClIOCKING ..ttt ettt e et e e e st e e st e e e nnnneee s 189
BaANK POJCY ...ttt 190
T 1=T g (==Y o Vo PR TP TR 191
5.5.1 Three Channels Active (3-Way INterleave).........ccccviuiiiiiniiiiie e 191
5.5.2 Two Channels Active (2-Way INterleave)ccccviiiiiiiiiiiiiieie e 193
5.5.3 One Channel Active (NO INtEIEAVE)ooii it 193
5.5.4 Interleaving Across RDRAMS and Bankscccoccvvieiiiiiiiiiniiiiee e 194
Parity and BECCottt e e e e e e e e e e eee e 194
5.6.1 Parity and ECC Disabled ... 194
5.6.2 Parity ENADIEd ... 195
5.6.3 ECC ENGDIEAceeiiiiiiiee ettt 195
5.6.4 ECC Calculation and SYNArOMEceueiiiiiiiiiiiiiiiiiieie e ee e e e e e 196
TiMING CONfIQUIALION......coiiiiiii e e e e e e et eeee e e e e e e ns 196
MICrOENQINE SIGNAISot e e e e e e e s e e st e et e e e e e e e e e e nnneeeeeeas 197
ST A= L o] £ S PP TP TP PTPPPPN 197
RDRAM Controller BIOCK Diagram.........cc.uuueiiiiiiiaieeiiei et e e 198
5.10.1 COMIMANGSuveieiieitiieie ettt ettt e e ettt e st et e e sbbe e e e e abbb e e e e s abbe e e e e snnneeas 199
5.10.2 DRAM WILEeiiiitiiittie ettt ettt ettt ettt ettt e e sbee e s etee e s abe e e s sabeesabaeesanbeesnnneens 199

5.10.2.1 MaASKEA WIILEeeeeiiiiiiie ettt e e e 199
5.10.3 DRAM REAM.cciutiiitiieittiee ittt sttt et et e e e s sabe e s saae e sabe e e neeas 200
5.10.4 CSR WWHIEE .ottt ettt ettt e ettt ettt e ebt e e e ebe e e e smbe e e aabe e s sabeeeanneas 200
5.10.5 CSR REAM. ... uuiiiiiiiiiiie ittt sttt ettt e abe e e abe e s sabe e e nabe e snbe e e aneeas 200
5.10.6 AIDIFALION ...oooiiiiiiieie e 201
5.10.7 ReferenCe OFUEIINGceieiiiiiiiiiiiiee et ee et e e e e s e e eeeeeaaeaeeeaaannes 201
DRAM PUSH/PUIT ATDITET ..ttt 201
5.11.1 Arbiter PUSh/PUll OPerationccuueiiiiiiiiieiii et 202
5.11.2 DRAM Push Arbiter DESCHPLIONeeiiiiiieiiiiiieiiiei e e e 203
DRAM Pull Arbiter DESCIPLION.ci ittt e e e e e et e e e e e e e e e e e annnnees 204

Hardware Reference Manual 8

Intel® IXP2800 Network Processor

n Contents
intgl.

6 ST R TN (Y] 4= = Lot = RSO SPR 207

B.1 OVEIVIEW ...ttt e e e e e e s e e e e e e e e e e e e e et et et e eeeee s tetete b aee s sesesaeeeeeeaaaaaaaaaaaeeesssennns 207

6.2 SRAM Interface ConfiQUratioNScoouiiiieiiiiiie it 208

6.3 SRAM Interface ConfigUIatioNsccecieeiiiiiiiiiiiiee e e e e e e e eea e s 209

6.3.1 INtErNaAl INTEITACE ...eiiiiiiiiiii et e e e e 209

6.3.2 NUMDbEr Of ChaNNEIScoiiiiiiiie e 209

6.3.3 Coprocessor and/or SRAMs Attached to a Channel...........ccccccveeeieiiin e, 209

6.4 SRAM Controller ConfigUurationS...........uueeeiieeieiiiiiiiieiieee e e e e e ss s e e e e e e e aeaaee s 209

6.5 COMMANA OVEIVIEWeiiiiiiiiiieeeiiitiiee e ettt te e ettt e e e s stbe e e e stbb e e e e snbaeeeessnbbeeeeesanbeeeeessnbeneeeaas 211

6.5.1 Basic Read/Write COMMEANAS.......ccoiiiiiiiiiiiiiii e e e 211

6.5.2 ALOMIC OPEIALIONS ...cciitiiiie ittt ettt e et e e s e e e e enne e 212

6.5.3 Queue Data Structure COMMANASccuuiiiiiiiiie e 213

6.5.3.1 Read_Q_Descriptor COmMmMandS..........cooccuuurieiiiiiieeeaeeiiiiieeieeeaaaae e 217

6.5.3.2 Write_Q_Descriptor CommandsScooccvuvriimieeieeeeeesiiinnineeeeeeeeeen 217

6.5.3.3 ENQ and DEQ COmMMAaNASuuuuuiiiiiiiieieieieeeeeeeeeeeeeeeeeeeevevevvbb s 217

6.5.4 Ring Data Structure COMMANAScccoviiiiiiniiiiiriire e e s e e e e e 217

6.5.5 Journaling ComMmMAaNASuuuuiiiiiieeeeeeiii it re e ee e e s e e s e e e e e s e e e e snraeeaneeeees 218

B6.5.6 CSR ACCESSES ... oo i iiiiiiiiiietee ettt e e e et 218

L G == V11|V USSR 218

A Vo o [£ ST Y/ o SRR 219

(ORI = (1 (=T (=Y (ot =B @ (o [T oo S 220

6.8.1 Reference Order TabIesc.eiiiiiiiiiiiiiiie e 220

6.8.2 Microcode Restrictions to Maintain Ordering.........cccceeeevveiivieeieireeeee e ceeeeiineeeens 221

SIS I O] o] (oo ==X Y o] 1Y/ Lo o SRR 222

7 SHAC—UNIT EXPANSION 1ttt ettt ettt e sttt e e st e e st e e e e abtnbeeesnnneeee s 225

T.1 OVEIVIEWoiiiiii ettt e et e e e e e e e e e e e e e e e ee et eeeeeeeee e s tetete s aae e s a s e sesaeeeaeaaaaaaaaaaaaeeesesenens 225

7.1.1 SHaC Unit BIOCK Diagram..........cccoiuiiiiiiiiiiieie ettt 225

7.01.2 SCrAtCNPA. ...ceeeiitiieeee ittt e et e e ab e e e e e e e 227

7.1.2.1 Scratchpad DeSCrPLIONocuviiieiiiieee e 227

7.1.2.2 Scratchpad INtErface..........cooiiiiiiiiiie e 229

7.1.2.2.1Command INterfaceccceeeeeieeiiiiiiice 229

7.1.2.2.2Push/Pull INterface.........c.oocuueiieiiiiiiie e 229

7.1.2.2.3CSR BUS INtEIfACEevviiiiiiiiiieeiiiiee et 229

7.1.2.2.4Advanced Peripherals Bus Interface (APB)cccccccveveeennn. 229

7.1.2.3 Scratchpad Block Level Diagram.........ccccoccuveeiiriiiiieeiiiieiee e 229

7.1.2.3.1Scratchpad Commandsooccuuiiiiiiiiiee e 230

7.1.2.3.2RING COMMANGSuiiiiiiiiiiaeeiee it a e e e e e 231

7.1.2.3.3CI0CKS @Nd RESEL.......euviiiiiiiiiieiiiiiee et 235

7.1.2.3.4RESEL REJISIEISvviiiiiiiieieeei it e e e e e e e s ar e e e e e e e 235

4% C T o =T UL o | OO 236

7.1.3.1 Hashing OPerationccoecuiiiiiiiiiiee e eecieee e e e e e e e e 237

7.1.3.2 Hash AlgOrithmccooiiiiiee e a e 239

8 Media and Switch Fabric INterface ... 241

8.1 OVEIVIEW ...ttt e e s e s e e e e e e e e e e e e e e e et et et eeeeee s teteteaaae b s s e sesaeeeaaaaaaaaaaaaaaeeessennnns 241

S R =] PP PRPUTPPRR 243

S O1] I U UPRPPPPPR 246

Hardware Reference Manual 9

Intel® IXP2800 Network Processor

Contents

8.2

8.3

8.4
8.5

8.6

8.1.3 CSIX/SPI-4 INterleave MOUE.........ccueveiiiiiiiie it 246
Lol =TIV PSSR 247
8.2.1 RECEIVE PINS. .ttt et e 248
8.2.2 RBUF e 248

B.2.2.1 SPI-d e 250

B.2.2.2 O SIX ittt e 252
8.2.3 FUILEIEMENT LISt ...ciiiiieeeie ettt a e e e 255
8.2.4 RX_TRread _FreeliSt # e 255
8.2.5 Rx_Thread_Freelist_ TIMEOUL #cccuuiiiiiiiiiiieeee e 256
8.2.6 Receive Operation SUMMAIY.........ccueiiiiiiiiieiiiiie et 256
8.2.7 Receive FIOW CONrol STALUSccooiiiiiiiiiieeie e 258

B.2.7. 1 SPI-d e 258

S O O]) SRR 259

8.2.7.2.1LINK-1EVEI......eee e 259

8.2.7.2.2Virtual OUtPUL QUEUEeeieiiiiiiiee it 260

B.2.8 Pty et 260
B.2.8.1 SPI-d . e 260

B.2.8.2 S IX ittt e 261
8.2.8.2.1HOrIZoNtal Parity.........cccveiiiiiiiiiiiieii e r e e 261

8.2.8.2.2VertiCal Parity.......c.ceuviiieieeiii i e e e e e 261

B.2.9 ENTON CaASES. . ettt 261
LI 210 £ 10 PRSP 262
S TR I R = 1 5] o 1 0 = LSRR 263
8.3.2 TBUF e e 263

B.3.2.1 SPI-d e 266

R O]) SRR 267
8.3.3 Transmit Operation SUMIMAIY........ccuueeeiiiiiiieiiiiie et e et s e 268

B.3.3.1 SPU-d e 269

R e T O]) SRR 270

8.3.3.3 TranSMit SUMMEAIY........ceiiiiiiiiiaiiiiieee ettt 271
8.3.4 Transmit FIOW CONrol STALUScooeiiiiiiiiieeiiee e 271

B.3.4. 1 SPI-d . e 271

B.3.4.2 S IX ittt e 274

8.3.4. 2. 1LINK-IEVEL......eiiiii e 274

8.3.4.2.2Virtual OULPUL QUEUEccoe oot eeee e e e e e e e e 274

TR S - 11 Y2 PRSP 274
B.3.5.1 SPI-d e 274

R T O]) SRR 275
8.3.5.2.1H0rizontal Parity.........cccooiiiiiiiiiiiieeieiee e 275

8.3.5.2.2VertiCal Parity.........cueiiiiiiiiiiiiiiiiieie et 275

RBUF and TBUF SUMMAIYoiiiiiiiiiiiiie ettt a e et e e e e e e e e e e s anneeeaeees 275
CSIX FIOW CONLrol INEEITACE ...t 276
8.5.1 TXCSRB, RXCSRBooiiiiiiiiiiie ittt ettt e et e e e sntae e e e e snnbree e e enees 276
8.5.2 FCIFIFO, FCEFIFO ...ouiiiiiiiiie ettt et e e e 278

8.5.2.1 FUII DUPIEX CSIXuuiiiiiiiiiiie ittt ettt e e e e snnnaee s 278

8.5.2.2 SIMPIEX CSIX ..ttt 280
8.5.3 TXCDAT/RXCDAT, TXCSOF/RXCSOF, TXCPAR/RXCPAR,

ANA TXCFC/RXCEC ...ttt ettt ettt e e snneaee s 281
(DTS G LVAR= U To I I = V1 1V SRR 282
8.6.1 Data Training PatterN..........uuiiiiiiieeiiiiicie it ee e e e ss e e e e e e e e s st rrreeaaeaes 283
8.6.2 Flow Control Training Patterncccviiiiiiiiiiie e 284

Hardware Reference Manual 10

Intel® IXP2800 Network Processor

n Contents
intgl.
8.6.3 Use Of DYNaMIC TraiNiNGuvvueeiiiieeeeeisiiiiiiienieeeeesee e e s e s ssntnnreeeeeeeeeeeeesnssnnnesneneeees 285
8.7 CSIX STArUP SEOUENCE. ...ttt ettt ettt ettt ettt e et e et a e s e e e eetbba e e e eeerebba e eeaaee 289
8.7.1 CSIX FUI DUPIEX ettt nn e 289
8.7.1.1 INGreSS IXP2800uuuiiiiiiiiiiiiiee ettt 289
8.7.1.2 EQress IXP2800cccuiiiieieireieniiie et sree s 289
8.7.1.3 SiINGIE IXP2800oiiuiiieiiiiieiiiie ittt et sbe e aee e 290
8.7.2 CSIX SIMPIEX....utiiitiie ittt ettt ettt e bbe et e e e abe e s nbe e e sbbee e 290
8.7.2.1 INGress IXP2800ccoiiiuiiiriiiiiiieeie e 290
8.7.2.2 EQress IXP2800cccuuiiiiiiaiiiieeniiie ettt stee st sbee s sibe e bee e 290
8.7.2.3 SiINGIE IXP2800cciiiiiiiriieiriie et 291
8.8 Interface to Command and Push and PUll BUSSEScccceuiviiiiiieniii e 291
8.8.1 RBUF or MSF CSR to Microengine S Transfer In Register for instruction: 293
8.8.2 Microengine S Transfer Out Register to TBUF or MSF CSR for instruction:....... 293
8.8.3 Microengine to MSF CSR fOr iNSITUCLION:........ccoiiuiiiiiiiiiie e 293
8.8.4 From RBUF to DRAM fOr iINStrUCHION ... 293
8.8.5 From DRAM to TBUF for iNStruCtioN:ccceeiieiie et 294
8.9 Receiver and Transmitter Interoperation with Framers and Switch Fabrics..................... 294
8.9.1 Receiver and Transmitter Configurationsc..ccoviiiieeiiiiiiiiee e 295
8.9.1.1 Simplex CoNfigUIationccuuiieiiiiiiiie e 295
8.9.1.2 Hybrid Simplex Configurationccccceoeecuviieiieere e 296
8.9.1.3 Dual NPU Full Duplex Configuration............cccccevreeeeeiiiiiiiiiiiieeeeeeeeeenn, 297
8.9.1.4 Single NPU Full Duplex Configuration (SP1-4.2)..........ccccccvvvveereeeeennnn. 298
8.9.1.5 Single NPU, Full Duplex Configuration (SPI-4.2 and CSIX-L1)........... 299
8.9.2 System CONfIQUIALIONS.......cciiiiiiiiiiiiii ettt e e e e e 300
8.9.2.1 Framer, Single NPU Ingress and Egress, and Fabric Interface Chip ..300
8.9.2.2 Framer, Dual NPU Ingress, Single NPU Egress, and Fabric Interface
(O] 11 o TSROSO 301
8.9.2.3 Framer, Single NPU Ingress and Egress, and CSIX-L1 Chips for
Translation and Fabric INterfaceccccovvivieenieec e 301
8.9.2.4 CPU Complex, NPU, and Fabric Interface Chipcccccvvvveeeenneennn. 302
8.9.2.5 Framer, Single NPU, Co-Processor, and Fabric Interface Chip 303
8.9.3 SPI-4.2 SUPPOIT ...coiiiiiiiiiiite ettt e 304
8.9.3.1 SPI-4.2 RECEIVET ..ottt ettt a e 304
8.9.3.2 SPI-4.2 TranSMItIer.....coi ittt 305
8.9.4 CSIX-L1 ProtoCol SUPPOITveiiieiiiiiiees ittt e e e e e e 306
8.9.4.1 CSIX-L1 Interface Reference Model: Traffic Manager and Fabric
INtErface CRiP....ooii i 306
8.9.4.2 Intel® IXP2800 Support of the CSIX-L1 Protocolcccovvveeeeereennn. 307
8.9.4.2.1Mapping to 16-Bit Wide DDR LVDSccccoovveriieiiiineennn, 307
8.9.4.2.2Support for Dual Chip, Full-Duplex Operation 308
8.9.4.2.3Support for Simplex Operation...........cccceveeeriiieeeinniiee e, 309
8.9.4.2.4Support for Hybrid Simplex Operationcccccoeiviiiieneennn. 310
8.9.4.2.5Support for Dynamic De-Skew Training........cccccceeevvviivviennenn. 311
8.9.4.3 CSIX-L1 Protocol Receiver SUPPOItcccuvviriieiiee e cceccinrieeee e e 312
8.9.4.4 CSIX-L1 Protocol Transmitter SUPPOItcccvvveieeieeeeieiiesciiieeeeee e 313
8.9.4.5 Implementation of a Bridge Chip to CSIX-L1....cccccccceviviiiiirrineeeeneeennn. 314
8.9.5 Dual Protocol (SPl and CSIX-L1) SUPPOIMuuuiiiiiieeeieeiiiiiiiiinireeeeeeeesessneneaneeeees 315
8.9.5.1 Dual Protocol RECEIVEr SUPPOIt......ccceereeiieiiiiiieiiiieeieeesesceerrrneeeeaaaee s 315
8.9.5.2 Dual Protocol Transmitter SUPPOIt.........cooeuiiieiiiieeae e e e 315
8.9.5.3 Implementation of a Bridge Chip to CSIX-L1 and SPI-4.2.................. 315
8.9.6 Transmit State MaChineouuiiiiiii e 316

Hardware Reference Manual 11

Intel® IXP2800 Network Processor

Contents u
intgl

8.9.6.1 SPI-4.2 Transmitter State Machine...........ccccovvvvevieiiiiiiie e 317

8.9.6.2 Training Transmitter State Machine..........cccccceveeei i 318

8.9.6.3 CSIX-L1 Transmitter State Machinecccccccoeiiiiiiiiiis 318

8.9.7 DYNAMIC DE-SKEWeuiiiiiiiiiiiii ettt 319

8.9.8 Summary of Receiver and Transmitter Signalsccccccoviiiieriiiiie e 320

9 O 1 o | PRSP 321
S T R @ YT oV 1= PSRRI 321
9.2 PCI Pin Protocol Interface BIOCK.........uuuiiiiiiiiiiie e 323
9.2.1 PCl COMMANGAS ...utuiiiiiiiie i e e ie e e e ettt e s e s e s e e e e e e aaeaaaeeeeeeeaeeeeesrnnns 324

9.2.2 IXP2800 Network Processor Initialization...........ccccoeeeeeeiiiiiiieieiiiiieeeeeeeians 325
9.2.2.1 Initialization by the Intel XScale® COre.........ccccveviiiiieiiiiiiieee e 325

9.2.2.2 Initialization by @ PCl HOSE........cuuiiiiiiiiiieciiec e 326

9.2.3 PCI Type 0 Configuration CYCIES.........ccuuiiiiiiiiiiieiiiiee e 326
9.2.3.1 Configuration WIEEoocuuiiiiiiiiiee et 327

9.2.3.2 Configuration REAA.........cccveeieiiiiiiiiiiiiiie e e e e e e 327

9.2.4 PCIl 64-Bit BUS EXIENSIONuiiiiiiiiiiieei ittt 327

9.2.5 PCITArget CYCIES....uuiiiiiiiiie ettt e e e e e e e s e e e e e e e e e e e e e e annnes 328
9.25.1 PCIACCESSES O CSR ... 328

9.25.2 PCI ACCESSES 10 DRAM ..ottt 328

9.25.3 PCIACCESSES t0 SRAM ...ttt 328

9.2.5.4 Target Write Accesses From PClIBUScceeeeiiiiierieiniiiecc e 328

9.2.5.5 Target Read Accesses From PCI BUScccveeeiiiiieiiiiiiieecieee e 329

9.2.6 PCI Initiator TranSaACLONScciiiiiiiiiiiiieii i ie aeeeeesrnraraaaaes 329
9.2.6.1 PCIl ReqUeSt OPEratioN.........ccciiurrieeiiiiieeeeeitiiiee e stieeeessrereee s sreeee e 330

9.2.6.2 PClCOMMANS.....ccceiiiiiiiieiieieieeeeeeeeee e e e e e e e e 330

9.2.6.3 Initiator Write TranSaCHONScvvieeeiiiiiiee it e e 330

9.2.6.4 Initiator Read TranSacCtioNSeeeiiiiiiiieiiiiiiee et 330

9.2.6.5 Initiator LAatenCY TIMEN ...vvvveeeee it e e e 331

9.2.6.6 SPECIAl CYCIE ...oeeiiiiiiiiie e 331

9.2.7 PCIl Fast Back t0 BaCk CYCIEScuiiiiiiiiiiiaeeeee e 331

S T = Ol = i o U RS 331

9.2.9 PCI DISCONNECTuuuitiiiiie i e i e ittt e s e s e s e e e e e e e aeaeaeeeeeeeseeeeesraens 331
9.2.10 PCI BUIlt IN SYSEM TEST...ciiiiiiiiiiiieie it e e e e e e e e e e e 332
9.2.11 PCI Central FUNCHONS........ccoii i s e e e e e e e e e e e ee e e e e aeeeeeeaaens 332
9.2.11.1 PClINterrupt INPULScoo e 332

9.2.11.2 PCI RESEE OULPUL.....iiiii it e e 333

9.2.11.3 PClInternal Arbiterccooiiiiiieee e 333

9.3 Slave INterface BIOCKoueiiiiiiiiiieiiie et e e e e e e e e e e e aaeeaeas 334
9.3.1 CSRINLEIMTACE ..uuvtieiiiiice e e e e e e e e e e e e e e e e e e raaaraaes 334

9.3.2 SRAM INLEIACE ..uueiiiieiii i e a e e e 335
9.3.2.1 SRAM SIaVe WILEScciiiiiiiiieeeeeee s e e e e e e e e e e eeee e 335

0.3.2.2 SRAM SIave REAUSceieiiuiiiiieiiiiiie ettt 336

9.3.3 DRAM INEEITACE ..eeiiiiiiiiie ittt st s st e e e et e e e e 336
9.3.3.1 DRAM SIAVE WIILES ...eiiiieiiiiieee ittt ee et e snaeee e 336

9.3.3.2 DRAM SIaVe REAUSoeieiiiiiiie ittt et e 338

9.3.4 Mailbox and DoOrbell REQISLEIS..........uuuiiiiiiieeii i a e 339

SR T = O I [o1 =Y ¢ U o) B =T o PSRRI 341

9.4 Master INterface BIOCKcoiiuiiiieiiiiiiee et 342
S R B 1Y Vo [] (= o = o= PRSP 342
9.4.1.1 Allocation of the DMA ChannelsSccceeeiiiiiiiee i 342

9.4.1.2 Special Registers for Microengine Channels............cccccvvveveveeeeiniienns 343

Hardware Reference Manual 12

Intel® IXP2800 Network Processor

n Contents
intgl.
9.4.1.3 DMA DESCIIPION...ciiiieee e e ittt et e e s s r e e e e e e e s rrreeaeaeeaan s 343
9.4.1.4 DMA Channel Operationc.uueieereeeieiiiiiiinieeereeeeeessesssenerreeeeeeaaeee s 345
9.4.1.5 DMA Channel ENd Operationccccceinuiiiieiiiiieeie e 346
9.4.1.6 Adding Descriptor to an Unterminated Chaincccccevviiieninnnee. 346
9.4.1.7 DRAM O PCl TranSfer ... 346
9.4.1.8 PCIt0 DRAM TraNSIeIccoiiiiiiiiiiiiiiee e 347
9.4.2 Push/Pull Command Bus Target INterface........cccccceeeviiiiiinniiiiiiiiee e 347
9.4.2.1 Command Bus Master Access to Local Configuration Registers 347
9.4.2.2 Command Bus Master Access to Local Control and
StAtUS REGISIEIS..ciiii i e i it a e e e e 348
9.4.2.3 Command Bus Master Direct Access to PCIBUS...........cccovvieeeeeeeennn. 348
9.4.2.3.1PCI Address Generation for IO and MEM cycles................... 348
9.4.2.3.2PCI Address Generation for Configuration Cycles................. 349
9.4.2.3.3PCI Address Generation for Special and IACK Cycles.......... 349
9.4.2.3.4PCIENADIESoeeiiiiiiiie et 349
9.4.2.3.5PCl COMMANcovviiiieiiiiiii et 349
9.5 PClUNIt EITOr BENAVIOL ...ttt 350
9.5.1 PCIl Target Error BENAVIOFccuiiiiieiiiici e e e aeee e 350
9.5.1.1 Target Access Has an Address Parity Errorcccccooeevccvivvnveeenneennn. 350
9.5.1.2 Initiator Asserts PClI_PERR# in Response to One of Our Data
PRASES ..t 350
9.5.1.3 Discard Timer Expires on a Target Read.............ccccoviiviiiniiieieninnnn. 350
9.5.1.4 Target Access to the PCI_CSR_BAR Space Has lllegal
BYte ENADIES......cco e 350
9.5.1.5 Target Write Access Receives Bad Parity PCI_PAR with the Data.....350
9.5.1.6 SRAM Responds With a Memory Error on One or More Data Phases
ON A Target REAUcooiiiiiii i 351
9.5.1.7 DRAM Responds With a Memory Error on One or More Data Phases
ONaTarget REAUcoooviiiiiii e 351
9.5.2 As a PCl Initiator During @ DMA Transfer ... 351
9.5.2.1 DMA Read From DRAM (Memory-to-PCI Transaction) Gets a
MEMOIY EITON ..t eaaren s 351
9.5.2.2 DMA Read From SRAM (Descriptor Read) Gets a Memory Error....... 351
9.5.2.3 DMA From DRAM Transfer (Write to PCI) Receives PClI_PERR# on
P I BUS ..ttiiee ettt ettt et e e e et e e st e e e e nb e e e nnaraa s 352
9.5.2.4 DMA To DRAM (Read from PCI) Has Bad Data Parityc........... 352
9.5.2.5 DMA Transfer Experiences a Master Abort (Time-Out) on PCl........... 352
9.5.2.6 DMA Transfer Receives a Target Abort Response During a
Data PhaSeooiiiiiiiiiie et 353
9.5.2.7 DMA Descriptor Has a 0x0 Word Count (Not an Error)cccceeeee.... 353
9.5.3 As a PCl Initiator During a Direct Access from the Intel
XScale® Core of MICTOBNGINEcccoiiiiiiiiiiiee et eaaae e 353
9.5.3.1 Master Transfer Experiences a Master Abort (Time-Out) on PCl........ 353
9.5.3.2 Master Transfer Receives a Target Abort Response During
A DAt PRASE ...t 353
9.5.3.3 Master from the Intel XScale® Core or Microengine Transfer
(Write to PCI) Receives PClI_PERR# on PCIBUScccccvviiieeneeeennn. 353
9.5.3.4 Master Read From PCI (Read from PCI) Has Bad Data Parity 354
9.5.3.5 Master Transfer Receives PCI_SERR# from the PCI Bus 354
9.5.3.6 Intel XScale® Core Microengine Requests Direct Transfer when
the PCI BUS IS 1N RESEL..ccciiiiiiiiieeiee e 354
9.6 PCI Data Byte Lane AlIGNMENTeuiiiiiiiiiaiiiiiiie et ee e e e e e e e e e e e aaa e as 354
9.6.1 Endian for Byte ENADIEuuiiiiiiiiiaie e 357

Hardware Reference Manual

13

Intel® IXP2800 Network Processor

Contents n
intel.

10

Clocks, Reset, and INitialiZationooooiiiiiiee e 361
00 O [Tox 3P UTR TR 361
10.2 Synchronization Between Frequency DOMAINSccooiuiiieiiiiiiieeiiiie e 365
O T =T TP 366
10.3.1 Hardware Reset Using NRESET 0O PCI_RSTHcvviiiiiiiiiiiiiee e 366
10.3.2 PCIINItIAtEA RESEL....ciiiiiiiiii et e e e e e e e 368
10.3.3 Watchdog Timer Initiated RESELcuvviieiiiiiiiiiiiieee e 368
10.3.3.1 Slave IXP (Non-Central FUNCLION).........ccooviiiiieiiiiiieeeiieeee e 369

10.3.3.2 Master IXP (PCI Host, Central FUNCLION)cccvvvviieeieeee e 369

10.3.3.3 Master IXP (Central FUNCLION)uvvviiieeii e 369

10.3.4 Software INitiated RESEL.......c.coiiiiiiiiiiiiii e 369
10.3.5 Reset Removal operation based on CFG_PROM_BOOTccccvvveeeeeeiiiiininennn. 370
10.3.5.1 When CFG_PROM_BOOT is 1 (BOOT_PROM is Present)................ 370

10.3.5.2 When CFG_PROM_BOOT is 0 (BOOT_PROM is Not Present) 370

O TR I ST 1 - o TN T 1SR 370
10.3.7 POWEIrUP RESEL SEQUENCE ...ttt et a e 372

IO TR S = T To 1 1V o Lo [PSPPI 372
10.4.1 FIaSh ROM....cuiiiiiiiiiie ettt et et e e e s snnaneeas 374
10.4.2 PCl HOSt DOWNIOAMccoiuvviiieiiiiiieiee ittt e e snaeee s 374

105 INITAIZAIION ...eeiiiiiiiiie et s st e e st e e e et e e e e nb b e e e e nees 375

Hardware Reference Manual 14

Intel® IXP2800 Network Processor

n Contents

intgl.

Figures
1 IXP2800 Network Processor Functional BIOCK Diagram............coccuveiieiiiiiiieeiiiiiiie e 24
2 IXP2800 Network Processor Detailed DIiagramccveieiiiiiiiieiiiiee s 25
3 Intel XScale® 4GB (32-bit) AJAreSS SPACEcccuuiiiiiiiiiie ettt 28
4 Microenging BIOCK DIAGIAMNceeiiiiiiiieaiitiie ettt e s e s et e e s st e e s e abee e e e e aneees 30
5 Context State TransSition DIagram..........oooi i e 32
6 Byte Align BIOCK DIBGIAMc.etiiieeiiiiiit ettt e e s e e s e b e e e e aeenes 40
7 CAM BIOCK DIBOIAIM ...ttt e et e s skt e e e ettt e s e b e e e e anb e e e e e anees 43
8 EChO CIOCK CONFIQUIALION ...t ettt ettt et st bbb e e e 49
9 LOQICAl VIEW OF RINGS .. .eeeiiiiiiiiiie ettt ettt s st e s e e e e annbe e e e e aneees 55
10 Example System BIOCK DIBGIAMccoiiiiiiieiiiiiiie ettt e e s annee s 57
11 Full-DUplex BIOCK DIBGIAIMeiiiiiiieeieiiiieeee ettt ettt e st e e e sneb e e s nnneeeas 58
12 Simplified MSF Receive Section BIOCK DIiagramceeuiiiiiieeiiiiiiee it 59
13 Simplified Transmit Section BIOCK DIAQram..........cccoiuiiiiiaiiiiiiee ittt 64
14 Hash Unit BIOCK DIGgIaM........eeiiiiiiiieieeiiiie ettt ettt e e e e snnneeas 70
15 DMA DESCHPLON REAUSccuvtiiieeite ettt ettt ab et e ettt e e sttt e e abbb e e e s e nnneeees 72
16 Intel XScale® Core ArchiteCtUre FEAIUIESc.oveeveveeeeeeeeeeeeeeeeeeeeeeeeeeseesee s s ene s sneneenens 80
17 Example of Locked ENtrieS iN TLB.......coiiiiiiiiiiiie et 88
18 Instruction Cache OrganiZatioNocueeeieiiitieie et e e s e e e s b e e e e s anabre e e s aannneeees 89
19 Locked Line Effect on Round Robin Replacement...........ccocvvviiiiiiiiiiiiiiiiciee e 94
20 BTB ENMIY oitiiiieiiiteit ettt ettt e ekt e et e bt e bt e e e e s e e e neres 95
21 BFAnCh HISTOYeeiiiieiiie ittt e e et e e s e et e e s bbbt e e e e b e e e nnres 96
22 Data Cache OFgaNIZALIONviiiiiiiiiie ittt e s e e e e s e e e e s e abbe e e e e aneres 98
23 Mini-Data Cache OrganiZation.............eieiiuuriieeiiie ittt e s abbe e e e e 99
24 Byte Steering for Read and Byte Enable Generation by the Intel XScale® Corecocovuvenn., 122
25 Intel XScale® Core Initiated Write to the IXP2800 Network PrOCESSOcocovvevereererenens 124
26 Intel XScale® Core Initiated Write to the IXP2800 Network Processor (Continued)................. 125
27 Global Buses Connection to the Intel XScale® Gasket ..o 127
28 Flow Through the Intel XScale® Core Interrupt Controller.........ccuvvvvi i 133
29 Interrupt Mask BIOCK DIGGIAMcouuiiiiiiiiiiiee ettt et 134
30 XPI Interfaces (BO) fOr 2400/2800coouuiiieiiiiiiiee ettt 136
31 Example UART DaAta FIamecooiuiiiiiiiiiiiee ittt e e 139
32 GPIO FUNCHONAI DIAGIAMutiiieiiitii ettt et e et e e st e e e b e e e e ennne s 141
33 Timer Control Unit Interfacing DIagramoocueeeieiiiiiieee e 142
34 Timer Internal LOGIC DIAGIAMccoiiiiiiieiiiiiie ettt e et e e e e e e e nnees 143
35 SlowPort Unit INterface DIAGIaAIMcoiuiiiiiiiiiiie ettt e e e e e 146
36 An Example of Address Space Hole DIiagramccooiiiiieiiiiiiiie et 146
37 SlowPort Example Application TOPOIOGYc.ccurritieiiiiiiiee et 147
38 Mode 0 Single Write Transfer for a Fixed-Timed DeViCe...........ccocvviiiiiiiiiieiniiiee e 148
39 Mode 0 Single Write Transfer for a Self-timing DEVICEccuveveiiiiiieiiiiieeee e 149
40 Mode 0 Single Read Transfer for a Fixed-timed DEVICE...........uvveiiiiiieeieiiiiiee e 150
41 Mode 0 Single Read Transfer for a Self-timing DeVICEe............ccovviiiiiiiiiiiii e 151
42 An Interface Topology with Lucent TDAT042G5 SONET/SDHcocviviiiiiiiiieiiiicceeieieeee 153
43 Mode 1 Single Write Transfer for Lucent TDAT042G5 Device (B0O)occvvveeiiiieieeniiiieeeen 154
44 Mode 1 Single Read Transfer for Lucent TDAT042G5 Device (BO).......coocvvveeiiiiieeeeiniiieeenis 155
45 An Interface Topology with PMC-Sierra PM5351 S/UNI-TETRAccovieiiiiiieeiee e 156
46 Mode 2 Single Write Transfer for PMC-Sierra PM5351 Device (BO)........ccovveeiiiiieeeniiiieeens 157
47 Mode 2 Single Read Transfer for PMC-Sierra PM5351 Device (B0O).........ccvveeiiiiieeeeiiiiieeeennans 158

Hardware Reference Manual 15

Intel® IXP2800 Network Processor

Contents n
intel.

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

An Interface Topology with Intel / AMCC SONET/SDH DEVICE..........cccecvvviiiiiiiieee e, 159
Mode 3 Second Interface Topology with Intel / AMCC SONET/SDH Device......ccccccveeeeeviennns 160
Mode 3 Single Write Transfer Followed by Read (BO)ccocivviiiiiieee e 161
Mode 3 Single Read Transfer Followed by Write (BO)coooviiiiiiiiiiieee e 162
An Interface Topology with Intel / AMCC SONET/SDH Device in Motorola Mode.................... 163
Second Interface Topology with Intel / AMCC SONET/SDH DeViCe.....ccccvvvveveeeeii i 164
Mode 4 Single Write Transfer (BO)uuuiiiieeei oot e e et e e e e e s e e e e e e e e aeeeeenennes 165
Mode 4 Single Read TranSfer (BO)uiiuiieeieeiicciiiiieiiireeee e e ss s sttt e e e e e ee e e s s s ssannnreeeeeeaeeeesssnnnnes 166
Microenging BlOCK DIiagram........cc.uuuuiiiiiiiee s e ittt e e e e e e e ss s st ntae e e e e eeeesesssnanraeeareeeeaeeesnnannns 168
Context State Transition DIAQIAMccicccvuiiiiiie e e et e e e e e e e e s e e eaae e e e e s s nnereereees 170
Byte AlIgN BIOCK DIagramcoii it iiiee e e e sttt e e e e e e e s s st e e e e e e e e e s e s snanbnreeeeeaaeaeesannnnnes 175
(0721111 2] [oTod T B IT- Vo | - o SRR 178
Read from RBUF (B4-DiItS)cccciieiiiiiiiiie et se e e e e e e s e e e e e eeaeeeeeeennnes 181
Wit 10 TBUFR (B4-DItS) ... iiieiiieiie et e e e e e e s e e e e e e e e e e e e s snnnrenreees 182
48-bit, 64-bit, and 128-bit Hash Operand Transfers..........ccccciiieieee e 183
Bit, Byte and Long-Word Organization in One RBUF Elementcccccccoeviiiiiieviiiee s 184
LT 1T o T I = | O PRROTRSSRI 185
ST] (=Y o 2= o= PP RRPRUTPPPR 186
(01 (o To3 1 @0 10 [0] -1 1 o1 o NP PRSP 189
IXP2800 Clocking for RDRAM at 400 MHZooiiiiiiiiee it siee e seee s 190
IXP2800 Clocking for RDRAM @t 508 MHZcooiiiiiiiieiiiie et see s seee s 190
AdAress Mapping FIOW ... e e e e e e e et e e e e e eeesansannrereees 191
RDRAM Controller BIOCK DIGgramccciiiiiiiiiiiiiiiiiee e e e s esessiteste e e e e e e e e e s e s ssnnnnraneaeeeesaeessananns 198
DRAM Push/Pull Arbiter FUNctional BIOCKScueviiiiiiiiiie e 202
DRAM Push Arbiter FUNCHONAl BIOCKSuviiiiiiiiiiii ettt 204
DRAM Pull Arbiter FUNCLIONAl BIOCKSocuvviiiiiiiiiiie et 205
SRAM Controller/Chassis BIOCK DIAQramceiieeeeiiiiiiiiiiiiiieeeeee e s e ssscnranereeeeeeaessanssnsseseens 208
SRAM Clock Connection 0n a ChanNel...........ocuuiiiiiiiiiie e 210
External Pipeline Registers BIOCK DIiagramccc.uuiiiiieiieeoiiiiiiiiiiieieee e e e e e e sessiinnreneeesae e e e 211
Queue Descriptor With FOUP LINKSooi ittt e e eere e e e e e e e e e s eaees 214
Enqueueing One BUfer @t @ TIMEuuiiiiiee it e e e e e e e e e e e e e e s ennes 214
Previously Linked String of BUfEIS.........cuiiiiii i a e 214
First Step to Enqueue a String of Buffers to a Queue (ENQ_Tail_and_LinK)........ccccceverriinnnns 215
Second Step to Enqueue a String of Buffers to a Queue (ENQ_Tail)cccccvvvvveeeeeeeeiiiiiiiiienne, 215
Connection to a Coprocessor Though Standard QDR Interfaceccccccvvveveeeeeei i, 222
Coprocessor with Memory Mapped FIFO POIScoccuiiiiiiiiiiie e 223
SHAC TOP LEVEI DIAQIAMuiiiiiiiieeeieeiie it ee e ee e e e e s s s e e e e e e e e et s s ant bt e e aeaaaeeeaesnnsnnrenneees 226
Yol =1 (o]] o= To B = (oo 1 1T Vo |- o S EEUR P 228
Ring Communication LOGIC DIAgramcceeeeeiiiciiiiiiieiee e ee e e e s e e st ee e e e e e s e e s s nnraneaeeeeeaeeesenanns 231
Hash Unit BIOCK DIGQIAMciiiiiiiiieie ettt e e e e e e e s s e st e e e e e ae e e s e s snnnnnraneaeeeeeaeeesnnannns 236
Example System BIOCK DIGQIramuuuuiiiieeieiiiiiiiieieiie e ee e e e s s s sttt ee e e e e e s e s ssannraeraeeeeeaeesennnes 242
FUull-DupleXx BIOCK DIGQIaMcciiiiiiieeiiite e e e e e ses sttt e e e e e s e e s st e e e e e aeeesssssnntanbaneraaaeeeaneanns 243
Receive and Transmit ClIOCK GENEIAtIONccoiiiuiiiiiiiiiiiie et seee e eraee e 245
Simplified Receive Section BIOCK DIiagram...........ceeeeieeiiiiiiiiiiiiieeeee e e e e e e e e snaveeaees 247
RBUF Element Stat@ DIagramuuueriiiieeieiiiiiiiieeieeeeeseeesssssstssiaeeeeeeaeesesssnsnsaesseeeasaesssnnannes 257
D1 A @0 o =R o (1= o | PP PPPRTRPPR 260
Simplified of Transmit Section BIOCK Diagram..........c.cooiiiiiiiiiiiiiieie e e 262
TBUF State DIAgUaMcccooiiieiieiieeeee e e s e e ettt e e e e e e e e e e et e e e e e aaee e s e s s ssaaabaeeereaeeaeessnnnnreeseees 271
Tx Calendar BIOCK DIGQIamuuiiiieeei ittt e e e e e e ees st eeeae e e s e s ssannraereeeaeeaeessnsansreeseees 272
CSIX Flow Control Interface — TXCSRB and RXCSRB.........cccooviiiiiiiiiiiiieeieee e 277

Hardware Reference Manual 16

Intel® IXP2800 Network Processor

n Contents
intgl.

98 CSIX Flow Control Interface — FCIFIFO and FCEFIFO in Full Duplex Modecccccceeeeeennn. 279
99 CSIX Flow Control Interface — FCIFIFO and FCEFIFO in Simplex Mode...........ccccccveeeeeennnn. 280
100 MSF to Command and Push and Pull Busses Interface Block Diagramccccccevveeeeniiicnnns 292
101 Basic I/0O Capability of the INtel® IXP2800c.c.cuuuiiieiieeee e e e s s e e e e e e e e annnnes 294
102 SIMPIEX CONFIQUIALION.ccciii i it e e e e e e e e e e e e e e e e e s e e se s nsbeaeaeeraeaeeesassnnnnnns 295
103 Hybrid SImplexX CONfIQUIALIONuiiiiiiieee e e s e e e e e e s s e s s r e e raaaeeeseaennns 296
104 Dual NPU, Full DUuplex ConfigUIationcoiiiceriiiiieieee e csciiieee e e e e e e e s e s sssnnnrnneeeeeaeeesesnnnnns 297
105 Single NPU, Full Duplex Configuration (SPI1-4.2 Protocol)cccceveeieeeiiiiiiiiiiieieee e ee e ees e 298
106 Single NPU, Full Duplex Configuration (SPI-4.2 and CSIX-L1 Protocols).........ccccccevveeeiiiicnnns 299
107 Framer, Single NPU Ingress, Single NPU Egress, and Fabric Interface Chip........cccccccoevvnnns 300
108 Framer, Dual NPU Ingress, Single NPU Egress, and Fabric Interface Chipccccccceeeviiiinnns 301
109 Framer, Single NPU Ingress, Single NPU Egress, CSIX-L1 Translation Chip

and CSIX-L1 Fabric INterface ChipP.......iiiiec oo e e e e e e e s e ennaees 301
110 CPU Complex, NPU, and Fabric Interface ChipsSccvveiiiiiiiiiiiiiieiiieee e e e 302
111 Framer, Single NPU, Co-Processor, and Fabric Interface Chipccccccevviiiiciiiiiieieee e, 303
112 SPI-4.2 Interface Reference Model with Receiver and Transmitter Labels

Corresponding to Link Layer Device FUNCHONSooiiiiiiiiiiieee e ecciiieieee e e e esevnnnneee e 304
113 CSIX-L1 Interface Reference Model with Receiver and Transmitter Labels

Corresponding to Fabric Interface Chip FUNCHONScooiiiiiiiiiiiiiec e 306
114 Reference Model for Intel® IXP2800 Support of the Simplex Configuration Using

Independent Ingress and EQress INtErfacesoooiiiiiiiiiiiiie e 309
115 Reference Model for Hybrid Simplex Operation ... 310
116 Block Diagram of Dual Protocol (SPI-4.2 and CSIX-L1) Bridge Chip.......cccccovviiiieiiiiiieeninine, 316
117 Summary of Receiver and Transmitter Signalingcoovviiiiieiiiiiie e 320
118 PCI FUNCHONAI BIOCKS......coiiieteee ettt et e e e e e e et e e e e e e e e e aa s aannees 322
119 Data ACCESS PANS ..ottt et e e e e e e et r e e e e e e e e e e aneees 323
120 PCI Arbiter Configuration Using CFG_PCI_ARB(GPIO[2])utuutriiieiiaaaeaeiiiiiieeeee e 333
121 Example of Target Write t0 SRAM Of 68 BYLES.......ueeiiiiiiiiiiiiiiiiiie et 335
122 Example of Target Write to DRAM 0f 68 BYLESoooiiiiiiiiiiiiieiee et 337
123 Example of Target Read from DRAM Using 64-Byte BUISt...........cccoeiiiiiiiiiiiiiiieeee e 338
124 Generation of the Doorbell Interrupts t0 PCIueiiiiiii e 340
125 Generation of the Doorbell Interrupts to the Intel XScale® Core........cooovviiiiiiiiiiiieiieeeieeees 340
I O I [1 =T ¢ U] o £ TP P PO PP PPPPPPPPTTPPIN 341
127 DMA DESCIPLOr REAUS ...ttt ettt e ettt e et e e e e e e e e e e nbebeseeeaaaaaeaesaannnnes 344
128 PCI Address Generation for Command Bus Master t0 PCl...........ciiiiiiiiiiiiiiiiiieeeee e 348
129 PCI Address Generation for Command Bus Master to PCI Configuration Cycle 349
130 Overall Clock Generation and DiStribULION..............uueiiiiiii e 362
131 IXP2800 Network Processor ClOCK GENETAtiONccieiiiiiaiiiiiiiiiieiee e a e 365
132 Synchronization Between Frequency DOMAINScooiiiiaiiiiiiiiiiiieeiee e e iiieieee e e e e e e e 366
133 RESEE QUL BENAVIONcoiiiiiiiii ittt et ettt et e e e e e e e e et e e e e e eeaaaaeeaanaannnns 367
134 RESEE GENEIALION.ceeiiiieiee ittt et e e et ettt ettt e e ee e e e s e e e bt ab et e e e eeaaeseesaaaanbeenseeeaaaaaesasaannnnn 368
135 BOOU PIrOCESS ... ittt e oo oo e e e e e e et et e ettt et et tatete et b be b e se e e aa e e e e e e e e e e aeeeeenenees 373

Hardware Reference Manual 17

Intel® IXP2800 Network Processor

Contents n
intel.

Tables

N B T = W =Y 0] T o T | R 22
2 IXP2800 Network Processor Microengine Bus Arrangementcceeeeeeiieeiivirneereeeeesssissnennnnens 31
3 Next Neighbor Write as a Function of CTX_ENABLE[NN_MODE]cccceciiiiiiveeee e, 35
4 Registers Used By Contexts in Context-Relative Addressing Modec.coovvvviviieereeeeeen e, 38
5 Align Value and Shift AMOUNL..........uuiiiiiiiie e e e e e e e s e s reraeaeeesaeannes 40
6 Register Contents for EXample 10........ccooiiiiiiiiiiiiiiieie e ee e e e e e e s e r e e e e e e e e s anaees 41
7 Register Contents for EXample 11.......cccooiiiiiiiiiiiiiiii e ee e e e e e e e r e e e e e e e e s anaees 41
8 Algorithm for Debug Software to Find out the Contents of the CAM ..o, 45
S BB AN 1Y S .S 47
10 SRAM Controller ConfIQUIratiONScoccuviiiiiiie e et er e e e e e e s e e e e e e e e e s s s s aaaraeaeaeeeas 50
11 Total MemMOry PEr CRANNELouiiiie i e e e e e e e e s e e e annra e aeeeees 50
12 AdAreSS REfErENCE OFUEN.....cciiuiiiie ettt e e et e e e e et e e e e abeee e e enees 52
13 Q_array Entry REfErenCe OFUErcooieeiiiiieiieeee et e e s e e e e e e e e e e aeeeeeaee s 53
14 Ring Full Signal Use -- Number of Contexts and Length vs RiNg Siz€.......ccccccceevviivciviiienneeeenn, 56
15 RBUF SPI-4 Status DefiNItiON.......cccoiiiiiiiiiiiiiie ettt et e e e 61
16 RBUF CSIX Status Definitionccoiiiiiiiieiiiiiie ettt 62
17 TBUF SPI-4 CoNtrol DefiNItION.........ciiuiiiieiiiiiie ettt e e e e 66
18 TBUF CSIX CoNtrol DEfiNITIONcooiuiiiieiiiiiie sttt et e s e 66
LS 1Y B Tt or g o] (] g T 1 1 - | PR 73
20 DoOorbell INTErTUPt REGISIEIS ... uuuiieiiiiiie et e ieece e e e e s e e e e e e e e e e s eeaaeaaeeessaasnnrenneees 75
b2 T (@ I 1= = o3 SRR 78
22 Data Cache and Buffer BEhavior When X = 0......coiiiiiiiiiiiiiiee et 83
23 Data Cache and Buffer BEhavior When X = L. 84
24 Memory Operations that IMPOSE @ FENCEuuiiiiiiiiieeie e e e e 85
25 Valid MMU & Data/mini-data Cache CombBINAtiONScueviiiiiiiiieeiiiiee e 85
26 Performance MONItONNG EVENTSciciiiiiiiiieiieie e e e e e s e r e e e e e e e e e snnaneeeees 107
27 Some Common USES Of the PMUoouiiiiiiiiie et 108
28 Branch LatenCy PENAIY........cc.uuuiiiiiiiie ettt e e e e e e s e et r e e e e e e e e e e nnraae e 112
29 LatenCY EXAMPIE ...eeeeieiie et a e et r e e e e e e a e 114
30 Branch Instruction Timings (Those predicted by the BTB)ccccvvviiiiiiee e 114
31 Branch Instruction Timings (Those not predicted by the BTB)ccvvvveeeiiiiiiiiiiieeiciee e 114
32 Data Processing INStrUCtioN TIMINGS ..cvvvvieeiiiiiiiiiee e ee e e e e e e se e st e e e e e e e e e s s s st eeereeeeaeeesnnannes 115
33 Multiply INSErUCHION TIMINGS ..coi i s e e e e e e e s e e e e e e e e e e s e e snanrr e reeeeaeeeeesannsnnns 115
35 Implicit Accumulator Access INStrUCtioN TIMINGS.....uuuiiiiereeeiiiiiiiiierr e e er e e e e e e e s senes 117
36 Saturated Data Processing INStruction TIMINGSuvvuiriiieeeeeiiiiiiiiiiiieeeeee e e e s seseerrnreeeereeeeaeeen 117
37 Status Register Access INSruCtion TIMINGSoocooceiiiiiieiie e e e e e ea e e e 117
34 Multiply Implicit Accumulate INStruction TIMINGSvvviiiieiieeiiee e e e e e e e 117
38 Load and Store INStrUCtION TIMINGSuuuuiriieeieeiisccciieieie e e e e s e e sssr e e e e e e e e e sa s snrrarerreeeaeeaaneanns 118
39 Load and Store Multiple INStruction TiMINGSccccvvvviiiiie e e e e e e e e e 118
40 Semaphore INSrUCHION TIMINGSuuuuiiiieiieieee e e e i r e e e e e s s e et ereeee e e s e e snnnnrerrreraeeaeesannnnnes 118
41 CP15 Register Access INStruCtion TIMINGScccuvvviiiiiiieeeee e e e e e e s e s s s rrrreeaaee e e enans 118
42 CP14 Register Access INSruCtion TIMINGScccuvvviieiiiieeeeeeis e et e e e e e s e s s st reereeaaee e e ennns 119
T VAV I 1S3 W ox (o o T I T EEPERRR 119
44 Count Leading Zeros INSruCtion TIMINGSccccuvrrirriieieeeeesiiesiesieeereeee s e s s s snnnnnrereereeeeaeessnnnnes 119
I W1 { (= =g o = U = o To 1o S SRR 120
I = 1 To B =g To =T o I =3 oo o 11T [EEPERR 120
47 Byte Enable Generation by the Intel XScale® Core for Byte Transfers in Little and

Big ENAIAN SYSIEMS ..eeiiiiiiiiieiii ittt e e s s e e e e e e e e e e ss e st s e e e e e aaeeessesnssnaaneeeaaaeeeeeaannnnns 121

Hardware Reference Manual 18

Intel® IXP2800 Network Processor

intel.

48

49

50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

Contents
Byte Enable Generation by the Intel XScale® Core for 16-bit Data Transfers in Little
and Big ENIAN SYSIEIMS.....cciiiiiiiiiiiitiii e e et e et e e e e s e e e r e e e e e e e e s s s snteanaaneaaaeeesessannnnns 123
Byte Enable Generation by the Intel XScale® Core for Byte Writes in Little and
Big ENGIAN SYSTEIMS. ...ttt e e e e st e e et e e s e annre s 123
Byte Enable Generation by the Intel XScale® Core for Word Writes in Little and
Big-ENGIAN SYSTEMSeiiiiiiiiiiii ittt e et e e e b e e e e 124
CMB Write Command to CPP Command CONVEISION.........ccuuiiieiiiiiieeaiiiiee e e e e 128
IXP2800 Network Processor SRAM Q-Array Access Alias ADdreSsesooccveveeviiveeeneninee. 130
GCSR Address Map(OXA700 0000) ...cceourrieeeeiiiieieeiiieie e sibee e et e e et e e e e e abre e e s annee s 132
Data Transaction AlIGNMENT ...ttt e et e e e anre s 137
Address spaces for XPI INternal DEVICESoiiiiiiiiiiiiiiiiiie ittt 137
8-bit Flash Memory DEVICE DENSILYccoiiiiiiiiiiiiiiee ettt e e e e e 144
SONET/SDH DEVICESceiiiiiiiitee ettt ettt e e e st e e e st e e e e e 145
Next Neighbor Write as a Function of CTX_Enable[NN_Mode]ccccccvveiiiiiiiiiiniiiieenein, 172
Registers Used By Contexts in Context-Relative Addressing Modecccoocveeveiniiineneiine, 173
Align Value and Shift AMOUNT...........ooiiiiiiii e 175
Register Contents for EXAMPIE 23 ..ottt 175
Register Contents for EXAMPIE 24oc.uuiiiiiiiiiee ettt 176
RDRAM LOGOING ..+ttt ettt ettt ettt s bt e e skt e e e e bbbt e e e st et e e e anbn b e e e e nbreeeeeennn e 188
RDRAM SIZES ... tiiei ittt ettt ettt ekttt e e et e e s bttt e abee e e ket e e eabe e e abte e e aabe e e anbeesanbeaeeannaen 188
Address Rearrangement for 3-Way INterleave ... 192
Address Rearrangement for 3-Way Interleave (ReV B)cccoiiiiiiiiiiiiiiiciiieeeee e 193
AdAress Bank INtErIEAVINGciiuuriiiei ittt e s e e s nanneee s 194
RDRAM Timing Parameter SEtHNGSouviiieiiiiiie ettt 196
Ordering of Reads and Writes to the Same Address for DRAMccooviiiieiiiiiieeiniieee e 201
DRAM PuUsh ArbDiter OPeratioN..........ooeii ittt e e e e e e e e e eneen e eeee s 203
(D] o I B =T o o (o] o PP PP SPPP 204
SRAM Controller CONfIQUIALIONS.ciiiiiiiiie ittt e e 209
Total Memory per ChanNel et e e e e e e e e e annees 210
YN (0] 41T @] o T=T = 1 To] o < TR 212
(O U T=TR TN o] o = | PSP 216
RING/JOUINAI FOIMIALeiiiiiiiieie ettt e e sttt e e e b e e e enen e 216
{10 IS A= =l g Too Lo [T T R PP TP RO 217
Yo [0 | 1SS 1Y = T o F PR 219
AdAreSs REfEIENCE OFUENciiiiiiiiei ittt e e e e e es 220
Q_array Entry Refer@ncCe OFUer........oooo ittt e e e e e e e e ee e 221
Ring Full Signal Use -- Number of Contexts and Length Versus Ring Sizeccccooecuuennee. 232
Head/Tail, Base and Full BY RING SIZEoooiiiiiie e 233
Intel XScale® Core and Microenging INStrUCLIONSoouuuiiiiiiiiie e 235
S Transfer Registers Hash Operands..........cc.uuuueiiiiiiiiioiiiiiii et e e 237
SPI-4 CONrol WOIA FOMMIALceiiiiiiiiieiitiiie ettt e et e e abbe e e s e annne s 244
Order of Bytes within the SPI-4 Data BUISE ... 245
(08 =10 0[S Y 01T PP UU PP PRPTRRRR 246
Receive Pins Usage DY ProtOCOL ..ot 248
Order in Which Received Data Is Stored in RBUFoooiiiiiiiiie e 248
Mapping of Received Data to RBUF Partitions............cccuuiiiiiiiiiii e 249
Number of Elements per RBUF Partition...........cooooiiiiiiiiiiie et 249
RBUF SPIF-4 Status Definition...........coouiiiiiiiiiie et 252
RBUF CSIX Status Definitionoiiiiiiiiieiiiiie et 254
RX_THread FreeliSt USE........uuiiiiiiiieiiie ettt s s e e e e e e e e e e e e e e eeeeeeaaeeeens 255

Hardware Reference Manual 19

95 Summary of SPI-4 and CSIX RBUF OPEratiONsccoccuviiiiiiieeeeeeseeiiiiiiieereee e e e s e e ssnnsnneeees

96 Transmit Pins Usage BY ProtoCOlcocuiiiiiiiiici et e e e e
97 Order in Which Data is Transmitted from TBUFccooiiiiiiiiiiiie e
98 Mapping of TBUF Partitions to Transmit ProtoColccccuviviiiiieeei e
99 Number of Elements per TBUF Partitionucuiieeiiiiiiiiiiiiiice et e e e e aees
100 TBUF SPI-4 CoNtrol DefiNItION......c..iiuiiiiiiiiiiie ettt e et e e s senaeee e s e
101 TBUF CSIX CoNtrol DEfiNITIONcocuiiiiiiiiiiieee ittt ettt e e et ee s s saneeeeeanes
102 Transmit SPI-4 CONrOI WOTTeiiiiiiiiiieiiiiiiee ettt et e e e et ae e e e s snraeea e e e
103 TranSmMit CSIX HEAUENeeiiiiiiiiiee ittt ettt e e ettt e e e s st e e e e e snbeteee e s anbaeeeeens
104 Summary of RBUF and TBUF OPEratiONsccccuviiiiiiiieeee e is s ciiiiieeeseea e e e e e s ssennannaneeaaeaees
105 SRB Definition by CIoCk Phase NUMDBETooiiiiiiii e e e
106 Data DESKEW FUNCHIONS......coiiiiiiiiie ittt ettt ettt e e e ettt e e s st e e e e s sbbeaee e e s snbeeeeeens
107 Calendar DeSKEW FUNCHIONS.cciiiiiiiiiei ittt e ettt e e s s stbee e e e s snbeeeee e s snbaeeeeaes
108 Flow Control DeSKEW FUNCLIONScivviiiieiiiiiie et ee sttt ettt e e et e e e s snbe e e e s s snreeeeeanes
109 Data TraiNiNg SEOUENCEuuiieiieeeieeieiititeeeerraeeeessasntbesteeeeeaaeaaasssnssarareraeeaeesessassnsranesreraeeeeeas
110 Flow Control Training SEOQUENCEcccvuuiiiieeiieeeeeeseeesietteeereeeeeesssssntantraerereeeaeesssnsnnsranseereeeaees
111 Calendar TraiNiNG SEQUENCEccccii ittt et e e e e e e s e st eeeeeeess e sa e e e eeaeeaeesssnsnnntasrreraaeaees
112 1XP2800 Network Processor Requires Data TraiNingceeeeeeieeiiicuniniereereeeeesssinninnseeeeeeaeens
113 Switch Fabric or SPI-4 Framer Requires Data TrainiNgcccceeieeieciuniniireireeeeessesiinineeeeeeeens
114 1XP2800 Network Processor Requires Flow Control Training........ccccuvveereereeeeeeiiicsiiniieeeeeeens
115 Switch Fabric Requires FIOW Control Trainingccccvvviviiiieeee i cciieeee e e e e e e e sssnvenrreeeeeeee s
116 SPI-4.2 Transmitter State Machine Transitions on 16-Bit Bus Transfers..........ccccccceovvieeeenns
117 Training Transmitter State Machine Transitions on 16-Bit Bus Transfersccccecevvvvvnneen.
118 CSIX-L1 Transmitter State Machine Transitions on CWord Boundaries............cccccceeeviiieeeens
119 PCI BIOCK FIFO SIZES.....uteeiiieiiiiiie ettt ettt ettt e ettt e e e sttt e e e s sttt e eeesnbeteeeesanbaeeaeens
D2 O Y= .4 18] T 0 T Vo L1 o SR
2 R = O I o171 4= Lo PRSP PPPPPRP
122 PCI BAR Programmable SiZES........cccoii ittt e e n e e e e
123 PCI BAR Sizes with PCI host INItIaliZzationcceeiiiiiiiiieiiee e
124 Legal Combinations of the Strap Pin OptioNS..........ccoccciiiiiiriiie e
125 Slave Interface BUfEI SIZESeiiiiiiiiiiieiiie et e e s sareee e e
126 DOOrbell INtEITUPL REGISIEIS . ..eiiiiieei e ittt e e e e e e s e e e e e e e e e e e e e sa e nnranreereaeaeeas
127 IRQ Interrupt OptioNS DY SEEPPING ..cooieeiriiii e e e e e e e e s e e e e aeaees
128 DMA DESCHIPIOr FOIMALtiiiieiieeiis ittt ie e e e e e e e s s r e e e e e e e ss e st rreeaeeaesssssannaneaeeeaaeaeeas
129 PCl MaXimUIM BUISE SIZE.....eiiiiiiiiiie ettt ettt ettt e e e sttt e e e s st e e aeesnbebeee e s anbaeeeeens
130 Command Bus Master Configuration TranSaCtioNSueievieeiieiiiiiiiiiieieree e e e e sssnrenireeeeeeees
131 Command Bus Master Address Space Map t0 PCluuiiiiieeoiiiiiiiieiceeee e
132 Byte Lane Alignment for 64-Bit PCI Data In (64 Bits PCI Little Endian to Big Endian

LTI 7= T o) PSSR
135 Byte Lane Alignment for 32-bit PCI Data In (32 Bits PCI Big Endian to Big Endian

1T To 10 AT 7=V) OSSPSR
136 Byte Lane Alignment for 64-bit PCI Data Out (Big Endian to 64 Bits PCI Little

ENian WIth SWEP) ...ttt e e e e e e s e e e e e e e e e e e e
133 Byte Lane Alignment for 64-bit PCI Data In (64 Bits PCI Big Endian to Big Endian

(V1 gL TN LAY Y7V o) ISP PUURRUR

134 Byte Lane Alignment for 32-bit PCI Data In (32 Bits PCI Little Endian to Big Endian
(VL g TS = T o) PO PRPURUR

137 Byte Lane Alignment for 64-bit PCI Data Out (Big Endian to 64 Bits PCI Big Endian
1T To U YT 7=V) P EEPERUR

138 Byte Lane Alignment for 32-bit PCI Data Out (Big Endian to 32 Bits PCI Little
ENian WIth SWaP)uviiiiiiiiiie et e et e e e e e e e e e s e st a e e e aaaeeaneaas

Intel® IXP2800 Network Processor

n Contents
intgl.

139 Byte Lane Alignment for 32-bit PCI Data Out (Big Endian to 32 Bits PCI Big Endian

1L LT 10 AT o) PSR 356
140 Byte Enable Alignment for 64-bit PCI Data In (64 Bits PCI Little Endian to Big

ENdian With SWaP)eeiiiiii e 357
141 Byte Enable Alignment for 64-bit PCI Data In (64 Bits PCI Big Endian to Big Endian

WILNOUL SWEAD) ...ttt ettt s bttt e skttt e s e et e s b e e e e s bt n b e e e s nnnne e s 357
142 Byte Enable Alignment for 32-bit PCI Data In (32 bits PCI Little Endian to Big

ENdian With SWaP)ceeiiiii e 357
143 Byte Enable Alignment for 32-bit PCI Data In (32 Bits PCI Big Endian to Big Endian

1L LT 10 AT o) SRR 358
144 Byte Enable Alignment for 64-bit PCI Data Out (Big Endian to 64 Bits PCI Little

ENdian With SWaP) ..o e a e e e e s 358
145 Byte Enable Alignment for 64-bit PCI Data Out (Big Endian to 64 Bits PCI Big

ENdian WithOUL SWaP)uuiiiiiiiiiicic et e e e e e e e s e e s e e e e e e e e e sasnntrnreeeeees 358
146 Byte Enable Alignment for 32-bit PCI Data Out (Big Endian to 32 Bits PCI Little

ENdian With SWaP) ..o e a e e e e s 358
147 Byte Enable Alignment for 32-bit PCI Data Out (Big Endian to 32 Bits PCI Big

ENdian WIithOUE SWAP)ccoiiiiiiiiiii et e ennre s 359
148 PCI I/O Cycles with Data Swap ENabIecc.uiiiiiii e 360
149 CIOCK USAUE SUMIMANY ...eeiiiuitiiieisitietee ettt e ettt e ettt e e st e e e as bt e s ab b et e e e annb e e e e e anbeeeeeannees 362
150 CIOCK RALES EXAMIPIES. ...coiiiiiiiiiiiiiiiit ettt ettt e e e et e s e b e e e e e 364
151 IXP2800 Network Processor Strap PiNSooiiiiiiiiiiieeiee et e e e e e 371
152 Supported Strap COMDINALIONS.cuiiiiiiiie e e e 372

Hardware Reference Manual

21

Intel® IXP2800 Network Processor
Contents

Hardware Reference Manual

22

intel.

Intel® IXP2800 Network Processor
Introduction

Introduction 1

1.1

1.2

About this Document

This document is the hardware reference manual for the Intel® 1XP2800 Network Processor. This
information is intended for use by devel opers and is organized as follows:

Section 2, “Technical Description” contains a hardware overview.

Section 3, “Intel X Scale® Core” describes the embedded Intel X Scale® core.

Section 4, “Microengines’ describes Microengine operation.

Section 5, “DRAM” describes the DRAM Unit.

Section 6, “SRAM Interface” describes the SRAM Unit.

Section 7, “ SHaC—Unit Expansion” describes the Scratchpad, Hash Unit, and CSRs (SHaC).

Section 8, “Media and Switch Fabric Interface” describes the Mediaand Switch Fabric (MSF)
Interface used to connect the network processor to a physical layer device.

Section 9, “PCI Unit” describes the PCl Unit.

Section 10, “Clocks, Reset, and Initialization” describes the clocks, reset and initiadlization
sequence.

Related Documentation

Further information on the I XP2800 is available in the following documents:

I XP2800 Network Processor Datasheet - Contains summary information on the | XP2800 Network
Processor including a functional description, signal descriptions, electrical specifications, and
mechanical specifications.

I XP2400/1 XP2800 Network Processor Programmer’s Reference Manual - Contains detailed
programming information for designers.

I XP2400/1 XP2800 Network Processor Development Tools User’s Guide - Describes the
Workbench and the devel opment tools you can access through the use of the Workbench.

Hardware Reference Manual 21

Introduction

1.3

22

Conventions

Table 1 lists the terminology used in this manual.

Table 1. Data Terminology

Term Words Bytes Bits
Byte Y 1 8
Word 1 2 16
Longword 2 4 32
Quadword 4 8 64

Intel® IXP2800 Network Processor

intel.

Hardware Reference Manual

intel.

Intel® IXP2800 Network Processor
Technical Description

Technical Description 2

2.1

Overview

This section provides a brief overview of the | XP2800 Network Processor internal hardware.
This section isintended as an overall hardware introduction to the network processor.

The major blocks are;

Intel X Scale®core— General purpose 32-bit RISC processor (ARM* Version 5 Architecture
compliant) used to initialize and manage the network processor, and can be used for higher
layer network processing tasks.

Intel X Scale® technology Peripherals (XPl)—Interrupt Controller, Timers, UART, General
Purpose I/0 (GPIO) and interface to low-speed off chip peripherals (such as maintenance port
of network devices) and Flash ROM.

Microengines (MEs) —Sixteen 32-bit programmable engines specialized for Network
Processing. Microengines do the main data plane processing per packet.

DRAM Controllers— Three independent controllers for Rambus* DRAM. Typically DRAM
is used for data buffer storage.

SRAM Controllers —Four independent controllers for QDR SRAM. Typically SRAM is used
for control information storage.

Scratchpad Memory—16 KBytes storage for general purpose use.

Hash Unit—Polynomial hash accelerator. The Intel X Scale® core and Microengines can use it
to offload hash calculations.

Control and Status Register Access Proxy— CAP. These provide special inter-processor
communication features to allow flexible and efficient inter-Microengine and Microengine to
Intel XScale® core communication.

Media and Switch Fabric Interface (M SF)—Interface for network framers and/or Switch
Fabric. Contains receive and transmit buffers.

PCI Controller—64-bit PCI Rev 2.2 compliant 1/0 bus. PCI can be used to either connect to a
Host processor, or to attach PCI compliant peripheral devices.

Performance M onitor—Counters which can be programmed to count selected internal chip
hardware events, which can be used to analyze and tune performance.

Figure 1 isasimple block diagram of the network processor showing the major internal hardware
blocks. Figure 2 is a detailed diagram of the network processor units and busses.

Hardware Reference Manual 23

Intel® IXP2800 Network Processor
Technical Description -

Figure 1. IXP2800 Network Processor Functional Block Diagram

Media Switch | | Scratched SRAM SRAM SRAM SRAM DRAM DRAM DRAM
Fabric (MSF) Memory Controller ||| Controller || Controller || Controller || Controller || Controller || Controller
0 1 2 3 0 1 2
A A A A A A A A A
Y Y Y Y Y Y Y Y Y
A A A A A A A
Y Y Y Y Y Y Y
Hash PCl ME ME ;I ME ME Intel® Intel
Unit Controller | | CAP ox1 [< | ox0 ox10 [ox11 XScale™ XScale™
Peripherals Core
¥) (XPI)
ME ME ME ME
0x2 0x3 0x13 0x12
ME ME ME ME
0x5 0x4 0x14 0x15
Performance
* ¢ Monitor
ME ME || | ME ME
0x6 0x7 0x17 0x16
ME Cluster 0 ME Cluster 1
A9226-01

24 Hardware Reference Manual

Intel® IXP2800 Network Processor
Technical Description

Figure 2. IXP2800 Network Processor Detailed Diagram

SRAM SRAM SRAM DRAM DRAM DRAM
A A A A A A
Y Y Y Y Y Y
SRAM SRAM SRAM DRAM DRAM DRAM
Controller||Controller|| Controller Controller ||Controller || Controller
A A AA A A [A
[1 1 7y
L Lo g,
SHaC Unit | | I . sl r=
< ! 1 1 53 S
B 1 : 1 1 S5z cﬂ‘ i
Scratch™ < HE . e, ==
o ! 1 1 [a)] =
Hash' g HE I &<
CAP-H [1 1 fa)
1 f 1 1
4 vy D_Push ! :
-~ T
Modia : 1 A o pul 1 ,
x T T T
= Controller ! cmd_1 1 1 A
8s|], Do S £ 1 e et B b B !
El > 1 ! Cmd_OJ' H
o8 RBuf €1 A - -
) TBuf“"™ [' Y = o s_pullo ! ! !
Vo |s_Pull||s_Push s o
CSR ' :| b 1 " Ao 1 | s e | [I A '
oHS- ush = = " h
A Arb 0 : : |
<€ - : :] :
—-———— 1 1 H
1 1 1
S_Pull_1 : : 1
S_push_1 A 1 1 .
1 1 1
1 1 1
© " ! i 1
58 mast/tar
O le> 2 < Y Y A | r vy
a CSRs!! Sin |Sout| Din |DoutfCmd|JCmd | Sin |S out| D in |D out K
PCI < xter | xfer | xfer | xfer |FIFO||FIFO | xfer | xfer | xfer | xfer | | Gasket
CSR| CSR|
space Intel®
DMA MEOx10-0x17 MEOx10-0x7 XScale
transfers Cluster 1 Cluster 0 Core
PCI
Controller A A A
A Cmd_Arb_1 Cmd_Arb_0
(grant/request) (grant/request)
Y Y
Command Bus Command Bus
Arbiter 1 Arbiter 0
Notes:
“lconnected to the S_Push/Pull Buses
"I Connected to the S_Push/Pull Buses and D_Push/Pull Buses
E = Chassis Components
A9750-01

Hardware Reference Manual 25

Intel® IXP2800 Network Processor

Technical Description -
Inte|®

2.2

221

2.2.2

2221

2.2.2.2

2.2.2.3

26

Intel XScale® Core Microarchitecture

The Intel X Scale® microarchitecture consists of a 32-bit general purpose RISC processor that
incorporates an extensive list of architecture features that allowsit to achieve high performance.

ARM Compatibility

The Intel X Scale® microarchitecture is ARM* Version 5 (V5) Architecture compliant. It
implements the integer instruction set of ARM* V5, but does not provide hardware support of the
floating point instructions.

The Intel X Scale® microarchitecture provides the Thumb instruction set (ARM V5T) and the
ARM V5E DSP extensions.

Backward compatibility with the first generation of StrongARM* products is maintained for user-
mode applications. Operating systems may require modifications to match the specific hardware
features of the Intel X Scale€® microarchitecture and to take advantage of the performance
enhancements added to the Intel XScale® core.

Features

Multiply/Accumulate (MAC)

The MAC unit supports early termination of multiplies/accumulatesin two cycles and can sustain a
throughput of a MAC operation every cycle. Several architectural enhancements were made to the
MAC to support audio coding algorithms, which include a 40-bit accumulator and support for
16-bit packed values.

Memory Management

The Intel X Scale® microarchitecture implements the Memory Management Unit (MMU)
Architecture specified in the ARM Architecture Reference Manual. The MMU provides access
protection and virtual to physical address trandlation.

The MMU Architecture also specifies the caching policies for the instruction cache and data
memory. These policies are specified as page attributes and include:

* identifying code as cacheable or non-cacheable

¢ selecting between the mini-data cache or data cache

¢ write-back or write-through data caching

* enabling data write allocation policy

¢ and enabling the write buffer to coal esce stores to external memory
Instruction Cache
The Intel X Scale® microarchitecture implements a 32-K byte, 32-way set associative instruction
cache with aline size of 32 bytes. All requests that “miss’ the instruction cache generate a 32-byte

read request to external memory. A mechanism to lock critical code within the cacheis also
provided.

Hardware Reference Manual

intel.

2224

2225

2.2.2.6

2.2.2.7

Intel® IXP2800 Network Processor
Technical Description

Branch Target Buffer

The Intel X Scale® microarchitecture provides a Branch Target Buffer (BTB) to predict the
outcome of branch type instructions. It provides storage for the target address of branch type
instructions and predicts the next address to present to the instruction cache when the current
instruction addressis that of a branch.

The BTB holds 128 entries.

Data Cache

The Intel X Scal€® microarchitecture implements a 32-K byte, 32-way set associative data cache
and a 2-Kbyte, 2-way set associative mini-data cache. Each cache has aline size of 32 bytes, and
supports write-through or write-back caching.

The data/mini-data cache is controlled by page attributes defined in the MM U Architecture and by
coprocessor 15.

The Intel X Scale® microarchitecture allows applications to re-configure a portion of the data cache
as data RAM. Software may place special tables or frequently used variablesin thisRAM.

Interrupt Controller
The Intel X Scale® microarchitecture provides two levels of interrupt, IRQ and FIQ. They can be
masked via coprocessor 13. Note that thereis also amemory mapped interrupt controller described

with the Intel X Scale® Peripherals (see Section 3.12), which is used to mask and steer many chip-
wide interrupt sources.

Address Map

Figure 3 shows the partitioning of the Intel X Scale® microarchitecture 4 GB address space.

Hardware Reference Manual 27

Intel® IXP2800 Network Processor
Technical Description

Figure 3. Intel XScale® 4GB (32-bit) Address Space

OXFFFF FFF

0XE000 0000

OXDFFF FFF

0XC000 0000

OXBFFF FFF

0x8000 0000

OX7FFF FFFF

0X0000 0000

PCI MEM
(1/2 Gb)

Other
(1/2 Gb)

SRAM
(1 Gb)

35Gb

3.0Gb

PCI Local CSRs

RESERVED
(32 Mb x 2)

(64 Mb)

CAP-CSRs (32 Mb)

DRAM
and
Intel®
XScale™
FLASH ROM
(2 Gb)

0XDFO00 0000
0XDEQO 0000
0XDCO00 0000
0XDAOO 0000
0XD800 0000
0XD600 0000

0XDO000 0000
0XCEOQ0 0000
0XCCO00 0000
0XCAO00 0000
0XC800 0000

0XC400 0000
0XC200 0000
0XC000 0000

A9693-01

28

Hardware Reference Manual

Intel® IXP2800 Network Processor

- Technical Description
intgl.

2.3 Microengines

The Microengines do most of the programmable pre-packet processing in the I XP2800 Network
Processor. There are 16 Microengines, connected as shown in Figure 1. The Microengines have
access to all shared resources (SRAM, DRAM, MSF, etc.) as well as private connections between
adjacent Microengines (referred to as “ next neighbors’).

Theblock diagramin Figure 4 is used in the Microengine description. Note that this block diagram
issimplified for clarity; some blocks and connectivity have been omitted to make the diagram
more readable. Also, this block diagram does not show any pipeline stages, rather it shows the
logical flow of information.

The Microengine provides support for software controlled multi-threaded operation. Given the
disparity in processor cycletimes vs external memory times, asingle thread of execution will often
block waiting for external memory operations to complete. Having multiple threads available
allows for threads to interleave operation—there is often at |east one thread ready to run while
others are blocked.

Hardware Reference Manual 29

Intel® IXP2800 Network Processor
Technical Description -

Figure 4. Microengine Block Diagram

D Push S _Push
from DRAM)] — (from SRAM
NNData_Ir_1 () Scratchpad,
(from previous ME) MSF, Hash,
______ Y + Y Y PCILCAP)
______ AN / N\ /
__640_ |
" Local | Y Y Y
- _'\A_em_ - d ______________________________
------ e |--128 _ | __128 _ | __128 _ | __128 _ | __128 _ || Control
------ ¢ |- GPRs | _ GPRs_ _ Next_ __D__ .S __[{] Store
E o |{A Bank)] (B Bank) | Neighbor] _ XFER_ | _ XFER |
IR dl----- - - __In _ | __In _ |
______ e |l------ - - I I
A Al A A A A A A A
1 1 1 1 1 1
1 1 1 [JR— [R R Y
Lm_addr_1 ! ! :
Lm_addr_0 : : T,
A IEEE B B S EE R PR --e-L-~-----4A_Src
P R P [[- e--4---1B_src
1
T_Index
* NN_Get
|CRC_Remainder|
A
Y
CRC Unit I T Immed
AN /7 \ /
< * A_Operand ¢ B_Operand
Execution
Datapath
(Shift, Add, Subtract, Multiply Logicals,
Find First Bit, CAM)
ALU_Out
S Push — jm=——- . 2ttt Dest
1 1
* : : > NN_Data_Out
Y v Y v y (to next ME)
[7128] [128" L CMD_ |
[_p_] [_s -] | FIFO_ |
Local XFER] XFER L (4)
CSRs [Out] [Out]
- = == Control
Command Data
D_Pull 42'_/ % S_pull
B1670-01

30 Hardware Reference Manual

intel.

2.3.1

Table 2.

2.3.2

2.3.3

Intel® IXP2800 Network Processor
Technical Description

Microengine Bus Arrangement

The 1XP2800 Network Processor supports a single D-Push/Pull Bus and both Microengine clusters
interface to the same bus. the I XP2800 Network Processor supports two command buses and two
sets of S-Push/Pull Buses and are connected as shown in Table 2. Table 2 a so shows the next
neighbor relationship between the Microengine.

IXP2800 Network Processor Microengine Bus Arrangement

Microengine Microengine Next Previous Command S Push and
Cluster Number Neighbor Neighbor Bus Pull Bus

0x00 0x01 NA

0x01 0x02 0x00
0x02 0x03 0x01
0x03 0x04 0x02

0 0 0
0x04 0x05 0x03
0x05 0x06 0x04
0x06 0x07 0x05
0x07 0x10 0x06
0x10 Ox11 0x07
0x11 0x12 0x10
0x12 0x13 Ox11
0x13 0x14 0x12
1 1 1

0x14 0x15 0x13
0x15 0x16 0x14
0x16 0x17 0x15
0x17 NA 0x16

Control Store

The Control Storeisa RAM, which holds the program that the Microengine executes It holds 8192
instructions, each of which is 40-bitswide. It isinitialized by the Intel X Scale® core, which writes
to USTORE_ADDR and USTORE_DATA Local CSRs.

The Control Storeis protected by parity against soft errors. Parity checking is enabled by
CTX_ENABLE[CONTROL STORE PARITY ENABLE]. A parlty error on an instruction read
will halt the Microengine and assert an interrupt to the Intel XScale® core.

Contexts

There are eight hardware Contexts available in the Microengine. To allow for efficient context
swapping, each Context hasits own register set, Program Counter, and Context specific Local
Registers. Having a copy per Context eliminates the need to move Context specific information to/
from shared memory and Microengine registers for each Context swap. Fast context swapping
allows a Context to do computation while other Contexts wait for 1/0 (typically external memory
accesses) to complete or for asignal from another Context or hardware unit. [Note that a context
swap is similar to ataken branch in timing.]

Hardware Reference Manual 31

Intel® IXP2800 Network Processor

Technical Description

intel.

Each of the eight Contextsisin one of four states.

1. Inactive—Some applications may not require all eight contexts. A Context isin the Inactive

state when its CTX_ENABLE CSR enable bitisa‘0'.

. Executing—A Context isin Executing state when its context number isin
ACTIVE_CTX_STS CSR. The executing Context’s PC is used to fetch instructions from the
Control Store. A Context will stay in this state until it executes an instruction that causesit to
go to Sleep state (there is no hardware interrupt or preemption; Context swapping is
completely under software control). At most one Context can be in Executing state at any time.

. Ready—In this state, a Context is ready to execute, but is not because a different Context is
executing. When the Executing Context goes to Sleep state, the Microengine's context arbiter
selects the next Context to go to the Executing state from among al the Contexts in the Ready
state. The arbitration is round robin.

. Sleep—Context iswaiting for external event(s) specified in the
INDIRECT WAKEUP_EVENTS CSR to occur (typically, but not limited to, an I/O access).

In this state the Context does not arbitrate to enter the Executing state.

The state diagram in Figure 5 illustrates the Context state transitions. Each of the eight Contexts
will bein one of these states. At most one Context can be in Executing state at a time; any number
of Contexts can be in any of the other states.

Figure 5. Context State Transition Diagram

CTX_ENABLE bit is set by

executing Context(s),

Intel® XScale® Architecture '—
Reset ; g
es¢t —>1 Inactive | CTX_ENABLE bitis cleared I Ready
We!
. \aﬂN
A (\\5\9“ Executing Context goes
CTX ENABLE A to Sleep state, and this
[s Context is the highest
bit is cleared e 9
round-robin priority.
Y
Context executes
CTX Arbitration instruction I .
Sleep < I Executing
Note:

After reset, the Intel XScale processor must load the starting address of the CTX_PC, load the
CTX_WAKEUP_EVENTS to 0x1 (voluntary), and then set the appropriate CTX_ENABLE bits to begin

A9352-01

The Microengineisin Idle state whenever no Context is running (all Contextsarein either Inactive
or Sleep states). This state is entered:

1. After reset (because CTX_ENABLE Loca CSR isclear, putting all Contextsinto Inactive

states).

2. When a context swap is executed, but no context is ready to wakeup.

32

Hardware Reference Manual

intel.

2.3.4

2341

2.3.4.2

Intel® IXP2800 Network Processor
Technical Description

3. Whena ctx_arb [bpt] instruction is executed by the Microengine (thisis a special case of #2
above, sincethe ctx_arb[bpt] clears CTX_ENABLE, putting all Contextsinto Inactive
states).

The Microengine provides the following functionality during Idle state:

1. The Microengine continuously checksif a Context isin Ready state. If so, anew Context
begins to execute. If no Context is Ready, the Microengine remainsin the Idle state.

2. Only the ALU instructions are supported. They are used for debug via special hardware
defined in number 3 below.

3. A writeto the USTORE_ADDR Loca CSR with the USTORE_ADDR[ECS] bit set, causing
the Microengine to repeatedly execute the instruction pointed by the address specified in the
USTORE_ADDR CSR. Only the ALU instructions are supported in this mode. Also, the result
of the execution is written to the ALU_OUT Loca CSR rather than a destination register.

4. A writetothe USTORE_ADDR Loca CSR with the USTORE_ADDR[ECS] hit set, followed
by awriteto the USTORE_DATA Local CSR loads an instruction into the Control Store. After
the Control Storeisloaded, execution proceeds as described in number 3 above.

Datapath Registers
As ;hown in the block diagram in Figure 4 each Microengine contains four types of 32-bit datapath
registers:

1. 256 General Purpose Registers

2. 512 Transfer Registers

3. 128 Next Neighbor Registers

4. 640 32-bit words of Local Memory

General-Purpose Registers (GPRs)

GPRs are used for general programming purposes. They are read and written exclusively under
program control. GPRs, when used as a source in an instruction, supply operands to the execution
datapath. When used as a destination in an instruction, they are written with the result of the
execution datapath. The specific GPRs selected are encoded in the instruction.

The GPRs are physically and logically contained in two banks, GPR A, and GPR B, defined in
Table 3.

Transfer Registers

Transfer Registers (abbreviated Xfer Registers) are used for transferring data to and from the
Microengine and locations external to the Microengine, (for example DRAMs, SRAMSs etc.).
There are four types of transfer registers.

¢ S TRANSFER_IN
e S TRANSFER_OUT
» D_TRANSFER_IN

e D_TRANSFER OUT

Hardware Reference Manual 33

Intel® IXP2800 Network Processor

Technical Description -
Inte|®

2.3.4.3

34

TRANSFER _IN Registers, when used as a source in an instruction, supply operands to the
execution datapath. The specific register selected is either encoded in the instruction, or selected
indirectly viaT_INDEX. TRANSFER_IN Registers are written by external units (A typical caseis
when the external unit returns datain response to read instructions. However, there are other
methods to write TRANSFER_IN Registers, for example aread instruction executed by one
Microengine may cause the data to be returned to a different Microengine. Details are covered in
the instruction set descriptions).

TRANSFER_OUT Registers, when used as a destination in an instruction, are written with the
result from the execution datapath. The specific register selected is encoded in the instruction, or
selected indirectly viaT_INDEX. TRANSFER_OUT Registers supply data to external units
(for example, write datafor an SRAM write).

TheS TRANSFER _IN and S TRANSFER_OUT Registers connect tothe S PUSH and S PULL
busses, respectively.

TheD_TRANSFER_IN and D_TRANSFER_OUT Transfer Registers connect tothe D_PUSH and
D_PULL busses, respectively.

Typically, the external units access the Transfer Registers in response to instructions executed by
the Microengines. However, it is possible for an external unit to access a given Microengine's
Transfer Registers either autonomously, or under control of a different Microengine, or the Intel
X Scale® core, etc. The M icroengine interface signals controlling writing/reading of the
Transfer_IN/TRANSFER_OUT registers are independent of the operation of the rest of the
Microengine, therefore the data movement does not stall or impact other instruction processing
(it istheresponsibility of software to synchronize usage of read data).

Next Neighbor Registers
Next Neighbor Registers, when used as a source in an instruction, supply operands to the execution
datapath. They are written in two different ways:

1. by an adjacent Microengine (the “ Previous Neighbor™).

2. by the same Microengine they arein, as controlled by CTX_ENABLE[NN_MODE].

The specific register is selected in one of two ways:
1. Context-relative, the register number is encoded in the instruction.
2. AsaRing, selected viaNN_GET and NN_PUT CSR Registers.

The usage is configured in CTX_ENABLE[NN_MODE].

* When CTX_ENABLE[NN_MODE] is‘0" -- When Next Neighbor is used as a destination in
an instruction, the instruction result data is sent out of the Microengine, to the Next Neighbor
Microengine.

* When CTX_ENABLE[NN_MODE] is‘1’ -- When Next Neighbor is used as adestination in
an instruction, the instruction result data is written to the selected Next Neighbor Register in
the same Microengine. Note that thereis a5 instruction latency until the newly written data
may beread. The datais not sent out of the Microengine asit would be when
CTX_ENABLE[NN_MODE] is‘0'.

Hardware Reference Manual

intel.

Table 3.

2344

Intel® IXP2800 Network Processor
Technical Description

Next Neighbor Write as a Function of CTX_ENABLE[NN_MODE]

Where Does Write Go?

NN_MODE NN Register in
External This
Microengine

0 Yes No

1 No Yes

Local Memory

Local Memory is addressable storage |ocated in the Microengine. Local Memory isread and
written exclusively under program control. Local Memory supplies operands to the execution
datapath as a source, and receives results as a destination. The specific Local Memory location
selected is based on the value in one of the LM_ADDR Registers, which are written by
local_csr_wrinstructions. There aretwo LM_ADDR Registers per Context and a working copy of
each. When a Context goes to Sleep state, the value of the working copiesis put into the Context’s
copy of LM_ADDR. When the Context goes to Executing state, the value in its copy of
LM_ADDR are put into the working copies. The choice of LM_ADDR_0O or LM_ADDR_1is
selected in the instruction.

It is also possible to make use of both or one LM_ADDRs as global by setting
CTX_ENABLE[LM_ADDR_0_GLOBAL] and/or CTX_ENABLE[LM_ADDR_1_GLOBAL].
When used globally, all Contexts use the working copy of LM_ADDR in place of their own
Context specific one; the Context specific ones are unused.

There is athree-instruction latency when writing a new valueto the LM_ADDR, as shownin
Example 1.

Example 1. Three-Cycle Latency when Writing a New Value to LM_ADDR

;jsome instruction to compute the address into gpr m
local_csr_wr [INDIRECT LM ADDR 0, gpr m]; put gpr m into 1lm addr
;unrelated instruction 1

;unrelated instruction 2

;unrelated instruction 3

alul[dest reg, *1$index0, op, src_reg]

jdest_reg can be used as a source in next instruction

LM_ADDR can also beincremented or decremented in parallel with use as a source and/or
destination (using the notation * I$index#++ and *1$index#--), as shown in Example 2, where three
consecutive Local Memory locations are used in three consecutive instructions.

Example 2. Using LM_ADDR in Consecutive Instructions

aluldest_regl, src_regl, op, *1$index0++]
aluldest_reg2, src_reg2, op, *1$index0++]
aluldest_reg3, src_reg3, op, *1$index0++]

Hardware Reference Manual 35

Intel® IXP2800 Network Processor

Technical Description -
Inte|®

Local Memory iswritten by selecting it as a destination. Example 3 shows copying a section of
Local Memory to another section. Each instruction accesses the next sequential Local Memory
location from the previous instruction.

Example 3. Copying One Section of Local Memory to Another Section

alul[*1$indexl++, --, B, *1$index0++]
alul[*1$indexl++, --, B, *1$index0++]
alul[*1$indexl++, --, B, *1$index0++]

Example 4 shows loading and using both Local Memory addresses.

Example 4. Loading and Using both Local Memory Addresses

local_csr_wr [INDIRECT_LM_ADDR 0, gpr_m]
local_csr_wr [INDIRECT_LM_ADDR 1, gpr_n]
;unrelated instruction 1
;unrelated instruction 2
aluldest_regl, *1$index0, op, src_regl]
alu(dest reg2, *1$indexl, op, src_reg2]

Asshown in Example 1 thereisalatency inloading LM_ADDR. Until the new valueisloaded the
old value is still usable. Example 5 shows the maximum pipelined usage of LM_ADDR.

Example 5. Maximum Pipelined Usage of LM_ADDR

local_csr_ wr [INDIRECT_LM_ADDR 0, gpr_m]
local_csr_ wr [INDIRECT_LM_ADDR 0, gpr_n]
local_csr_wr [INDIRECT_LM_ADDR 0, gpr_ol
local_csr_wr [INDIRECT_LM_ADDR 0, gpr_pl

aluldest regl, *1$index0, op, src_regl] ; uses address from gpr m
aludest reg2, *1$index0, op, src_reg2] ; uses address from gpr n
aluldest_reg3, *1$index0, op, src_reg3] ; uses address from gpr o
aluldest_reg4, *1$index0, op, src_reg4] ; uses address from gpr p

LM_ADDR can aso be used as the base of a 16 32-bit word region of memory, with the instruction
specifying the offset from that base, as shown in Example 6. The source and destination can use
different offsets.

Example 6. LM_ADDR Used as Base of a 16 32-bit word Region of Local Memory

alu[*1$index0([3], *1$index0[4], +, 1]

Note: Local Memory has 640 32-bit words. The local memory pointers (LM_ADDR) have an addressing
range of up to 1K longwords. However, only 640 longwords are currently populated with RAM.
Therefore:

0 - 639 (0x0 - 0x27F) are addressable as local memory.
640 - 1023 (0x280 - 0x3FF) are addressable, but not popul ated with RAM.

To the programmer, al instructions using Local Memory act as follows, including read/modify/
write instructions like immed_woO, Id_field, etc.

1. Read LM_ADDR location (if LM_ADDR is specified as source).
2. Executelogic function.
3. WriteLM_ADDR location (if LM_ADDR is specified as destination).

36 Hardware Reference Manual

Intel® IXP2800 Network Processor
Technical Description

u
intgl.
4. If specified, increment or decrement LM_ADDR.

5. Proceed to next instruction.

Example 7 islegal because 1m_addr_o[2] does not post-modify LM_ADDR.
Example 7. LM_ADDR Use as Source and Destination

alul[*1$index0[2], --, ~B, *1$index0]

In Example 7, the programmer sees:
1. Read Local Memory memory location pointed to by LM_ADDR.
2. Invert the data.

3. Write the datainto the address pointed to by LM_ADDR with the value of “2” OR’ed into the
lower hits.

4. Increment LM_ADDR.
5. Proceed to next instruction.

In Example 8, the second instruction will access the Local Memory location one past the source/
destination of the first.

Example 8. LM_ADDR Post-increment

alul[*1$index0++, --, ~B, gpr n]

alulgpr_m, --, ~B, *1$index0]

2.3.5 Addressing Modes

GPRs can be accessed in two different addressing modes:
* Context-Relative
* Absolute

Some instructions can specify either mode, other instructions can specify only Context-Relative
mode.

Transfer and Next Neighbor registers can be accessed in Context-Rel ative and Indexed modes.
Local Memory is accessed in Indexed mode.

The addressing mode in use is encoded directly into each instruction, for each source and
destination specifier.

2.35.1 Context-Relative Addressing Mode

The GPRs are logically subdivided into equal regions such that each Context has relative access to
one of the regions. The number of regionsis configured in the CTX_ENABLE CSR, and can be
either 4 or 8. Thus a Context-Rel ative register number is actually associated with multiple different
physical registers. The actual register to be accessed is determined by the Context making the
access request (the Context number is concatenated with the register number specified in the
instruction). Context-Relative addressing is a powerful feature that enables eight (or four) different
contexts to share the same code image, yet maintain separate data.

Hardware Reference Manual 37

Intel® IXP2800 Network Processor

Technical Description

Table 4.

2.3.5.2

2.3.5.3

intel.

Table 4 shows how the Context number is used in selecting the register number in relative mode.
The register number in Table 4 is the Absolute GPR address, or Transfer or Next Neighbor Index
number to use to access the specific Context-Relative register. For example, with 8 active Contexts,

Context-Relative Register 0 for Context 2 is Absolute Register Number 32.

Registers Used By Contexts in Context-Relative Addressing Mode

) GPR
Number of Active] S Transfer or
Active Context Absolute Register Numbers Neighbor D Transfer
Contexts Number Index Number Index Number
A Port B Port
0 0-15 0-15 0-15 0-15
1 16-31 16-31 16-31 16-31
8 2 32-47 32-47 32-47 32-47
(Instruction 3 48-63 48-63 48-63 48-63
always specifies
Registers in 4 64-79 64-79 64-79 64-79
range 0-15) 5 80-95 80-95 80-95 80-95
6 96-111 96-111 96-111 96-111
7 112-127 112-127 112-127 112-127
4 0 0-31 0-31 0-31 0-31
(Instruction 2 32-63 32-63 32-63 32-63
always specifies
Registers in 4 64-95 64-95 64-95 64-95
range 0-31) 6 96-127 96-127 96-127 96-127

Absolute Addressing Mode

With Absolute addressing, any GPR can be read or written by any one of the eight Contextsin a
Microengine. Absolute addressing enables register data to be shared among all of the Contexts, for
example for global variables, or for parameter passing. All 256 GPRs can be read by Absolute
address.

Indexed Addressing Mode

With Indexed addressing, any Transfer or Next Neighbor register can be read or written by any one
of the eight Contexts in a Microengine. Indexed addressing enables register data to be shared
among all of the Contexts. For indexed addressing the register number comes from the T_INDEX
register for Transfer Registersor NN_PUT and NN_GET registers (for Next Neighbor Registers).

Example 9 shows an example of using the Index Mode. Assume that the numbered bytes have been
moved into the S Transfer_In registers as shown.

Example 9. Use of Indexed Addressing Mode (Sheet 1 of 2)

38

Transfer Data
Register # 31:24 23:16 15:8 7:0
0 0x00 0x01 0x02 0x03
1 0x04 0x05 0x06 0x07
2 0x08 0x09 0x0a 0x0b

Hardware Reference Manual

Intel® IXP2800 Network Processor
Technical Description

intel.

Example 9. Use of Indexed Addressing Mode (Sheet 2 of 2)

Transfer Data
Register # 31:24 23:16 15:8 7:0
3 0x0c 0oxod 0x0e 0x0f
4 0x10 0x11 0x12 0x013
5 0x14 0x15 0x16 0x17
6 0x18 0x19 Oxla 0x1b
7 Oxlc 0Ox1d Oxle Ox1f

If the software wants to access a specific byte that is know at compile-time, it will normally use
context-relative addressing. For example to access the word in transfer register 3:

aluldest, --, B, $xfer3] ; move the data from s_transfer 3 to gpr dest

If the location of the dataiis found at run-time, indexed mode can be used. For example, the case
where the start of an encapsulated header is dependent on avalue in an outer header (the outer
header byteisin afixed location).

; Check byte 2 of transfer 0

; If value==5 header starts on byte 0x9, else byte 0x14
br=byte[$0, 2, 0x5, L1#], defer [1]

local_csr wr[t_index byte index, 0x09]

local_csr wr[t_index byte index, 0x14]

nop ; wait for index registers to be loaded

Ll#:

; Move bytes right justified into destination registers
nop ; wait for index registers to be loaded

nop ;

byte_align bel[destl, *$index++]

byte_align be([dest2, *$index++]

; etc

Note that the t_index and byte index registers are loaded by the same instruction.

2.3.6 Local CSRs

Local Control and Status Registers (CSRs) are external to the Execution Datapath, and hold
specific purpose information. They can be read and written by special instructions (local_csr_rd
and local_csr_wr) and are typically accessed less frequently than datapath registers.

Because Local CSRs are not built in the datapath, there is awrite to use delay of threeinstructions,
and aread to consume penalty of two instructions.

Hardware Reference Manual 39

Intel® IXP2800 Network Processor

Technical Description -
Inte|®

2.3.7

23.7.1

40

Table 5.

Figure 6.

Execution Datapath

The Execution Datapath can take one or two operands, perform an operation, and optionally write
back aresult. The sources and destinations can be GPRs, Transfer Registers, Next Neighbor
Registers, and Local Memory. The operations are shifts, add/subtract, logicals, multiply, bytealign,
and find first one hit.

Byte Align

The datapath provides a mechanism to move data from source register(s) to any destination
register(s) with byte aligning. Byte aligning takes four consecutive bytes from two concatenated
values (8 bytes), starting at any of four byte boundaries (0, 1, 2, 3), and based on the endian-type
(which isdefined in the instruction opcode), as shown in Example 4. The four bytes are taken from
two concatenated values. Four bytes are always supplied from atemporary register that always
holdsthe A or B operand from the previous cycle, and the other four bytesfrom the B or A operand
of the Byte Align instruction.

The operation is described below low using the block diagram in Figure 6. The alignment is
controlled by the 2 LSBs of the BY TE_INDEX Loca CSR.

Align Value and Shift Amount

Right Shift Amount (# of Bits)
Align Value (Decimal)
(in Byte_Index[1:0])

Little Endian Big Endian
0 0 32
1 8 24
2 16 16
3 24 8

Byte Align Block Diagram

A_Operand B_Operand
A /
\ Shift Byte_Index

Result

A9353-01

Hardware Reference Manual

Intel® IXP2800 Network Processor
- Technical Description

Example 11 shows an align sequence of instructions and the value of the various operands. Table 6
shows the datain the registers for this example. Thevaluein BY TE_INDEX][1:0] CSR (which
controls the shift amount) for this exampleis 2.

Table 6. Register Contents for Example 10

Register E{tgf] [B;éti 62] l?lyft)eg]l B[);tzg]o
0 0 1 2 3
1 4 5 6 7
2 8 9 A B
3 C D E =

Example 10. Big Endian Align

Instruction Prev B A Operand | B Operand Result
Byte align be[--, 0] -- -- 0123 -
Byte align be[destl, ril] 0123 0123 4567 2345
Byte_align be[dest2, r2] 4567 4567 89AB 6789
Byte align be[dest3, r3] 89AB 89AB CDEF ABCD
NOTE: A Operand comes from Prev_B register during byte_align_be instructions.

Example 11 shows another sequence of instructions and the value of the various operands.
Table 7 shows the data in the registers for this example.

Thevaluein BYTE_INDEX][1:0] CSR (which contrals the shift amount) for this exampleis 2.

Table 7. Register Contents for Example 11

0 3 2 1 0
1 7 6 5 4
2 B A 9 8
3 F E D C

Example 11. Little Endian Align

Instruction A Operand | B Operand Prev A Result
Byte align le[--, rO0] 3210 -- - --
Byte_align le[destl, ril] 7654 3210 3210 5432
Byte align le[dest2, r2] BA98 7654 7654 9876
Byte_align le[dest3, r3] FEDC BA98 BA98 DCBA
NOTE: B Operand comes from Prev_A register during byte_align_le instructions.

Hardware Reference Manual 41

Intel® IXP2800 Network Processor

Technical Description -
Inte|®

2.3.7.2

42

As the examples show, byte aligning “n” words takes “n+1" cycles due to the first instruction
needed to start the operation.

Another mode of operation isto usethe T_INDEX register with post-increment, to select the
source registers. T_INDEX operation is described later in this chapter.

CAM

The block diagram in Figure 7 is used to explain the CAM operation.

The CAM has 16 entries. Each entry stores a 32 bit value, which can be compared against a source
operand by instruction:

CAM_Lookup [dest_reg, source_reg]

All entries are compared in parallel, and the result of the lookup is a9 bit value which iswritten
into the specified destination register in bits 11:3, with all other bits of the register zero (the choice
of bits 11:3 is explained below). The result can also optionally be written into either of the
LM_Addr registers (see below in this section for details).

The 9-bit result consists of 4 State bits (dest_reg[11:8]), concatenated with a 1-bit Hit/Miss
indication (dest_reg[7]), concatenated with 4-bit entry number (dest_reg[6:3]). All other bits of
dest_reg are written with 0. Possible results of the lookup are:

¢ miss (0)—lookup valueisnot in CAM, entry number is Least Recently Used entry (which can
be used as a suggested entry to replace), and State bits are 0000.

¢ hit (1)—lookup vadueisin CAM, entry number is entry which has matched, State bits are the
value from the entry which has matched.

Hardware Reference Manual

Intel® IXP2800 Network Processor

- Technical Description
intgl.

Figure 7. CAM Block Diagram

Lookup Value

(from A port) 1

I Tag State Match >
I Tag State Match >
Match
I Tag State > Status
. A and
: : LRU
: : Logic

I Tag | State IMa—tChy

Lookup Status
,(to DestReq) ,

“ Y a

. .
. ..
- .

I‘ State | Status | Entry Numberl

| oooo [misso | LRUEnty |

| stae [Hit1 | Hiteny |

A9354-01

Note: The State bits are data associated with the entry. The useis only by software. Thereisno
implication of ownership of the entry by any Context. The State bits hardware function is:

¢ thevalueis set by software (at the time the entry is loaded, or changed in an already |oaded
entry).

¢ itsvalueisread out on alookup that hits, and used as part of the status written into the
destination register.

* itsvalue can beread out separately (normally only used for diagnostic or debug).

The LRU (Least Recently Used) Logic maintainsatime-ordered list of CAM entry usage. When an
entry isloaded, or matches on alookup, it is marked as MRU (Most Recently Used). Note that a
lookup that misses does not modify the LRU list.

The CAM isloaded by instruction:

CAM Write[entry reg, source_reg, state_valuel

Thevalue in the register specified by source reg is put into the Tag field of the entry specified by
entry_reg. The value for the State bits of the entry is specified in the instruction as state_value.

Hardware Reference Manual 43

Intel® IXP2800 Network Processor

Technical Description -
Inte|®

44

Note:

Note:

The value in the State bits for an entry can be written, without modifying the Tag, by instruction:
CAM Write Statel[entry reg, state value]

CcAM Write State doesnot modify the LRU list.

One possible way to use the result of alookup isto dispatch to the proper code using instruction:
jump [register, label#], defer [3]

where the register holds the result of the lookup. The State bits can be used to differentiate cases
where the data associated with the CAM entry isin flight, or is pending a change, etc. Because the
lookup result wasloaded into bitg 11:3] of the destination register, the jump destinations are spaced
8 ingtructions apart. This is a balance between giving enough space for many applicationsto
complete their task without having to jump to another region, vs consuming too much Control
Store. Another way to use the lookup result is to branch on just the hit miss bit, and use the entry
number as a base pointer into ablock of Local Memory.

When enabled, the CAM lookup result isloaded into Local_Addr as follows:
LM_Addr[5:0] = 0 ([1:0] are read-only hits)
LM_Addr[9:6] = lookup result [6:3] (entry number)
LM_Addr[11:10] = constant specified in instruction

This function is useful whenthe CAM is used as a cache, and each entry is associated with a block
of datain Local Memory. Note that the latency from when CAM_L ookup executes until the
LM_Addr isloaded is the same aswhen LM_Addr iswritten by aL.oca_ CSR_Wr instruction.

The Tag and State bits for a given entry can be read by instructions:
CAM_Read_Tag[dest_reg, entry reg]

CAM_Read_State[dest_reg, entry reg]

The Tag value and State bits value for the specified entry is written into the destination register,
respectively for the two instructions (the State bits are placed into bits [11:8] of dest_reg, with all
other bits 0). Reading the tag is useful in the case where an entry needs to be evicted to make room
for anew value—the lookup of the new value resultsin amiss, with the LRU entry number
returned as aresult of the miss. The CAM_Read Tag instruction can then be used to find the value
that was stored in that entry. An alternative would be to keep the tag value in a GPR. These two
instructions can also be used by debug and diagnostic software. Neither of these modify the state of
the LRU pointer.

The following rules must be adhered to when using the CAM.

* CAM isnot reset by Microenginereset. Software must either do acam_ciear prior to using the
CAM toinitialize the LRU and clear the tags to zero, or explicitly write all entries with
CAM_write.

* No two tags can be written to have same value. If this rule is violated, the result of alookup
that matches that value will be unpredictable, and LRU state is unpredictable.

The value 0x00000000 can be used as avalid lookup value. However, note that cam_clear
instruction puts 0x00000000 into all tags. So in order to not violate rule 2 after doing cam_clear, it
is necessary to write all entriesto unique values prior to doing a lookup of 0x00000000.

An algorithm for debug software to find out the contents of the CAM is shown in Table 8.

Hardware Reference Manual

Intel® IXP2800 Network Processor

- Technical Description
intgl.

Table 8. Algorithm for Debug Software to Find out the Contents of the CAM

; First read each of the tag entries. Note that these reads
; don’t modify the LRU list or any other CAM state.
tag[0] = CAM_Read Tag(entry 0);

tag[15] = CAM Read_Tag(entry_ 15);

; Now read each of the state bits
state[0] = CAM Read State(entry 0);

state[15] = CAM_Read_ State(entry 15);

; Knowing what tags are in the CAM makes it possible to
; create a value that is not in any tag, and will therefore
; miss on a lookup.

; Next loop through a sequence of 16 lookups, each of which will
; miss, to obtain the LRU values of the CAM.
for (i = 0; 1 < 16; i++)
BEGIN_LOOP

; Do a lookup with a tag not present in the CAM. On a

; miss, the LRU entry will be returned. Since this lookup

; missed the LRU state is not modified.

LRU[i] = CAM Lookup (some_tag not_in cam) ;

; Now do a lookup using the tag of the LRU entry. This

; lookup will hit, which makes that entry MRU.

; This is necessary to allow the next lookup miss to

; see the next LRU entry.

junk = CAM Lookup (tag[LRU[1i]]);
END_LOOP
; Because all entries were hit in the same order as they were
; LRU, the LRU list is now back to where it started before the
; loop executed.
; LRU[0] through LRU[15] holds the LRU list.

The CAM can be cleared with CAM_Clear instruction. This instruction writes 0x00000000
simultaneously to all entries tag, clears al the state bits, and putsthe LRU into an initial state
(whereentry 0isLRU, ..., entry 15isMRU).

2.3.8 CRC Unit

The CRC Unit operates in parallel with the Execution Datapath. It takes two operands, performs a
CRC operation, and writes back aresult. CRC-CCITT, CRC-32, CRC-10, CRC-5, and iSCSI
polynomials are supported. One of the operandsisthe CRC_Remainder Local CSR, and the other
isaGPR, Transfer In Register, Next Neighbor, or Local Memory, specified in the instruction and
passed through the Execution Datapath to the CRC Unit. Theinstruction specifies the CRC
operation type, whether to swap bytes and or bits, and which bytes of the operand to include in the
operation. The result of the CRC operation iswritten back into CRC_Remainder. The source
operand can also be written into a destination register (however the byte/bit swapping and masking
do not affect the destination register; they only affect the CRC computation). This allows moving
data, for example, from S Transfer In registersto S Transfer Out registers at the same time as
computing the CRC.

Hardware Reference Manual 45

Intel® IXP2800 Network Processor

Technical Description -
Inte|®

2.3.9

46

Event Signals

Event Signals are used to coordinate a program with completion of external events. For example,
when a Microengine executes an instruction to an external unit to read data (which will be written
into a TRANSFER _IN register), the program must insure that it does not try to use the data until
the external unit has written it. Thistime is not deterministic due to queuing delays and other
uncertainty in the external units (for example, DRAM refresh). Thereisno hardware mechanism to
flag that aregister write is pending, and then prevent the program from using it. Instead the
coordination is under software control, with hardware support.

In the instructions that use external units (i.e.,, SRAM, DRAM, etc.) there are fields that direct the
external unit to supply an indication (called an Event Signal) that the command has been
completed. There are 15 Event Signals per Context that can be used, and Local CSRs per Context
to track which Event Signals are pending and which have been returned. The Event Signals can be
used to move a Context from Sleep state to Ready state, or alternatively, the program can test and
branch on the status of Event Signals.

Event Signals can be set in nine different ways.
1. When dataiswritteninto S TRANSFER_IN registers
When dataiswritten into D_TRANSFER _IN registers
When dataistaken from S TRANSFER_OUT registers
When dataistaken from D_TRANSFER_OUT registers
By awriteto INTERTHREAD_SIGNAL register
By awrite from Previous Neighbor Microengine to NEXT_NEIGHBOR_SIGNAL
By awrite from Next Neighbor Microengine to PREVIOUS NEIGHBOR_SIGNAL
By awriteto SAME_ME_SIGNAL Loca CSR
By Interna Timer

© 0o N o g W DN

Any or al Event Signals can be set by any of the above sources.

When a Context goes to Sleep state (executes actx_arb instruction, or an instruction with
ctx_swap token), it specifies which Event Signal(s) it requiresto be put in Ready state. ctx_arb
instruction also specifiesif the logical AND or logical OR of the Event Signal(s) is needed to put
the Context into Ready state.

When all the Context’s Event Signals arrive, the Context goes to Ready state, and then eventually
to Executing state. In the case where the Event Signal is linked to moving data into or out of
Transfer registers (numbers 1 through 4 in the list above), the code can safely use the Transfer
register as the first instruction (for example, using a Transfer_In register as a source operand will
get the new read data). The sameis true when the Event Signal istested for branches (br_=signal or
br_!signal instructions).

Thectx arbinstruction, CTX_SIG_EVENTS, and ACTIVE_CTX_WAKEUP_# EVENTSLocal
CSR descriptions provide details.

Hardware Reference Manual

intel.

2.4

24.1

Table 9.

Intel® IXP2800 Network Processor
Technical Description

DRAM

The IXP2800 Network Processor has controllers for three Rambus* DRAM (RDRAM) channels.
Each of the controllers independently accessesits own RDRAMS, and can operate concurrently
with the other controllers (i.e. they are not operating as a single, wider memory). DRAM provides
high density, high bandwidth storage and is typically used for data buffers.

RDRAM sizes of 64Mb, 128Mb, 256Mb, 512 Mb, and 1 Gb are supported, however, each of the
channels must have the same number, size, and speed of RDRAMSs popul ated. Refer to Section 5.2
for supported size and loading configurations.

Up to 2 GB of DRAM is supported. If less than 2 GB of memory is present, the upper part of the
address spaceis not used. It is also possible, for system cost and area savings, to have Channels 0
and 1 populated with Channels 2 empty, or Channel 0 populated with Channdl's 1and 2 empty.

Reads and writes to RDRAM are generated by Microengines, The Intel X Scale® core, and PCI
(external Bus Masters and DMA Channels). The controllers also do refresh and calibration cycles
to the RDRAMSs, transparently to software.

RDRAM Powerdown and Nap modes are not supported.

Hardware interleaving (also known as striping) of addressesis done to provide balanced accessto
all populated channels. Theinterleave size is 128 bytes. Interleaving helps to maintain utilization
of available bandwidth by spreading consecutive accesses to multiple channels. Theinterleaving is
done in the hardware in such away that the three channels appear to software asasingle
contiguous memory space.

ECC (Error Correcting Code) is supported, but can be disabled. Enabling ECC requires that x18
RDRAMs be used. If ECC isdisabled x16 RDRAMs can be used. ECC can detect and correct al
single-hit errors, and detect all double-bit errors. When ECC is enabled, partial writes (writes of

less than 8 bytes) must be done as read-modify-writes.

Size Configuration

Each channel can be populated with anywhere from one-to-four RDRAMSs (Short Channel Mode).
Refer to Section 5.2 for supported size and loading configurations. The RAM technology used will
determine the increment size and maximum memory per channel as shown in Table 9.

RDRAM Sizes
RDRAM Technologyl Increment Size Maximum per Channel
64/72 Mb 8 MB 256 MB
128/144 Mb 16 MB 512 MB
256/288 Mb 32 MB 1GB?
512/576 Mb 64 MB 2 GB?

NOTES:

1. The two numbers shown for each technology indicate x16 parts and x18 parts.

2. The maximum memory that can be addressed across all channels is 2GB. This limitation is based on the
partitioning of the 4GB address space (32-bit addresses). Therefore if all three channels are used, each
can be populated up to a maximum of 768MB. Two channels can be populated to a maximum of 1 GB

each. A single channel could be populated to a maximum of 2 GB.

Hardware Reference Manual 47

Intel® IXP2800 Network Processor

Technical Description -
Inte|®

2.4.2

2.5

48

RDRAMswith 1 x 16 dependent banks, 2 x 16 dependent banks, and 4 independent banks are
supported.

Read and Write Access

The minimum DRAM physical access length is 16 bytes. Software (and PCI) can read or write as
little as a single byte, however the time (and bandwidth) taken at the DRAMsisthe same asfor an
access of 16 bytes. Therefore, the best utilization of DRAM bandwidth will be for accesses that are
multiples of 16 bytes.

If ECC is enabled, writes of less than 8 bytes must do read-modify-writes, which take two 16-byte
time accesses (one for the read and one for the write).

SRAM

The I XP2800 Network Processor has four independent SRAM controllers, which each support
pipelined QDR synchronous static RAM (SRAM) and/or a coprocessor that adheresto QDR
signaling. Any or al controllers can be left unpopulated if the application does not need to use
them. SRAM are accessible by the Microengines, the Intel X Scal €® core, and the PCI Unit
(external bus masters and DMA).

The memory islogically four bytes (32-hits) wide; physically the data pins are two bytes wide and
are double clocked. Byte parity is supported. Each of the four bytes has a parity bit, which is
written when the byte is written and checked when the datais read. There are byte enables which
select which bytes to write for writes of less than 32-bits.

Each of the 4 QDR ports are QDR and QDRII compatible. Each port implementsthe“_K” and
“_C” output clocksand “_CQ" as an input and their inversions. (Note: the*_C” and“_CQ" clocks
are optional). Extensive work has been performed providing impedance controls within the

I XP2800 Network Processor for network processor initiated signals driving to QDR parts.
Providing a clean signaling environment is critical to achieving 200 to 250 MHz QDRII data
transfers.

The configuration assumptions for the I XP2800 Network Processor I/O driver/receiver
development includes four QDR loads and the 1XP2800 Network Processor. The IXP2800
Network Processor supports bursts of 2 SRAMs, but does not support bursts of 4 SRAMs.

The SRAM controller can also be configured to interface to an external coprocessor that adheresto
the QDR electricals and protocol. Each SRAM controller may also interface to an external
coprocessor through its standard QDR interface. This interface will allow for the cohabitation of
both SRAM devices and coprocessors to operate on the same bus. The coprocessor will behaveasa
memory mapped device on the SRAM bus.

Hardware Reference Manual

Intel® IXP2800 Network Processor
Technical Description

intgl.
2.5.1 QDR Clocking Scheme

The controller drives out two pairs of K clock (K and K#). It also drives out two pairs of C clock (C
and C#). Both C/C# clocks externally return to the controller for reading data. Figure 8 shows the
clock diagram if the clocking scheme for QDR interface driving four SRAM chips.

Figure 8. Echo Clock Configuration

Clam-shelled SRAMS
Termination C/C#
o Package Balls
O A
A
QDRn_CIN |« KIK#
CIC#
Intel® QDRn_K >
|xp280i QDRn_C > C1/C1#
Networ
- C2/c2#
Processor QDRn_C >
QDRn_K >
CIC#
QDRnN_CIN |« KIK#
Y
£
O vy
'®) Package Balls
Termination CIC#
A9234-02

Hardware Reference Manual 49

Intel® IXP2800 Network Processor

Technical Description -
Inte|®

2.5.2

50

Table 10.

Note:

Table 11.

SRAM Controller Configurations

Each channel has enough address pins (24) to support up to 64 MB of SRAM. The SRAM
controllers can directly generate multiple port enables (up to 4 pairs) to allow for depth expansion.
Two pairs of pins are dedicated for port enables. Smaller RAMs use fewer address signals than the
number provided to accommodate the largest RAMSs, so some address pins (23:20) are
configurable as either address or port enable based on CSR setting as shown in Table 10. Note that
all of the SRAMs on a given channel must be the same size.

SRAM Controller Configurations

corgiA oo | SRAMSize | Addresses Needed | Addresses Used | o0l pais
Available
512K x 18 1MB 17:0 23:22,21:20 4
1M x 18 2 MB 18:0 23:22, 21:20 4
2M x 18 4 MB 19:0 23:22, 21:20 4
4M x 18 8 MB 20:0 23:22 3
8M x 18 16 MB 21:0 23:22 3
16M x 18 32 MB 22:0 None 2
32M x 18 64 MB 23:0 None 2

Each channel can be expanded by depth according to the number of port enables available. If
external decoding is used, then the number of SRAMs used is not limited by the number of port
enables generated by the SRAM controller.

Doing external decoding may require external pipeline registersto account for the decode time,
depending on the desired frequency.

Maximum SRAM system sizes are shown in Table 11. Shaded entries require external decoding,
because they use more port enables than the SRAM controller can supply directly.

Total Memory per Channel

Number of SRAMs on Channel
SRAM Size
1 2 3 4 5 6 7 8
512K x 18 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB 7 MB 8 MB
1M x 18 2MB 4 MB 6 MB 8 MB 10 MB 12 MB 14 MB 16 MB
2M x 18 4 MB 8 MB 12 MB 16 MB 20 MB 24 MB 28 MB 32 MB
4M x 18 8 MB 16 MB 24 MB 32 MB 64 MB NA NA NA
8M x 18 16 MB 32 MB 48 MB 64 MB NA NA NA NA
16M x 18 32 MB 64 MB NA NA NA NA NA NA
32M x 18 64 MB NA NA NA NA NA NA NA

Hardware Reference Manual

intel.

2.5.3

254

Intel® IXP2800 Network Processor
Technical Description

SRAM Atomic Operations

In addition to normal reads and writes, SRAM supports the following atomic operations.
Microengines have specific instructions to do each atomic operation; Intel X Scale®
microarchitecture uses aliased address regions to do atomic operations.

* bit set

* bit clear
* increment
* decrement
* add

e swap

The SRAM does read-modify-writes for the atomic operations, the pre-modified data can also be
returned if desired. The atomic operations operate on a single 32-bit word.

Queue Data Structure Commands

The ability to enqueue and dequeue data buffers at afast rate is key to meeting line-rate
performance. Thisis adifficult problem asit involves dependent memory references that must be
turned around very quickly. The SRAM controller includes a data structure (called the Q_array)
and associated control logic in order to perform efficient enqueue and dequeue operations. The
Q_array has 64 entries, each of which can be used in one of four ways.

¢ Linked-list queue descriptor (resident queues)

* Cache of recently used linked-list queue descriptors (the backing store for the cacheisin
SRAM)

* Ring descriptor
e Journd

The commands provided are:

For Linked-list queues or Cache of recently used linked-list queue descriptors

® Read Q Descriptor Head(address, length, entry, xfer addr)
Read_Q Descriptor_Tail (address, length, entry)

Read_Q Descriptor_Other (address, entry)

Write Q Descriptor (address, entry)

Write Q Descriptor Count (address, entry)

ENQ (buff desc_adr, cell count, EOP, entry)

ENQ tail (buff_ desc_adr, entry)

DEQ (entry, xfer addr)

For Rings
® Get (entry, length, xfer addr)
® put (entry, length, xfer addr)

For Journals

® Journal (entry, length, xfer addr)

® Fast_ journal (entry)

Hardware Reference Manual 51

Intel® IXP2800 Network Processor

Technical Description

Note:

2.5.5

2551

Note:

Table 12.

52

intel.

The Read_Q Descriptor_Head, Read_Q_Descriptor_Tail, etc.) are used to initialize the rings and
journals but not used to perform the ring and journal function.

Reference Ordering

This section covers the ordering between accesses to any one SRAM controller.

Reference Order Tables

Table 12 shows the architectural guarantees of order to access to the SAME SRAM address
between a reference of any given type (shown in the column labels) and a subsequent reference of
any given type (shown in the row labels). The definition of first and second is defined by the order
they are received by the SRAM controller. (Note: A given IXP version may implement a superset
of these order guarantees. However, that superset is not promised to be supported in future
implementations. Verification is required to test only the order rules shown in Table 12 and

Table 13).

Note that a blank entry means no order is enforced.

Address Reference Order

;’s‘tdrreeff_> Memor M Qu_eue//

¢ Read Y CSR Read \t/evr:};)ery CSR Write Msm\(;\;y Q'flljngscr
Commands

Memory Read Order

CSR Read Order

Memory Write Order

CSR Write Order

Memory RMW Order

Queue/Ring / Q_ See

Descr Commands Table 13.

Table 13 shows the architectural guarantees of order to access to the SAME SRAM Q_array entry
between a reference of any given type (shown in the column labels) and a subsequent reference of
any given type (shown in the row labels). The definition of first and second is defined by the order
they are received by the SRAM controller. The same caveats apply as for Table 12.

Hardware Reference Manual

Intel® IXP2800 Network Processor
Technical Description

Table 13. Q_array Entry Reference Order

Read_Q | Read

15tref —p - — .

2Md ref _Descr | Q_Des | Write_Q Enqueue | Dequeue Put Get Jounal
head, cr _Descr

¢ tail other

Read_Q_Descr

head,tail Order

Read_Q_

Descr other Order

Write_Q_

Descr

Enqueue Order Order Order

Dequeue Order Order Order

Put Order

Get Order

Jounal Order

2.55.2 Microengine Software Restrictions to Maintain Ordering

It is the Microengine programmer’s job to insure order where the program flow finds order to be
necessary and where the architecture does not guarantee that order. The signaling mechanism can
be used to do this. For example, say that ucode needs to update several locationsin atable. A
locationin SRAM isused to “lock” access to the table. Example 12 isthe code for the table update.

Example 12. Table Update Code

SRAM [write,

SRAM [write,
SRAM [write,

SRAM [write,

IMMED [$xfer0, 1]

Sxfero0,

; At this point, the
the table updates.

sxferl,
Sxfer3,

CTX_ARB [SIG DONE_3,
; At this point, the
flag to allow access
IMMED [$xfer0, 0]

sxfero0,

flag address, 0, 1], ctx_swap [SIG_DONE_2]
write to flag address has passed the point of coherency. Do

table base, offsetl, 2] , sig done [SIG_DONE_3]
table base, offset2, 2] , sig done [SIG_DONE_4]
SIG_DONE_4]

table writes have passed the point of coherency. Clear the
by other threads.

flag address, 0, 1, ctx swap [SIG_DONE_2]

Other rules:

¢ All accessesto atomic variables should be via read-modify-write instructions.

¢ |f the flow must know that awrite is completed (actually in the SRAM itself), follow the write
with aread to the same address. The write is guaranteed to be complete when the read data has
been returned to the Microengine.

Hardware Reference Manual

53

Intel® IXP2800 Network Processor

Technical Description -
Inte|®

2.6

2.6.1

54

¢ With the exception of initialization, never do WRITE commands to the first 3 longwords of a
gueue_descriptor data structure (these are the longwords that hold head, tail, and count, etc.).
All accesses to this data must be via the Q commands.

¢ Toinitializethe Q_array registers, perform a memory write of at least 3 longwords, followed
by a memory read to the same address (to guarantee that the write completed). Then, for each
entry inthe Q_array, perform aread_q_descriptor_head followed by a
read _q_descriptor_other using the address of the same 3 longwords.

Scratchpad Memory

The I XP2800 Network Processor contains a 16KB Scratchpad Memory, organized as 4K 32-bit
words, that is accessible by Microengines and the Intel X Scale® core.

The Scratchpad Memory provides the following operations:

* Normal reads and writes. From one to sixteen 32-bit words can be read/written with asingle
Microengine instruction. Note that Scratchpad is not byte-writeable (each write must write all
four bytes).

¢ Atomic read-modify-write operations, bit-set, bit-clear, increment, decrement, add, subtract,
and swap. The RMW operations can also optionally return the pre-modified data.

* Sixteen Hardware Assisted Rings for interprocess communication. [A ring is a FIFO that uses
ahead and tail pointer to store/read information in Scratchpad memory.]

Scratchpad Memory is provided as a third memory resource (in addition to SRAM and DRAM)
that is shared by the Microengines and the Intel XScale® core. The Mi icroengines and the Intel

X Scale® core can distribute memory accesses between these three types of memory resources to
provide a greater number of memory accesses occurring in parallel.

Scratchpad Atomic Operations

In addition to normal reads and writes, the Scratchpad Memory supports the following atomic
operations. Microengines have specific instructions to do each atomic operation; the Intel XScale®
microarchitecture uses aliased address regions to do atomic operations.

* bit set

* bit clear
* increment
* decrement
e add

¢ subtract
e swap

The Scratchpad Memory does read-modify-writes for the atomic operations, the pre-modified data
can also be returned if desired. The atomic operations operate on a single 32-bit word.

Hardware Reference Manual

intel.

2.6.2

Figure 9.

Note:

Note:

Intel® IXP2800 Network Processor
Technical Description

Ring Commands

The Scratchpad Memory provides sixteen Rings used for interprocess communication. The rings
provide two operations.

® Get(ring, length)

® put(ring, length)

Ring isthe number of the ring (O through 15) to get or put from, and 1ength specifiesthe
number of 32-bit wordsto transfer. A logical view of one of theringsis shownin Table 9.

Logical View of Rings

Address
Decoder

A

L\
| |

Read / Write / Atomic
Addresses

Scratchpad RAM

10f 16 {I Head ” Tail ||Count || Size |

Full

A9355-01

Head, Tail, and Size are registersin the Scratchpad Unit. Head and Tail point to the actual ring data,
which is stored in the Scratchpad RAM. The count of how many entries are on the Ring is
determined by hardware using the Head and Tail. For each Ring in use, aregion of Scratchpad
RAM must be reserved for the ring data.

Thereservation is by software convention. The hardware does not prevent other accessesto the
region of Scratchpad Memory used by the Ring. Also the regions of Scratchpad Memory allocated
to different Rings must not overlap.

Head points to the next address to be read on aget, and Tail points to the next address to be written
on aput. The size of each Ring is selectable from the following choices: 128, 256, 512 or 1024 32-
bit words.

Theregion of Scratchpad used for aRing is naturally aligned to it size.

When the Ring is near full, it asserts an output signal, which is used as a state input to the
Microengines. They must use that signal to test (by doing Branch on Input State) for room on the
Ring before putting dataonto it. Thereisalag in time from a put instruction executing to the Full
signal being updated to reflect that put. To guarantee that a put will not overfill thering thereisa
bound on the number of Contexts and the number of 32-hit words per write based on the size of the

Hardware Reference Manual 55

Intel® IXP2800 Network Processor

Technical Description -
Inte|®

ring, as shown in Table 14. Each Context should test the Full signal, then do the put if not Full, and
then wait until the Context has been signaled that the data has been pulled before testing the Full
signal again.

An alternate usage method is to have Contexts all ocate and deallocate entries from a shared count
variable, using the atomic subtract to allocate and atomic add to deallocate. In this case the
Full signal is not used.

Table 14. Ring Full Signal Use -- Number of Contexts and Length vs Ring Size

2.7

56

Number of Ring Size
Contexts 128 256 512 1024
1 16 16 16 16
2 16 16 16 16
4 8 16 16 16
8 4 12 16 16
16 2 6 14 16
24 1 4 9 16
32 1 3 7 15
40 lllegal 2 5 12
48 Illegal 2 4 10
64 lllegal 1 3 7
128 Illegal lllegal 1 3
NOTES:
1. Number in each table entry is the largest length that should be put. 16 is the largest length that
a single put instruction can generate.
2. lllegal -- With that number of Contexts, even a length of one could cause the Ring to overfill.

Media and Switch Fabric Interface

The Media and Switch Fabric (MSF) Interface is used to connect the I XP2800 Network Processor
to aphysical layer device (PHY) and/or to a Switch Fabric. the M SF consists of separate receive
and transmit interfaces. Each of the receive and transmit interfaces can be separately configured for
either SPI-4 Phase 2 (System Packet Interface) for PHY devices or CSIX-L1 protocol for Switch
Fabric Interfaces.

The receive and transmit ports are unidirectional and independent of each other. Each port has 16
data signals, aclock, acontrol signal, and a parity signal, al of which use LVDS (differential)
signaling, and are sampled on both edges of the clock. Thereisaso aflow control port consisting
of aclock, data, and ready status bits, and used to communicate between two I XP2800 Network
Processors, or athe 1 XP2800 Network Processor chip a Switch Fabric Interface. These are also
LVDS, dual-edge data transfer. All of the high speed LV DS interfaces support dynamic deskew
training.

The block diagram in Figure 10 shows atypical configuration.

Hardware Reference Manual

Intel® IXP2800 Network Processor
- Technical Description

Figure 10. Example System Block Diagram

Receive protocol is SPI-4
Transmit mode is CSIX

Ingress
Intel® IXP2800
Network Processor
>| RDAT ety s
TDAT —>: —>

. 1
Fragmg/MAC < RSTAT \ Optional ! Switch
(Pe|_/||$§> 1 Gasket , Fabric

1

(Note 1) 1
cpia \ Flow Control : : cSIX
- 1 Protocol

Protocol Egress ' X

Intel® IXP2800 : !

Network Processor ' X

! 1

> | TSTAT : 1

RDAT [<—, -]
< TDAT ttmmmes
Receive protocol is CSIX
Transmit mode is SPI-4
Notes:

1. Gasket is used to convert 16-bit, dual-data Castine signals to wider single edge CWord signals
used by Switch Fabric, if required.

2. Per the CSIX specification, the terms "egress" and ingress" are with respect to the Switch Fabric.
So the egress processor handles traffic received from the Switch Fabric and the ingress
processor handles traffic sent to the Switch Fabric.

A9356-02

An alternate system configuration is shown in the block diagram in Figure 11. In this case asingle
I XP2800 Network Processor is used for both Ingress and Egress. The bit rate supported would be
lessthan in Figure 10. A hypothetical Bus Converter chip, external to the I XP2800 Network
Processor is used. The block diagram in Figure 11 is only an illustrative example.

Hardware Reference Manual 57

Intel® IXP2800 Network Processor

Technical Description -
Inte|®

Figure 11. Full-Duplex Block Diagram

Receive and transmit protocol
is SPI-4 and CSIX on transfer-
by-transfer basis.

Intel® IXP2800
Network Processor

RDAT TDAT
A
Y
Framing/MAC >| Rx Tx >
Device Switch
(PHY) Fabric
Bus Converter
UTOPIA-3 CSIX
or IXBUS 4 T Ry |« Protocol
Protocol < X X
Notes:

The Bus Converter chip receives and transmits both SPI-4 and CSIX protocols from/to Intel
IXP2800 Network Processor. It steers the data, based on protocol, to either PHY device or
Switch Fabric. PHY interface can be UTOPIA-3, IXBUS, or any other required protocol.

A9357-02

2.7.1 SPI-4

SPI-4 isan interface for packet and cell transfer between a physical layer (PHY) device and alink
layer device (the I XP2800 Network Processor), for aggregate bandwidths of OC-192 ATM and
Packet over SONET/SDH (POS), aswell as 10 Gb/s Ethernet applications.

The Optical Internetworking Forum (OIF), www.oiforum.com, controls the SPI-4 |mplementation
Agreement document.

SPI-4 protocol transfers data in variable length bursts. Associated with each burst isinformation

such as Port number (for amulti-port device such asa 10 x 1 GbE), SOP, EOP. Thisinformation is
collected by MSF and passed to Microengines.

58 Hardware Reference Manual

intel.

2.7.2 CSIX

Intel® IXP2800 Network Processor
Technical Description

CSIX-L1 (Common Switch Interface) defines an interface between a Traffic Manager (TM) and a
Switch Fabric (SF) for ATM, IP, MPLS, Ethernet, and similar data communications applications.

The Network Processor Forum (NPF) www.npforum.org, controls the CSIX-L1 specification.

The basic unit of information transferred between Traffic Managers and Switch Fabricsis caled a
CFrame. There are three categories of Cframes:

* Data
e Control
* Flow Control

Associated with each CFrame is information such as length, type, address. Thisinformation is
collected by M SF and passed to Microengines.

M SF aso contains a number of hardware features related to flow control.

2.7.3 Receive

Figure 12 isa simplified block diagram of the M SF receive section.

Figure 12. Simplified MSF Receive Section Block Diagram

Checksum

A

32 (to MEs)

Y

| Full Indication to Flow Control

\128
—>| Buffers 64 (to DRAM)

Y

| _Receive | csrwrite
Control |« Thread |€———

Freelists

for
RCLK REF Receive

CSIX
RDAT 3] Protocol RBUF
RCTL Logic M\ | | " °
RPAR -l-----
sP4 /1 | I-----
31 Protocol
Logic
RPROT Full
Element
SPI-4 List
RSTAT Flow
Control v
FCEFIFO
RCLK Clock |~~~ "~ "~

—

Functions l

TXCDAT

TXCFC
(FCIFIFO full)

x CSIX CFrames mapped by RX_Port_Map CSR

(normally Flow Control CFrames are mapped here)

A9365-01

Hardware Reference Manual

59

Intel® IXP2800 Network Processor

Technical Description -
Inte|®

2.7.3.1

27311

RBUF

RBUF isaRAM that holds received data. It stores received datain sub-blocks (referred to as
elements), and is accessed by Microengines or the Intel XScal €® core readi ng the received
information. Details of how RBUF elements are allocated and filled is based on the receive data
protocol. When datais received the associated statusis put into the FULL_ELEMENT_LIST FIFO
and subsequently sent to Microenginesto process. FULL_ELEMENT _LIST insures that received
elements are sent to Microengines in the order that the data was received.

RBUF contains atotal of 8KB of data. The element size is programmable as either 64 bytes, 128
bytes, or 256 bytes per element. In addition, RBUF can be programmed to be split into one, two, or
three partitions depending on application. For receiving SPI-4, one partition would be used. For
receiving CSIX, two partitions are used (Control CFrames and Data CFrames). When both
protocols are being used, the RBUF can be split into three partitions. For both SPI-4 and CSI X,
three partitions are used.

Microengines can read data from the RBUF to Microengine S_Transfer_In registers using the

msf [read] instruction where they specify the starting byte number (which must be aligned to 4
bytes), and number of 32-bit wordsto read. The number in the instruction can be either the number
of 32-bit words, or number of 32-bit word pairs, using the single and double instruction modifiers,
respectively.

Microengines can move datafrom RBUF to DRAM using the dram instruction where they specify
the starting byte number (which must be aligned to 4 bytes), the number of 32-bit words to read,
and the addressin DRAM to write the data.

For both types of RBUF read, reading an element does not modify any RBUF data, and does not
free the element, so buffered data can be read as many times asdesired. Thisallows, for example, a
processing pipeline to have different Microengines handle different protocol layers, with each
Microengine reading only the specific header information it requires.

SPI-4 and the RBUF

SPI-4 datais placed into RBUF with each SPI-4 burst allocating an element. If aSPI-4 burst is
larger than the element size, another element is allocated. The status information for the element
contains the following information:

=W
w
N

©
©
~
o
o
IN
w
N
=
o

10ddyd

Element Byte Count

ADR

dOSs

d03

3
13 uan
13 Jed
u3juoqy | ok

IINN
adAL

o]
o]
o]

5|/5(5|5|5[|5|5|5]|5|5
9|8(7|6|5(4|3|2]|1|0

©»
N
NN
on
SEN

41413(13|3|3[3[3[3]3
1/0|9(8|7|6|5|4]3]|2

EENN
w h

Reserved Checksum

60

The definitions of the fields are shown in Table 15.

Hardware Reference Manual

Intel® IXP2800 Network Processor
Technical Description

Table 15. RBUF SPI-4 Status Definition

Field

Definition

RPROT

This bit is a 0 indicating that the Status is for SPI-4. It is derived from the RPROT input
signal.

Null

Null receive. If this bit is set, it means that the Rx_Thread_Freelist timeout expired
before any more data was received, and that a null Receive Status Word is being pushed
in order to keep the receive pipeline flowing. The rest of the fields in the Receive Status
Word must be ignored; there is no data or RBUF entry associated with a null Receive
Status Word.

ADR

The port number to which the data is directed. This field is taken from the ADR field of the
Control Word that most recently preceded the data transfer.

Type

This field is taken from the Type field of the Control Word that most recently preceded the
data transfer.

SOP

Indicates if the element is the start of a packet. This field is taken from the SOP field of
the Control Word that most recently preceded the data transfer for the first element
allocated after a Control Word. For subsequent elements (i.e. if more than one element
worth of data follow the Control Word) this value is 0.

EOP

Indicates if the element is the end of a packet. This field is taken from the EOPS field of
the Control Word that most recently succeeded the data transfer.

Byte_Count

Indicates the number of Data bytes, from 1 to 256, in the element (value 0x00 means
256). This field is derived from the number of data transfers that fill the element, and also
the EOPS field of the Control Word that most recently succeeded the data transfer.

Element

The element number in the RBUF that holds the data. This is equal to the offset in RBUF
of the first byte in the element, shifted right by 6 places

Par Err

Parity Error was detected in the DIP-4 parity field.

Length Err

A non-EOP burst occurred that was not a multiple of 16 bytes.

Abort Err

An EOP with Abort was received on bits[14:13] of the Control Word that most recently
succeeded the data transfer.

Err

Error. This is the logical OR of Par Err, Length Err, and Abort Err.

Checksum

Checksum calculated over the Data Words in the element. This can be used for TCP.

2.7.3.1.2 CSIX and RBUF

CSIX CFrames are placed into either RBUF with each CFrame allocating an element. Unlike SPI-
4, asingle CFrame must not spill over into another element. Since CSIX spec specifies amaximum
CFrame size of 256 bytes, this can be done by programming the element size to 256 bytes.
However, if the Switch Fabric uses a smaller CFrame size, then asmaller RBUF element size can

be used.

Flow Control CFrames are put into the FCEFIFO, to be sent to the Ingress 1XP2800 Network
Processor where a Microengine will read them to manage flow control information to the Switch

Fabric.

Hardware Reference Manual

61

Intel® IXP2800 Network Processor
Technical Description

The status information for the element contains the following information:;

313(|2|2|2|2|2|2|2 221|111 |1(f1f1f1f1}1
1lo|ols|7|6|5]|4al3 1lo|o|s|7|6|5]al3 1o]®|8|7|6|5]4]3]|2|10O
% o 8353z
m
g Element Payload Length S AR I?n m| m = Reserved Type
= S| 3=
6|6|6|6|5|5|5[5|5 5|5|5|5|4|4|4(4|4(4|4|4|4|4|3|3|3|3|3|3|3]|3
3/12(1(0[|9|8|7|6]|5 3(2(1|0|9|8|7(6|5(4|3|2|1|0|9|8|7|6|5|4|3]|2
Extension Header
The definitions of the fields are shown in Table 16.
Table 16. RBUF CSIX Status Definition
Field Definition
RPROT This bitis a 1 indicating that the Status is for CSIX-L1. It is derived from the RPROT input
signal.
Null receive. If this bit is set, it means that the RX_THREAD_FREELIST timeout expired
before any more data was received, and that a null Receive Status Word is being pushed
Null in order to keep the receive pipeline flowing. The rest of the fields in the Receive Status
Word must be ignored; there is no data or RBUF entry associated with a null Receive
Status Word.
Type Type Field from the CSIX Base Header
Payload Length Payload Length Field from the CSIX Base Header. A value of 0x0 indicates 256 bytes.
VP Err Vertical Parity Error was detected on the CFrame.
HP Err Horizontal Parity Error was detected on the CFrame.
Length Error; either
Lenath Err amount of Payload received (before receipt of next Base Header) did not match value
9 indicated in Base Header Payload Length field) or
Payload Length field was greater than size of RBUF element.
Err Error. This is the logical OR of VP Err, HP Err, and Length Err.
Element The element number in the RBUF that holds the data. This is equal to the offset in RBUF
of the first byte in the element, shifted right by 6 places.
CR CR (CSIX Reserved) bit from the CSIX Base Header.
P P (Private) bit from the CSIX Base Header.
Extension Header The Extension Header from the CFrame. The bytes are received in big-endian order; byte
0 is in bits 63:56, byte 1 is in bits 55:48, byte 2 is in bits 47:40, and byte 3 is in bits 39:32.
2.7.3.2 Full Element List

62

Receive control hardware maintainsthe FULL_ELEMENT _LIST to hold the status of valid RBUF
elements, in the order in which they were received. When an RBUF element isfilled its statusis
added to thetail of the FULL_ELEMENT_LIST. When aMicroengineis notified of element
arrival (by having the status writtento its S_Transfer register, it is removed from the head of the
FULL_ELEMENT_LIST.

Hardware Reference Manual

intel.

2.7.3.3

2.7.3.4

Intel® IXP2800 Network Processor
Technical Description

RX_THREAD_FREELIST

RX_THREAD_FREELIST isaFIFO that indicates Microengine Contexts that are awaiting an
RBUF element to process. This allows the Contexts to indicate their ready status prior to the
reception of the data, as away to eliminate latency. Each entry added to a Freelist also has an
associated S TRANSFER register and signal number. There arethreeRX_THREAD_FREELISTS
which correspond to the RBUF partitions.

To be added asready to receive an element, aMicroengine doeSamst [write] Of msf [fast write]
to the RX_THREAD_FREELIST address; the write datais the Microengine/ CONTEXT/
S TRANSFER Register number to add to the Freelist.

When thereis valid status at the head of the Full Element List it will be pushed to a Microengine.
Thereceive control logic pushes the status information (which includes the element number) to the
Microenginein the head entry of RX_THREAD_FREELIST, and sends an Event Signal to the
Microengine. It then removes that entry from the RX_THREAD_FREELIST, and removes the
status from Full Element List.

Each RX_THREAD_FREELIST has an associated countdown timer. If the timer expires and no
new receive datais available yet, the receive logic will autopush a Null Receive Status Word to the
next thread on the RX_THREAD_FREELIST. A Null Receive Status Word has the “Null” bit set,
and does not have any data or RBUF entry associated with it.

The RX_THREAD_FREELIST timer is useful for certain applications. Its primary purposeisto
keep the receive processing pipeline (implemented as code running on the Microengines) moving
even when the line has goneidle.

Itisespecially useful if the pipelineis structured to handle mpacketsin groups, i.e. eight mpackets
at atime. If seven mpackets are received, then the line goesidle, then the timeout will trigger the
autopush of anull Receive Status Word, filling the eighth slot and allowing the pipeline to advance.
Another example isif one valid mpacket is received before the line goesidle for along period;
seven null Receive Status Words will be autopushed, alowing the pipeline to proceed. Typically
the timeout interval is programmed to be slightly larger than the minimum arrival time of the
incoming cells or packets.

Thetimer is controlled using the RX_THREAD_FREELIST_TIMEOUT_# CSR. The timer may
be enabled or disabled, and the timeout value specified using this CSR.

Receive Operation Summary

During receive processing received Cframes, and SPI-4 cells and packets (which in this context are
all called mpackets) are placed into the RBUF, and then handed off to a Microengine to process.
Normally, by application design, some number of Microengine Contexts will be assigned to
receive processing. Those Contexts will have their number added to the proper
RX_THREAD_FREELIST (viamsf [write] OF msf [fast write]), and thenwill goto sleep to wait
for arrival of an mpacket (or alternatively poll waiting for arrival of an mpacket).

When an mpacket arrives, M SF receive control logic will autopush 8 bytes of information for the
element to the Microenginel CONTEXT/S TRANSFER Registers at the head of
RX_THREAD_FREELIST. The information pushed is (see Table 15 and Table 16 for detailed
definitions):

* Status Word (SPI-4) or Header Status (CSIX)
* Checksum (SPI-4) or Extension Header (CSIX)

Hardware Reference Manual 63

Intel® IXP2800 Network Processor

Technical Description -

2.7.4

I ntel o
To handle the case where the receive Contexts temporarily fall behind and
RX_THREAD_FREELIST isempty, all received element numbers are held in the
FULL_ELEMENT _LIST. Inthat case, as soon asan RX_THREAD_FREELIST entry is entered,
the status of the head element of FULL_ELEMENT _LIST will be pushed to it.

The Microengines may read part of (or the entire) RBUF element to their S TRANSFER registers
(viamsf [read] instruction) for header processing, etc., and may aso move the element datato
DRAM (viadram[rbuf_rd] instruction).

When a Context is done with an element it does amsf [write] Of msf [fast_write]tO
RBUF_ELEMENT_DONE address; the write data is the element number. This marks the element
asfree and available to be re-used. Thereis no restriction on the order in which elements are freed;
Contexts can do different amounts of processing per element based on the contents of the
element—therefore elements can be returned in a different order than they were handed to
Contexts.

Transmit

Figure 13 isasimplified Block Diagram of the MSF transmit section.

Figure 13. Simplified Transmit Section Block Diagram

64

SPI-4
TBUF Protocol
FromME —>] Logic
From DRAM —-|. - _ - CsIx
Protocol
Logic
A J
Control
VY A
Valid
Element
Logic
- ME Reads ———3 TCLK
From Other CSRs > (S_Push_Bus)
I—) l— TCLK REF
e
ECIEIEO Internal Clock
______ for Transmit E |
______ Logic
______ Internal
—————— RXCSRB Clock
t (Ready Bits)
RXCDAT
RXCFC
(FCIFIFO full) A9366-01

Hardware Reference Manual

intel.

2741

27411

Intel® IXP2800 Network Processor
Technical Description

TBUF

TBUFisaRAM that holds data and status to be transmitted. The datais written into sub-blocks
referred to as elements, by Microengines or the Intel X Scale® core.

TBUF contains atotal of 8KB of data. The element size is programmable as either 64 bytes, 128
bytes, or 256 bytes per element. In addition, TBUF can be programmed to be split into one, two, or
three partitions depending on application. For transmitting SPI-4, one partition would be used. For
transmitting CSI X, two partitions are used (Control CFrames and Data CFrames). For both SPI-4
and CSIX, three partitions are used.

Microengines can write datafrom Microengine S TRANSFER_OUT registers to the TBUF using
thewst [write] instruction where they specify the starting byte number (which must be aligned to
4 bytes), and number of 32-bit words to write. The number in the instruction can be either the
number of 32-bit words, or number of 32-bit word pairs, using the single and double instruction
modifiers, respectively.

Microengines can move datafrom DRAM to TBUF using the daram instruction where they specify
the starting byte number (which must be aligned to 4 bytes), the number of 32-bit words to write,
and the addressin DRAM of the data.

All elements within a TBUF partition are transmitted in the order. Control information associated

with the element defines which bytes are valid. The data from the TBUF will be shifted and byte
aligned as required to be transmitted.

SPI-4 and TBUF

For SPI-4, datais put into the data portion of the element, and information for the SPI-4 Control
Word that will precede the datais put into the Element Control Word.

When the Element Control Word is written the information is:

2122222221111 (1|1|1
716(5|4(3|2|1({0|9|8|7|6|5|4]|3

e

N =
o P

Payload Length

Prepend
Offset

Payload

Prepend Length Offset

say
diys
soy
d0OS
d03
>
O
Py

w b
N B
S
S
w
w
~N W

EE

Res

The definitions of the fields are shown in Table 17.

Hardware Reference Manual 65

Intel® IXP2800 Network Processor
Technical Description

274.1.2

In

Table 17. TBUF SPI-4 Control Definition

Field

Definition

ADR

The port number to which the data is directed. This field will be sent in the ADR field of
the Control Word that will precede the data transfer.

SOP

Indicates if the element is the start of a packet. This field will be sent in the SOPC field of
the Control Word that will precede the data transfer.

EOP

Indicates if the element is the end of a packet. This field will be sent in the EOPS field of
the Control Word that will succeed the data transfer. Note 1.

Prepend Offset

Indicates the first valid byte of Prepend, from 0 to 7

Prepend Length

Indicates the number of bytes in Prepend, from 0 to 31.

Payload Offset

Indicates the first valid byte of Payload, from 0 to 7.

Payload Length

Indicates the number of Payload bytes, from 1 to 256, in the element. The value of 0x00
means 256 bytes. The sum of Prepend Length and Payload Length will be sent. That
value will also control the EOPS field (1 or 2 bytes valid indicated) of the Control Word
that will succeed the data transfer. Note 1.

Skip

Allows software to allocate a TBUF element and then not transmit any data from it.
0—transmit data according to other fields of Control Word.
1—free the element without transmitting any data.

NOTE:

1. Normally EOPS is sent on the next Control Word (along with ADR and SOP) to start the next element. If
there is no valid element pending at the end of sending the data, the transmit logic will insert an Idle
Control Word with the EOPS information.

CSIX and TBUF

For CSIX, payload information is put into the data area of the element, and Base and Extension
Header information is put into the Element Control Word.

When the Element Control Word is written the information is:

2
7

2
6

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

N~

Payload Length

Prepend
Offset

Payload

Prepend Length Offset

say
dys | »
say | or
d0

5
0

4
9

4
8

4
7

4
6

4
5

I
w s
NI
(SN

Extension Header

66

The definitions of the fields are shown in Table 18.

Table 18. TBUF CSIX Control Definition (Sheet 1 of 2)

Field

Definition

Type

Type Field to put into the CSIX Base Header. Idle type is not legal here.

CR

CR (CSIX Reserved) bit to put into the CSIX Base Header.

P

P (Private) bit to put into the CSIX Base Header.

Hardware Reference Manual

intel.

Intel® IXP2800 Network Processor
Technical Description

Table 18. TBUF CSIX Control Definition (Sheet 2 of 2)

2.74.2

Field Definition

The Extension Header to be sent with the CFrame. The bytes are sent in big-endian
Extension Header | order; byte O is in bits 63:56, byte 1 is in bits 55:48, byte 2 is in bits 47:40, and byte 3 is in
bits 39:32.

Prepend Offset Indicates the first valid byte of Prepend, from 0 to 7.

Prepend Length Indicates the number of bytes in Prepend, from 0 to 31.

Payload Offset Indicates the first valid byte of Payload, from 0 to 7.

Indicates the number of Payload bytes, from 1 to 256, in the element. The value of 0x00
means 256 bytes. The sum of Prepend Length and Payload Length will be sent, and also
Payload Length put into the CSIX Base Header Payload Length field. Note that this length does not
include any padding which may be required. Padding is inserted by transmit hardware as
needed.

Allows software to allocate a TBUF element and then not transmit any data from it.
Skip O—transmit data according to other fields of Control Word.
1—free the element without transmitting any data.

Transmit Operation Summary

During transmit processing data to be transmitted is placed into the TBUF under Microengine
control. The Microengine allocates an element in software; the transmit hardware processes TBUF
elements within a partition in strict sequential order so the software can track which element to
allocate next.

Microengines may write directly into an element by msf [write] instruction, or have datafrom
DRAM written into the element by dram [tbuf_wr] instruction. Data can be merged into the
element by doing both.

ThereisaTransmit Valid bits per element, which marks the element as ready to be transmitted.
Microengines move al datainto the element, by either or both of msf [write] and dram[tbuf_wr]
instructions to the TBUF. Microengines also write the element Transmit Control Word with
information about the element. When all the data movement is complete the Microengine sets the
element valid bit.

1. Move datainto TBUF by either or both of msf [write] and dram([tbuf_wr] instructionsto the
TBUF.

2. Wait for 1 to complete.

3. Write Transmit Control Word at TBUF ELEMENT _CONTROL_# address. Using this
address sets the Transmit Valid bit.

Hardware Reference Manual 67

Intel® IXP2800 Network Processor

Technical Description -
Inte|®

2.7.5

2.7.5.1

2.7.5.2

2.8

68

The Flow Control Interface

The M SF provides flow control support for SPI-4 and CSIX.

SPI-4

SPI-4 uses a FIFO Status Channel to provide flow control information. M SF receives the
information from the PHY device and storesit so that Microengines can read the information on a
per-port basis. It can then use that information to determine when to transmit datato agiven port.

The M SF also sends status to the PHY based on the amount of avail able space in the RBUF; that is
done by hardware without Microengines.

CSIX

CSIX provides two types of flow control -- link level and per queue.

Thelink level control is handled by hardware. M SF will stop transmission isresponse to link level
flow control received from the Switch Fabric. MSF will assert link level flow control based on the
amount of available spacein the RBUF.

Per queue flow control information is put into the FCIFIFO and handled by Microengine software.
Also, if required, Microengines can send Flow Control CFrames to the Switch Fabric under
software control.

In both cases, for afull duplex configuration, information is passed from the Switch Fabric to the
Egress 1 XP2800 Network Processor, which then passesit to the Ingress | XP2800 Network
Processor over a proprietary flow control interface.

Hash Unit

The IXP2800 Network Processor contains a Hash Unit that can take 48-bit, 64-bit, or 128-bit data
and produces a 48-bit, a 64-bit, or a 128- b|t hash index, respectlvely The Hash Unit is accessible
by the Microengines and the Intel X Scale® core, and is useful in doing table searches with large
keys, for example L2 addresses. Figure 14 is ablock diagram of the Hash Unit.

Up to three hash indexes can be created using a single Microengine instruction. This helpsto
minimize command overhead. The Intel XScal€® core can only do asingle hash at atime.

A Microengine initiates a hash operation by writing the hash operandsinto a contlguous set of

S TRANSFER OUT Registers and then executing the hash instruction. The Intel XScale® core
initiatesahash operatlon by writing aset of memory-mapped HASH_OP Registers, which are built
in the Intel XScale® core gasket, with the data to be used to generate the hash index. There are
separate registers for 48-bit, 64-bit, and 128-bit hashes. The dataiswritten from MSB to L SB, with
the write to L SB triggering the Hash Operation. In both cases, the Hash Unit reads the operand into
an input buffer, performs the hash operation, and returns the result.

The Hash Unit uses a hard-wired polynomial algorithm and a programmable hash multiplier to
create hash indexes. Three separate multipliers are supported, one for 48-hit hash operations, one
for 64-bit hash operations and one for 128-hit hash operations. The multiplier is programmed
through Control registersin the Hash Unit.

Hardware Reference Manual

tel.

Intel® IXP2800 Network Processor
Technical Description

The multiplicand is shifted into the hash array sixteen bits at atime. The hash array performs a
ones-complement multiply and polynomial divide, cal culated using the multiplier and 16 bits of the
multiplicand. The result is placed into an output buffer register and also feeds back into the array.
This process is repeated three times for a48-bit hash (16 bits x 3 = 48), four times for a 64-bit hash
(16 bitsx 4 = 64), and eight timesfor a 128-bit hash (16 x 8 = 128). After an entire multiplicand has
been passed through the hash array, the resulting hash index is placed into a two-stage output
buffer.

After each hash index is completed, the Hash Unit returns the hash index to the Microengines

S Transfer In Registers, or the Intel X Scale® core HASH_OP Registers. For Microengine initiated
hash operations, the Microengine is signaled after all the hashes specified in the instruction have
been completed.

For the Intel XScale® core initiated hash operations, the Intel X Scal e® core reads the results from
the memory-mapped HASH_OP Registers The addresses of Hash Results are the same as the
HASH_OP Registers. Because of queui ng delays at the Hash Unit, the time to complete an
operation is not fixed. The Intel X Scale® core can do one of two operations to get the hash results.

¢ Poll the HASH_DONE Register. This regrster is cleared when the HASH_OP Registers are
written. Bit [O] ‘of HASH | DONE Register is set when the HASH_OP Registers get the return
result from the Hash Unit (When thelast word of theresultis returned) TheIntel XScale® core
software can poll on HASH_DONE, and read HASH_OP when HASH_DONE is equal to
0x00000001.

¢ Read HASH_OP directly. The interface hardware will acknowledge the read only when the
result isvalid. This method will result in the Intel X Scale® core stalling if the result is not
valid when the read happens.

The number of clock cyclesrequired to perform a single hash operation equals: two or four cycles
through the input buffers, three, four or eight cycles through the hash array, and two or four cycles
through the output buffers. Because of the pipeline characteristics of the Hash Unit, performanceis
improved if multiple hash operations are initiated with a single instruction rather than separate hash
instructions for each hash operation.

Hardware Reference Manual 69

Intel® IXP2800 Network Processor
Technical Description -

Figure 14. Hash Unit Block Diagram

Data Used to Create Hash
Index from S Transfer Out

Multiplicand 3
2-Stage Input Buffer

Multiplicand 2

128

Y

Multiplicand 1

16 } <&— shift
v Hash_Multiplier_48

Hash Al
l_ ash Array (—l Hash_Multiplier_64

Hash_Multiplier_128

128

Hashed Multiplicand 3 48-bit, 64-bit or 128-bit Hash Select

128

Hashed Multiplicand 2
2-Stage Output Buffer

Hashed Multiplicand 1

Y

Hash Indexes to S Transfer
In Registers

A9367-01

70 Hardware Reference Manual

intel.
2.9

29.1

2.9.2

Intel® IXP2800 Network Processor
Technical Description

PCI Controller

The PCI Controller provides a 64-bit, 66 MHz capable PCI Local Bus Revision 2.2 interface. It is
also compatible to 32-hit and/or 33 MHz PCI devices. The PCI controller provides the following
functions:

* Target Access (external Bus Master accessto SRAM, DRAM, and CSRs)

* Master Access (the Intel XScal €® core access to PCI Target devices)

¢ Two DMA Channels

 Mailbox and Doorbell Registers for the Intel X Scale® core to Host communication

* PCl arbiter
The IXP2800 Network Processor can be configured to act as PCI central function (for usein a
stand-alone system), where it providesthe PCI reset signal, or as an add-in device, whereit usesthe

PCI reset signal as the chip reset input. The choice is made by connecting the cfg_rst_dir input pin
low or high.

Target Access

There are three Base Address Registers (BARS) to allow PCl Bus Masters to access SRAM,
DRAM, and CSRs, respectlvely Examples of PCI Bus Mastersinclude a Host Processor (for
example aPentium® processor), or an 1/0 device such as an Ethernet controller, SCSI controller, or
encryption coprocessor.

The SRAM BAR can be programmed to sizes of 16 MB, 32 MB, 64 MB, 128 MB, 256 MB, or no
access.

The DRAM BAR can be programmed to sizes of 128 MB, 256 MB, 512 MB, or 1 GB, or no
access.

The CSR BAR is8 KB.

PCI Boot Mode is supported, in which the Host downloads the Intel X Scale® core boot i imageinto
DRAM, whlle holding the Intel XScale® core in reset. Once the boot image has been loaded, the
Intel XScale® core reset is deasserted. The alternative is to provide the boot image in a Flash ROM
attached to the Slow Port.

Master Access

The Intel XScale® core and Microengines can directly access the PCI bus. The Intel XScale® core
can do loads and stores to specific address regions to generate all PCI command types.
Microengines use PCI instruction, and also use address regions to generate different PCI
commands.

Hardware Reference Manual 71

Intel® IXP2800 Network Processor

Technical Description -
Inte|®

2.9.3

293.1

DMA Channels

There are two DMA Channels, each of which can move blocks of data from DRAM to the PCI or
from the PCI to DRAM. The DMA channels read parameters from alist of descriptorsin SRAM,
perform the data movement to or from DRAM, and stop when the list is exhausted. The descriptors
are loaded from predefined SRAM entries or may be set directly by CSR writesto DMA Channel
registers. There is no restriction on byte alignment of the source address or the destination address.
For PCI to DRAM transfers, the PCI command is Memory Read, Memory Read line, or Memory
Read Multiple. For DRAM to PCI transfers, the PClI command is Memory Write. Memory Write
Invalidate is not supported.

Up to two DMA channels are running at a time with three descriptors outstanding. Effectively, the
active channelsinterleave bursts to or from the PCI Bus.

Interrupts are generated at the end of DMA operation for the Intel X Scale® core. However,
Microengines do not provide an interrupt mechanism. The DMA Channel will instead use an Event
Signal to notify the particular Microengine on completion of DMA.

DMA Descriptor

Each descriptor occupies four 32-bit words in SRAM, aligned on a 16 byte boundary. The DMA
channels read the descriptors from SRAM into working registers once the control register has been
set to initiate the transaction. This control must be set explicitly. This starts the DMA transfer. The
register names for the DMA channels are listed in Figure 15 and Table 19 lists the contents of the
descriptor.

Figure 15. DMA Descriptor Reads

Working Register

| DMA Channel Register Channel Register Name

Local SRAM K (X can be 1, 2, or 3)
1 .
Last Descriptor ’, Byte Count Register CHAN_X_BYTE_COUNT
] 1 PCI Address Register CHAN_X_PCI_ADDR
— 4_ X I
— Next Descriptor DRAM Address REgister CHAN_X_DRAM_ADDR
— 3 — ,' Descriptor Pointer Register | CHAN_X_DESC_PTR
— ¥ — 1
— __l A ,
1| / .
' ./ Control Register
1 ’
I I -
— 1 - DMA Channel Register | Channel Register Name
— 1 :2: ’ (Xcanbe 1, 2, or 3)
I— Control Register CHAN_X_CONTROL

Prior Descriptor

Current Descriptor

A9368-01

72

After adescriptor is processed, the next descriptor isloaded in the working registers. This process
repeats until the chain of descriptorsis terminated (i.e., the End of Chain bit is set).

Hardware Reference Manual

intel.

Intel® IXP2800 Network Processor
Technical Description

Table 19. DMA Descriptor Format

Offset from Descriptor Pointer Description
0x0 Byte Count
0x4 PCI Address
0x8 DRAM Address
0xC Next Descriptor Address

2.9.3.2 DMA Channel Operation

The DMA channel can be set up to read the first descriptor in SRAM, or with the first descriptor
written directly to the DMA channel registers.

When descriptors and the descriptor list are in SRAM, the procedure is as follows:

1.

6.

The DMA channel owner writes the address of the first descriptor into the DMA Channel
Descriptor Pointer register (DESC_PTR).

The DMA channel owner writesthe DMA Channel Control register (CONTROL) with
miscellaneous control information and also sets the channel enable bit (bit 0). The channel
initial descriptor bit (bit 4) in the CONTROL register must also be cleared to indicate that the
first descriptor isin SRAM.

Depending on the DMA channel number, the DMA channel reads the descriptor block into the
corresponding DMA registers, BY TE_COUNT, PCI_ADDR, DRAM_ADDR, and
DESC_PTR.

The DMA channel transfers the data until the byte count is exhausted, and then sets the
channel transfer done bit in the CONTROL register.

If the end of chain bit (bit 31) in the BY TE_COUNT register is clear, the channel checksthe
Chain Pointer value. If the Chain Pointer value is not equal to 0. it reads the next descriptor
and transfers the data (step 3 and 4 above). If the Chain Pointer valueis equal to O, it waits for
the Descriptor Added bit of the Channel Control Register to be set before reading the next
descriptor and transfers the data (step 3 and 4 above). If bit 31 is set, the channel sets the
channel chain done bit in the CONTROL register and then stops.

Proceed to the Channel End Operation.

When single descriptors are written directly into the DMA channel registers, the procedureis as
follows:

1.

3.

4.

The DMA channel owner writes the descriptor values directly into the DMA channel registers.
The end of chain bit (bit 31) in the BY TE_COUNT register must be set, and the value in the
DESC_PTR register is not used.

The DMA channel owner writes the base address of the DMA transfer into the PCI_ADDR to
specify the PCI starting address.

When thefirst descriptor isin the BY TE_COUNT register, the DRAM_ADDR register must
be written with the address of the data to be moved.

The DMA channel owner writes the CONTROL register with miscellaneous control
information, along with setting the channel enable bit (bit 0). The channel initial descriptor in
register bit (bit 4) inthe CONTROL register must also be set to indicate that the first descriptor
isaready in the channel descriptor registers.

Hardware Reference Manual 73

Intel® IXP2800 Network Processor

Technical Description

2.9.3.3

2934

294

74

intel.

5. The DMA channel transfers the data until the byte count is exhausted, and then sets the
channel transfer done bit (bit 2) in the CONTROL register.

6. Since the end of the chain bit (bit 31) inthe BY TE_CONT register is set, the channel setsthe
channel chain done bit (bit 7) in the CONTROL register and then stops.

7. Proceed to the Channel End Operation.

DMA Channel End Operation

1. Channel owned by PCI

If not masked viathe PCI Outbound Interrupt Mask register, the DMA channel interrupts the
PCI host after the setting of the DMA done bit in the CHAN_X_CONTROL register, which is
readable in the PCI Outbound Interrupt Status register.

2. Channel owned by the Intel XScale® core

If enabled V|athe Intel XScale® core Interrupt Enable registers, the DMA channel interrupts
the Intel X Scale® core by setting the DMA channel done bit in the CHAN_X_CONTROL
register, which is readable in the I ntel X Scale® core Interrupt Status register.

3. Channel owned by Microengine

If enabled via the Microengine Auto-Push Enable registers, the DMA channel signalsthe
Microengine after setting the DMA channel done bit in the CHAN_X_CONTROL register,
which is readable in the Microengine Auto-Push Status register.

Adding Descriptors to an Unterminated Chain

It ispossible to add a descriptor to a chain while achannel is running. To do so the chain should be
left unterminated, that is the last descriptor should have End of Chain clear, and the Chain Pointer
value equal to 0. A new descriptor (or linked list of descriptors) can be added to the chain by
overwriting the Chain Pointer value of the unterminated descriptor (in SRAM) with the Local
Memory address of the (first) added descriptor (Note that the added descriptor must actually be
valid in Local Memory prior to that). After updating the Chain Pointer field, the software must
write a1 to the Descriptor Added bit of the Channel Control Register. Thisisnecessary for the case
where the channel was paused in order to re-activate the channel. However, software need not
check the state of the channel before writing that bit; there is no side-effect of writing that bit in the
case where the channel had not yet read the unlinked descriptor.

If the channel was paused or had read an unlinked Pointer, it will re-read the last descriptor
processed (i.e. the one that originally had the zero value for Chain Pointer) to get the address of the
newly added descriptor.

A descriptor can not be added to a descriptor which has End of Chain set.

Mailbox and Message Registers

Mail box and Doorbell registers provide hardware support for communication between the Intel
X Scale® core and a device on the PCI Bus.

Four 32 bit mailbox registers are provided so that messages can be passed between the Intel

X Scale® coreand a PCI device. All four registers can be read and written with byte resolution from
both the Intel X Scal€® core and PCI. How the registersare used is apphcatlon dependent and the
messages are not used internally by the PCI Unit in any way. The mailbox registers are often used
with the Doorbell interrupts.

Hardware Reference Manual

Table 20.

2.9.5

Intel® IXP2800 Network Processor
Technical Description

Doorbell interrupts provide an efficient method of generating an mterrupt aswell as encoding the
purpose of the interrupt. The PCI Unit supports a 32-hit the Intel X Scale® core DOORBELL
register that is used by a PCI device to generate an the Intel XScal €® coreinterrupt, and a separate
32-bit PCI DOORBELL register that is used by the Intel XScale® coreto generate a PCl interrupt.
A source generating the Doorbell interrupt can write a software defined b|tmap to the register to
indicate a specific purpose. Thishitmapis transl ated into asingleinterrupt signal to the destination
(either aPCl interrupt or an the Intel XScale® core interrupt). When an interrupt is received, the
DOORBELL registers can be read and the bit mask can be interpreted. If alarger bit mask is
required than that is provided by the DOORBELL register, the MAILBOX registers can be used to
pass up to 16 bytes of data.

The doorbell interrupts are controlled through the registers shown in Table 20.

Doorbell Interrupt Registers

Register Name Description
XSCALE DOORBELL Used to generate the Intel XScale® core Doorbell interrupts.
ég?S:;E DOORBELL Used to initialize the Intel XScale® core Doorbell register and for diagnostics.
PCI DOORBELL Used to generate the PCI Doorbell interrupts.

PCI DOORBELL SETUP Used to initialize the PCI Doorbell register and for diagnostics.

PCI Arbiter

The PCI unit contains a PCI bus arbiter that supports two external mastersin addition to the PCI
Unit'sinitiator interface. If more than two external masters are used in the system, the aribter can
be disabled and an external (to the IXP2800 Network Processor used. In that case, the IXP2800
Network Processor will provide its PCI request signal to the external aribter, and use that arbiters
grant signal.

The arbiter uses asimpleround-robin priority algorithm; it asserts the grant signal corresponding to
the next request in the round-robin during the current executing transaction on the PCI bus (thisis
also called hidden arbitration). If the arbiter detects that an initiator has failed to assert frame |
after 16 cycles of both grant assertion and PCI bus idle condition, the arbiter deasserts the grant.
That master does not receive any more grants until it deasserts its request for at least one PCI clock
cycle. Bus parking is implemented in that the last bus grant will stay asserted if no request is
pending.

To prevent bus contention, if the PCI busisidle, the arbiter never asserts one grant signal in the
same PCI cycle in which it deasserts another, It deasserts one grant, and then asserts the next grant
after one full PCI clock cycle has elapsed to provide for bus driver turnaround.

Hardware Reference Manual 75

Intel® IXP2800 Network Processor

Technical Description -
Inte|®

2.10

2.11

2111

76

Control and Status Register Access Proxy

The Control and Status Register Access Proxy (CAP) contains a number of chip-wide control and
status registers. Some provide miscellaneous control and status, while others are used for inter-
Microengine or Microengine to the Intel X Scale® core communication (notethat ringsin
Scratchpad Memory and SRAM can also be used for interprocess communication). These include:

* INTERTHREAD SIGNAL—Each thread (or context) on a Microengine can send asignal to
any other thread by writing to InterThread_Signal register. This allows athread to go to sleep
waiting completion of atask by adifferent thread.

* THREAD MESSAGE —Each thread has a message register where it can post a software-
specific message. Other Microengine threads, or the Intel X Scale® core, can poll for
availability of messages by reading THREAD MESSAGE_SUMMARY register. Both the
THREAD_MESSAGE and corresponding THREAD _MESSAGE_SUMMARY clear upon a
read of the message; this eliminates a race condition when there are multiple message readers.
Only one reader will get the message.

* SELF DESTRUCT —This register provides another type of communication. Microengine
software can atomically set individual bitsin the SELF DESTRUCT registers; the registers
clear upon read. The meaning of each hit is software-specific. Clearing the register upon read
eliminates a race condition when there are multiple readers.

» THREAD INTERRUPT—Each thread can interrupt the Intel XScale® core on two different
interrupts; the usage is software-specific. Having two interrupts allows for flexibility, for
example one can be assigned to normal service requests and one can be assigned to error
conditions. If more information needs to be associated with the interrupt, mailboxes or Rings
in Scratchpad Memory or SRAM could be used.

* REFLECTOR—CAP providesafunction (called “reflector”) where any Microengine thread
can move data between its registers and those of any other thread. In response to asingle write
or read instruction (with the addressin the specific reflector range) CAP will get datafrom the
source Microengine and put it into the destination Microengine. Both the sending and
receiving threads can optionally be signalled upon completion of the data movement.

Intel XScale® Core Peripherals

Interrupt Controller
The Interrupt Controller provides the ability to enable or mask interrupts from a number of chip
wide sources, for example:
¢ Timers (normally used by Real-Time Operating System).
* Interrupts generated by Microengine software to request services from the Intel XScale® core.
e External agents such as PCI devices.
¢ Error conditions, such as DRAM ECC error, or SPI-4 parity error.
Interrupt statusis read as memory mapped registers; the state of an interrupt signal can be read

even if it is masked from interrupting. Enabling and masking of interruptsis done as writes to
memory mapped registers.

Hardware Reference Manual

intel.

2.11.2

2.11.3

2.11.4

2.11.5

Intel® IXP2800 Network Processor
Technical Description

Timers

The IXP2800 Network Processor contains four programmable 32-bit timers, which can be used for
software support. Each timer can be clocked by the internal clock, by a divided version of the
clock, or by asignal on an external GPIO pin. Each timer can be programmed to generate a
periodic interrupt after a programmed number of clocks. The rangeis from several nsto severa
minutes depending on the clock frequency.

In addition, timer 4 can be used as awatchdog timer. In this use, software must periodically reload
the timer value; if it fails to do so and the timer counts to zero, it will reset the chip. This can be
used to detect if software “hangs’ or for some other reason fails to reload the timer.

General Purpose I/O

The IXP2800 Network Processor contains eight General Purpose I/0 (GPIO) pins. These can be
programmed as either input or output and can be used for slow sgeed I/0 such as LEDs or input
switches. They can also be used as interrupts to the Intel XScale™ core, or to clock the
programmable timers.

Universal Asynchronous Receiver/Transmitter

The IXP2800 Network Processor contains a standard RS-232 compatible Universal Asynchronous
Receiver/Transmitter (UART), which can be used for communication with a debugger or
maintenance console. Modem controls are not supported; if they are needed, GPIO pins can be
used for that purpose.

The UART performs serial-to-parallel conversion on data characters received from a peripheral
device and parallel-to-serial conversion on data characters received from the processor. The
processor can read the complete status of the UART at any time during operation. Available status
information includes the type and condition of the transfer operations being performed by the
UART and any error conditions (parity, overrun, framing or break interrupt).

The serial ports can operatein either FIFO or non-FIFO mode. In FIFO mode, a 64-byte transmit
FIFO holds data from the processor to be transmitted on the serial link and a 64-byte receive FIFO
buffers data from the serial link until read by the processor.

The UART includes a programmabl e baud rate generator which is capable of dividing the internal
clock input by divisorsof 1 to 216. 1 and produces a 16X clock to drive the internal transmitter
logic. It also drives the receive logic. The UART can be operated in polled or in interrupt driven
mode as selected by software.

Slow Port

The SlowPort is an external interface to the IXP2800 Network Processor, used for Flash ROM
access and 8, 16, or 32-hit asynchronous device access. It allows the Intel X Scal €® core do read/
write data transfers to these slave devices.

The address bus and data bus are multiplexed to reduce the pin count. In addition, 24 bits of
address are shifted out on three clock cycles. Therefore, an external set of buffersis needed to latch
the address. Two chip selects are provided.

Hardware Reference Manual 77

Intel® IXP2800 Network Processor
Technical Description

2.12

intel.

The access is asynchronous. Insertion of delay cycles for both data setup and hold timeis
programmable viainternal Control registers. The transfer can also wait for a handshake
acknowledge signal from the external device.

I/O Latency

Table 21 shows the latencies for transferring data between the Microengine and the other sub-
system components. The latency is measured in 1.4 GHz cycles.

Table 21. I/O Latency

Sub-system
DRAM SRAM
(RDR) (QDR) Scratch MSF
) 8 bytes - 16 bytes
Transfer size 4-bytes 4-bytes 8-bytes
(note 2)
average read ~295 cycles 100(light load)- ~100 cycles range 53-120
latency (note 3) 160(heavy load) (range 53-152) (RBUF)
average write ~53 cycles ~53 cycles ~40 cycles ~48 cycles
latency (TBUF)
Notel: RDR, QDR, MSF, and Scratch values are extracted from a simulation model.
Note 2: Minimum DRAM burst size on pins is 16 bytes. Transfers less than 16bytes incur the
same as a 16 byte transfer.
Note 3: At 1016 MHz, read latency should be ~ 240 cycles.

2.13 Performance Monitor

The Intel® XScale™ core hardware provides two 32-bit performance counters that allow two
unique events to be monitored simultaneously. In addition, the Intel® X Scale™ core implements a
32-hit clock counter that can be used in conjunction with the performance counters; its sole
purpose is to count the number of core clock cycles which is useful in measuring total execution

time.

78 Hardware Reference Manual

intgl.

Intel® IXP2800 Network Processor
Intel XScale® Core

Intel XScale® Core 3

3.1

Thissection contal nsinformation describing the Intel X Scale® core, Intel X Scale® core gasket, and
Intel X Scale® core Peripherals (XPI).

For additional information about the Intel X Scale® architecture refer to the Intel XScale® Core
Developers Manual available on Intel’s Devel opers website (http://www.devel oper.intel .com).

Introduction

TheIntel XScale® coreisan ARM* V5TE compliant microprocessor. It has been dESI gned for high
performance and low-power; leading the industry in mwW/MIPs. The Intel X Scale® core
incorporates an extensive list of architecture features that aIIows it to achieve high performance.
Many of the architectural features added to the Intel X Scale® core help hide memory latency which
often is a serious impediment to high performance processors.

Thisincludes:

¢ the ability to continue instruction execution even while the data cache is retrieving data from
external memory.

* awrite buffer.

¢ write-back caching.

* various data cache allocation policies which can be configured different for each application.
¢ and cache locking.

All these featuresimprove the efficiency of the memory bus external to the core.

ARM* Vers on 5 (V5) Architecture added floating point instructionsto ARM* Version 4. The Intel
XScale® core implements the integer instruction set architecture of ARM* V5, but does not
provide hardware support of the floating point instructions.

The Intel XScale® core provides the Thumb instruction set (ARM* V5T) and the ARM* V5E DSP
extensions.

Hardware Reference Manual 79

Intel® IXP2800 Network Processor
Intel XScale® Core

intel.

Figure 16 showsthe major functional blocks of the Intel X Scale® core. The following sections give
abrief, high-level overview of these blocks.

3.2 Features

Figure 16. Intel XScale® Core Architecture Features

Instruction Cache nggi‘i)s‘t‘; /" Mini-Data
/
* 32 Kbytes « 32 ways , Cache
* 32 ways « wr-back or ,/
* 2 Kbytes
« Lockable by line wr-through , .2 Ways
* Hitunder # Data RAM Y
miss 4
// * Max 28 Kbytes
7’ * Re-map of
- data cache
3
Branch Target IMMU DMMU Fill Buffer
Buffer * 32 entry TLB * 32entry TLB * 4- 8 entries

* 128 entries

* Fully associative
Lockable by entry

* Fully associative
Lockable by entry

Performance '
Monitoring Power MAC Write Buffer
Management) * 8 entries
* Single Cycle . .
Debug «idle Throughput (16+32) Full coalescing
* Hardware Breakpoint « Drowsy . 16—b!t SIMD
* Branch History Table « Sleep * 40-bit Accumulator JTAG

A9642-01

Multiply/ACcumulate (MAC)

The MAC unit supports early termination of multiplies/accumulatesin two cycles and can sustain a
throughput of a MAC operation every cycle. Several architectural enhancements were made to the
MAC to support audio coding algorithms, which include a 40-bit accumulator and support for 16-

bit packed data.

3.2.1

3.2.2 Memory Management

The Intel XScale® corei mplements the Memory Management Unit (MMU) Architecture specified
in the ARM* Architecture Reference Manual. The MMU provides access protection and virtual to
physical address trandlation.

The MMU Architecture also specifies the caching policies for the instruction cache and data
memory. These policies are specified as page attributes and include:

* identifying code as cacheable or non-cacheable
* selecting between the mini-data cache or data cache

¢ write-back or write-through data caching

80 Hardware Reference Manual

intgl.

3.2.3

3.2.4

3.2.5

3.2.6

3.2.7

3.2.8

Intel® IXP2800 Network Processor
Intel XScale® Core

¢ enabling data write allocation policy

¢ and enabling the write buffer to coalesce stores to external memory

Instruction Cache

The Intel XScale® core implements a 32-K byte, 32-way set associative instruction cache with a
line size of 32 bytes. All requeststhat “miss’ the instruction cache generate a 32-byte read request
to external memory. A mechanism to lock critical code within the cacheis also provided.

Branch Target Buffer

The Intel XScale® core provides a Branch Target Buffer (BTB) to predict the outcome of branch
typeinstructions. It provides storage for the target address of branch type instructions and predicts
the next address to present to the instruction cache when the current instruction addressis that of a
branch.

The BTB holds 128 entries.

Data Cache

The Intel X Scale® coreimplements a32-K byte, a 32-way set associative data cache and a 2-K byte,
2-way set associative mini-data cache. Each cache has aline size of 32 bytes, and supports write-
through or write-back caching.

The data/mini-data cache is controlled by page attributes defined in the MM U Architecture and by
coprocessor 15.

The Intel X Scale® core allows applications to re-configure a portion of the data cache as data
RAM. Software may place special tables or frequently used variablesin this RAM.

Performance Monitoring

Two performance monitoring counters have been added to the Intel X Scale® core that can be
configured to monitor various events. These events alow a software developer to measure cache
efficiency, detect system bottlenecks, and reduce the overall latency of programs.

Power Management

The Intel XScale® core incorporates a power and clock management unit that can assist in
controlling clocking and managing power.

Debug

The Intel XScale® core supports software debugging through two instruction address breakpoint
registers, one data-address breakpoint register, one data-address/mask breakpoint register, and a
trace buffer.

Hardware Reference Manual 81

Intel® IXP2800 Network Processor
Intel XScale® Core

intel.

Testability is supported on the Intel XScal €® core through the Test Access Port (TAP) Controller
implementation, which is based on |IEEE 1149.1 (JTAG) Standard Test Access Port and Boundary-
Scan Architecture. The purpose of the TAP controller is to support test logic internal and external
to the Intel X Scale® core such as built-in self-test, boundary-scan, and scan.

3.2.9 JTAG

3.3 Memory Management

The Intel XScale® core implements the Memory M anagement Unit (MMU) Architecture specified
in the ARM Archltecture Reference Manual. To accelerate virtual to physical address trandation,
the Intel X Scale® core uses both an instruction Translation Look-aside Buffer (TLB) and adata
TLB to cache the latest translations. Each TLB holds 32 entries and is fully-associative. Not only
do the TLBs contain the trandated addresses, but also the access rights for memory references.

If an instruction or data TLB miss occurs, a hardware transl ation-table-walking mechanism is
invoked to translate the virtual address to a physical address. Once trandlated, the physical address
isplaced in the TLB along with the access rights and attributes of the page or section. These
translations can also be locked down in either TLB to guarantee the performance of critical
routines.

The Intel XScale® coreallows system software to associate various attributes with regions of
memory:

¢ cacheable

* bufferable

* lineallocate policy
* write policy

* |/O

¢ mini Data Cache
¢ Coalescing

* Phit

Note: Thevirtual address with which the TLBs are accessed may be remapped by the PID register.

82 Hardware Reference Manual

Intel® IXP2800 Network Processor

i Intel XScale® Core

INtal.

3.3.1 Architecture Model

3.31.1 Version 4 vs. Version 5

ARM* MMU Version 5 Architecture introduces the support of tiny pages, which are 1 KBytein
size. Thereserved field in the first-level descriptor (encoding Ob11) is used as the fine page table
base address.

3.3.1.2 Memory Attributes

The attributes associated with a particular region of memory are configured in the memory
management page table and control the behavior of accesses to the instruction cache, data cache,
mini-data cache and the write buffer. These attributes are ignored when the MM U is disabled.

To allow compatibility with older system software, the new Intel X Scale® core attributes take
advantage of encoding space in the descriptors that was formerly reserved.

3.3.1.21 Page (P) Attribute Bit

The P hit assigns a page attribute to a memory region. Refer to the Intel® 1XP24001 XP2800
Network Processor Programmer’s Reference Manual for details about the P bit.

3.3.1.2.2 Instruction Cache
When examining these bits in adescriptor, the Instruction Cache only utilizes the C hit. If the C bit
is clear, the Instruction Cache considers a code fetch from that memory to be non-cacheable, and

will not fill acache entry. If the C bit is set, then fetches from the associated memory region will be
cached.

3.3.1.2.3 Data Cache and Write Buffer
All of these descriptor bits affect the behavior of the Data Cache and the Write Buffer.
If the X bit for adescriptor is zero (see Table 22), the C and B bits operate as mandated by the
ARM* architecture. If the X bit for adescriptor is one, the C and B bits' meaning is extended, as

detailed in Table 23.

Table 22. Data Cache and Buffer Behavior when X =0

CB Cacheable? Bufferable? Write Policy AllclJ_(I:r;fion Notes
Policy

00 N N Stall until complete®

01 N Y

10 Y Y Write Through Read Allocate

11 Y Y Write Back Read Allocate

1. Normally, the processor will continue executing after a data access if no dependency on that access is encountered. With
this setting, the processor will stall execution until the data access completes. This guarantees to software that the data ac-
cess has taken effect by the time execution of the data access instruction completes. External data aborts from such access-
es will be imprecise.

Hardware Reference Manual 83

Intel® IXP2800 Network Processor
Intel XScale® Core

intel.

Table 23. Data Cache and Buffer Behavior when X =1

3.3.1.24

3.3.1.25

84

Line
CB Cacheable? Bufferable? Write Policy Allocation Notes
Policy
00 - - - - Unpredictable -- do not use
Writes will not coalesce into
01 N Y buffers?
. Cache policy is determined
10 ('\é':'g'cﬁgta by MD field of Auxiliary
Control register
11 Y Y Write Back Read/Write
Allocate

1. Normally, bufferable writes can coalesce with previously buffered data in the same address range
Details on Data Cache and Write Buffer Behavior

If the MMU isdisabled all data accesses will be non-cacheable and non-bufferable. Thisisthe
same behavior as when the MMU is enabled, and a data access uses a descriptor with X, C, and B
al setto 0.

The X, C, and B hits determine when the processor should place new datainto the Data Cache. The
cache places datainto the cache in lines (also called blocks). Thus, the basis for making a decision
about placing new datainto the cacheisacalled a“Line Allocation Policy.”

If the Line Allocation Policy is read-allocate, all load operations that miss the cache request a 32-
byte cache line from external memory and allocate it into either the data cache or mini-data cache
(thisis assuming the cache is enabled). Store operations that miss the cache will not cause alineto
be allocated.

If read/write-allocateisin effect, load or store operations that miss the cache will request a 32-byte
cache line from external memory if the cache is enabled.

The other policy determined by the X, C, and B bits is the Write Policy. A write-through policy
instructs the Data Cache to keep external memory coherent by performing stores to both external
memory and the cache. A write-back policy only updates external memory when alinein the cache
is cleaned or needs to be replaced with anew line. Generally, write-back provides higher
performance because it generates less data traffic to external memory.

Memory Operation Ordering

A fence memory operation (memop) is one that guarantees all memops issued prior to the fence
will execute before any memop issued after the fence. Thus software may issue afence to impose a
partial ordering on memory accesses.

Table 24 shows the circumstances in which memops act as fences.

Any swap (SWP or SWPB) to a page that would create afence on aload or storeis afence.

Hardware Reference Manual

intgl.

Table 24.

3.3.2

3.3.3

Table 25.

3.34

3.34.1

Hardware Reference Manual

Intel® IXP2800 Network Processor
Intel XScale® Core

Memory Operations that Impose a Fence
operation X C B
load 0
store 1 0 1
load or store 0 0 0
Exceptions

The MMU may generate prefetch aborts for instruction accesses and data aborts for data memory
accesses.

Data address alignment checking is enabled by setting bit 1 of the Control Register (CP15,
register 1). Alignment faults are still reported even if the MMU is disabled. All other MMU
exceptions are disabled when the MMU is disabled.

Interaction of the MMU, Instruction Cache, and Data Cache

The MMU, instruction cache, and data/mini-data cache may be enabled/disabled independently.
The instruction cache can be enabled with the MMU enabled or disabled. However, the data cache
can only be enabled when the MMU is enabled. Therefore only three of the four combinations of
the MMU and data/mini-data cache enables are valid (see Table 25). The invalid combination will
cause undefined results.

Valid MMU & Data/mini-data Cache Combinations
MMU Data/mini-data Cache
Off Off
On Off
On On

Control

Invalidate (Flush) Operation

The entire instruction and data TLB can be invalidated at the same time with one command or they
can be invalidated separately. Anindividual entry in the data or instruction TLB can aso be
invalidated.

Globally invalidating a TLB will not affect locked TLB entries. However, the invalidate-entry
operations can invalidate individual locked entries. In this case, the locked remainsin the TLB, but
will never “hit” on an address trandation. Effectively, aholeisin the TLB. This situation may be
rectified by unlocking the TLB.

85

Intel® IXP2800 Network Processor
Intel XScale® Core

3.34.2

intel.

The MMU is enabled by setting bit 0 in coprocessor 15, register 1 (Control Register).

Enabling/Disabling

When the MMU is disabled, accesses to the instruction cache default to cacheable and all accesses
to data memory are made non-cacheable.

A recommended code segquence for enabling the MMU is shown in Example 13.

Example 13. Enabling the MMU

3.34.3

86

This routine provides software with a predictable way of enabling the MMU.
; After the CPWAIT, the MMU is guaranteed to be enabled. Be aware

that the MMU will be enabled sometime after MCR and before the instruction
that executes after the CPWAIT.

; Programming Note: This code sequence requires a one-to-one virtual to
physical address mapping on this code since

the MMU may be enabled part way through. This would allow the instructions
after MCR to execute properly regardless the state of the MMU.

MRC P15,0,R0,C1,C0,0; Read CP1l5, register 1
ORR RO, RO, #0x1; Turn on the MMU
MCR P15,0,R0,C1,C0,0; Write to CP1l5, register 1

The MMU is guaranteed to be enabled at this point; the next instruction or

7

; data address will be translated.

Locking Entries

Individual entries can be locked into the instruction and data TLBs. If alock operation finds the
virtual address trandlation already resident in the TLB, the results are unpredictable. An invalidate
by entry command before the lock command will ensure proper operation. Software can also
accomplish this by invalidating all entries, as shown in Example 14.

Locking entriesinto either the instruction TLB or data TL B reduces the available number of entries
(by the number that was locked down) for hardware to cache other virtual to physical address
trand ations.

A procedure for locking entriesinto the instruction TLB is shown in Example 14.

If aMMU abort is generated during an instruction or data TLB lock operation, the Fault Status
Register is updated to indicate a Lock Abort, and the exception is reported as a data abort.

Hardware Reference Manual

INtal.

Intel® IXP2800 Network Processor
Intel XScale® Core

Example 14. Locking Entries into the Instruction TLB

Note:

R1, R2 and R3 contain the virtual addresses to translate and lock into

; the instruction TLB.

The value in RO is ignored in the following instruction.
Hardware guarantees that accesses to CP15 occur in program order

MCR P15,0,R0,C8,C5,0 ; Invalidate the entire instruction TLB

MCR P15,0,R1,C10,C4,0 ; Translate virtual address (R1l) and lock into

; instruction TLB
MCR P15,0,R2,C10,C4,0 ; Translate

; virtual address (R2) and lock into instruction TLB
MCR P15,0,R3,C10,C4,0 ; Translate virtual address (R3) and lock into

; instruction TLB

CPWAIT

The MMU is guaranteed to be updated at this point; the next instruction will

7

; see the locked instruction TLB entries.

If exceptions are allowed to occur in the middle of this routine, the TLB may end up caching a
trangdlation that is about to be locked. For example, if R1 isthe virtual address of an interrupt
service routine and that interrupt occursimmediately after the TLB has been invalidated, the lock
operation will be ignored when the interrupt service routine returns back to this code sequence.
Software should disable interrupts (FIQ or IRQ) in this case.

Asageneral rule, software should avoid locking in all other exception types.

The proper procedure for locking entries into the data TLB is shown in Example 15.

Example 15. Locking Entries into the Data TLB

Note:

R1, and R2 contain the virtual addresses to translate and lock into the data TLB

7

MCR P15,0,R1,C8,C6,1 ; Invalidate the data TLB entry specified by the
; virtual address in R1

MCR P15,0,R1,C10,C8,0 ; Translate virtual address (R1) and lock into
; data TLB

; Repeat sequence for virtual address in R2

MCR P15,0,R2,C8,C6,1 ; Invalidate the data TLB entry specified by the
; virtual address in R2

MCR P15,0,R2,C10,C8,0 ; Translate virtual address (R2) and lock into
; data TLB

CPWAIT ; wait for locks to complete

; The MMU is guaranteed to be updated at this point; the next instruction will

7

; see the locked data TLB entries.

Care must be exercised here when allowing exceptions to occur during this routine whose handlers
may have data that liesin a page that is trying to be locked into the TLB.

Hardware Reference Manual 87

Intel® IXP2800 Network Processor
Intel XScale® Core

intel.

The line replacement algorithm for the TLBs is round-robin; there is a round-robin pointer that
keepstrack of the next entry to replace. The next entry to replace is the one sequentially after the
last entry that was written. For example, if the last virtual to physical address translation was
written into entry 5, the next entry to replace is entry 6.

3.34.4 Round-Robin Replacement Algorithm

At reset, the round-robin pointer is set to entry 31. Once atrandation is written into entry 31, the
round-robin pointer gets set to the next available entry, beginning with entry 0 if no entries have
been locked down. Subsequent translations move the round-robin pointer to the next sequential
entry until entry 31 is reached, where it will wrap back to entry O upon the next translation.

A lock pointer is used for locking entriesinto the TLB and is set to entry O at reset. A TLB lock
operation places the specified translation at the entry designated by the lock pointer, moves the
lock pointer to the next sequential entry, and resets the round-robin pointer to entry 31. Locking
entriesinto either TLB effectively reduces the available entries for updating. For example, if the
first three entries were locked down, the round-robin pointer would be entry 3 after it rolled over
from entry 31.

Only entries 0 through 30 can be locked in either TLB; entry 31can never be locked. If the lock
pointer is at entry 31, alock operation will update the TLB entry with the translation and ignore the
lock. In this case, the round-robin pointer will stay at entry 31.

Figure 17. Example of Locked Entries in TLB

entry O
entry 1

Locked

entry 7
entry 8

entry 22
entry 23

entry 30
entry 31

Note: 8 entries locked, 24 entries available for round robin replacement

A9684-01

88 Hardware Reference Manual

Intel® IXP2800 Network Processor
Intel XScale® Core

intel.
3.4 Instruction Cache

The Intel XScale® core instruction cache enhances performance by reducing the number of
instruction fetches from external memory. The cache provides fast execution of cached code. Code
can also be locked down when guaranteed or fast access time is required.

Figure 18 shows the cache organization and how the instruction address is used to access the cache.

Theinstruction cacheisa 32-Kbyte, 32-way set associative cache; this meansthere are 32 setswith
each set containing 32 ways. Each way of a set contains eight 32-bit words and one valid bit, which
isreferred to as aline. The replacement policy is around-robin agorithm and the cache also
supports the ability to lock codein at aline granularity.

Figure 18. Instruction Cache Organization

_______________ Set 31
way 0 8 Words (cache line)
way 1
Set Index * CAM Data
_____ Setl
way 0 8 Words (cache line)
_____ Set 0 way 1
way 0 8 Words (cache line)
way 1
This example
shows Set 0 being CAM Data
selected by the
Set Index
way 31
Tag 41 Y Y YYYVYYVYY
Word Select —— N\ /
Instruction Word
(4 bytes)
Instruction Address (Virtual)
31 109 54 210
I Tag |Set Indexl Wordl I
Note: CAM = Content Addressable Memory
A9685-01

Theinstruction cacheis virtually addressed and virtually tagged.

Note: Thevirtual address presented to the instruction cache may be remapped by the PID register.

Hardware Reference Manual 89

Intel® IXP2800 Network Processor
Intel XScale® Core

3.4.1

3.4.1.1

3.4.1.2

3.4.1.3

90

intel.

Instruction Cache Operation

Operation When Instruction Cache is Enabled

When the cache is enabled, it compares every instruction request address against the addresses of
instructions that it is currently holding. If the cache contains the requested instruction, the access
“hits” the cache, and the cache returns the requested instruction. If the cache does not contain the
requested instruction, the access “misses’ the cache, and the cache requests a fetch from external
memory of the 8-word line (32 bytes) that contains the requested instruction using the fetch policy.
Asthe fetch returns instructions to the cache, they are placed in one of two fetch buffers and the
requested instruction is delivered to the instruction decoder.

A fetched line will be written into the cache if it is cacheable. Code is designated as cacheable
when the Memory Management Unit (MMU) is disabled or when the MMU is enable and the
cacheable (C) bit is set to 1 in its corresponding page.

Note that an instruction fetch may “miss” the cache but “hit” one of the fetch buffers. When this
happens, the requested instruction will be delivered to the instruction decoder in the same manner
as acache“hit.”

Operation When The Instruction Cache Is Disabled

Disabling the cache prevents any lines from being written into the instruction cache. Although the
cacheisdisabled, it is still accessed and may generate a* hit” if the datais already in the cache.

Disabling the instruction cache does not disable instruction buffering that may occur within the
instruction fetch buffers. Two 8-word instruction fetch buffers will always be enabled in the cache
disabled mode. So long as instruction fetches continue to “hit” within either buffer (even in the
presence of forward and backward branches), no external fetches for instructions are generated. A
miss causes one or the other buffer to be filled from external memory using the fill policy.

Fetch Policy

An instruction-cache “miss’ occurs when the requested instruction is not found in the instruction
fetch buffers or instruction cache; afetch request isthen made to external memory. Theinstruction
cache can handle up to two “misses.” Each external fetch request uses a fetch buffer that holds 32-
bytes and eight valid bits, one for each word. A miss causes the following:

1. A fetch buffer is allocated.
2. Theinstruction cache sends a fetch request to the external bus. This request isfor a32-byte line.

3. Ingtructions words are returned back from the external bus, at a maximum rate of 1 word per
core cycle. As each word returns, the corresponding valid bit is set for the word in the fetch
buffer.

4. Assoon asthe fetch buffer receives the requested instruction, it forwards the instruction to the
instruction decoder for execution.

5. When al words have returned, the fetched line will be written into the instruction cacheiif it's
cacheable and if the instruction cache is enabled. The line chosen for update in the cache is
controlled by the round-robin replacement algorithm. This update may evict avalid line at that
location.

6. Once the cache is updated, the eight valid bits of the fetch buffer are invalidated.

Hardware Reference Manual

In

3.4.1.4

3.4.1.5

Intel® IXP2800 Network Processor
Intel XScale® Core

Round-Robin Replacement Algorithm

The line replacement algorithm for the instruction cache is round-robin. Each set in the instruction
cache has a round-robin pointer that keeps track of the next line (in that set) to replace. The next
line to replace in a set is the one after the last line that was written. For example, if the line for the
last external instruction fetch was written into way 5-set 2, the next line to replace for that set
would be way 6. None of the other round-robin pointers for the other sets are affected in this case.

After reset, way 31 is pointed to by the round-robin pointer for all the sets. Once alineiswritten
into way 31, the round-robin pointer points to the first available way of a set, beginning with way0
if no lines have been locked into that particular set. Locking lines into the instruction cache
effectively reduces the available lines for cache updating. For example, if the first three lines of a
set were locked down, the round-robin pointer would point to the line at way 3 after it rolled over
from way 31.

Parity Protection

Theinstruction cacheis protected by parity to ensure data integrity. Each instruction cache word
has 1 parity hit. (The instruction cachetag isNOT parity protected.) When aparity error is detected
on an instruction cache access, a prefetch abort exception occursif the Intel X Scale® core attempts
to execute the instruction. Before servicing the exception, hardware place a notification of the error
in the Fault Status Register (Coprocessor 15, register 5).

A software exception handler can recover from an instruction cache parity error. This can be
accomplished by invalidating the instruction cache and the branch target buffer and then returning
to the instruction that caused the prefetch abort exception. A simplified code exampleis shown in
Example 16. A more complex handler might choose to invalidate the specific line that caused the
exception and then invalidate the BTB.

Example 16. Recovering from an Instruction Cache Parity Error

; Prefetch abort handler

MCR P15,0,R0,C7,C5,0 ; Invalidate the instruction cache and branch target
; buffer

CPWAIT ; wait for effect

SUBS PC,R14, #4 ; Returns to the instruction that generated the

; parity error

; The Instruction Cache is guaranteed to be invalidated at this point

If aparity error occurs on an instruction that is locked in the cache, the software exception handler
needs to unlock the instruction cache, invalidate the cache and then re-lock the code in before it
returns to the faulting instruction.

Hardware Reference Manual 91

Intel® IXP2800 Network Processor
Intel XScale® Core

3.4.1.6

3.4.2

3.4.2.1

3.4.2.2

intel.

The instruction cache does not detect modification to program memory by loads, stores or actions
of other bus masters. Severa situations may require program memory modification, such as
uploading code from disk.

Instruction Cache Coherency

The application program is responsible for synchronizing code modification and invalidating the
cache. In general, software must ensure that modified code spaceis not accessed until modification
and invalidating are completed.

To achieve cache coherence, instruction cache contents can be invalidated after code modification
in external memory is complete.

If the instruction cacheis not enabled, or codeis being written to a non-cacheable region, software
must still invalidate the instruction cache before using the newly-written code. This precaution
ensures that state associated with the new code is not buffered el sawhere in the processor, such as
the fetch buffers or the BTB.

Naturally, when writing code as data, care must be taken to force it completely out of the processor
into external memory before attempting to executeiit. If writing into a non-cacheable region,

flushing the write buffersis sufficient precaution. If writing to a cacheable region, then the data
cache should be submitted to a Clean/Invalidate operation to ensure coherency.

Instruction Cache Control

Instruction Cache State at Reset

After reset, the instruction cache is always disabled, unlocked, and invalidated (flushed).

Enabling/Disabling

Theinstruction cacheis enabled by setting bit 12 in coprocessor 15, register 1 (Control Register).
This processisillustrated in Example 17.

Example 17. Enabling the Instruction Cache

92

; Enable the ICache

MRC P15, 0, RO, C1, CO, O ; Get the control register
ORR RO, RO, #0x1000 ; set bit 12 -- the I bit
MCR P15, 0, RO, C1, CO, O ; Set the control register
CPWAIT

Hardware Reference Manual

intgl.

3.4.2.3

Intel® IXP2800 Network Processor
Intel XScale® Core

Invalidating the Instruction Cache

The entire instruction cache along with the fetch buffers are invalidated by writing to

coprocessor 15, register 7. This command does not unlock any lines that were locked in the
instruction cache nor does it invalidate those locked lines. To invalidate the entire cache including
locked lines, the unlock instruction cache command needs to be executed before the invalidate
command.

Thereis an inherent delay from the execution of the instruction cache invalidate command to
where the next instruction will see the result of the invalidate. The routine in Example 18 can be
used to guarantee proper synchronization.

Example 18. Invalidating the Instruction Cache

3.42.4

MCR P15,0,R1,C7,C5,0 ; Invalidate the instruction cache and branch
; target buffer

CPWAIT

; The instruction cache is guaranteed to be invalidated at this point; the next
; instruction sees the result of the invalidate command.

The Intel XScale® core al'so supports invalidating an individual line from the instruction cache.

Locking Instructions in the Instruction Cache

Software has the ability to lock performance critical routines into the instruction cache. Up to

28 linesin each set can be locked; hardware will ignore the lock command if softwareistrying to
lock all thelinesin aparticular set (i.e., ways 28-31can never be locked). When this happens, the
line will still be allocated into the cache but the lock will be ignored. The round-robin pointer will
stay at way 31 for that set.

Lines can be locked into the instruction cache by initiating a write to coprocessor 15. Register Rd
contains the virtual address of the line to be locked into the cache.

There are several requirements for locking down code:

1. theroutine used to lock lines down in the cache must be placed in non-cacheable memory,
which means the MMU is enabled. Asacorollary: no fetches of cacheable code should occur
while locking instructions into the cache.

2. the code being locked into the cache must be cacheable
3. theinstruction cache must be enabled and invalidated prior to locking down lines

Failure to follow these requirements will produce unpredictable results when accessing the
instruction cache.

System programmers should ensure that the code to lock instructionsinto the cache does not reside
closer than 128 bytes to a non-cacheabl e/cacheabl e page boundary. If the processor fetches ahead
into a cacheable page, then the first requirement noted above could be violated.

Lines are locked into a set starting at way 0 and may progress up to way 27; which set aline gets
locked into depends on the set index of the virtual address. Figure 19 is an example of where lines
of code may be locked into the cache along with how the round-robin pointer is affected.

Hardware Reference Manual 93

Intel® IXP2800 Network Processor
Intel XScale® Core

Figure 19. Locked Line Effect on Round Robin Replacement

set 0 setl set 2 set 31
way 0 S A A A
way 1 Q
4
: = S
’ —y e
way 7 3] ge}
way 8 o 1 ces
- 3]
: o
. -
way 22 Y
way 23
. Y
way 30
way 31
Notes:
set 0: 8 ways locked, 24 ways available for round robin replacement
set 1: 23 ways locked, 9 ways available for round robin replacement
set 2: 28 ways locked, only way 28-31 available for replacement
set 31: all 32 ways available for round robin replacement
A9686-01

Software can lock down several different routines located at different memory locations. This may
cause some sets to have more locked lines than others as shown in Figure 19.

Example 19 shows how aroutine, called “lockMe” in this example, might be locked into the
instruction cache. Note that it is possible to receive an exception while locking code.

Example 19. Locking Code into the Cache

lockMe: ; This is the code that will be locked into the cache
mov r0, #5
add r5, rl, r2
lockMeEnd:
codeLock: ; here is the code to lock the “lockMe” routine
1dr r0, =(lockMe AND NOT 31); r0O gets a pointer to the first line we
should lock
1ldr rl, =(lockMeEnd AND NOT 31); rl contains a pointer to the last line we
should lock
lockLoop:
mcr pl5, 0, r0, c9, cl, 0; lock next line of code into ICache
cmp r0, rl ; are we done yet?
add r0, r0, #32 ; advance pointer to next line
bne lockLoop ; 1f not done, do the next line

Hardware Reference Manual

In

3.4.25

3.5

3.5.1

Intel® IXP2800 Network Processor
Intel XScale® Core

Unlocking Instructions in the Instruction Cache

The Intel XScale® core provides a global unlock command for the instruction cache. Writing to
coprocessor 15, register 9 unlocks all the locked linesin the instruction cache and leaves them
valid. These lines then become available for the round-robin replacement algorithm.

Branch Target Buffer

The Intel XScale® core uses dynamic branch prediction to reduce the penalties associated with
changing the flow of program execution. The Intel X Scale® core features a branch target buffer
that provides the instruction cache with the target address of branch type instructions. The branch
target buffer isimplemented as a 128-entry, direct mapped cache.

Branch Target Buffer (BTB) Operation

The BTB stores the history of branches that have executed along with their targets. Figure 20
shows an entry inthe BTB, where the tag is the instruction address of apreviously executed branch
and the data contains the target address of the previously executed branch along with two bits of
history information.

Figure 20. BTB Entry

TAG DATA

History
Branch Address[31:9,1] Target Address[31:1] Bits[1:0]

A9687-01

The BTB takes the current instruction address and checksto seeif this addressis a branch that was
previously seen. It uses bits [8:2] of the current address to read out the tag and then compares this
tag to bits [31:9,1] of the current instruction address. If the current instruction address matches the
tag in the cache and the history bits indicate that this branch is usually taken in the past, the BTB
uses the data (target address) as the next instruction address to send to the instruction cache.

Bit[1] of the instruction addressisincluded in the tag comparison in order to support Thumb
execution. This organization means that two consecutive Thumb branch (B) instructions, with
instruction address bitg[8:2] the same, will contend for the same BTB entry. Thumb also requires
31 bitsfor the branch target address. In ARM* mode, bit[1] is zero.

The history bits represent four possible prediction states for a branch entry in the BTB. Figure 21
shows these states along with the possible transitions. The initial state for branches stored in the
BTB is Weakly-Taken (WT). Every time a branch that existsin the BTB is executed, the history
bits are updated to reflect the latest outcome of the branch, either taken or not-taken.

The BTB does not have to be managed explicitly by software; it is disabled by default after reset
and isinvalidated when the instruction cache is invalidated.

Hardware Reference Manual 95

Intel® IXP2800 Network Processor
Intel XScale® Core

Figure 21. Branch History

3511

3.5.2

3.5.3

3.5.3.1

96

Notes:

SN: Strongly Not Take ST: Strongly Taken
WN: Weakly Not Taken WT: Weakly Taken

A9688-01

Reset

After Processor Reset, the BTB is disabled and all entries are invalidated.

Update Policy

A new entry is stored into the BTB when the following conditions are met:
* the branch instruction has executed
* the branch was taken
¢ the branch isnot currently in the BTB

The entry isthen marked valid and the history bits are set to WT. If another valid branch exists at
the same entry in the BTB, it will be evicted by the new branch.

Once abranchisstored in the BTB, the history hits are updated upon every execution of the branch
as shown in Figure 21.

BTB Control

Disabling/Enabling

The BTB is always disabled with Reset. Software can enable the BTB through abitin a
COProcessor register.

Before enabling or disabling the BTB, software must invalidate it (described in the following
section). This action will ensure correct operation in case stale dataisin the BTB. Software should
not place any branch instruction between the code that invalidates the BTB and the code that
enables/disablesiit.

Hardware Reference Manual

Intel® IXP2800 Network Processor
Intel XScale® Core

intel.
3.5.3.2 Invalidation

There are four ways the contents of the BTB can be invalidated.

1. Reset.

2. Software can directly invalidate the BTB viaa CP15, register 7 function.
3. The BTB isinvalidated when the Process ID Register iswritten.
4

. The BTB isinvalidated when the instruction cache isinvalidated via CP15, register 7
functions.

3.6 Data Cache

The Intel XScale® core data cache enhances performance by reducing the number of data accesses
to and from external memory. There are two data cache structures in the Intel X Scale® core, a

32 Kbyte data cache and a 2 Kbyte mini-data cache. An eight entry write buffer and afour entry fill
buffer are also implemented to decouple the Intel X Scal €% coreinstruction execution from external
memory accesses, which increases overall system performance.

3.6.1 Overviews

3.6.1.1 Data Cache Overview

The data cache is a 32-Kbyte, 32-way set associative cache; this means there are 32 sets with each
set containing 32 ways. Each way of a set contains 32 bytes (one cache line) and one valid hit.
There also exist two dirty bitsfor every line, one for the lower 16 bytes and the other one for the
upper 16 bytes. When a store hits the cache the dirty bit associated with it is set. The replacement
policy is around-robin algorithm and the cache al so supports the ability to reconfigure each line as
data RAM.

Figure 22 shows the cache organization and how the data address is used to access the cache.

Cache policies may be adjusted for particular regions of memory by altering page attribute bitsin
the MMU descriptor that controls that memory.

The data cacheisvirtually addressed and virtually tagged. It supports write-back and write-through
caching policies. The data cache always allocates aline in the cache when a cacheable read miss
occurs and will alocate aline into the cache on a cacheable write miss when write allocate is
specified by its page attribute. Page attribute bits determine whether a line gets allocated into the
data cache or mini-data cache.

Hardware Reference Manual 97

Intel® IXP2800 Network Processor
Intel XScale® Core

Figure 22. Data Cache Organization

_______________ Set 31
way 0 32 bytes (cache line)
. way 1
Set Index * CAM Data
_____ Set 1
way 0 32 bytes (cache line)
_____ Set 0 way 1
way 0 32 bytes (cache line)
way 1
This example
shows Set 0 being CAM Data
selected by the
Set Index
way 31
Tag 4T Y Y YYVYVYVYY
Word Select ——————\ /
Byte Alignment
Byte Select Sign Extension
Data Word
(4 bytes to Destination Register)
Data Address (Virtual)
31 10 9 54 210
I Tag |Set Indexl Word |Byte|
Note: CAM = Content Addressable Memory
A9689-01

3.6.1.2 Mini-Data Cache Overview

The mini-data cache is a 2-Kbyte, 2-way set associative cache; this means there are 32 sets with
each set containing 2 ways. Each way of a set contains 32 bytes (one cache line) and one valid bit.
There also exist 2 dirty bitsfor every line, one for the lower 16 bytes and the other one for the
upper 16 bytes. When a store hits the cache the dirty bit associated with it is set. The replacement
policy is around-robin algorithm.

Figure 23 shows the cache organization and how the data address is used to access the cache.

The mini-data cacheis virtually addressed and virtually tagged and supports the same caching
policies as the data cache. However, lines can't be locked into the mini-data cache.

98 Hardware Reference Manual

intgl.

Intel® IXP2800 Network Processor
Intel XScale® Core

Figure 23. Mini-Data Cache Organization

3.6.1.3

_______________ Set 31
way 0 32 bytes (cache line)
This example . way 1
shows Set 0 being .
selected by the
Setindex | _____ Set 1
| wayO [32 bytes (cache line)
_____ Set 0 | wav 1 |
way 0 32 bytes (cache line)
way 1
Tag | Y Y YYYVYVYY
Word Select ——————\ /
Byte Alignment
Byte Select Sign Extension
Data Word
(4 bytes to Destination Register)
Data Address (Virtual)

31 10 9 54 210

I Tag |Set Indexl Word |ByIEI
Note: CAM = Content Addressable Memory

A9692-01

Write Buffer and Fill Buffer Overview

The Intel XScale® core employs an eight entry write buffer, each entry containing 16 bytes. Stores
to external memory are first placed in the write buffer and subsequently taken out when the busis
available.

The write buffer supports the coalescing of multiple store requests to external memory. An
incoming store may coalesce with any of the eight entries.

Thefill buffer holds the external memory request information for a data cache or mini-data cache
fill or non-cacheable read request. Up to four 32-byte read request operations can be outstanding in
the fill buffer before the Intel X Scale® core needs to stall.

Thefill buffer has been augmented with a four entry pend buffer that captures data memory
reguests to outstanding fill operations. Each entry in the pend buffer contains enough data storage
to hold one 32-hit word, specifically for store operations. Cacheable load or store operations that
hit an entry in the fill buffer get placed in the pend buffer and are completed when the associated
fill completes. Any entry in the pend buffer can be pended against any of the entriesin thefill
buffer; multiple entries in the pend buffer can be pended against asingle entry in the fill buffer.

Pended operations complete in program order.

Hardware Reference Manual 99

Intel® IXP2800 Network Processor
Intel XScale® Core

3.6.2

3.6.2.1

3.6.2.2

3.6.2.3

3.6.2.3.1

3.6.2.3.2

100

intel.

The following discussions refer to the data cache and mini-data cache as one cache (data/mini-
data) since their behavior is the same when accessed.

Data Cache and Mini-Data Cache Operation

Operation When Caching is Enabled

When the data/mini-data cache is enabled for an access, the data/mini-data cache compares the
address of the request against the addresses of datathat it is currently holding. If the line containing
the address of the request isresident in the cache, the access “ hits' the cache. For aload operation
the cache returns the requested data to the destination register and for a store operation the datais
stored into the cache. The data associated with the store may also be written to external memory if
write-through caching is specified for that area of memory. If the cache does not contain the
reguested data, the access ‘misses’ the cache, and the sequence of events that follows depends on
the configuration of the cache, the configuration of the MMU and the page attributes.

Operation When Data Caching is Disabled

The data/mini-data cache is still accessed even though it is disabled. If aload hits the cache it will

return the requested data to the destination register. If a store hits the cache, the datais written into
the cache. Any access that misses the cache will not allocate aline in the cache when it's disabled,
even if the MMU is enabled and the memory region’s cacheability attribute is set.

Cache Policies

Cacheability

Data at a specified address is cacheable given the following:
¢ the MMU is enabled
¢ the cacheable attribute is set in the descriptor for the accessed address
¢ and the data/mini-data cache is enabled

Read Miss Policy

The following sequence of events occurs when a cacheable load operation misses the cache:

1. Thefill buffer is checked to seeif an outstanding fill request already exists for that line.

If so, the current request is placed in the pending buffer and waits until the previously
requested fill completes, after which it accesses the cache again, to obtain the request data and
returns it to the destination register.

If thereis no outstanding fill request for that line, the current load request is placed in the fill
buffer and a 32-byte external memory read request is made. If the pending buffer or fill buffer
isfull, the Intel XScale® corewill stall until an entry isavailable.

2. Alineisallocated in the cache to receive the 32-bytes of fill data. The line selected is
determined by the round-robin pointer (see Section 3.6.2.4). The line chosen may contain a
valid line previoudly allocated in the cache. In this case both dirty bits are examined and if set,
the four words associated with a dirty bit that's asserted will be written back to external
memory as afour word burst operation.

Hardware Reference Manual

intgl.

3.6.2.3.3

3.6.2.34

Intel® IXP2800 Network Processor
Intel XScale® Core

3. When the data requested by the load is returned from external memory, it isimmediately sent
to the destination register specified by the load. A system that returns the requested data back
first, with respect to the other bytes of the line, will obtain the best performance.

4. Asdatareturns from external memory it iswritten into the cache in the previoudly allocated
line.

A load operation that misses the cache and is NOT cacheable makes a request from external
memory for the exact data size of the original 1oad request. For example, LDRH requests exactly
two bytes from external memory, L DR reguests 4 bytes from external memory, etc. Thisrequest is
placed in the fill buffer until, the datais returned from external memory, which is then forwarded
back to the destination register(s).

Write Miss Policy

A write operation that misses the cache will request a 32-byte cache line from external memory if
the access is cacheable and write alocation is specified in the page. In this case the following
sequence of events occur:

1. Thefill buffer is checked to seeif an outstanding fill request already exists for that line.

If so, the current request is placed in the pending buffer and waits until the previousy
requested fill completes, after which it writes its data into the recently allocated cache line.

If there is no outstanding fill request for that line, the current store request is placed in thefill
buffer and a 32-byte external memory read request is made. If the pending buffer or fill buffer
isfull, the Intel XScale® core will stall until an entry is available.

2. The 32-bytes of data can be returned back to the Intel X Scale® corein any word order, i.e, the
eight wordsin the line can be returned in any order. Note that it does not matter, for
performance reasons, which order the datais returned to the Intel XScale® core since the store
operation hasto wait until the entire line is written into the cache before it can complete.

3. When the entire 32-byte line has returned from external memory, alineis allocated in the
cache, selected by the round-robin pointer (see Section 3.6.2.4). The line to be written into the
cache may replace avalid line previously alocated in the cache. In this case both dirty bits are
examined and if any are set, the four words associated with a dirty bit that’s asserted will be
written back to external memory as a4 word burst operation. This write operation will be
placed in the write buffer.

4. Thelineiswritten into the cache along with the data associated with the store operation.

If the above condition for requesting a 32-byte cache line isnot met, awrite misswill cause awrite
request to external memory for the exact data size specified by the store operation, assuming the
write request doesn’t coalesce with another write operation in the write buffer.

Write-Back Versus Write-Through

The Intel XScale® core supports write-back caching or write-through caching, controlled through
the MMU page attributes. When write-through caching is specified, all store operations are written
to external memory even if the access hits the cache. This feature keeps the external memory
coherent with the cache, i.e., no dirty bits are set for this region of memory in the data/mini-data
cache. This however does not guarantee that the data/mini-data cache is coherent with external
memory, which is dependent on the system level configuration, specifically if the external memory
is shared by another master.

When write-back caching is specified, a store operation that hits the cache will not generate awrite
to external memory, thus reducing external memory traffic.

Hardware Reference Manual 101

Intel® IXP2800 Network Processor
Intel XScale® Core

3.6.24

3.6.2.5

3.6.2.6

102

intel.

The line replacement algorithm for the data cache is round-robin. Each set in the data cache has a
round-robin pointer that keeps track of the next line (in that set) to replace. The next lineto replace
in aset isthe next sequential line after the last one that was just filled. For example, if the line for
the last fill was written into way 5-set 2, the next line to replace for that set would be way 6. None
of the other round-robin pointers for the other sets are affected in this case.

Round-Robin Replacement Algorithm

After reset, way 31 is pointed to by the round-robin pointer for al the sets. Once alineiswritten
into way 31, the round-robin pointer pointsto the first available way of a set, beginning with way 0
if no lines have been re-configured as data RAM in that particular set. Re-configuring lines as data
RAM effectively reduces the available lines for cache updating. For example, if thefirst threelines
of aset were re-configured, the round-robin pointer would point to the line at way 3 after it rolled
over from way 31. Refer to Section 3.6.4 for more details on data RAM.

The mini-data cache follows the same round-robin replacement algorithm as the data cache except
that there are only two lines the round-robin pointer can point to such that the round-robin pointer
always points to the least recently filled line. A least recently used replacement algorithm is not
supported because the purpose of the mini-data cache is to cache data that exhibits low temporal
locality, i.e., datathat is placed into the mini-data cache is typically modified once and then written
back out to external memory.

Parity Protection

The data cache and mini-data cache are protected by parity to ensure data integrity; there isone
parity bit per byte of data. (Thetagsare NOT parity protected.) When a parity error is detected on a
data/mini-data cache access, a data abort exception occurs. Before servicing the exception,
hardware will set bit 10 of the Fault Status Register register.

A data/mini-data cache parity error is an imprecise data abort, meaning R14 ABORT (+8) may nhot
point to the instruction that caused the parity error. If the parity error occurred during aload, the
targeted register may be updated with incorrect data.

A data abort due to a data/mini-data cache parity error may not be recoverable if the data address
that caused the abort occurred on aline in the cache that has a write-back caching policy. Prior
updates to this line may belost; in this case the software exception handler should perform a*“clean
and clear” operation on the data cache, ignoring subsequent parity errors, and restart the offending
process. This operation is shown in Section 3.6.3.3.1.

Atomic Accesses

The SWP and SWPB instructions generate an atomic load and store operation allowing a memory
semaphore to be loaded and altered without interruption. These accesses may hit or miss the data/

mini-data cache depending on configuration of the cache, configuration of the MMU, and the page
attributes. Refer to Section 3.11.4 for more information.

Hardware Reference Manual

In

3.6.3

3.6.3.1

3.6.3.2

Intel® IXP2800 Network Processor
Intel XScale® Core

Data Cache and Mini-Data Cache Control

Data Memory State After Reset

After processor reset, both the data cache and mini-data cache are disabled, al valid bits are set to
zero (invalid), and the round-robin bit points to way 31. Any linesin the data cache that were
configured as data RAM before reset are changed back to cacheable lines after reset, i.e., there are
32 KBytes of data cache and zero bytes of data RAM.

Enabling/Disabling

The data cache and mini-data cache are enabled by setting bit 2 in coprocessor 15, register 1
(Control Register).

Example 20 shows code that enables the data and mini-data caches. Note that the MM U must be
enabled to use the data cache.

Example 20. Enabling the Data Cache

3.6.3.3

3.6.3.3.1

enableDCache:
MCR pl5, 0, r0, c¢7, cl0, 4; Drain pending data operatiomns...
MRC pl5, 0, r0, cl, cO, 0; Get current control register

ORR r0, r0, #4 ; Enable DCache by setting ‘C’ (bit 2)
MCR pl5, 0, r0, cl, c0, 0; And update the Control register

Invalidate and Clean Operations

Individual entries can be invalidated and cleaned in the data cache and mini-data cache via
coprocessor 15, register 7. Note that aline locked into the data cache remains locked even after it
has been subjected to an invalidate-entry operation. Thiswill leave an unusable line in the cache
until a global unlock has occurred. For this reason, do not use these commands on locked lines.

This same register also provides the command to invalidate the entire data cache and mini-data
cache. These global invalidate commands have no effect on lines locked in the data cache. L ocked
lines must be unlocked before they can be invalidated. This is accomplished by the Unlock Data
Cache command.

Global Clean and Invalidate Operation

A simple software routine is used to globally clean the data cache. It takes advantage of the line-
allocate data cache operation, which allocates a line into the data cache. This allocation evicts any
cache dirty data back to external memory. Example 21 shows how data cache can be cleaned.

Hardware Reference Manual 103

Intel® IXP2800 Network Processor
Intel XScale® Core

INtal.

Example 21. Global Clean Operation

; Global Clean/Invalidate THE DATA CACHE

; R1 contains the virtual address of a region of cacheable memory reserved for
; this clean operation

; RO is the loop count; Iterate 1024 times which is the number of lines in the
; data cache

;7 Macro ALLOCATE performs the line-allocation cache operation on the
;; address specified in register Rx.

MACRO ALLOCATE Rx
MCR P15, 0, Rx, C7, C2, 5
ENDM

MOV RO, #1024

LOOP1:
ALLOCATE R1 ; Allocate a line at the virtual address
; specified by RI1.
ADD R1, R1, #32 ; Increment the address in R1 to the next cache line
SUBS RO, RO, #1 ; Decrement loop count
BNE LOOP1

i
;Clean the Mini-data Cache
; Can’t use line-allocate command, so cycle 2KB of unused data through.

; R2 contains the virtual address of a region of cacheable memory reserved for
; cleaning the Mini-data Cache

; RO is the loop count; Iterate 64 times which is the number of lines in the
; Mini-data Cache.

MOV RO, #64

LOOP2:

LDR R3, [R2],#32 ; Load and increment to next cache line
SUBS RO, RO, #1 ; Decrement loop count

BNE LOOP2

7

; Invalidate the data cache and mini-data cache
MCR P15, 0, RO, C7, Ce6, O

7

The line-allocate operation does not require physical memory to exist at the virtual address
specified by the instruction, since it does not generate aload/fill request to external memory. Also,
the line-all ocate operation does not set the 32 bytes of data associated with the line to any known
value. Reading this datawill produce unpredictable results.

Theline-allocate command will not operate on the mini Data Cache, so system software must clean
this cache by reading 2K Byte of contiguous unused datainto it. This data must be unused and
reserved for this purpose so that it will not already be in the cache. It must reside in apage that is
marked as mini Data Cache cacheable.

Thetimeit takes to execute a global clean operation depends on the number of dirty linesin cache.

104 Hardware Reference Manual

intgl.

3.6.4

Intel® IXP2800 Network Processor
Intel XScale® Core

Re-configuring the Data Cache as Data RAM

Software has the ability to lock tags associated with 32-byte lines in the data cache, thus creating
the appearance of data RAM. Any subsequent access to thisline will always hit the cache unlessit
isinvalidated. Once alineislocked into the data cache it isnolonger availablefor cache allocation
on alinefill. Upto 28 linesin each set can be reconfigured as data RAM, such that the maximum
data RAM sizeis 28 Kbytes.

Hardware does not support locking lines into the mini-data cache; any attempt to do thiswill
produce unpredictable results.

There are two methods for locking tags into the data cache; the method of choice depends on the
application. One method is used to lock datathat residesin external memory into the data cache
and the other method is used to re-configure lines in the data cache as data RAM. Locking data
from external memory into the data cache is useful for lookup tables, constants, and any other data
that is frequently accessed. Re-configuring a portion of the data cache as data RAM is useful when
an application needs scratch memory (bigger than the register file can provide) for frequently used
variables. These variables may be strewn across memory, making it advantageous for software to
pack them into data RAM memory.

Refer to the Intel XScale® Core Developers Manual for code examples.

Tags can be locked into the data cache by enabling the data cache lock mode bit located in
coprocessor 15, register 9. Once enabled, any new lines allocated into the data cache will be locked
down.

Note that the PL D instruction will not affect the cache contentsif it encounters an error while
executing. For this reason, system software should ensure the memory address used inthe PLD is
correct. If this cannot be ascertained, replace the PL D with aL DR instruction that targets a scratch
register.

Lines are locked into a set starting at way 0 and may progress up to way 27; which set aline gets
locked into depends on the set index of the virtual address of the request. Figure 19 is an example
of where lines of code may be locked into the cache along with how the round-robin pointer is
affected.

Software can lock down data located at different memory locations. This may cause some setsto
have more locked lines than others as shown in Figure 19.

Lines are unlocked in the data cache by performing an unlock operation.

Before locking, the programmer must ensure that no part of the target datarangeis already resident
in the cache. The Intel X Scale® core will not refetch such data, which will result in it not bei ng
locked into the cache. If there is any doubt asto the location of the targeted memory data, the cache
should be cleaned and invalidated to prevent this scenario. If the cache contains alocked region
which the programmer wishesto lock again, then the cache must be unlocked before being cleaned
and invalidated.

Hardware Reference Manual 105

Intel® IXP2800 Network Processor
Intel XScale® Core

3.6.5

3.7

106

intel.

The write buffer is always enabled which means stores to external memory will be buffered. The K
bit in the Auxiliary Control Register (CP15, register 1) isaglobal enable/disable for allowing
coalescing in the write buffer. When this bit disables coal escing, no coalescing will occur
regardless the value of the page attributes. If this bit enables coalescing, the page attributes X, C,
and B are examined to see if coalescing is enabled for each region of memory.

Write Buffer/Fill Buffer Operation and Control

All reads and writes to external memory occur in program order when coalescing is disabled in the
write buffer. If coalescing is enabled in the write buffer, writes may occur out of program order to
external memory. Program correctness is maintained in this case by comparing all store requests
with al the valid entries in the fill buffer.

The write buffer and fill buffer support adrain operation, such that before the next instruction
executes, al the Intel X Scale® core data requests to external memory have completed.

Writes to aregion marked non-cacheable/non-bufferable (page attributes C, B, and X al 0) will
cause execution to stall until the write completes.

If softwareisrunning in a privileged mode, it can explicitly drain all buffered writes.

Configuration

The System Control Coprocessor (CP15) configures the MMU, caches, buffers and other system
attributes. Where possible, the definition of CP15 follows the definition of the StrongARM*
products. Coprocessor 14 (CP14) contains the performance monitor registers and the trace buffer
registers.

CP15 is accessed through MRC and MCR coprocessor instructions and allowed only in privileged
mode. Any access to CP15 in user mode or with LDC or STC coprocessor instructions will cause
an undefined instruction exception.

CP14 registers can be accessed through MRC, MCR, LDC, and STC coprocessor instructions and
allowed only in privileged mode. Any accessto CP14 in user mode will cause an undefined
instruction exception.

The Intel XScale® core Coprocessors, CP15 and CP14, do not support access via CDP, MRRC, or
MCRR instructions. An attempt to access these coprocessors with these instructions will result in
an Undefined Instruction exception.

Many of the MCR commands available in CP15 modify hardware state sometime after execution.
A software sequence is available for those wishing to determine when this update occurs.

Like certain other ARM* architecture products, the Intel X Scal €® coreincludes an extralevel of
virtual address trandation in the form of a PID (Process | D) register and associated logic.
Privileged code needs to be aware of thisfacility because, when interacting with CP15, some
addresses are modified by the PID and others are not.

An address that has yet to be modified by the PID (“PIDified”) isknown as avirtual address (VA).
An address that has been through the PID logic, but not translated into a physical address, isa
modified virtual address (MVA). Non-privileged code always deals with VAs, while pnwleged
code that programs CP15 occasionally needs to use MVASs. For detailsrefer to the Intel Xcale®
Core Developers Manual.

Hardware Reference Manual

In

3.8

3.8.1

®

Intel® IXP2800 Network Processor
Intel XScale® Core

Performance Monitoring

The Intel XScale® core hardware provides two 32-bit performance counters that allow two unique
events to be monitored simultaneously. In addition, the Intel X Scale® core implements a 32-bit
clock counter that can be used in conjunction with the performance counters; its sole purposeisto
count the number of core clock cycles which is useful in measuring total execution time.

The Intel XScale® core can monitor either occurrence events or duration events. When counting
occurrence events, a counter is incremented each time a specified event takes place and when
measuring duration, a counter counts the number of processor clocks that occur while a specified
condition istrue. If any of the 3 counters overflow, an IRQ or FIQ will be generated if it's enabled.
Each counter hasits own interrupt enable. The counters continue to monitor events even after an
overflow occurs, until disabled by software. Refer to the | ntel® 1XP2400/1XP2800 Network
Processor Programmer’s Reference Manual for more detail.

Each of these counters can be programmed to monitor any one of various events.

To further augment performance monitoring, the Intel X Scale® core clock counter can be used to
measure the executing time of an application. This information combined with aduration event can
feedback a percentage of time the event occurred with respect to overall execution time.

Each of the three counters and the performance monitoring control register are accessible through
Coprocessor 14 (CP14), registers 0-3. Accessis allowed in privileged mode only.

Thefollowing are a few notes about controlling the performance monitoring mechanism:

* Aninterrupt will be reported when a counter’s overflow flag is set and its associated interrupt
enable bit is set in the PMNC register. The interrupt will remain asserted until software clears
the overflow flag by writing a one to the flag that is set. Note: the product specific interrupt
unit and the CPSR must have enabled the interrupt in order for software to receiveit.

¢ The counters continue to record events even after they overflow.

Performance Monitoring Events

Table 26 lists events that may be monitored by the PMU. Each of the Performance Monitor Count
Registers (PMNO and PMN1) can count any listed event. Software selects which event is counted
by each PMNX register by programming the evtCountx fields of the PMNC register.

Table 26. Performance Monitoring Events (Sheet 1 of 2)

Event Number

(evtCountO or Event Definition
evtCountl)
0x0 Instruction cache miss requires fetch from external memory.
ox1 Instruction cache cannot deliver an instruction. This could indicate an ICache miss or an

ITLB miss. This event will occur every cycle in which the condition is present.

Stall due to a data dependency. This event will occur every cycle in which the condition is

0x2 present.

0x3 Instruction TLB miss.

0x4 Data TLB miss.

0x5 Branch instruction executed, branch may or may not have changed program flow.
0x6 Branch mispredicted. (B and BL instructions only.)

Hardware Reference Manual 107

Intel® IXP2800 Network Processor

Intel XScale® Core

Table 26. Performance Monitoring Events (Sheet 2 of 2)

Event Number
(evtCountO or
evtCountl)

Event Definition

0x7

Instruction executed.

0x8

Stall because the data cache buffers are full. This event will occur every cycle in which the
condition is present.

0x9

Stall because the data cache buffers are full. This event will occur once for each contiguous
sequence of this type of stall.

OxA

Data cache access, not including Cache Operations

0xB

Data cache miss, not including Cache Operations

0xC

Data cache write-back. This event occurs once for each 1/2 line (four words) that are
written back from the cache.

0xD

Software changed the PC. This event occurs any time the PC is changed by software and
there is not a mode change. For example, a mov instruction with PC as the destination will
trigger this event. Executing a swi from User mode will not trigger this event, because it will
incur a mode change.

0x10 through
0x17

Refer to the Intel® IXP2400/1XP2800 Network Processor Programmer’s Reference Manual
for more details.

all others

Reserved, unpredictable results

Some typical combination of counted events are listed in this section and summarized in Table 27.
In this section, we call such an event combination a mode.

Table 27. Some Common Uses of the PMU

3.8.1.1

108

Mode

PMNC.evtCountO

PMNC.evtCountl

Instruction Cache Efficiency

0x7 (instruction count)

0x0 (ICache miss)

Data Cache Efficiency

OxA (Dcache access)

0xB (DCache miss)

Instruction Fetch Latency

0x1 (ICache cannot deliver)

0x0 (ICache miss)

Data/Bus Request Buffer Full

0x8 (DBuffer stall duration)

0x9 (DBuffer stall)

Stall/Writeback Statistics

0x2 (data stall)

0xC (DCache writeback)

Instruction TLB Efficiency

0x7 (instruction count)

0x3 (ITLB miss)

Data TLB Efficiency

OxA (Dcache access)

0x4 (DTLB miss)

Instruction Cache Efficiency Mode

PMNO totals the number of instructions that were executed, which does not include instructions
fetched from the instruction cache that were never executed. This can happen if abranch
instruction changes the program flow; the instruction cache may retrieve the next sequential
instructions after the branch, before it receives the target address of the branch.

PMN1 counts the number of instruction fetch requests to external memory. Each of these requests

loads 32 bytes at atime.

Statistics derived from these two events:
¢ Ingtruction cache miss-rate. Thisis derived by dividing PMN1 by PMNO.

* The average number of cyclesit took to execute an instruction or commonly referred to as
cycles-per-instruction (CPI). CPI can be derived by dividing CCNT by PMNO, where CCNT
was used to measure total execution time.

Hardware Reference Manual

In

3.8.1.2

3.8.1.3

3.8.14

Intel® IXP2800 Network Processor
Intel XScale® Core

Data Cache Efficiency Mode

PMNO totals the number of data cache accesses, which includes cacheable and non-cacheable
accesses, mini-data cache access and accesses made to locations configured as data RAM.

Note that STM and L DM will each count as several accesses to the data cache depending on the
number of registers specified in theregister list. LDRD will register two accesses.

PMN1 counts the number of data cache and mini-data cache misses. Cache operations do not
contribute to this count.

The statistic derived from these two eventsis:
¢ Datacache miss-rate. Thisis derived by dividing PMN1 by PMNO.

Instruction Fetch Latency Mode

PMNO accumulates the number of cycles when the instruction-cache is not able to deliver an
instruction to the Intel XScale® core due to an instruction-cache miss or instruction-TLB miss.
This event means that the processor coreis stalled.

PMN1 counts the number of instruction fetch requests to external memory. Each of these requests
loads 32 bytes at atime. Thisisthe same event as measured in instruction cache efficiency mode
and isincluded in this mode for convenience so that only one performance monitoring run is need.

Statistics derived from these two events:

¢ The average number of cycles the processor stalled waiting for an instruction fetch from
external memory to return. Thisis calculated by dividing PMNO by PMNL1. If the averageis
high then the Intel X Scale® core may be starved of the bus external to the Intel X Scale® core.

* The percentage of total execution cycles the processor stalled waiting on an instruction fetch
from external memory to return. Thisis calculated by dividing PMNO by CCNT, which was
used to measure total execution time.

Data/Bus Request Buffer Full Mode

The Data Cache has buffers available to service cache misses or uncacheable accesses. For every
memory request that the Data Cache receives from the processor core a buffer is speculatively
allocated in case an external memory request is required or temporary storage is needed for an
unaligned access. If no buffers are available, the Data Cache will stall the processor core. How
often the Data Cache stalls depends on the performance of the bus external to the Intel X Scale®
core and what the memory access latency is for Data Cache miss requests to external memory. If
the Intel XScale™ core memory access latency is high, possibly due to starvation, these Data Cache
bufferswill become full. This performance monitoring mode is provided to seeif the Intel X Scale®
core is being starved of the bus external to the Intel X Scal €® core, which will effect the
performance of the application running on the Intel X Scal €® core.

PMNO accumulates the number of clock cycles the processor is being stalled due to this condition
and PMN1 monitors the number of times this condition occurs.

Statistics derived from these two events:

* The average number of cyclesthe processor stalled on a data-cache access that may overflow
the data-cache buffers. Thisis calculated by dividing PMNO by PMN1. This statistic lets you
know if the duration event cycles are due to many ro’uests or are attributed to just afew
requests. If the averageis high then the Intel X Scale® core may be starved of the bus external
to the Intel X Scale® core.

Hardware Reference Manual 109

Intel® IXP2800 Network Processor
Intel XScale® Core

3.8.1.5

3.8.1.6

110

intel.

* The percentage of total execution cycles the processor stalled because a Data Cache request
buffer was not available. Thisis calculated by dividing PMNO by CCNT, which was used to
measure total execution time.

Stall/Writeback Statistics

When an instruction reguires the result of a previousinstruction and that result is not yet available,
the Intel XScale® core stallsin order to preserve the correct data dependencies. PMNO counts the
number of stall cycles due to data-dependencies. Not all data-dependencies cause a stall; only the
following dependencies cause such a stall penalty:

* | oad-use penalty: attempting to use theresult of aload before the load completes. To avoid the

penalty, software should delay using theresult of aload until it’s available. This penalty shows
the latency effect of data-cache access.

¢ Multiply/Accumul ate-use penalty: attempting to use the result of a multiply or multiply-
accumul ate operation before the operation completes. Again, to avoid the penalty, software
should delay using the result until it's available.

¢ ALU use penalty: there are afew isolated cases where back to back ALU operations may
result in one cycle delay in the execution.

PMNZ1 counts the number of writeback operations emitted by the data cache. These writebacks
occur when the data cache evicts adirty line of datato make room for a newly requested line or as
the result of clean operation (CP15, register 7).

Statistics derived from these two events:

* The percentage of total execution cycles the processor stalled because of a data dependency.
Thisis calculated by dividing PMNO by CCNT, which was used to measure total execution
time. Often acompiler can reschedule code to avoid these penalties when given the right
optimization switches.

¢ Total number of datawriteback requests to external memory can be derived solely with PMN1.

Instruction TLB Efficiency Mode

PMNO total s the number of instructions that were executed, which does not include instructions
that were translated by the instruction TLB and never executed. This can happen if a branch
instruction changes the program flow; the instruction TLB may trand ate the next sequential
instructions after the branch, before it receives the target address of the branch.

PMN1 counts the number of instruction TLB table-walks, which occurs when thereisaTLB miss.
If theinstruction TLB is disabled PMN1 will not increment.
Statistics derived from these two events:

* Instruction TLB miss-rate. Thisis derived by dividing PMN1 by PMNO.

* The average number of cyclesit took to execute an instruction or commonly referred to as
cycles-per-instruction (CPI). CPI can be derived by dividing CCNT by PMNO, where CCNT
was used to measure total execution time.

Hardware Reference Manual

In

3.8.1.7

3.8.2

3.9

3.9.1

Intel® IXP2800 Network Processor
Intel XScale® Core

Data TLB Efficiency Mode

PMNO totals the number of data cache accesses, which includes cacheable and non-cacheable
accesses, mini-data cache access and accesses made to locations configured as data RAM.

Note that STM and L DM will each count as several accesses to the data TLB depending on the
number of registers specified in theregister list. LDRD will register two accesses.

PMN1 counts the number of data TLB table-walks, which occurs when thereisa TLB miss. If the
data TLB is disabled PMN1 will not increment.
The statistic derived from these two eventsis:

¢ DataTLB miss-rate. Thisis derived by dividing PMN1 by PMNO.

Multiple Performance Monitoring Run Statistics

Even though only two events can be monitored at any given time, multiple performance monitoring
runs can be done, capturing different events from different modes. For example, the first run could
monitor the number of writeback operations (PMN1 of mode, Stall/Writeback) and the second run
could monitor the total number of data cache accesses (PMNO of mode, Data Cache Efficiency).
From the results, a percentage of writeback operations to the total number of data accesses can be
derived.

Performance Considerations

This section describes relevant performance considerations that compiler writers, application
programmers and system designers need to be aware of to efficiently use the Intel XScale® core.
Performance numbers discussed here include interrupt latency, branch prediction, and instruction
latencies.

Interrupt Latency

Minimum Interrupt Latency is defined as the minimum number of cycles from the assertion of any
interrupt signal (IRQ or FIQ) to the execution of the instruction at the vector for that interrupt. The
point at which the assertion beginsis TBD. This number assumes best case conditions exist when

theinterrupt is asserted, e.g., the system isn’t waiting on the completion of some other operation.

A sometimes more useful number to work with isthe Maximum Interrupt Latency. Thisistypically
acomplex calculation that depends on what else is going on in the system at the time the interrupt
is asserted. Some examples that can adversely affect interrupt latency are:

¢ theinstruction currently executing could be a 16-register LDM,
¢ the processor could fault just when the interrupt arrives,
¢ the processor could be waiting for data from aload, doing a page table walk, etc., and

¢ high core to system (bus) clock ratios.

Maximum Interrupt Latency can be reduced by:

* ensuring that the interrupt vector and interrupt service routine are resident in the instruction
cache. This can be accomplished by locking them down into the cache.

Hardware Reference Manual 111

Intel® IXP2800 Network Processor

Intel XScale®

3.9.2

Table 28.

3.9.3

3.9.4

112

Core

intel.

¢ removing or reducing the occurrences of hardware page table walks. This also can be
accomplished by locking down the application’s page table entries into the TLBs, along with
the page table entry for the interrupt service routine.

Branch Prediction

The Intel XScale® core implements dynamic branch prediction for the ARM* instructions B and
BL and for the Thumb instruction B. Any instruction that specifies the PC asthe destination is
predicted as not taken. For example, an LDR or aM OV that loads or moves directly to the PC will
be predicted not taken and incur a branch latency penalty.

Theseingtructions-- ARM B, ARM BL and Thumb B -- enter into the branch target buffer when
they are “taken” for the first time. (A “taken” branch refers to when they are evaluated to be true.)
Once in the branch target buffer, the Intel X Scal ® core dynamically predicts the outcome of these
instructions based on previous outcomes. Table 28 shows the branch latency penalty when these
instructions are correctly predicted and when they are not. A penalty of zero for correct prediction
means that the Intel X Scale€® core can execute the next instruction in the program flow in the cycle
following the branch.

Branch Latency Penalty

Core Clock Cycles
Description

ARM* Thumb

Predicted Correctly. The instruction is in the branch target cache and is

+0 +0 correctly predicted.

Mispredicted. There are three occurrences of branch misprediction, all of

which incur a 4-cycle branch delay penalty.

1. The instruction is in the branch target buffer and is predicted not-taken, but

+4 +5 is actually taken.

2. The instruction is not in the branch target buffer and is a taken branch.

3. The instruction is in the branch target buffer and is predicted taken, but is
actually not-taken

Addressing Modes

All load and store addressing modes implemented in the Intel XScale® core do not add to the
instruction latencies numbers.

Instruction Latencies
The latencies for all the instructions are shown in the following sections with respect to their

functional groups: branch, data processing, multiply, status register access, load/store, semaphore,
and coprocessor.

The following section explains how to read these tables.

Hardware Reference Manual

intgl.

Intel® IXP2800 Network Processor
Intel XScale® Core

3.94.1 Performance Terms

Issue Clock (cycle 0)

Thefirst cycle when an instruction is decoded and allowed to proceed to further stagesin the
execution pipeline (i.e., when the instruction is actually issued).

Cycle Distance from A to B

The cycle distance from cycle A to cycle B is (B-A) -- that is, the number of cycles from the
start of cycle A to the start of cycle B. Example: the cycle distance from cycle 3tocycle4is
one cycle.

I ssue Latency

The cycle distance from the first issue clock of the current instruction to the issue clock of the
next instruction. The actual number of cycles can be influenced by cache-misses, resource-
dependency stalls, and resource availability conflicts.

Result Latency

The cycle distance from thefirst issue clock of the current instruction to the issue clock of the
first instruction that can use the result without incurring a resource dependency stall. The
actual number of cycles can be influenced by cache-misses, resource-dependency stalls, and
resource availability conflicts

Minimum Issue Latency (without Branch Misprediction)

The minimum cycle distance from the issue clock of the current instruction to the first possible
issue clock of the next instruction assuming best case conditions (i.e., that the issuing of the
next instruction is not stalled due to a resource dependency stall; the next instruction is
immediately available from the cache or memory interface; the current instruction does not
incur resource dependency stalls during execution that can not be detected at issue time; and if
the instruction uses dynamic branch prediction, correct prediction is assumed).

Minimum Result Latency

The required minimum cycle distance from the issue clock of the current instruction to the
issue clock of the first instruction that can use the result without incurring a resource
dependency stall assuming best case conditions (i.e., that the issuing of the next instruction is
not stalled due to a resource dependency stall; the next instruction isimmediately available
from the cache or memory interface; and the current instruction does not incur resource
dependency stalls during execution that can not be detected at issue time).

Minimum Issue Latency (with Branch Misprediction)

The minimum cycle distance from the issue clock of the current branching instruction to the
first possible issue clock of the next instruction. This definition isidentical to Minimum Issue
Latency except that the branching instruction has been mispredicted. It is calculated by adding
Minimum Issue Latency (without Branch Misprediction) to the minimum branch latency
penalty number from Table 28, which is four cycles.

Minimum Resource Latency

The minimum cycle distance from the issue clock of the current multiply instruction to the
issue clock of the next multiply instruction assuming the second multiply does not incur adata
dependency and isimmediately available from the instruction cache or memory interface.

Example 22 contains a code fragment and an example of computing latencies.

Hardware Reference Manual 113

Intel® IXP2800 Network Processor

Intel XScale®

Core

Example 22. Computing Latencies

Table 29.

3.9.4.2

intel.

UMLALr6,r8,xr0,rl
ADD r9,r10,rll
SUB r2,r8,r9

MOV r0,rl

Table 29 shows how to calculate I ssue Latency and Result Latency for each instruction. Looking at
theissue column, the UM L AL instruction startsto issue on cycle 0 and the next instruction, ADD,
issues on cycle 2, so the Issue Latency for UMLAL istwo. From the code fragment, thereis a
result dependency between the UM L AL instruction and the SUB instruction. In Table 29,
UMLAL startsto issue at cycle 0 and the SUB issues at cycle 5. thus the Result Latency isfive.

Latency Example

Cycle

N[o|loa|l |l W N|R| O

Issue Executing
umlal (1st cycle) --
umlal (2nd cycle) umlal
add umlal
sub (stalled) umlal & add
sub (stalled) umlal
sub umlal
mov sub
- mov

Branch Instruction Timings

Table 30. Branch Instruction Timings (Those predicted by the BTB)

Mnemonic Minimum Issue Latency when Correctly Minimum Issue Latency with Branch
Predicted by the BTB Misprediction
B 1 5
BL 1 5

Table 31. Branch Instruction Timings (Those not predicted by the BTB)

114

Minimum Issue Latency when

Minimum Issue Latency when

Mnemonic the branch is not taken the branch is taken
BLX(1) N/A 5
BLX(2) 1 5
BX 1 5

Data Processing Instruction with
PC as the destination

Same as Table 32

4 + numbers in Table 32

LDR PC,<>

2

8

LDM with PC in register list

3 + numreg?!

10 + max (0, numreg-3)

1.

numreg is the number of registers in the register list including the PC.

Hardware Reference Manual

Intel® IXP2800 Network Processor
Intel XScale® Core

intel.
3.9.4.3 Data Processing Instruction Timings

Table 32. Data Processing Instruction Timings

<shifter operand> is a Shift/Rotate by
Register OR
<shifter operand>is RRX

<shifter operand>is NOT a Shift/Rotate
by Register
Mnemonic

Minimum Issue Minimum Result Minimum Issue Minimum Result
Latency Latency?! Latency Latency?!

ADC
ADD
AND
BIC
CMN
CMP
EOR
MOV
MVN
ORR
RSB
RSC
SBC
SUB
TEQ
TST

I
=
N
N

NININININININNINDNINDNDIDNDND

RPlRrlr|RrRr|Rr|RP|Pr| P[RR RPr|RP]|~
RPlRrlr|RrRr|Rr|R|RPr|R[RP|R[R|Rr|[RP| -
NENIENIENI EY NI RN R RN BN ENI R B IR NI

N

1. Ifthe nextinstruction needs to use the result of the data processing for a shift by immediate or as Rnin a QDADD or QDSUB,
one extra cycle of result latency is added to the number listed.

3.944 Multiply Instruction Timings

Table 33. Multiply Instruction Timings (Sheet 1 of 2)

Mnemonic Rs Value S-Bit Minimum Minimum Result Minimum Resource
(Early Termination) | Value | Issue Latency Latencyl Latency (Throughput)

Rs[31:15] = 0x00000 0 1 2 1

or
Rs[31:15] = Ox1FFFF | 1 2 2 2
Rs[31:27] = 0x00 0 1 3 2

MLA or
Rs[31:27] = Ox1F 1 3 3 3
0 1 4 3

all others

1 4 4 4
Rs[31:15] = 0x00000 0 1 2 1

or
Rs[31:15] = Ox1FFFF | 1 2 2 2
Rs[31:27] = 0x00 0 1 3 2

MUL or
Rs[31:27] = Ox1F 1 3 3 3
0 1 4 3

all others

1 4 4 4

Hardware Reference Manual 115

Intel® IXP2800 Network Processor
Intel XScale® Core

116

Table 33. Multiply Instruction Timings (Sheet 2 of 2)

intel.

Mnemonic Rs Value S-Bit Minimum Minimum Result Minimum Resource
(Early Termination) | Value | Issue Latency Latencyl Latency (Throughput)
Rs[31:15] = 0x00000 0 2 RdLo =2; RdHi =3 2
or
Rs[31:15] = Ox1FFFF | 1 3 3 3
Rs[31:27] = 0x00 0 2 RdLo =3; RdHi =4 3
SMLAL or
Rs[31:27] = Ox1F 1 4 4 4
0 2 RdLo=4; RdHi=5 4
all others
1 5 5 5
SMLALxy N/A N/A 2 RdLo =2; RdHi =3 2
SMLAWY N/A N/A 1 2
SMLAXxy N/A N/A 1 1
Rs[31:15] = 0x00000 0 1 RdLo=2; RdHi =3 2
or
Rs[31:15] = Ox1FFFF | 1 3 3 3
Rs[31:27] = 0x00 0 1 RdLo =3;RdHi =4 3
SMULL or
Rs[31:27] = Ox1F 1 4 4 4
0 1 RdLo=4; RdHi=5 4
all others
1 5 5 5
SMULWy N/A N/A 1 3 2
SMULxy N/A N/A 1 2 1
0 2 RdLo =2; RdHi =3 2
Rs[31:15] = 0x00000
1 3 3 3
0 2 RdLo =3; RdHi =4 3
UMLAL Rs[31:27] = 0x00
1 4 4 4
0 2 RdLo =4; RdHi=5 4
all others
1 5 5 5
0 1 RdLo =2; RdHi =3 2
Rs[31:15] = 0x00000
1 3 3 3
0 1 RdLo =3; RdHi =4 3
UMULL Rs[31:27] = 0x00
1 4 4 4
0 1 RdLo =4; RdHi=5 4
all others
1 5 5 5

1.

If the next instruction needs to use the result of the multiply for a shift by immediate or as Rn in a QDADD or QDSUB, one
extra cycle of result latency is added to the number listed.

Hardware Reference Manual

in

Table 34. Multiply Implicit Accumulate Instruction Timings

Table 35. Implicit Accumulator Access Instruction Timings

3.9.45

®

Intel® IXP2800 Network Processor
Intel XScale® Core

. Rs Value (Early Minimum Issue Minimum Result Minimum Resource
Mnemonic Termination) Latency Latency Latency
(Throughput)
Rs[31:16] = 0x0000
or 1 1 1
Rs[31:16] = OxFFFF
MIA Rs[31:28] = 0x0
or 1 2 2
Rs[31:28] = OxF
all others 1 3 3
MIAXy N/A 1 1 1
MIAPH N/A 1 2 2

Minimum Resource Latency

Mnemonic Minimum Issue Latency Minimum Result Latency (Throughput)
MAR 2 2 2
MRA 1 (RdLo = 2; RdHi = 3)! 2

1. If the next instruction needs to use the result of the MRA for a shift by immediate or as Rn in a QDADD or QDSUB, one extra
cycle of result latency is added to the number listed.

Saturated Arithmetic Instructions

Table 36. Saturated Data Processing Instruction Timings

3.9.4.6

Mnemonic Minimum Issue Latency Minimum Result Latency
QADD 1 2
QSuB 1 2
QDADD 1 2
QDSuUB 1 2

Status Register Access Instructions

Table 37. Status Register Access Instruction Timings

Hardware Reference Manual

Mnemonic Minimum Issue Latency Minimum Result Latency
MRS 1 2
MSR 2 (6 if updating mode bits) 1

117

Intel® IXP2800 Network Processor
Intel XScale® Core

3.94.7

Load/Store Instructions

Table 38. Load and Store Instruction Timings

Table 39. Load and Store Multiple Instruction Timings

3.9.4.8

INtal.

Mnemonic Minimum Issue Latency Minimum Result Latency
LDR 1 3 for load data; 1 for writeback of base
LDRB 1 3 for load data; 1 for writeback of base
LDRBT 1 3 for load data; 1 for writeback of base
LDRD 1 (+1if Rdis R12) 3 for Rd; 4 for Rd+1; 2 for writeback of base
LDRH 1 3 for load data; 1 for writeback of base
LDRSB 1 3 for load data; 1 for writeback of base
LDRSH 1 3 for load data; 1 for writeback of base
LDRT 1 3 for load data; 1 for writeback of base
PLD 1 N/A
STR 1 1 for writeback of base
STRB 1 1 for writeback of base
STRBT 1 1 for writeback of base
STRD 2 1 for writeback of base
STRH 1 1 for writeback of base
STRT 1 1 for writeback of base

Mnemonic Minimum Issue Latencyl Minimum Result Latency
LDM 3-23 1-3 for load data; 1 for writeback of base
STM 3-18 1 for writeback of base

1. LDMissue latency is 7 + N if R15 is in the register list and 2 + N if it is not. STM issue latency is calculated as 2 + N. N is

the number of registers to load or store.

Semaphore Instructions

Table 40. Semaphore Instruction Timings

3.9.4.9

Table 41. CP15 Register Access Instruction Timings

118

Mnemonic Minimum Issue Latency Minimum Result Latency
SWP 5 5
SWPB 5 5

Coprocessor Instructions

Mnemonic Minimum Issue Latency Minimum Result Latency
MRC 4 4
MCR 2 N/A

Hardware Reference Manual

intgl.

Table 42.

3.9.4.10

Table 43.

Table 44.

3.94.11

3.10

3.10.1

Intel® IXP2800 Network Processor
Intel XScale® Core

CP14 Register Access Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency
MRC 7 7
MCR 7 N/A
LDC 10 N/A
STC 7 N/A

Miscellaneous Instruction Timing

SWI Instruction Timings

Mnemonic Minimum latency to first instruction of SWI exception handler

Swi 6

Count Leading Zeros Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

CLz 1 1

Thumb Instructions

Thetiming of Thumb instructions are the same as their equivalent ARM* instructions. This
mapping can be found in the ARM* Architecture Reference Manual. The only exception isthe
Thumb BL instruction when H = 0; the timing in this case would be the same as an ARM* data
processing instruction.

Test Features

This section gives a brief overview of the Intel X Scale® core JTAG features. The Intel X Scale®
core providestest features compatible with the | EEE Standard Test Access Port and Boundary Scan
Architecture (IEEE Std. 1149.1). These features include a TAP controller, a 5-bit instruction
register, and test data registers to support software debug. The Intel X Scale® core also provides
support for a boundary-scan register, device ID register, and other data test register.

A full description of these features can be found in the | ntel® 1XP2400/1XP2800 Network
Processor Programmer’s Reference Manual .

IXP2800 Network Processor Endianness

Endianness defines the way bytes are addressed within aword. A little endian systemisonein
which byte zero is the least significant byte (LSB) in the word and byte three isthe most significant
byte. A big endian system is one in which byte zero is the most significant byte (MSB) and byte 3
isthe LSB. For example the value of 0x12345678 at address 0x0 in a 32 hit little endian system
lookslike this:

Hardware Reference Manual 119

Intel® IXP2800 Network Processor
Intel XScale® Core

Table 45. Little Endian Encoding

intel.

Add[e:rfé Byte 0x0/ByteLane 3 0x0/ByteLane 2 0xO/ByteLane 1 | OxO/ByteLane 0
Byte Value 0x12 0x34 0x56 0x78

The same value is stored in Big Endian system looks like this:

Table 46. Big Endian Encoding

Addrl_easrfé Byte 0x0/ByteLane 3 0x0/ByteLane 2 0x0/ByteLane 1 | O0x0/ByteLane O
Byte Value 0x78 0x56 0x34 0x12

Bitswithin abyte are dwaysin Little Endian order. The least significant bit resides at bit location 0
and the most significant bit resides at hit location 7 (7:0).

The following conventions are used in this document:

1 Byte:
1 Word:
1 Long-word:

Long Word Little Endian
Format (LWLE)

Long Word-Big Endian format
(LWBE):

8-bit data
16-bit data
32-bit data

32-bit data (0x12345678) arranged as {12 34 56 78}
64-bit data 0x12345678 9ABCDES6 arranged as {12 34 56 78 9A BC DE 56}

32-bit data (0x12345678) arranged as {78 56 34 12}
64-bit data 0x12345678 9ABCDES6 arranged as {78 56 34 12, 56 DE BC 9A}

Endianness for the I XP2800 processor can be divided into three major categories:

* Read and write transactionsinitiated by the Intel X Scal e® core:
— Readsinitiated by Intel XScale® core
— Writesinitiated by Intel X Scale® core

* SRAM and DRAM access:
— 64-hit Datatransfer between DRAM and the Intel X Scale® core
— Byte, word or long-word transfer between SRAM/DRAM and Intel X Scale® core
— Datatransfer between SRAM/DRAM and PCI
— Microengine initiated accessto SRAM and DRAM

* PCI Accesses

— the Intel XScale® core generated reads/writes to PCI in memory space

— the Intel XScale® core generated read/write of external/internal PCI config registers

120

Hardware Reference Manual

INtal.

3.10.1.1

3.10.1.1.1

Table 47.

Intel® IXP2800 Network Processor
Intel XScale® Core

Read and Write Transactions Initiated by the Intel XScale® Core

The Intel XScale® core may be used in either alittle endian or b(g endian configuration. The
configuration affects the entire system in which the Intel XScale™ microarchitecture exists.
Software and hardware must agree on the byte ordering to be used. In software, a system'’s byte
order is configured with CP15 register 1, the control register. Bit 7 of this register, the B hit,
informs the processor of the byte order in use by the system. Note that this bit takes effect even if
the MMU is not otherwise in use or enabled.

Though it isthe responsibility of system hardware to assign correct byte lanesto each byte field in
the data bus, in the IXP2800 it is |eft to the software to interpret byte lanes in accordance with the
endianness of the system. As shown in Figure 24, system byte lanes 0—3 are connected directly to

the Intel X Scale® core byte lanes 0-3. What this means isthat bytelane 0 (M[7:0]) of the systemis
connected to byte lane 0 (X[7:0]) of the Intel X Scale® core byte lane 1 (M[15:8]) of the system is
connected to byte lane 1 (X[15:8]) of the Intel X Scale® core and so on.

Interface operation of the Intel XScale® core and the rest of the IXP2800 can be divided into two
parts:

* Intel XScale® core reading from the IXP2800
* Intel XScale® core writing to the IXP2800

Reads Initiated by the Intel XScale® Core

Intel X Scale® core reads can be one of the following three types:
¢ Byteread
* 16-bits (word) read
* 32-bits (Long Word) read
Byte Read
When reading a byte, the Intel X Scale® core generates the byte_enable that corresponds to the

proper byte lane as defined by the endianness setting. Table 47 summarizes byte enable generation
for this mode.

Byte Enable Generation by the Intel XScale® Core for Byte Transfers in Little and
Big Endian Systems

Byte# to Byte Enables When System is Little Endian Byte Enables When System is Big Endian
beread |y gero] | x BE[] | X BE[2] | X_BE[3] | X BE[O] | X BE[1] | X _BE[2] | X_BE[3]
ByteO 1 0 0 0 0 0 0 1
Bytel 0 1 0 0 0 0 1 0
Byte2 0 0 1 0 0 1 0 0
Byte3 0 0 0 1 1 0 0 0

The 4-to-1 mux steers the byte read into byte lane 0 location of the read register inside the Intel
X Scale® core. Select signals for the mux are generated based on endian setting and ByteEnable
generated by the Intel X Scale® core as defined in Fi gure 24.

Hardware Reference Manual 121

Intel® IXP2800 Network Processor
Intel XScale® Core

intel.

When reading aword, the Intel XScal €® core generates the byte enable that corresponds to the
proper byte lane as defined by the endianness setting. Figure 25 summarizes byte enable generation
for this mode.

16-bit (Word) Read

The 4-to-1 mux steers Byte lane O or Byte lane 2 into ByteO location of the read register inside the
Intel X Scale® core. The 2-to-1 mux steers Bytelane 1 or Byte lane 3 into Bytel location of the read
register inside the Intel X Scale® core. The Intel X Scale® core does not allow word accessto an odd
byte address. Select sgnalsfor the mux are generated based on endian setting and ByteEnable
generated by the Intel XScale® core as defined in Figure 24. Table 48 summarizes byte enable
generation for this mode.

Figure 24. Byte Steering for Read and Byte Enable Generation by the Intel XScale® Core

Intel® XScale™ Core
> X[7:0] Byte 0
) SO| 1]« Intel® |XP2800
DI7:0] 2| M[7:0] Gasket
3|
A4 X[15:8] Byte 1 _
D[15:8] S1 i < M[15:8]
D[23:16] | X[23:16] Byte 2 M[23:16]
. - X[31:24] Byte 3]
D[31:24] |- M[31:24]
BEO N X_BE[0] _
rdl i
BE1 JoN X BE[1] _
1 , >
9 7)
BE2 I_gm X_BE[2] _
a]
BE3 JoN X _BE[3] _
7l]
Big Endian =0
Little Endian = 1
Notes:
For 32-bit Operation S0[3:0] = 0001; S1[1:0] = 01
Otherwise: SO0[3:0] = X_BE[3:0]; S1[1:0] = X_BE[1:2]
A9694-01

122 Hardware Reference Manual

intgl.

Intel® IXP2800 Network Processor
Intel XScale® Core

Table 48. Byte Enable Generation by the Intel XScale® Core for 16-bit Data Transfers in Little

3.10.1.1.2

Table 49.

and Big Endian Systems

Word to Byte Enables When System is Little Endian Byte Enables When System is Big Endian
beread | peo] | x BE[1] | X BE[2] | X BE[3] | X_BE[0] | X BE[1] | X BE[2] | X_BE[3]
ByteO &

Bytel 1 1 0 0 0 0 1 1
Byte2 &

Byte3 0 0 1 1 1 1 0 0

32-bits (Long Word) Read

32-bits é ong Word) reads are independent of endianness setting and byte lane O from the Intel
XScale”™ core’s data bus gets |nto Byte O location of the read register inside Intel XScale® core,
bytelane 1 from Intel XScale® core’s data bus gets into Bytel location of the read register inside
Intel XScale® core and so on. Itis up to the software to deal with byte location properly based on
the endian setting.

The Intel XScale® Core Writing to the IXP2800

Similar to reads, writes by Intel XScal €® core can also be divided in followi ng three categories:
* Byte Write
* Word Write (16-hits)
* Long Word write (32-bits)

Byte Write

When Intel X Scale® core writes si ngle byte to external memory, it puts the byte in the byte lane
where it intends to write it along W|th the byte enable for that byte turned ON based on endian
setting of the system. Intel X Scale® core register bits[7:0] aIways contain the byte to be written
regardless of the B-hit setting. For example if the Intel X Scale® core wants to write to byte Oin
little endian system, it puts the byte in byte lane0 and turns X_BE[0] ON. If the system is big
endian, in that case the Intel X Scale® core puts byte0 in byte lane 3 and turns X_BE[3] ON. Other
possible combinations of byte lanes and byte enables are shown in the Table 49. Other byte lanes
besides the one currently driven by the Intel X Scale® core contain undefined data.

Byte Enable Generation by the Intel XScale® Core for Byte Writes in Little and
Big Endian Systems

Byte# Byte Enables when system is Little Endian Byte Enables when system is Big Endian
V\tﬁtkt)een X_BE[0] | X _BE[1] | X BE[2] | X BE[3] | X BE[0] | X BE[1] | X BE[2] | X _BE[3]
Byte0 1 0 0 0 0 0 0 1
Bytel 0 1 0 0 0 0 1 0
Byte2 0 0 1 0 0 1 0 0
Byte3 0 0 0 1 1 0 0 0

Hardware Reference Manual 123

Intel® IXP2800 Network Processor
Intel XScale® Core

124

Table 50.

intel.

When the Intel X Scale® core writes a 16-bit word to external memory, it puts the bytesin the byte
laneswhereit intends to write them a ong with the byte enablesfor those bytes turned ON based on
the endian setting of the system The Intel X Scale® core does not allow aword write on an odd
byte address. The Intel X Scale® core register bits [15:0] always contain the word to be written
regardless of the B-hit setting. For example if the Intel X Scal€® core wants to write one word to a
little endian system at address 0x0002, it will copy byte0 to byte lane 2 and bytel to byte lane 3
along with X_BE[2] and X_BE[3] turned ON. If the Intel X Scal€® core wants to write one word to
abig endian system at address 0x0002, it will copy byte0 to byte lane 0 and bytel to byte lane 1
along with X_BE[0] and X_BE[1] turned ON. Other possible combinations of byte lanes and byte
enables are shown in Table 50. Other byte lanes besides the ones currently driven by the Intel

X Scale® core contain undefined data.

Word Write (16-bits Write)

Byte Enable Generation by the Intel XScale® Core for Word Writes in Little and
Big-Endian Systems

Word Byte Enables When System is Little Endian Byte Enables When System is Big Endian
to be

written | X_BE[0] | X_BE[1] | X _BE[2] | X_BE[3] | X_BE[0] | X_BE[1] | X_BE[2] | X_BE[3]

ByteO &

Bytel 1 1 0 0 0 0 1 1
Byte2 &

Byte3 0 0 1 1 1 1 0 0

Long Word (32-bits) Write

Thelong word to be written is put on the Intel X Scale® core’s data bus with byte0 on X[7:0], bytel
on X[15:8], byte2 on X[23:16] and byted on X[31:24] (see Figure 25). AII the byte enables are
turned ON. A 32-bit long word write (0x12345678) by the Intel X Scale® core to address 0x0000
irrespective of the endianness of the system causes byte0 (0x78) to be written to address 0x0000,
bytel (0x56) to address 0x0001, byte? (0x34) to address 0x0002 and byte3 (0x12) to address
0x0003.

Figure 25. Intel XScale® Core Initiated Write to the IXP2800 Network Processor

Byte Write by Intel® XScale™ Core

Intel® |XP2800
Byte -
W)r/ite _) X (7o) M[7:0] Gasket
) X [15:8]
M[15:8]
) X [23:16]
M[23:16]
) X [31:24]
M[31:24]

A9695-01

Hardware Reference Manual

intgl.

Intel® IXP2800 Network Processor

Intel XScale® Core

Figure 26. Intel XScale® Core Initiated Write to the IXP2800 Network Processor (Continued)

Word Write by Intel® XScale™ Core

Intel® IXP2800

Byte .
W)r,itte) X[M[7:0] Processor
Byte 1) X [15:8]
Write M[15:8]
) X [23:16]
M[23:16]
) X [31:24]
M[31:24]
Long Word (32 bits) Write by Intel® XScale™ Core
Intel® IXP2800
X [7:0] Processor
ite ' > 7o)
X [15:8]
?/\);triel > M[15:8]
X [23:16
Bte 2 [2316] > M[23:16]
X [31:24
Byie 3 12 > M[31:24]
A9696-01

Hardware Reference Manual

125

Intel® IXP2800 Network Processor
Intel XScale® Core

intel.

3.11 Intel XScale® Gasket Unit

3.11.1 Overview

The Intel X Scale® core uses the Core Memory Bus (CMB) to communicate with the functional
blocks. The rest of the IXP2800 Network Processor functional blocks use the Command Push Pulll
(CPP) asthe global busto pass data. Therefore the gasket is needed to trans ate Core Memory Bus
commands to Command Push Pull commands.

This gasket has aset of local CSRs, including interrupt registers. These registers can be accessed
by the Intel X Scale® core via the gasket internal bus. The CSR Access Proxy (CAP) is allowed to
only do a set on these interrupt registers.

The Intel X Scale® core coprocessor busis not used in the IXP2800 Network Processors, all
accesses are only through the Command Memory Bus.

Figure 27 shows the block diagram of the global bus connections to the gasket.

The gasket unit has the following features:

* Interrupts are sent to the Intel X Scale® core via the gasket, with the interrupt controller
registers used for masking the interrupts.

* The gasket converts CMB reads and writes to CPP format.
¢ All the atomic operations are applied on SRAM and SCRATCH only, not DRAM.

* There |sastepp| ng-stone sitting between the Intel X Scale® core and the gasket. The Intel
X Scal€® core runs at 600MHz to 700MHz. The gasket currently supports a 1:1 (1XP2800
Network Processor and 2:1 (IXP2400 Network Processor) clock ratio. For a2:1 ratlo the
Command Push Pull bus will be running at half of the frequency of the Intel X Scale® core.

* |n IXP2800 memory controllers, read after write ordering is enforced. There is no write after
read enforcement for the Intel X Scale® core. The gasket will perform enforcement by
employing Content Addressable Memory (CAM) to detect awrite to an address with read
pending. Thisonly appliesfor writesto SRAM.

* The gasket CPP interface contains one command bus, one D_Push bus, one D_Pull bus, one
S Push bus, one S _Pull bus, each with a 32-hit data width.

A maximum four outstanding reads and four outstanding writes from the I ntel X Scale® core are
allowed.

126 Hardware Reference Manual

Intel® IXP2800 Network Processor
Intel XScale® Core

intgl.

Figure 27. Global Buses Connection to the Intel XScale® Gasket

Intel® XScale™ Core

A

Gasket Léjscgl
A A
lReq TCAP CSR
CMD_BUS \
SRAM_PULL_BUS 7

SRAM_PUSH_BUS

DRAM_PULL_BUS Y

DRAM_PUSH_BUS

A9697-02

3.11.2 Intel XScale® Gasket Functional Description

3.11.2.1 Command Memory Bus to Command Push/Pull Conversion

The primary function of the Intel X Scal e® gasket unit isto translate commands initiated from the
Intel XScale® corein the Intel X Scale® command bus format, into the X P2800 internal command
format (Command Push/Pull format).

Table 51 shows how many CPP commands are generated by the gasket from each CMB command.
Write dataiis guaranteed to be 32 bit (long word) aligned. Table 51 shows only the Store command.
In the Load case, the gasket simply convertsit to the CPP format. No command splitting is
required. A Load can only be a byte (8 hits), aword (16 hits), long word (32 hits), or eight long
words (8x32).

Hardware Reference Manual 127

Intel® IXP2800 Network Processor
Intel XScale® Core

intel.

Table 51. CMB Write Command to CPP Command Conversion

3.11.3

3.11.4

128

CPP SRAM | CPPDRAM

Store Length cmd Count | 6md Count Remark
Byte, \,Vggrrg long 1 1 SRAM uses 4-bit mask, DRAM uses an 8-bit mask.
SRAM: If there is any mask bit detected as ‘0’,two
commands will be generated.
2 long word lor2 lor2

DRAM: If it starts with odd word address, two commands
will be generated.

SRAM: If there is a mask bit of ‘0’ detected, 3 SRAM
3 long word lor3 2 commands will be generated.

DRAM: always 2 DRAM commands.

SRAM: If there is a mask bit of ‘0’ detected, four
commands will be generated.

4 long word lor4d lor2) .
DRAM: If there is a mask bit of ‘0’ detected, two
commands will be generated.

8 long word Not allowed in a write.

CAM Operation

In the SRAM controller, access ordering is guaranteed only for aread coming after awrite. The
gasket enforces order rulesin the following two cases.

1. Write coming after aread.
2. Read-Modify-Write coming after read.

The address CAMing is on 8 word boundaries. The SRAM effective address is 28-hits. Deduct
5 bits (2 bitsfor the word address and 3 bits for 8 words), and the tag width for the CAM is 23-bits
wide. The CAM only operates on SRAM accesses.

Atomic Operations

The Intel XScale® core has Swap (SWP) and Swap Byte (SWPB) instructions that generate an
atomic read-write pair to a single address. These instructions are supported for the SRAM and
Scratch space, and also to any other address spaceif it is done by a Read command followed by
Write command.

chilO is asserted when a data cache request is initiated to a memory region with cacheable and
bufferable bits in the trandlation table first-level descriptor set to zero. Also, if cbilO is asserted
during the CMB read portion of the SWP, then it also does a Read Command followed by Write
Command, regardless of address. In those cases the SWP/SWPB is atomic with respect to
processes running on the Intel X Scale® core, but not with respect to the Microengines.

Hardware Reference Manual

intgl.

Note:

Intel® IXP2800 Network Processor
Intel XScale® Core

The following summarizes the Atomic operation.

Address Space chilo Operation

SRAM/Scratch 0 RMW Command

Read Command followed by

Not SRAM/Scratch X Write Command

Read Command followed by

Any 1 Write Command

When the Intel X Scale® core presents the read command portion of the SWP it will assert the
chiLock signal. The gasket will ack the read and save the BufID in the push_ff. It will not arbitrate
for the command bus at that time; rather it will wait for the corresponding write of the SWP (which
will also have chil ock asserted). At that time the gasket will arbitrate for the command busto send
a command with the atomic operation in the command field [the command is based on the address
space chosen for the SRAM/Scratch, which has multiple aliased address ranges)].

The SRAM or Scratch controller will pull the data, do the atomic read-modify-write, and then push
the read data back. The gasket will use the saved BufID when returning the datato CMB.

Unrelated reads, such asinstruction and Page Table fetches, can come in theinterval between the
read-lock and write-unlock, and will be handIed by the gasket. No other data reads or writes will
comein that interval. Also, the Intel XScale® core will not wait for the SWP read data before
presenting the write data.

The gasket uses address aliases to generate the following atomic operations.
* Bit Set
¢ Bit Clear
* Add
* Subtract
° SNap
For the alias address type of atomic operation, the Intel XScal €® core will issue a SWP command

with an alias address if it needs data return. The Intel X Scal€® core will use the write command
with an alias address if it doesn’t need data return.

Xscale IFwill not check the second address, aslong as it detects one write after one read, both
with cbiLock enabled. It will take the write address and put it in the command.
The summary of the rules for Atomic command in /O space are.

* SWPto SRAM/Scratch and Not chil O, Xscale |F generates an Atomic operation command.

¢ SWPto dl other Addresses that are not SRAM/Scratch, will be treated as separate read and
write commands. No Atomic command is generated.

* SWPto SRAM/Scratch and cbhil O, will be treated as separate read and write commands. No
Atomic command is generated.

Hardware Reference Manual 129

Intel® IXP2800 Network Processor
Intel XScale® Core

3.11.4.1

3.11.5

130

intel.

The Intel X Scale® core can access the SRAM controllers gueue function to do buffer alocation
and freeing. Allocation does a SRAM dequeue (deq) operation, and freeing does a SRAM enqueue
(enq) operation. Alias addresses are used as shown in Table 52 to access the freelist. Each SRAM
channel supports up to 64 lists, so there are 64 addresses per channel.

Intel XScale® Core Access to SRAM Q-Array

Table 52. IXP2800 Network Processor SRAM Q-Array Access Alias Addresses

Channel Address Range
0 0xCCO00 0100 — OxCCO00 01FC
1 0xCC40 0100 — 0xCC40 01FC
2 0xCC80 0100 — 0xCC80 01FC
3 0xCCCO0 0100 — 0xCCCO0 01FC

Address 7:2 selects which Queue_Array entry within the SRAM channel is used.

Doing aload to an address in the table will do a deq, the SRAM controller returns the dequeued
information (i.e. the buffer pointer) as the load data.

Doing a store to an address in the table will do an eng. The data to be enqueued is taken from the
Intel X Scale® core store data.

The gasket will generate command fields as follows, based on address and chiL d:

Target ID = SRAM (00 0010)

Command = deqg (1011) if cbild, eng (1100) if ~cbild

Token[1:0] = 0x0

Byte Mask = OXFF

Length = 0x1

Address = {XScale Address[23:22], XScale Address[7:2], XScale Write Datal[25:2]}

(Note: On command bus -- address[31:30] selects the SRAM channel, address[29:24] is Q_Array
number; and address[23:0] is the SRAM longword address. For Dequeue, SRAM controller
ignores address[23:0].)

/O Transaction

Intel X Scale® core can reguest an I/O transaction by asserting xsoCBI_IO concurrently with
xsoCBI_Req. The value of xsoCBI_10 is undefined when xsoCBI_Req is not asserted. When the
gasket sees an 1/0 request with xsoCBI_|O asserted, it will raise xsiCBR_Ack but will not
acknowledge future requests until the 1O transaction is complete. The gasket will check if al the
command FIFOs and write data FIFOs are empty or not. It will also check if the command counters
(SRAM and DRAM) are equa to zero. All these checks are to guarantee that:

¢ Writes are issued to the target, and targets have pulled the data.
¢ Pending reads have their data all back to the gasket.
When the gasket sees that all the conditions are satisfied, it will assert xsiCBR_SynchDone to the

Intel XScale® core. XsiCB R_SynchDone is one cycle long and does not need to coincide with
xsiCBR_Datavalid.

Hardware Reference Manual

INtal.

3.11.6

3.11.7

Note:

Intel® IXP2800 Network Processor
Intel XScale® Core

Hash Access

Hash accesses are accomplished by the gasket Local_CSR accesses from the Intel X Scal e® core.
There are two sets of registersin the gasket that are involved in Hash accesses.

* Four 32 bit XG_GCSR_Hash[3:0] registers for holding the data to be hashed and index
returned as well.

* A XG_GCSR_CTRO(valid) register to hold the status of the Hash Access.
The procedure for the Intel X Scale® core to setup a Hash access is as follows.

1. The Intel XScal€® core writes data to XG_GCSR Hash by Local_CSR access using address
[X:yy:zz]. X selects Hash register set. yy selects hash_48, hash_64 or hash_128 mode. zz selects
one of four Hash_Dataregisters.

2. Datawrite order is 3-2-1-0(for hash_128), 1-0(for hash_48 or hash_64). When the data write to
Hash Data[0] is performed, it triggers the Hash request to go out on the CPP bus. At the sametime,
XG_GCSR_Hash(valid) will be cleared by hardware.

3. The Intel XScale® core starts to poll Hash_Result_Valid periodically by Local _CSR read.

4. After some period of time, the Hash_Result is returned to XG_GCSR_Hash, and
XG_GCSR_CTRO(valid) is set to indicate that Hash_Result is ready to be retrieved.

5. The Intel XScale® coreissuesalocal _CSR read to read back the Hash_Resullt.
Note, each Hash command requests only one index returned.

TheHash CSR isin the gasket local CSR space.

Gasket Local CSR

There are two sets of Control and Status registersresiding in the gasket Local CSR space. ICSR
refersto the Interrupt CSR. The ICSR address range is 0xd600_0000 - Oxd6ff ffff. The Gasket
CSR (GCSR) refers to the Hash CSRs and debug CSR. It has arange of 0xd700_0000 -
Oxd7ff_ffff. GCSR is shown in Table 53.

The Gasket registers are defined in the 1 XP2400/I XP2800 Network Processor Programmers
Reference Manual.

Hardware Reference Manual 131

Intel® IXP2800 Network Processor
Intel XScale® Core

Table 53. GCSR Address Map(0xd700 0000)

3.11.8

132

intel.

Bits

Name

R/W

Description

Address Offset

[31:0]

XG_GCSR_HASHO

R/W

Hash word 0

Write from Intel XScale®
core.

Rd/Wr from CPP.

0x00 :
0x10 :
0x20 :

for 48bit Hash
for 64bit Hash
for 128bit Hash

[31:0]

XG_GCSR_HASH1

R/W

Hash word 1

Write from Intel XScale®
core.

Rd/Wr from CPP.

0x04 :
0x14 :
0x24 :

for 48bit Hash
for 64bit Hash
for 128bit Hash

[31:0]

XG_GCSR_HASH2

R/W

Hash word 2

Write from Intel XScale®
core.

Rd/Wr from CPP.

0x28 :

for 128bit Hash

[31:0]

XG_GCSR_HASH3

R/W

Hash word 3

Write from Intel XScale®
core.

Rd/Wr from CPP.

0x2c :

for 128bit Hash

[31:0]

XG_GCSR_CTRO

[31:1] reserved.
[0] hash valid flag.

Read from Intel XScale®
core.

Set by LCSR control.

0x30

[31:0]

XG_GCSR_CTR1

R/W

[31:1] reserved.
[0] Break_Function

When set to 1, the debug
break signal is used to
stop the clocks.

When set to 0, the debug
break signal is used to
cause an Intel XScale®
core debug breakpoint

0x3c

Interrupt

The Intel XScale® core CSR controller contains local CSR(s) and interrupts inputs from multiple
sources. The diagram in Figure 28 shows the flow through the controller.

Within the Interrupt/ CSR Register block there are raw status registers, enable registers, and local
CSR(9). Theraw status registers are the un-masked interrupt status. These interrupt status are
masked or steered to thelntel X Scale® core's IRQ or FIQ inputs by multiple levels of enable

registers.

Refer to Figure 29.
* {IRQ,FIQ}Status = (RawStatus & {IRQ,FIQ} Enable)
* {IRQ,FIQ} ErrorStatus = (ErrorRawStatus & {IRQ,FIQ} ErrorEnable)

* {IRQFIQ} ThreadStatus $ # = ({IRQ,FIQ} ThreadRawStatus $ # &
{IRQ,FIQ} ThreadEnable_$_#)

Hardware Reference Manual

tel.

Intel® IXP2800 Network Processor
Intel XScale® Core

Each interrupt input is visible in the RawStatusRegister and is masked or steered by two level of
interrupt enable registers. The error and thread status are masked by onelevel of enable registers.
Their combination along with other interrupt sources contributes to the RawStatusReg. The
RawStatus is masked via |RQEnable/FIQEnable to trigger the IRQ and FIQ interrupt to the Intel
X Scale® core.

The enable register’s bits are set and cleared through EnableSet and EnabeClear registers. The
Status, RawStatus, and Enable Registers are read-only, and EnableSet and EnableClear are write-
only. Also, Enable and EnableSet share the same address for reads and writes respectively.

Note that software needs to take into account the delay between the clearing of an interrupt
condition and having its status updated in the RawStatus registers. Also in the case of simultaneous
writes to the same registers, the value of the last write is recorded.

Figure 28. Flow Through the Intel XScale® Core Interrupt Controller

IRQ FIQ
CAP_CSR_WR_ADDR Interrupt/
CAP_CSR_WR CSR CSR chrbata
S Decode Registers
| T P
From cbiAdr

CAP_CSR_WR_DATA

From cbiData

—7

A9698-01

Hardware Reference Manual 133

Intel® IXP2800 Network Processor
Intel XScale® Core

134

Figure 29. Interrupt Mask Block Diagram

{Error,Thread}RawStatus

{Error,Thread}RawStatusReg

{Error,Thread}RQEnReg

l——

>

IRQ{Error, Thread}Status

>

{Error,Thread}FIQEnReg

FIQ{Error, Thread}Status

 —
 —

>

Interrupt{Error, Thread}RawStatus

Interrupts,IRQ{Error, Thread}Status

IRQENReg

>

Interrupts,FIQ{Error, Thread}Status

FIQENnReg

>

RawStatusReg
—>
>
)
_/ ﬁ—) To IRQ
)
| Other @—) To FIQ
Enabled

Interrupts

A9699-01

Hardware Reference Manual

intgl.

3.12

3.12.1

Intel® IXP2800 Network Processor
Intel XScale® Core

Intel XScale® Core Peripheral Interface

This section describes the Intel X Scale® core Peripheral Interface unit (XPI). The XPI is the block
that connectsto all the slow and serial interfaces that communicate with the Intel X Scale® core
through the APB bus. These can also be accessed by the Microengines and PCl unit.

This section does not describe the Intel X Scale® coreinterface protocol, only how to interface with
the peripheral devices connected to the core. The I/O units described are:

* UART

¢ Watchdog timers

* GPIO

¢ SowPort

All the peripheral units are memory mapped from the Intel XScale® core point of view.

XPIl Overview

Figure 30 shows the XPI location in the IXP2800 Network Processor. The XPI receives read and
write commands from the Command Push Pull bus to addresses the memory has mapped to 1/0
devices.

The SHaC (Scratchpad, Hash Unit, and CSRs) acts like abridge to control the access from the Intel
X Scale® core or other host (like the PCI Unit). The extended APB busis used to communicate
between the X Pl and the SHaC. The extended APB has only one signal, APB_RDY, added. This
signal is used to tell the SHaC when the transaction should be terminated.

The XPI isresponsible for passing the data between the extended APB bus and the internal fubs,
like the UART, GPIO, Timer, and SlowPort, which will in turn pass these data to an external
peripheral device with a corresponding bus format.

The XPI isalwaysamaster on the SlowPort bus and all the SlowPort devices act like laves. Onthe
other side, the SHaC is always the master and the XPI is the slave with respect to the APB.

Hardware Reference Manual 135

Intel® IXP2800 Network Processor
Intel XScale® Core

Figure 30. XPI Interfaces (B0O) for 2400/2800

Intel® I1XP2400/2800
Network Processor e ,
} XPI : SONET/SDH
E [7:0]/[15:0]/[31:01; Microprocessor
! . Interface
rx,tx
: ART |-r— >
PCI <) v '
A Vo . 7:0]
[< : >
a Vo, GPIO " - IDemuItipIexorI
) ¢—>|SHaC [«—— : A
o ' '
§)) oo
v E'E SlowPort |- [7:01 >| PROM
['
1 <C '
Intel® ' :
™ [1
Xgae™ o | Timer |
Reset watchdog_reset : :
Sequential |« : !
Logic | el)

B1740-01

3.12.1.1

3.12.1.2

136

Data Transfers

The current rate for data transfersis four bytes, except for the SlowPort. The 8-bit and 16-bit
accesses are only availablein the SlowPort bus. The devices connected to the SlowPort dictate this
datawidth. The user hasto configure the datawidth register resident in the SlowPort in order to run
adifferent type of datatransaction. There is no burst to SlowPort.

Data Alignment

For all the CSR accesses, a32-bit databus is assumed. Therefore, the lower two bits of the address
bus are ignored.

However, for the SlowPort accesses, 8-hit, 16-bit, or 32-bit data accessis dictated by the external
device connected to the SlowPort. The APB Bus should be able to match the data width according
to which devicesit istalking to.

SeeTable 54 for additional details on data alignment.

Hardware Reference Manual

Table 54. Data Transaction Alignment

3.12.1.3

Intel® IXP2800 Network Processor
Intel XScale® Core

Interface Units APB Bus Read Write
GRegs 32 bits 32 bits 32 hits
UART 32 bhits 32 hits 32 bits
GPIO 32 bits 32 bits 32 bits
Timer 32 bits 32 bits 32 bits
8 bits 8 bits 8 bits
SlowPort - - -
) 16 bits 16 bits 16 bits
Microprocessor Access
32 bits 32 bits 32 hits
SlowPort 32 bits for 32-bit read mode, 8 | Assemble 8 bits into 32-bit data for
bits for register read mode; 32-bit read mode; 8 bits for register 8 bits
Flash Memory Access™ | g uic tor write: read mode (8-bit read mode).
CSR Access 32 bits 32 bits 32 bits

The flash memory interface only supports 8-bit wide flash devices. APB write transactions are assumed to be 8-bits wide,
and correspond to one write cycle at the flash interface. APB read transactions are assumed to be 32-bits wide, and corre-
spond to four flash read cycles for the 32-bit read mode set in the SP_FRM register. However, for the flash register read
mode (8-bit read mode), it only needs one flash read cycle of 8-bit data and passes it back to APB directly. By default, the
32-bit read mode is set. It is advisable to stay in this mode most of the time and not change them dynamically during ac-

cesses.

Table 55. Address spaces for XPI Internal Devices

Address Spaces for XPI Internal Devices

Table 55 shows the address space assignment for XPI devices.

Units Starting Address Ending Address
GPIO 0xC0010000 0xC0010040
TIMER 0xC0020000 0xC0020040
UART 0xC0030000 0xC003001C
PMU 0xC0050000 0xCO050E00
SlowPort CSR 0xC0080000 0xC0080028
SlowPort Device 0xC4000000 OXC7FFFFFF

Hardware Reference Manual

137

Intel® IXP2800 Network Processor
Intel XScale® Core

3.12.2

138

intel.

The UART performs serial-to-parallel conversion on data characters received from a peripheral
device and parallel-to-serial conversion on data characters received from the network processor.
The processor can read the compl ete status of UART at any time during the functional operation.
Available status information includes the type and condition of the transfer operations being
performed by the UART and any error conditions (parity, overrun, framing or break interrupt).

UART Overview

The serial ports can operate in either FIFO or non-FIFO mode. In FIFO mode, a 64-byte transmit
FIFO holds data from the processor to be transmitted on the serial link and a 64-byte receive FIFO
buffers data from the serial link until read by the processor.

The UART includes a programmable baud rate generator which is capable of dividing the clock
input by divisorsof 1 to 2 6. 1and produces a 16X clock to drive the internal transmitter logic. It
also drives the receive logic. UART has a processor interrupt system. The UART can be operated
in polled or in interrupt driven mode as selected by software.

The UART has the following features

¢ Functionally compatible with National Semiconductor’s PC16550D for basic receive and
transmit.

* Adds or deletes standard asynchronous communications bits (start, stop, and parity) to or from
the serial data

* Independently controlled transmit, receive, line status

¢ Programmable baud rate generator allows division of clock by 1 to (216 - 1) and generates an
internal 16X clock

* 5,6, 7 or 8-hit characters
* Even, odd, or no parity detection
e 1,1-1/2, or 2 stop hit generation
¢ Baud rate generation
* False start bit detection
* 64-byte Transmit FIFO
* 64-byte Receive FIFO
* Complete status reporting capability
* Interna diagnostic capabilities include:
— Break
— Parity
— Overrun
— Framing error simulation
¢ Fully prioritized interrupt system controls

Hardware Reference Manual

intgl.

| 3.12.3
|

Intel® IXP2800 Network Processor
Intel XScale® Core

UART Operation

The format of a UART dataframe is shown in Figure 31.

Figure 31. Example UART Data Frame

TXD3 or RXD3 pin

| LSB MSB |

Notes:
Receive data sample counter frequency = 16x bit frequency, each bit is sampled three times in the middle.
Shaded bits are optional and can be proammed by users.

Start | Data | Data | Data | Data | Data | Data | Data | Data | Parity | Stop
Bit <0> <1> <2> <3> <4> <5> <6> <7> Bit Bit 1

Stop
Bit 2

!

B1741-01

3.12.3.1

3.12.3.1.1

Each dataframe is between 7 bits and 12 bits long depending on the size of data programmed, if
parity isenabled and if two stop bitsis selected. The frame begins with a start bit that is represented
by ahigh to low transition. Next, either 5 to 8 bits of data are transmitted, beginning with the least
significant bit. An optional parity bit follows, which is set if even parity is enabled and an odd
number of ones exist within the data byte, or if odd parity is enabled and the data byte contains an
even number of ones. The data frame ends with one, one and a half or two stop bits as programmed
by the user, which is represented by one or two successive bit periods of alogic one.

UART FIFO OPERATION

The UART has one transmit FIFO and one receive FIFO. The transmit FIFO is 64-bytes deep and
8-hits wide. The receive FIFO is 64-bytes deep and 11-bits wide.

UART FIFO Interrupt Mode Operation - Receiver Interrupt

When the Receive FIFO and receiver interrupts are enabled (UART_FCR[0]=1 and
UART _IER[0]=1), receiver interrupts occur as follows:

* Thereceive data available interrupt is invoked when the FIFO has reached its programmed
trigger level. Theinterrupt is cleared when the FIFO drops bel ow the programmed trigger
level.

¢ The UART _IIR receive data available indication also occurs when the FIFO trigger level is
reached, and like the interrupt, the bits are cleared when the FIFO drops below the trigger
level.

* Thereceiver line statusinterrupt (UART _IIR = C6H), as before, has the highest priority. The
receiver data available interrupt (UART_IIR=C4H) islower. The line status interrupt occurs
only when the character at the top of the FIFO has errors.

¢ Thedataready bit (DR in UART_L SR register) is set to 1 as soon as a character is transferred
from the shift register to the Receive FIFO. Thisbit is reset to 0 when the FIFO is empty.

Hardware Reference Manual 139

Intel® IXP2800 Network Processor
Intel XScale® Core

3.12.3.1.2

140

intel.

When the receiver FIFO and receiver time out interrupt are enabled, a character time-out interrupt
occurs when all of the following conditions exist:

* At least one character isin the FIFO.

Character Time-out Interrupt

* Thelast received character was longer than four continuous character times ago (if two stop
bits are programmed the second one isincluded in this time delay).

* The most recent processor read of the FIFO was longer than four continuous character times
ago.

The maximum time between a received character and atime-out interrupt is 160 ms at 300 baud
with a 12-bit receive character (i.e., 1 start, 8 data, 1 parity, and 2 stop hits).

When atime out interrupt occurs, it is cleared and the timer is reset when the processor reads one
character from the receiver FIFO. If atime-out interrupt has not occurred, the time-out timer is
reset after anew character isreceived or after the processor reads the receiver FIFO.

Transmit Interrupt

When the transmitter FIFO and transmitter interrupt are enabled (UART_FCR[0]=1,
UART _IER[1]=1), transmit interrupts occur as follows:

¢ The Transmit Data Request interrupt occurs when the transmit FIFO is half empty or more
than half empty. The interrupt is cleared as soon as the Transmit Holding Register is written
(1 to 64 characters may bewritten to the transmit FIFO while servicing theinterrupt) or the IR
isread.

FIFO Polled Mode Operation

With the FIFOs enabled (TRFIFOE bit of UART_FCR set to 1), setting UART_IER[4:0] to all
zeros puts the serial port in the FIFO polled mode of operation. Since the receiver and the
transmitter are controlled separately, either one or both can be in the polled mode of operation. In
this mode, software checks receiver and transmitter status viathe UART_LSR. As stated in the
register description:

* UART_LSRI0] isset aslong asthere is one byte in the receiver FIFO.

e UART_LSR[1] through UART_L SR[4] specify which error(s) has occurred for the character
at the top of the FIFO. Character error status is handled the same way as interrupt mode. The
UART _IIR isnot affected since UART _IER[2] = 0.

¢ UART_LSR[5] indicates when the transmitter FIFO needs data.
* UART_LSR][6] indicates that both the transmitter FIFO and shift register are empty.
e UART_LSR[7] indicates whether there are any errorsin the receiver FIFO.

Hardware Reference Manual

In

3.12.4

3.12.5

Intel® IXP2800 Network Processor
Intel XScale® Core

Baud Rate Generator

The baud rate generator is a programmabl e block and generates a clock used in the transmit block.
The output frequency of the baud rate generator is 16X the baud rate; baud rate is calculated as:

BaudRate = APB Clock / (16 X Divisor)

The Divisor ranges from 1 to 216 - 1. For example, for aAPB clock of IMHZ and baud rate of
300bps the divisor is 209.

General Purpose I/0 (GPIO)

The I XP2800 Network Processor has eight General Purpose Input/Output (GPIO) port pinsfor use
in generating and capturing application-specific input and output signals. Each pinis
programmable as an input or output or as an interrupt signal sourcing from an external device. The
GPIO can be used with appropriate software in 12C application.

Each GPIO pin can be configured as ainput or an output by programming the corresponding GPIO
pin direction register. When programmed as an input, the current state of the GPIO can be read
through the corresponding GPIO pin level register. The register can be read at any time and can be
used to confirm the state of the pin when it is configured as an output. In addition, each GPIO pin
can be programmed to detect arising or afalling edge by setting the corresponding GPIO rising/
falling edge detect registers.

When configured as an output, the pin can be controlled by writing to the GPIO set register to write
a1 and by writing to the GPIO clear register to write a0. These registers can be written regardless
of whether the pin is configured as an input or a output.

Each of the GPIO pinsis designed the same and instantiated to the number of GPIO port pins.
Figure 32 shows a GPIO functional diagram. The GPIO pin as seen can be programmed based on
the configuration registers.

Figure 32. GPIO Functional Diagram

rog register
e

Pin direction
>| set/clear/prog
register

Decode
Logic Pin set/clear/

Y

Edoo dotoct GPIO Pin
ge detect |) D
status register |

A

Pin Level
Register

- Edge detect|
logic

A

A

Rising/Falling edge
detect enable register

A9701-01

Hardware Reference Manual 141

Intel® IXP2800 Network Processor
Intel XScale® Core

3.12.6

intel.

The IXP2800 Network Processor supports four timers. These timers are clocked by the Advanced
Peripheral/Bus Clock (APB-CLK), which runs at 50 MHz. to producethe PLPL_APB_CLK,
PLPL_APB_CLK/16 or PLPL_APB_CLK/256 signals. The counters are loaded with an initial
value, count down to zero, and raise an interrupt (if interrupts are not masked).

Timers

In addition, timer 4 can be used as awatchdog timer when the watchdog enable bits are configured
to one. When used as awatchdog timer, and when a count of zero is encountered, it will initiate the
reset sequence.

Figure 33 shows the timer control unit interfacing with other functional blocks.

Figure 33. Timer Control Unit Interfacing Diagram

3.12.6.1

142

IXP2800_TOP
ME |« cPP »| sHac
U APB bus
Intel® [<€
XScale™ Timer1,2,3,4 io[3:0
Core < imer1,2,3, Timers |< gpio[3:0] GPIO

Watchdog <
Reset

A9702-01

Timer Operation
Each timer consists of a 32-bit counter.

By default, the timer counter load register (TCLD) is set to OxXFFFFFFFF. The timer will count
down from OXxFFFFFFFF to zero, then wrap back to OxFFFFFFFF and continue to decrement if the
TCLD isnot programmed to any value. If adifferent value is programmed in the TCLD, then the
counter will load this value every time it counts down to zero.

Aninterrupt is issued to the Intel X Scale® core whenever the counter reaches zero. The interrupt

signals can be enabled or disabled by the IRQEnable/FIQEnable registers. The interrupt remains
asserted until it is cleared by writing a1 to the corresponding timer clear register (TCLR).

Hardware Reference Manual

intgl.

counter.

The counter can be advanced by the clock, clock divided by 16, clock divided by 256, and the
GPIO signals. The clock rate is controlled by the TCTL value programmed into the TCTL
registers. There are four gpio signals, GPIO[3:0] which correspond to Timer 1, 2, 3, and 4,
respectively. These signal are synchronized within the timer-clock domain before driving the

Figure 34 shows the Timer Internal logic.

Figure 34. Timer Internal Logic Diagram

Intel® IXP2800 Network Processor
Intel XScale® Core

Timer Registers
Block
:l TCTL I >| Timer
| | Control
WRITE_DATA N > |l TCLD |I Logic
- > II TCLR II A
[=
\\ > | TWDE |
—>I TCSR I
~_ READ_DATA -«
APB_SEL -
_ - < Y
| Decoder
APB_WR & Control Watchdog Watchdog
> : Logic ~ [Reset
ADDRESS - Logic ;
A
ENABLE
CLK AN
Divided -
> by 16 YV \
Counter Logic Interrupts
| Divided -
] by 16 7
GP_TM[3:0]
A9703-01

Hardware Reference Manual

143

Intel® IXP2800 Network Processor
Intel XScale® Core

3.12.7

3.12.7.1

intel.

The IXP2800 Network Processor SlowPort Unit supports basic PROM access and 8, 16, and 32-bit
microprocessor device access. It allows amaster, (Intel X Scale® core or Microengine), to do a
read/ write data transfer to these slave devices.

SlowPort Unit

The address bus and data bus are multiplexed to reduce the pin count. In addition, the address bus
isalso compressed from A[25:0] down to A[7:0] and shifted out with three clock cycles. Therefore,
an external set of buffersis needed for address storage and latch.

The access can be asynchronous. Insertion of delay cyclesis possible for both setup and hold data.
A programmable timing control mechanism is provided for this purpose.

There are two types of interfaces supported in the SlowPort Unit:
¢ Flash memory interface
* uPinterface.

The Flash memory interfaceis used for the PROM device. The uP interface can be used for
SONET/SDH Framer uP access.

There are two ports in the SlowPort unit. The first is dedicated to the flash memory device while
the second to the wP device.

PROM Device Support

For al the Flash Memory access, only 8-bit devices are supported. APB write transactions are
assumed to be 8-bits wide, and correspond to one write cycle at the flash interface. The extended
APB read transactions are assumed to be 32-bits wide, and correspond to four read cycles at the
flash memory interface for all the flash memory data read. However, for the flash register read
inside the flash memory, like the flash status register, the returned data are one byte and placed in
the lower order byte location. In this case, only one external transaction cycleisinvolved.

To accomplish this, aregister (SP_FRM) isinstalled to allow to configure between 8-bit read mode
and 32-bit read mode. By defaullt, it goesto 32-bit read mode. For the 8-bit read mode, one read
cycleisinvolved. No packing processis needed. The datawill be directly placed onto the lower
order byte, [7:0] and passed to APB bus. For the 32-bit read mode, it needs four read cycles. All 4
bytes are packed into a 32-bit data and passed to the APB bus. 16-bit mode is not supported for
read.

Write always accesses the flash with one 8-bit cycle. Therefore, no unpacking process is needed.

The PROM device supported are listed in Figure 56:

Table 56. 8-bit Flash Memory Device Density

144

Vendor Part Number Size
Intel 28F128J3A 16MB
Intel 28F640J3A 8MB
Intel 28F320J3A 4MB

Hardware Reference Manual

intgl.

3.12.7.2

uP interface support for the Framer

Intel® IXP2800 Network Processor

Intel XScale® Core

The SlowPort Unit also supports a microprocessor interface with Framer components. Some

supported devices are listed in Table 57:

Table 57. SONET/SDH Devices

Vendor Part Number uP Interface SP_PSCeli\’tirr:agister Sgﬂgectgengisi?er
PMC-Sierra PM3386 16 bits 0x3 Ox1
PMC-Sierra PM5345 8 bits 0x2 0x0
PMC-Sierra PM5346 8 bits 0x2 0x0
PMC-Sierra PM5347 8 bits 0x2 0x0
PMC-Sierra PM5348 8 bits 0x2 0x0
PMC-Sierra PM5349 8 bits 0x2 0x0
PMC-Sierra PM5350 8 bits 0x2 0x0
PMC-Sierra PM5351 8 bits 0x2 0x0
PMC-Sierra PM5352 8 bits 0x2 0x0
PMC-Sierra PM5355 8 bits 0x2 0x0
PMC-Sierra PM5356 8 bits 0x2 0x0
PMC-Sierra PM5357 8 bits 0x2 0x0
PMC-Sierra PM5358 16 bits 0x2 Ox1
PMC-Sierra PM5381 16 bits 0x2 0x1
PMC-Sierra PM5382 8 bits 0x2 0x0
PMC-Sierra PM5386 16 bits 0x2 0x1

AMCC S4801 (AMAZON) 8 bits 0x0 0x0

AMCC S4803 (YUKON) 8 bits 0x0 0x0

AMCC S4804 (RHINE) 8/16 bits 0x0/0x3 0x0/0x1

Intel IXF6012 (Volga) 16 bits 0x3/0x41 Ox1
Intel IXF6048 (Amazon-A) 16 bits 0x3/0x42 Ox1
Intel Centaur 0x3/0x42
Intel IXF6501 0x3/0x42
Intel Ben Nevis 32 bits 0x3/0x42 0x2

Lucent TDAT042G5 16 bits 0x1/ Ox1

Lucent TDAT04622 16 bits 0ox1 0x1

Lucent TDAT021G2 16 bits 0Ox1 Ox1

1. Usually there are two different protocols, Intel or Motorola, of uP interface in the Intel framer; the setting in the PCR should
match with protocols activated in the framer.

Hardware Reference Manual

145

Intel® IXP2800 Network Processor
Intel XScale® Core

3.12.7.3 SlowPort Unit Interfaces

Figure 35 shows the SlowPort Unit interface diagram.

Figure 35. SlowPort Unit Interface Diagram

PCl |« > SHaC PROM/
FLASH
& 2 ()
(@] o
[an]
o
<
Y
Intel® Address/
XScale™ |« SPINT SlowPort :Slowpon > Data <
Core Convertor
\
Peripherals

A9704-01

3.12.7.4 Address Space

The total address space is defined as 64 MB, which isfurther divided into two segments of 32 MB
each. Two devices can be connect to this bus. If these peripheral devices have adensity of 256 Mbit
(32 MB) each, all the address space is going to be filled like a contiguous address space. However,
if asmall capacity deviceisused (likea4 MB, 8 MB, 16 MB), there will be amemory holeleft in
between these two devices. Figure 36 isa4 MB memory example. Trying to read the spacein
between, you will get the repeating value for each 4 MB location

Figure 36. An Example of Address Space Hole Diagram

3FFFFFFh
23FFFFFh
2000000h L
03FFFFFh
0000000h 4IMB
A9705-01

146 Hardware Reference Manual

In

3.12.7.5

Intel® IXP2800 Network Processor
Intel XScale® Core

SlowPort Interfacing Topology

Figure 37 demonstrates one of the topol ogies used to connect to an 8-bit device. From the diagram,
we can observe that addressis shifted out 8 bits at atime and buffered into three 74F377 or
equivalent tri-state buffer devices in three consecutive clock cycles. These buffers also output
separately to form a 25-bit wide address bus to address the 8-bit devices. The data are expected to
be driven out after the address has been placed into the buffers.

There are two devices shown in Figure 37. The top one is the fix-timed device, while the lower
one, self-timing device. For the self-timing device, the access latency depends on the SP_ACK_L
responded back from this device.

Three extrasignals, SP_CP, SP_OE _L and SP_DIR, are added to pack and unpack the datawhen a
16-hit or 32-bit device is hooked up to SlowPort. They are used for special application only as
described below.

Figure 37. SlowPort Example Application Topology

SP_RD_L > OE_L
SP_WR_L > WE_L
SP_CS_L[0] > CS L
SP_CS_L[1]
SP_A[1:0] A[1:0]
SP_AD[7:0] D[7:0]
A[24:2]
SP_ALE_L >0 CE# D[7:0]
< Sk N ‘ 74£377
SP_CLK || Driver > CP Q[7:0]
CY2305 J /
A[24:18]
Intel® p—>O CE# D[7:0]
1 : 748377 A[24:2]

IXP2800 >{CcP Q[7:0]
Network y > OE_L
> WE_L
Processor ALL7:10] i
L3 cE# D[7:0] -

74£377 .
>(cP Q[7:0] > | ALL0]
> D[7:0]
A[9:2]
SP_ACK_L | ACK_L
A9318-02

Hardware Reference Manual 147

Intel® IXP2800 Network Processor
Intel XScale® Core

intel.

The write/read transfer protocols are discussed in the following sections. The burst transfers are
going to be broken down into single mode transfer. For each single write/read transaction, it can be
either fixed-timed transaction or self-timing transaction. The fixed-timed transaction has the
response fixed in a certain period, which can be controlled by the timing control registers.

3.12.7.6 SlowPort 8-bit Device Bus Protocols

For the self-timing transaction, the response timing is dictated by the peripheral device. Hence,
wait states can be inserted during the transaction. All the back-to-back transactions are intervened
with one clock cycle. The SlowPort clock, SP_CLK, shown in the following waveform diagrams,
is generated by dividing the PLPL_APB_CLK. The divisor used is specified in the clock control
register, SP_CCR.

3.12.7.6.1 Mode 0 Single Write Transfer for Fixed-Timed Device

Figure 38, shows the single write transfer for a fixed-timed device with the CSR programmed to a
value of setup=4, pulse width=0, and hold=1, followed by another read transfer.

Figure 38. Mode 0 Single Write Transfer for a Fixed-Timed Device

0 2 4 6 8 10 12 14 16 18 20
| |
|
SP_CLK|”,“““““‘HMH|l”|““““i|“““
I | I | I | I I | | I | | I
| |
[AV A I I I EE N H [
SP_ALE_L | | | | | | | | | | | | |
| |
SP_CS_ L l—!—’—'—'—\ | | | | | | | | | I/—O—O—O—'—_
[op o N I I TN N N NN N | [
| |
IR I [Y N I [N I S O T I IS TN NN (NN (N (N O |
SPWRL e o N e
| |
| |
sSPRDL T T T T T 1T T T T T T T T T T T T T T T 1
| |
| |
SP_A[L:0] |) A[L:0] X
| |
) | | | 1 1 1 1 1 1 1 1 1 |
SP_AD[7:0] :j—(a:z X1710X24:18X D[7:0]
| | | | | | | | |

A9706-02

Thetransaction isinitiated with SP_ALE_L asserted. It latches the address from the SP_AD[7:0]
businto the external buffer, using three clock cycles. After that, it should deassert the SP_ALE L
to disable latching the address into the buffers.

The SP_A[1:0] signals span the whole transaction cycle.

For the write, it drives the data onto the SP_AD[7:0]. Meanwhile, it assertsthe SP_CS_L[1:0]
signals. Depending on the timing control setup parameter, for this case, the SP_WR_L is not
asserted until four clock cycles have elapsed. The SP_CS L[1:0] signals are deasserted two clocks
after the SP_WR_L is deasserted.

148 Hardware Reference Manual

Intel® IXP2800 Network Processor
Intel XScale® Core

]
intgl.
3.12.7.6.2 Mode 0 Single Write Transfer for a Self-timing Device

Figure 39 depicts the single write transfer for a self-timing device with the CSR programmed to
setup=4, pulse width=0, and hold=4. Similarly, aread transaction is attached behind.

Figure 39. Mode 0 Single Write Transfer for a Self-timing Device

o | =1
o | [
T 1 T T 1
[| [T
[| [T
SP_CS_L [e e I I e
7670 T Y N | S S | — [T
[O (H R | I T R T N N
1 1 ! 1 1 1 1 1 1 | | 1 1 | 1 1 1 1 1
SPWRL "
1 T T O (O T O Y N T HN SR SO B B
I T T N N O O N S SO A
SPROLT 1T T T 1 1 1T T T T T T T T 1T T T T T T 1
1 T T (O N Y Y Y FE O NN T SO IR B
I e e e e e e e |
SP_A[1:0] | X Al1:0] X
— —
[e
SP_AD[7:0] ’:}—Kez X1710X2413X D[7:0]
[T O O E (R Y B B
| | | I I I | | | | | | | | | | | | | | |
SPACKL v o o o
T T Y N Y E O H EE SO B B
A9707-02

Similar to the single write for fixed-timed device, the ALE L, CS L[1:0], AD[7:0], and A[1:0]
follow the same pattern, and the timing is controlled by the timing control register. Except for the
WR_L which isterminated depending on the SP_ACK _L returned from the self-timing device.

Thetime-out counter will be set to 255. If no SP_ACK _L responds back when the time-out counter

reaches zero, the transaction is terminated with atime-out. An interrupt signal isissued to the bus
master simultaneously with the time-out register update.

Hardware Reference Manual 149

Intel® IXP2800 Network Processor
Intel XScale® Core

intel.

Figure 40 demonstrates the single read transfer issued to afixed-timed PROM device followed by
another write transaction. The CSR is assumed to be configured to the value setup=2, pulse
width=10, and hold=1.

3.12.7.6.3 Mode 0 Single Read Transfer for Fixed-timed Device

Figure 40. Mode 0 Single Read Transfer for a Fixed-timed Device

SP_CLK

|
|
SP_ALE_L: I\ Ly

e e e e e B B
I e
T T T 1 T 1 T T T T 1
T T T (O T O TR T B
T T T (N N O SR T B
SP_CS_L 1—|—'—|—v\ T T T (O O A N B B V_|_I_I_
[0 1+ 0o N [
T T T T O Y N O A (N B N B
L Il | Il Il Il Il Il Il Il | Il | Il Il | | | | Il Il
SPWRL o b
T T T T T Y N Y Y Y N NN (N B N B
T e T T T N SN (N NN N A
SPRDOL T T T T T T N L 1 0 01 0 0 1 T
| | | | | | | t t T t T t t T t { [| |
I e e e e e e e e
SP_A[LO] Y A[L:0] X
— ——T— T — e
T T T T Y N N S (N B N B
. — |
SP_AD[70) ————— T
e e e e
A9708-02

The addressisloaded onto the external buffer in three clock cycleswith the ALE_L asserted. Then,
aclock cycleisinserted to tri-state all the AD[7:0] signals. The CS_L[1:0] signals come asserted
on the fourth clock cycle. Now, the values stored in the timing control registers take effect. The
RD_L becomes asserted after two clock cycles. It keeps asserted for ten clock cycles. The

CS L[1:0] should be de-asserted one clock cycle after RD_L is de-asserted. The datawill bevalid
at clock cycle 16 as shown in the diagram. Since the hold delay has 2 cycles, transaction is
terminated at clock cycle 16.

150 Hardware Reference Manual

intgl.

3.12.7.6.4

Intel® IXP2800 Network Processor
Intel XScale® Core

Single Read Transfer for a Self-timing Device

Figure 41 demonstrates the single read transfer issued to a self-timing PROM device followed by
another write transaction. The CSR assumed to be programmed to the val ue of setup=4, pulse
width=0, and hold=2.

Figure 41. Mode 0 Single Read Transfer for a Self-timing Device

0 2 4 6 8 10 12

14 16 18 20

SP_ALE_L \ / Y
SP.CS L ————————\ ‘menen e IR
[1:0]
SP_WR_L
SP_RD_L \ /
SP_A[1:0] X A[L0] X
SP_AD[7:0] {ora) < 92 “ D[7:0]
SP_ACK_L \

A9709-01

3.12.7.7

Hardware Reference Manual

Theonly difference for self-timed modeisinthe SP_ACK L signal. It hasadominant effect on the
length of the transaction cycle or it overrides the value in the timing control register. A time-out
counter is set to 256. The SP_ACK _L should arrive before the time-out counter counts down to
zero. Similarly to the single write for self-timing device, an interrupt is launched for the time-out
event and the time-out register is updated. In this case, the data will be sampled at clock cycle 12.

SONET/SDH Microprocessor Access Support

In order to support the SONET/SDH Microprocessor Interface, extralogic is added into this unit.
Here we consider three SONET/SDH available components, including the Lucent TDAT042G5,
PMC-Sierra PM5351, Intel, and AMCC SONET/SDH devices.

However, because these microprocessor interfaces are not standardized, we treat them separately
and a configuration register isinstalled to activate the bus to work with different interface protocol
at atime. Extra pins are also added to accomplish this task.

A microprocessor interface type register is used to provide these kinds of solutions. The user is
allowed to configure the interface to the following four different modes. The pin functionality and
the interface protocol will be changed accordingly. By default, it activates the mode O with 8-bit
generic PROM device support as mentioned above.

151

Intel® IXP2800 Network Processor
Intel XScale® Core

3.12.7.7.1

152

intel.

The address size control register is programmed to 16-bit address space for this case. Thismodeis
designated for the devices with the similar protocol with the Lucent TDAT042G5 SONET/SDH
device.

Mode 1: 16-bit Microprocessor Interface Support with
16-bit Address Lines

16-bit Microprocessor Interfacing Topology with 16-bit address lines

Figure 42 shows a solution for the 16-bit microprocessor interface. This solution bridges the
Lucent TDAT042G5 SONET/SDH 16-bit interface. From Figure 42, we observe that the control
pinsSP_RD L and SP_WR_L are converted to R/W and ADS. The CSand DT are till
compactible with SP_CS L[1] and SP_ACK _L protocoal.

Extra pins are added to accomplish the task of multiplexing and demultiplexing the data bus. The
total pin count is 18.

During the write cycle, 8-bit data are stacked into 16-hit data. They are first shifted into two tri-
state buffers, 74F646 or equivalent by SP_CP, using two consecutive clock cycle. Then the
SP_CS L isused for output the 16-bit data, which is shared with the CS.

During the read cycle, the 16-bit data are unpacked into 8-bit data by SP_CP. Two 74F646 or

equivalent tri-state buffers are used. First, the 16-bit data are stored into these buffers. Then they
are shifted out by SP_DIR, using two consecutive clock cycle.

Hardware Reference Manual

in

®

Intel® IXP2800 Network Processor
Intel XScale® Core

Figure 42. An Interface Topology with Lucent TDAT042G5 SONET/SDH

SP_RD_L

SP_WR_L

SP_CS_L[1]

YYVY

SP_ACK_L
SP_AD[7:0]

SP_ALE_L

SP_CLK

Intel® [XP2000
Network
Processor

SP_CP

SP_OE_L

SP_DIR

Clock
Driver
CY2305

CE#

CP Q[7:0]

DI701 74377

t ADDR[16]

CE#
CP

Q[7:0]

DI7:01 74r377

———
ADDR[15:8]

CE#
CP

D[7:0]
Q[7:0]

T4F377

ADDR([7:1]

74F646

D[7:0]
CPAB
CPBA
OE#
DIR

VCC

]
SBA

DATA[15:8] |

o[7:0]

74F646

D[7:0]

CPAB
CPBA

OE#
DIR

VCC
]
SBA

DATA[7:8]

o[7:0]

* Other names and brands may be claimed as property of others.

R/W#
ADS#

CS#
DT#

ADDR[16:0]

Lucent
TDAT042G5*

DATA[15:0]

A9370-03

Hardware Reference Manual

153

Intel® IXP2800 Network Processor
Intel XScale® Core

u
Intel o
16-bit Microprocessor Write Interface Protocol

Figure 43 uses the Lucent TDAT042G5 device. In this case, the user should program the P_PCR
register to mode 1 and a so program the write timing control register to setup=7, pulse width=5,
and hold=1, which represent 7 clock cyclesfor CS, 5clock cyclefor DT delay, and 1 clock cyclefor
ADS. They are intervened with two idle cycles.

From Figure 43, we observe that there are atotal of twelve clock cycles used for write access, (i.e.,
240 ns), not including an intervened turnaround cycle after the write transaction. The throughput is
8.3 MB per second

Figure 43. Mode 1 Single Write Transfer for Lucent TDAT042G5 Device (BO)

TO |T1 | T2, T3, T4 | T5, T6 TO |T1 T2, T3 T4
0 2 4 6 8 10 12 14 16 18 20
see (LU U UYWAY WYUU UYWL
SP ALE L T\ / \
SP_CS_L[1] [CS# \ /e
SP_WR_L/ADS# \ I .
SP_RD_L/RIW# \ /
SP_AD[7:0] ——{(ib XS feso) Dise] (7 Xba)edia)
SP_ACK_L /DT# _/
SP_cP [1]1
SP OE L ——\ /
SP_DIR \
ADDRJ[15:0] A230] " AZ30]
DATA[15:0] D[15:0])

B1742-01

154 Hardware Reference Manual

Intel® IXP2800 Network Processor
Intel XScale® Core

intgl.

16-bit Microprocessor Read Interface Protocol

Figure 44, likewise depicts a single read transaction launched from the IXP2800 Network
Processor to the Lucent TDAT042G5 device followed by a single read transaction. However, in
this case the read timing control register has to be programmed to setup=0, pulse width=7, and
hold =0.

In Figure 44, we can count twelve clock cycles used for the read transaction in total, (i.e., 240 ns)
for aclock cycle of 10 ns, excluding aturnaround cycle after that. It has the throughput of 7.7 MB

per second.

Figure 44. Mode 1 Single Read Transfer for Lucent TDAT042G5 Device (B0)

TO|T1 | T2 T3 |T4 1 T5|T6 ! T7
0 2 4 6 8 10 12 14 16 18 20
SP_CLK HH'HHHH\HHHHHHHHHHHHHH
SP_ALE L T\ 7 \ I
spesiu/est o\ [
SP_WR_L/ADS# \ 7
SP_RD_L/R/W#
SP_AD[7:0] —{(fuXubaedls ops3] (7 Xl Jedof_Or70
SP_ACK_L /DT# \/
SP_CP ‘ ‘ J t l ‘ ‘ \ ‘ l [_\ [_\
SP_OE_L \ /
SP_DIR T\ /
ADDRJ[15:0] 1B A[23:0] 150] A[23:0]
DATA[15:0] {Tousa Y opso] X zass)—@
B1746-01

Hardware Reference Manual

155

Intel® IXP2800 Network Processor
Intel XScale® Core

3.12.7.7.2

intel.

This application is designed for the PMC-Sierra PM5351 S'UNI-TETRA Device. For the PMC-
Sierra PM5351, the address space is programmed to 11-hits; otherwise, other address space should
be specified.

Mode 2: Interface With 8 Data Bits and 11 Address Bits

8-bit PMC-Sierra PM5351 S/UNI-TETRA Interfacing Topology

Figure 45 displays one of the topologies used to connect to the SlowPort with the PMC-Sierra
PM5351 S/UNI-TETRA device.

From Figure 45, because the protocols are very close to the generic SlowPort protocol, the pin
counts and the functionality is quite compatible. We don’'t need to use any more pinsin this case.
The only differenceisin the INTB signal, which will be connected to the SP_ ACK_L. Therefore
the SP_ACK _L needsto be converted to an interrupt signal.

Also because the address contains only 11bits, two 74F377 or equivalent buffers are needed.

The ASfield in the SP_ADC register should be programmed to a 16-bit addressing space with the
upper 5 address bits unconnected.

The timing controls are similar to the generic case.

Figure 45. An Interface Topology with PMC-Sierra PM5351 S/UNI-TETRA

156

vce
T— ALE
SP_RD_L >| RDB
SP_WR_L > wrs
SP_CS_L[1] >| css
SP_ACK_L |« INTB
SP_AD[7:0] DATA[7:0]
SP_ALE_L >0 CE# D[7:.0] ADDRILO]
SP_CLK f—>{ Clock > CP Q[7:0]
- Driver
CY2305 . .
Intel® IXP2800 ADDR[10:8] PMC-Sierra
: PM5351
Network —to CE# D[7:0] yrass
Processor > CP Q[7:0]
ADDR([7:0]

A9369-03

Hardware Reference Manual

Intel® IXP2800 Network Processor
Intel XScale® Core

[|
intgl.
PMC-Sierra PM5351 S/UNI-TETRA Write Interface Protocol

Figure 46 depicts a single write transaction launched from the 1XP2800 to the PMC-Sierra
PM5351 device followed by single read transaction.

The write transaction for the PM C-Sierra component has 6 clock cycle or 120ns access time for a
50MHz SlowPort clock. In this case, no intervening cycle is added after the transaction. The 1/O
throughput is 8.3MB per second. The SP_PCR should be programmed to mode 2 and the fields of
SU, PW, and HD in the SP_WTC2 should be set to 1, 2, 1 respectively. Here SU, PW, and HD rep-
resent the SP_CS_L[1] pulse width, SP_WR_L pulse width, and SP_CP pulse width respectively.

Figure 46. Mode 2 Single Write Transfer for PMC-Sierra PM5351 Device (BO)

0 2 4 6 8 10 12 14 16 18
SP_CLK H’HHHHH\HHHHHHHHHHHHHH
SP_ALE_L T\ / \ /
SP_CS_L[1)/CSB \ [\ [
SP_WR_L/WRB \ r
SP_RD_L/RDB \ /
Sp_AD[T0] — ()N ord oE—— e
SP_ACK_L/INTB \ /
SsP_cp [[1/1]]
SP OE L —) 7 \ 7
SP_DIR \
ADDRJ[15:0] 7o Xl A[10:0] A[10:0]

DATA[7:0]

B1747-01

PMC-Sierra PM5351 S/UNI-TETRA Read Interface Protocol

Hardware Reference Manual 157

Intel® IXP2800 Network Processor
Intel XScale® Core

intel.

Figure 47, depicts asingle read transaction launched from the I XP2800 Network Processor to the
PMC-Sierra PM5351 device followed by a single write transaction.

In this case, there are ten clock cycles of accesstime, or 200 nsin total, with three turnaround
cycles attached at the back. The 1/0 throughput is 11.2 MB per second.

Figure 47. Mode 2 Single Read Transfer for PMC-Sierra PM5351 Device (B0)

0 2 4 6 8 10 12 14 16 18

SP ALEL T\ / \ S e e
SP_CS_L[1)/CSB \ / \
SP_WR_L/WRB \ r
SPRDLRDB T T T T\ |

SP_AD[7) (D ST
SP_ACK_L/INTB /

seee [[
SP_OE_L \—/—\—
SP_DIR /
ADDRJ[15:0] . 1By A[10:0] . A[10:0]
DATA[7:0] b b oI7)

B1748-01

3.12.7.7.3 Mode 3: Support for the Intel and AMCC 2488 Mbps
SONET/SDH Microprocessor Interface

The user hasto configure the address bus to 10 bits.
Mode 3 Interfacing Topology

Figure 48 demonstrates one of the topologies used to connect the SlowPort to the Intel and AMCC
2488Mbps SONET/SDH device. Similar to the Lucent TDAT042G5 interface, the address and the
data need demultiplexing. Totally, it requires four buffers to accomplish this task.

TheSP RD_L,SP WR L, and SP_CS L[1] entirely match the RDB, WRB, and CSB pinsin the
Intel and AMCC component. However, the INT has to be connected to the SP_ACK_L asthe
PMC-Sierra Interface does. The ALE pin sharesthe SP_CP signal. If the timing doesn’t meet
specification, ALE can betied high as shown in Figure 49. It employs the same method as Lucent’s
TDAT042G5's topology to pack and unpack the data between the I XP2800 SlowPort interface and
the Intel and AMCC microprocessor interface.

158 Hardware Reference Manual

In

tel.

Intel® IXP2800 Network Processor
Intel XScale® Core

For awrite, SP_CP loads the data onto the 74F646 or equivalent tri-state buffers, using two clock
cycles. In order to reduce the pin count, the 16-bit data are latched with the same pin

(SP_CS_L[1]), assuming that a turnaround cycle isinserted between the transaction cycles.

For aread, data are shifted out of two 74F646 or equivalent tri-state buffers by SP_CP, using two
consecutive clock cycles.

Figure 48. An Interface Topology with Intel / AMCC SONET/SDH Device

SP_RD_L
SP_WR_L
SP_CS_L[1]
SP_ACK_L
SP_ADI[7:0]

SP_ALE_L

SP_CLK

Intel®
IXP2800
Network

Processor

SP_CP

SP_OE_L

SP_DIR

VvCC

YYY

Y

yY

>

Clock
Driver
CY2305

CE# D[7:.0]
cP Q[7:.0]

T4F377

:l; ADDRI[10:8]

—3»-O

CE# DI[7:0]
CP Q[7:.0]

TAF377

ADDR([7:1]

vlvy

74F646

D[7:0]

CPAB
CPBA

OE#
DIR

VvCC

SAB
SBA

4

DATA[15:8]
0o[7:0]

vl YY Y

74F646

D[7:0]

CPAB
CPBA

OE#
DIR

VCC

4

SAB
SBA

DATA[7:0]

|’/

o[7:0]

* Other names and brands may be claimed as property of others.

RDB
WRB

CSB
INT

MCUTYPE

ALE
ADDRI[9:0]

Intel® or
AMCC*
SONET/SDH

DATA[15:0]

|

A9714-02

Hardware Reference Manual

159

Intel® IXP2800 Network Processor
Intel XScale® Core

intal.

Figure 49. Mode 3 Second Interface Topology with Intel / AMCC SONET/SDH Device

VCC
SP_RD_L > E
SP_WR_L > RWB
-~ MCUTYPE
SP_CS_L[1] > csB
SP_ACK_L | INT
VCC
SP_ADI[7:0] ® —L
ALE
- ADDR[9:0]
SP_ALE_L >Q CE# D[7:0] 40y
I > CP Q[7:0]
Intel® or
Clock ADDR[10:8]
SP_CLK [~ Driver AMCC*
CY2305 .
Intel® I —>9) EE# P70 74r377 SONET/SDH
IXP2800 - |
Network ADDR][7:1]
Processor
74F646 vee
et D[7:0] DATA[15:0]
SAB
SBA
SP_CP >| CPAB
—>>| CPBA DATA[15:8]
SP_OE_L >0 OE# o[7:0] /
> DIR
74F646 vee
D[7:0
-
SBA
>| CPAB
> CPBA
DATA[7:0]
—> Q| OE# O[7:0] |-
SP_DIR > DIR
* Other names and brands may be claimed as property of others.
A9715-02

160 Hardware Reference Manual

Intel® IXP2800 Network Processor
Intel XScale® Core

[|
intel.
Mode 3 Write Interface Protocol

Figure 50 depicts a single write transaction launched from the 1XP2800 Network Processor to the
Intel and AMCC SONET/SDH device followed by two consecutive reads.

Compared with the Lucent TDAT042GS5, this device has a shorter accesstime, about 8 clock cycles
(i.e.,, 160 ns). In this case, an intervening cycle may not be needed for the write transactions.
Therefore, the throughput is about 12.5 MB per second.

Figure 50. Mode 3 Single Write Transfer Followed by Read (BO)

0 2 4 6 8 10 12 14 16 18
SP_CLK ||HH|HHH\HHHHHHHHHHHHHH
SPALEL T\ |/ \ / .
sPCsuyese T\ [\ [—
SP_WR_L/WRB \ /
SP_RD_L/RDB \ /
SP_AD[7:0]
SP_ACK_L/INT S
sp_cp U1 U1 [
SPOEL —\ / \
SP_DIR /
ADDRJ[15:0] A[10:1] (Xuby A[10:1]
DATA[7:0] 15 ous0l }—{ ousol X' 2ss)

B1749-01

Hardware Reference Manual 161

Intel® IXP2800 Network Processor
Intel XScale® Core

intel.

Figure 51 depicts asingle read transaction launched from the I XP2800 to the Intel and AMCC
SONET/SDH device followed by two consecutive writes.

Mode 3 Read Interface Protocol

Similarly, the access time is much better than the Lucent TDAT042G5. The accesstime is 8 clock
cyclesor 160ns for a 50 MHz SlowPort clock. Here, there are three intervening cycles between
transactions. Therefore, the throughput is 11.1 MB per second.

Figure 51. Mode 3 Single Read Transfer Followed by Write (BO)

0 2 4 6 8 10 12 14 16 18 20
sew LU UUUUUUUUyUuUuuyyut
SPAEL T\ | \ /
SP_CS_L[1]/CSB —\—/ \
SP_WR_L/WRB
SP_RD_L/RDB
SP_ADI[7:0]
SP_ACK_L /INT | W
sP_cP [[[
SP_OE_L \ 7
SP_DIR /
ADDRJ[15:0] A[10:1] X A[10:1]
DATA[15:0] —(D[15:0] X D[15:0] X 2x[15:8] D[15:0]

B1752-01

Mode 4 Interfacing Topology

Figure 52 demonstrates one of the topologies used to connect SlowPort to the Intel and AMCC
SONET/SDH device.

Similar to the Lucent TDAT042GS5 interface, the address and the data need demultiplexing. It
requires atotal of six buffers.

TheRD_L, WR_L, and CS_L[1] entirely match the E, RWB, and CSB pins respectively in the
Intel framer configured to Motorola mode. However, the INT has to be connected to the
SP_ACK_L asthe PMC-Sierra Interface does. The ALE pin can share the SP_CP. However, if it
doesn’'t meet the timing, ALE pin can betied high as shown in Figure 53.

162 Hardware Reference Manual

Figure 52. An Interface Topology with Intel / AMCC SONET/SDH Device in Motorola Mode

tel.

Intel® IXP2800 Network Processor
Intel XScale® Core

It employs the same way to pack and unpack the data between the | XP2800 Network Processor
SlowPort interface and the Intel and AMCC microprocessor interface.

For awrite, W2B loads the data onto the 74F646 or equivalent tri-state buffers, using two clock
cycles. In order to reduce the pin count, the 16-bit data are latched with the same pin (CS_L[1]),
assuming that a turnaround cycle isinserted between the transaction cycles.

For aread, data are pipelined out of two 74F646 or equivalent tri-state buffers by B2S, using two
consecutive clock cycles.

SP_RD_L >
SP_WR_L >
SP_CS_L[1] >
SP_ACK_L |«
SP_ADI[7:0] ®
SP_ALE_L >0 CE# D[7:0] ;577
| >|cp Q7]
Clock
SP_CLK || Drver :I: ADDR[10.8]
Y2
2305 —>-0f CE# D[7:0] ,rq0-
Intel® [- .
>|cp Q[7:0]
IXP2800 [/
Network ADDRI[7:1]
Processor
74F646 vee
el D[7:0
(7o) SAB
SP_cP >| cPAB SBA
>| CPBA
DATA[15:8]
SP_OE_L >0 OE# o0}
> DIR
| 74F646 vee
D[7:0
e J
>| CPAB SBA
>| cPBA
DATA[7:0]
—>Q| OE# O[7:0] |
SP_DIR > DIR

* Other names and brands may be claimed as property of others.

E
RWB

CsB
INT

ALE

ADDRI[9:0]

Intel® or
AMCC*
SONET/SDH

DATA[15:0]

MCUTYPE 1

A9718-02

Hardware Reference Manual

163

Intel® IXP2800 Network Processor
Intel XScale® Core

Figure 53. Second Interface Topology with Intel / AMCC SONET/SDH Device

SP_RD_L
SP_WR_L
SP_CS_L[1]
SP_ACK_L
SP_ADI[7:0]

SP_ALE_L

SP_CLK

Intel®
IXP2800
Network

Processor

SP_CP

SP_OE_L

SP_DIR

> E
>l RWB
MCUTYPE
> CsB
< INT
vee =
[-|__
ALE
i ADDRI9:0]
>0 CE# DI[7:0] 5 cq0-
| >(CP Q[7:.0]
Clock Intel® or
: ADDR[10:8]
| Driver *
CY2305 p— AMCC
| > (701 74p577 SONET/SDH
> cp 0]
ADDR([7:1]
74F646 vee
b D[7:0] DATA[15:0]
SAB
SBA
>| CPAB
—>>| CPBA DATA[15:8]
>0 OE# o0} /
> DIR
74F646 vee
D[7:0]
Son J
SBA
>| CPAB
>| CcPBA
DATA[7:0]
_>°\ 8:'2# O[7:0] |-

* Other names and brands may be claimed as property of others.

A9719-02

164

Hardware Reference Manual

Intel® IXP2800 Network Processor
Intel XScale® Core

tel.

Mode 4 Write Interface Protocol

Figure 54 depicts a single write transaction launched from the 1XP2800 Network Processor to the
Intel and AMCC SONET/SDH device, followed by two consecutive reads.

Compared with the Lucent TDAT042GS5, this device has a shorter accesstime, about 8 clock cycles
(i.e,, 120 ns). Inthis case, an intervened cycle may not be needed, therefore, the throughput is about
12.5 MB per second.

Figure 54. Mode 4 Single Write Transfer (BO)

0 2 4 6 8 10 12 14 16 18
SP_CLK HH'HHHHH\|HHHHHHHHHHHH\
SP_ALE_L T\ / \ / \
SP_CS_L[1J/CSB VI e W A
SP_WR_L/RWB \ /
SP_RD_L/E T\ T\

D[15:8]

SP_AD[7:0]

SP_ACK_L/INT [
SP_cp [1]1 RER
SPOEL — —\ / \
SP_DIR \
ADDRJ[15:0] . A[10:1] . A[10:1]
DATA[15:0] ouso] Y D[15:0]

B1756-01

Hardware Reference Manual 165

Intel® IXP2800 Network Processor
Intel XScale® Core

intel.

Figure 55, depicts a single read transaction launched from the 1XP2800 Network Processor to the
Intel and AMCC SONET/SDH device, followed by two consecutive writes.

Mode 4 Read Interface Protocol

Similarly, the access time is much better the Lucent TDAT042G5, the access time is about 8 clock
cyclesor 160ns. Here, we need an intervened cycle at the back. Therefore, the throughput is
11.2 MB per second.

Figure 55. Mode 4 Single Read Transfer (BO)

0 2 4 6 8 10 12 14 16 18

sex [TUUUUUUUUUUUUTUUTUYUL

SPAEL T\ |/ \ /
sPCsLycsB T\ |] \
SPWRLRWB |
SP_RD_L/E T\
SP_AD[7:0]
SP_ACK_L/INT [
SP_CP ’ \ , \ ’ l [ﬂ_ﬂ
SP_OE_L \ r

SP_DIR \

ADDR[15:0] AlL0:1] A[10:1]
DATA[15:0] ————————{ ouso] »—{ puso \ 20058 D[15:0]

B1757-01

166 Hardware Reference Manual

intel.

Intel® IXP2800 Network Processor
Microengines

Microengines 4

4.1

This section defines the Network Processor Microengine (ME). Thisis the second version of the
Microengine, and is often referred to as the MEv2 (Microengine Version 2).

Overview

The following sections describe the programmer’s view of the Microengine. The block diagram in
Figure 56 is used in the description. Note that this block diagram is simplified for clarity, not all
interface signals are shown, and some blocks and connectivity have been omitted to make the
diagram more readable. This block diagram does not show any pipeline stages, rather it shows the
logical flow of information.

The Microengine provides support for software controlled multi-threaded operation. Given the
disparity in processor cycle times versus external memory times, a single thread of execution will
often block waiting for external memory operations to complete. Having multiple threads available
allows for threads to interleave operation—there is often at least one thread ready to run while
others are blocked.

Hardware Reference Manual 167

Intel® 1XP2800 Network Processor
Microengines

Figure 56. Microengine Block Diagram

INtal.

D_Push S_Push
from DRAM)] — (from SRAM
NNData_In () Scratchpad,
(from previous ME) MSF, Hash,
______ Y * Y Y PClCAP)
______ / '\
__640_ |
_ Local | Y * ¢
- _,\A_em_ - d ______________________________
------ e |--128 _ | __128 _ | __128 _ | __128 _ | __128_ || Control
—————— c |- GBRs_ _ GPRs_ | _ Next_ | __D_ _| __S__| Store
I — o |{A Bank)] (B Bank) | Neighbor | _ XFER | _ XFER_ |
______ In In
db----41 F----4} F----4} }-"~-4} [-Io-
------ e |------ - - - -
A Al A A A A A A A
1 1 1 1 1 1
1 1 1 | I [N -y
Lm_addr_1 ! !
Lm_addr_0 : : Q
A I R B) ke il bl --@-k~-=----4 A Src
EE N N [-e-4---18B.src
1
T_Index
* NN_Get
|CRC_Remainder|
A
Y
CRC Unit | T Immed
AN /7 \ /
* A_Operand ¢ B_Operand
Execution
Datapath
(Shift, Add, Subtract, Multiply Logicals,
Find First Bit, CAM)
ALU_Out
S_Push — | Bl o Al il Dest
1 1
* : : > NN_Data_Out
Y Y ¥ Y 1 (to next ME)
[7128] [128] L CMD_
[_p_] [_s] | FIFO_ |
4)
Local | XFER XFER L - (4)
CSRs [‘Out] [Out]
- = == Control
Command Data
D_pul 42"/ \i s_pul
B1670-01

168

Hardware Reference Manual

in

4.1.1

4.1.2

®

Intel® IXP2800 Network Processor
Microengines

Control Store

The Control Store is a static RAM, which holds the program that the Microengine executes. It
holds 8192 instructions, each of which is 40-bitswide. It isinitialized by an external device which
writes to Ustore_Addr and Ustore_Data Local CSRs.

The Control Store can optionally be protected by parity against soft errors. The parity protectionis
optional, so that it can be disabled for implementations that don’t need or want to pay the cost for
it. Parity checking is enabled by CTX_Enable[Control Store Parity Enable]. A parity error on an
instruction read will halt the Microengine and assert an output signal that can be used as an
interrupt.

Contexts

There are eight hardware Contexts available in the Microengine. To allow for efficient context
swapping, each Context has its own register set, Program Counter, and Context specific Local
Registers. Having a separate copy per Context eliminates the need to move Context specific
information to/from shared memory and Microengine registersfor each Context swap. Fast context
swapping alows a Context to do computation while other Contexts wait for 10 (typically externa
memory accesses) to complete or for asignal from another Context or hardware unit. Note: a
context swap is similar to ataken branch in timing.

Each of the eight Contextsis alwaysin one of four states.

1. Inactive — Some applications may not require all eight contexts. A Context isin the Inactive
state when its CTX_Enable CSR enable bitisa‘0'.

2. Executing— A Context isin Executing state when its context number isin
Active_ CTX_Status CSR. The executing Context’s PC is used to fetch instructions from the
Control Store. A Context will stay in this state until it executes an instruction that causes it to
go to Sleep state (there is no hardware interrupt or preemption; Context swapping is
completely under software control). At most one Context can be in Executing state at any time.

3. Ready — Inthis state, a Context is ready to execute, but is not because a different Context is
executing. When the Executing Context goes to Sleep state, the Microengine's context arbiter
selects the next Context to go to the Executing state from among all the Contexts in the Ready
state. The arbitration is round robin.

4. Sleep — Context iswaiting for external event(s) specified in the CTX_# Wakeup Events
CSR to occur (typically, but not limited to, an 10 access). In this state the Context does not
arbitrate to enter the Executing state.

The state diagram in Figure 57 illustrates the Context state transitions. Each of the eight Contexts
will bein one of these states. At most one Context can be in Executing state at atime; any number
of Contexts can be in any of the other states.

Hardware Reference Manual 169

Intel® 1XP2800 Network Processor
Microengines

170

intel.

Figure 57. Context State Transition Diagram

CTX_ENABLE bit is set by

Intel® XScale® Architecture I—

Reset ; i
et —>1 Inactive | CTX_ENABLE bitis cleared I Ready
WeS
o 2
A “\s\g“a Executing Context goes
CTX _ENABLE \?,‘le to Sleep state, and this
i (02 Context s the highest
bit is cleared He ontext is the highes
< round-robin priority.
Y
Context executes
CTX Arbitration instruction I .
Sleep < I Executing

Note:

After reset, the Intel XScale processor must load the starting address of the CTX_PC, load the
CTX_WAKEUP_EVENTS to 0x1 (voluntary), and then set the appropriate CTX_ENABLE bits to begin
executing Context(s),

A9352-01

The Microengineisin Idle state whenever no Context isrunning (all Contextsarein either Inactive
or Sleep states). This state is entered:

1
2.
3.

After reset (because CTX_Enable Local CSR isclear, putting all Contextsinto Inactive states).
When a context swap is executed, but no context is ready to wakeup.

When a ctx_arb [bpt] instruction is executed by the Microengine (thisis a special case of #2
above, sincethe ctx_arb[bpt] clears CTX_Enable, putting all Contexts into Inactive states).

The Microengine provides the following functionality during Idle state:

1

The Microengine continuously checks if a Context isin Ready state. If so, a new Context
begins to execute. If no Context is Ready, the Microengine remainsin the Idle state.

Only the ALU instructions are supported. They are used for debug via special hardware
defined in number 3 below.

A writeto the Ustore_Addr Local CSR with the Ustore_Addr[ECS] bit set, causing the
Microengine to repeatedly execute the instruction pointed by the address specified in the
Ustore_Addr CSR. Only the ALU instructions are supported in this mode. Also, the result of
the execution iswritten to the ALU_Out Local CSR rather than a destination register.

A writeto the Ustore Addr Local CSR with the Ustore Addr[ECS] bit set, followed by a
write to the Ustore Data L ocal CSR loads an instruction into the Control Store. After the
Control Store isloaded, execution proceeds as described in number 3 above. Note that the
write to Ustore_Data causes Ustore_Addr to increment, so it must be written back to the
address of the desired instruction.

Hardware Reference Manual

INtal.

4.1.3

4131

Note:

4.1.3.2

Intel® IXP2800 Network Processor
Microengines

Datapath Registers

As shown in the block diagram in Figure 56, each Microengine contains four types of 32-bit
datapath registers:

¢ 256 General Purpose Registers

¢ 512 Transfer Registers

* 128 Next Neighbor Registers

* 640 32-bit words of Local Memory

General-Purpose Registers (GPRs)

GPRs are used for general programming purposes. They are read and written exclusively under
program control. GPRs, when used as a source in an instruction, supply operands to the execution
datapath. When used as a destination in an instruction, they are written with the result of the
execution datapath. The specific GPRs selected are encoded in the instruction.

The GPRs are physically and logically contained in two banks, GPR A, and GPR B, defined in
Table 59.

The Microengine registers are defined in the 1XP2400/1XP2800 Network Processor Programmers
Reference Manual.

Transfer Registers

Transfer registers (abbreviated Xfer registers) are used for transferring datato and from the
Microengine and locations external to the Microengine, (for example DRAMs, SRAMS etc.).
There are four types of transfer registers.

* S Transfer_In
* S Transfer_Out
¢ D Transfer_In
* D_Transfer_Out

Transfer_In registers, when used as a source in an instruction, supply operands to the execution
datapath. The specific register selected is either encoded in the instruction, or selected indirectly
using T_Index. Transfer_In registers are written by external units based on the Push_ID input to
the Microengine.

Transfer_Out registers, when used as adestination in an instruction, are written with the result from
the execution datapath. The specific register selected is encoded in the instruction, or selected
indirectly viaT_Index. Transfer_Out registers supply data to external units based on the Pull_ID
input to the Microengine.

Asshown in Figure 56, the S Transfer_Inand D_Transfer_In registers connect to both the S Push
and D_Push busses via a multiplexor internal to the Microengine. Additionally, the

S Transfer_ Out and D_Transfer_Out Transfer registers connect to both the S _Pull and D_Pull
busses. This feature enables a programmer to use the either type of transfer register regardless of
the source or destination of the transfer.

Hardware Reference Manual 171

Intel® IXP2800 Network Processor

Microengines

4.1.3.3

Table 58.

4134

172

intel.

Typically, the external units access the Transfer registersin response to commands sent by the
MEs; the commands are sent in response to instructions executed by the Microengine (for example,
the command instructs a SRAM controller to read from external SRAM, and place the datainto a
S Transfer_Inregister). However, it ispossible for an external unit to access agiven Microengine's
Transfer registers either autonomously, or under control of a different Microengine, or the Intel
Xscale® core, etc. The Microengine interface signals controlling writing/reading of the
Transfer_In/Transfer_Out registers are independent of the operation of the rest of the Microengine.

Next Neighbor Registers

A new feature added for the Microengine Version 2 are 128 Next Neighbor registersthat provide a
dedicated datapath for transferring data from the previous/next neighbor Microengine.

Next Neighbor registers, when used as a source in an instruction, supply operands to the execution
datapath. They are written in two different ways 1) by an external entity, typically, but not limited
to, another, adjacent Microengine, or 2) by the same Microengine they are in, as controlled by
CTX_EnablefNN_Mode].

The specific register is selected in one of two ways: (1) Context-relative, the register number is
encoded in the instruction, or (2) as a Ring, selected viaNN_Get and NN_Put CSR registers.

When CTX_Enable]lNN_Mode] is‘0" -- When Next Neighbor is used as a destination in an
instruction, the instruction result data is sent out of the Microengine, typically to another, adjacent
Microengine.

When CTX_Enable]lNN_Mode] is‘1’ -- When Next Neighbor is used as a destination in an
instruction, the instruction result datais written to the selected Next Neighbor register in the
Microengine. Note that there isa5 instruction latency until the newly written data may be read.
The datais not sent out of the Microengine as it would be when CTX_EnablefNN_Mode] is‘0'.

Next Neighbor Write as a Function of CTX_Enable[NN_Mode]

Where Does Write Go?
NN_Mode External NN Register in
This ME
0 Yes No
1 No Yes

Local Memory

Local Memory is addressable storage located in the Microengine, organized as 640 32-bit words.
Local Memory isread and written exclusively under program control. Local Memory supplies
operands to the execution datapath as a source, and receives results as a destination. The specific
Local Memory location selected is based on the value in one of the Local Memory Addr registers,
which are written by local_ CSR_wr instructions. There are two LM_Addr registers per Context
and aworking copy of each. When a Context goesto Sleep state, the value of the working copiesis
put into the Context’s copy of LM_Addr. When the Context goes to Executing state, the valuein its
copy of LM_Addr is put into the working copies. The choice of LM_Addr_Oor LM_Addr_1is
selected in the instruction.

Hardware Reference Manual

4.1.4

41.4.1

Table 59.

Hardware Reference Manual

Intel® IXP2800 Network Processor
Microengines

It isalso possible to make use of both or one LM_Addrs as global by setting
CTX_Enable]LM_Addr_0 Global] and/or CTX_Enable[LM_Addr_1 Global]. When used
globally, al Contexts use the working copy of LM_Addr in place of their own Context specific
one; the Context specific ones are unused.

Addressing Modes

GPRs can be accessed in two different addressing modes: Context-Relative and Absolute. Some
instructions can specify either mode, other instructions can specify only Context-Relative mode.

¢ Transfer and Next Neighbor registers can be accessed in Context-Relative and Indexed modes.
¢ | ocal Memory is accessed in Indexed mode.

* The addressing mode in use is encoded directly into each instruction, for each source and
destination specifier.

Context-Relative Addressing Mode

The GPRs are logically subdivided into equal regions such that each Context has exclusive access
to one of the regions. The number of regionsis configured in the CTX_Enable CSR, and can be
either 4 or 8. Thus a Context-Relative register name is actually associated with multiple different
physical registers. The actual register to be accessed is determined by the Context making the
access request (the Context number is concatenated with the register number specified in the
instruction—see Table 59). Context-Relative addressing is a powerful feature that enables eight
different contexts to share the same microcode, yet maintain separate data.

Table 59 shows how the Context number is used in selecting the register number in relative mode.
The register number in Table 59 is the Absolute GPR address, or Transfer or Next Neighbor Index
number to use to access the specific Context-Relative register. For example, with 8 active Contexts,
Context-Relative Register O for Context 2 is Absolute Register Number 32.

Registers Used By Contexts in Context-Relative Addressing Mode
Number of Active GPR S Transfer or
Active Context Absolute Register Numbers Neighbor |nld)e->r<r?\lnusr;ebrer
Contexts Number A Port B Port Index Number
0 0-15 0-15 0-15 0-15
1 16-31 16-31 16-31 16-31
2 32-47 32-47 32-47 32-47
3 48-63 48-63 48-63 48-63
8 4 64-79 64-79 64-79 64-79
5 80-95 80-95 80-95 80-95
6 96-111 96-111 96-111 96-111
7 112-127 112-127 112-127 112-127
0 0-31 0-31 0-31 0-31
2 32-63 32-63 32-63 32-63
N 4 64-95 64-95 64-95 64-95
6 96-127 96-127 96-127 96-127

173

Intel® IXP2800 Network Processor

Microengines

4.1.4.2

4.1.4.3

4.2

4.3

4.3.1

174

intel.

With Absolute addressing, any GPR can be read or written by any one of the eight Contextsin an
Microengine. Absolute addressing enables register data to be shared among all of the Contexts, for
example for global variables, or for parameter passing. All 256 GPRs can be read by Absolute
address.

Absolute Addressing Mode

Indexed Addressing Mode

With Indexed addressing, any Transfer or Next Neighbor register can be read or written by any one
of the eight Contexts in an Microengine. Indexed addressing enables register data to be shared
among all of the Contexts. For indexed addressing the register number comes from the T_Index
register for Transfer Registers or NN_Put and NN_Get registers (for Next Neighbor Registers).

Local CSRs

Local Control and Status registers (CSRs) are external to the Execution Datapath, and hold specific
purpose information. They can be read and written by specia instructions (local_csr_rd and
local_csr_wr) and are typically accessed |ess frequently than datapath registers. Because Local
CSRs are not built in the datapath, there is awrite to use delay of either three or four cycles, and a
read to consume penalty of one cycle.

Execution Datapath

The Execution Datapath can take one or two operands, perform an operation, and optionally write
back aresult. The sources and destinations can be GPRs, Transfer registers, Next Neighbor
registers, and Local Memory. The operations are shifts, add/subtract, logicals, multiply, byte align,
and find first bit set.

Byte Align

The datapath provides a mechanism to move data from source register(s) to any destination
register(s) with byte aligning. Byte aligning takes four consecutive bytes from two concatenated
values (8 bytes), starting at any of four byte boundaries (0, 1, 2, 3), and based on the endian-type
(which is defined in the instruction opcode), as shown in Table 60. The four bytes are taken from
two concatenated values. Four bytes are always supplied from atemporary register that always
holdsthe A or B operand from the previous cycle, and the other four bytesfrom the B or A operand
of the Byte Align instruction. The operation is described below using the block diagram Figure 58.
The alignment is controlled by the 2 Isbs of the Byte Index Local CSR.

Hardware Reference Manual

intel.

Table 60. Align Value and Shift Amount

Right Shift Amount (# of Bits)

Align Value (Decimal)
(in Byte_Index[1:0])
Little Endian Big Endian
0 0 32
1 8 24
2 16 16
3 24 8

Figure 58. Byte Align Block Diagram

Intel® IXP2800 Network Processor
Microengines

A_Operand

B_Operand

Shift

Byte_Index

Result

A9353-01

Example 23 shows an align sequence of instructions and the value of the various operands.
Table 61 shows the data in the registers for this example. The value in Byte Index[1:0] CSR

(which controls the shift amount) for this exampleis 2.

Table 61. Register Contents for Example 23

Register E{tgf] [Bé)éti 62] ?1)/;88]1 B[);tzg]o
0 0 1 2 3
1 4 5 6 7
2 8 9 A B
3 C D E =

Hardware Reference Manual

175

Intel® 1XP2800 Network Processor
Microengines

Example 23. Big Endian Align

INtal.

Instruction Prev B A Operand | B Operand Result
Byte_align be[--, r0] -- -- 0123 --
Byte align be[destl, ril] 0123 0123 4567 2345
Byte_align be[dest2, r2] 4567 4567 89AB 6789
Byte align be[dest3, r3] 89AB 89AB CDEF ABCD
NOTE: A Operand comes from Prev_B register during byte_align_be instructions.

Example 24 shows another sequence of instructions and the value of the various operands.
Table 62, shows the datain the registers for this example.

The valuein Byte Index[1:0] CSR (which controls the shift amount) for this exampleis 2.

Table 62. Register Contents for Example 24

regster | 21183 | BYe2 | Byl | ytes

0 3 2 1 0

1 7 6 5 4

2 B A 9 8

3 F E D C

Example 24. Little Endian Align
Instruction A Operand | B Operand Prev A Result

Byte align le[--, rO0] 3210 -- -- --
Byte_align le[destl, ril] 7654 3210 3210 5432
Byte align le[dest2, r2] BA98 7654 7654 9876
Byte_align le[dest3, r3] FEDC BA98 BA98 DCBA
NOTE: B Operand comes from Prev_A register during byte_align_le instructions.

Asthe examples show, byte aligning “n” words takes “n+1” cycles due to the first instruction

needed to start the operation.

Another mode of operation isto use the T_Index register with post-increment, to select the source
registers. T_Index operation is described later in this chapter.

176

Hardware Reference Manual

in

4.3.2

Note:

Note:

®

Intel® IXP2800 Network Processor
Microengines

CAM

The block diagram in Figure 59 is used to explain the CAM operation.

The CAM has 16 entries. Each entry stores a 32-hit val ue, which can be compared against a source
operand by instruction:

CAM_Lookup [dest_reg, source_reg]

All entries are compared in parallel, and the result of the lookup is a 9-bit value which iswritten
into the specified destination register in bits 11:3, with all other bits of the register zero (the choice
of bits 11:3 is explained below). The result can also optionally be written into either of the
LM_Addr registers (see below in this section for details).

The 9-bit result consists of four State bits (dest_reg[11:8]), concatenated with a 1-bit Hit/Miss
indication (dest_reg[7]), concatenated with 4-bit entry number (dest_reg[6:3]). All other bits of
dest_reg are written with 0. Possible results of the lookup are:

¢ miss (0) — lookup value is not in CAM, entry number is Least Recently Used entry (which
can be used as a suggested entry to replace), and State bits are 0000.

¢ hit (1) — lookup valueisin CAM, entry number is entry which has matched; State bits are the
value from the entry which has matched.
The State hits are data associated with the entry. State bits are only used by software. Thereisno
implication of ownership of the entry by any Context. The State bits hardware function is:

¢ thevalueis set by software (at the time the entry is loaded, or changed in an already |oaded
entry).

¢ itsvalueisread out on alookup that hits, and used as part of the status written into the
destination register.

* itsvalue can be read out separately (normally only used for diagnostic or debug).

The LRU (Least Recently Used) Logic maintainsatime-ordered list of CAM entry usage. When an
entry isloaded, or matches on alookup, it is marked as MRU (Most Recently Used). Note that a
lookup that misses does not modify the LRU list.

The CAM isloaded by instruction:

CAM Write[entry reg, source_reg, state_valuel

Thevalue in the register specified by source reg is put into the Tag field of the entry specified by
entry_reg. The value for the State bits of the entry is specified in the instruction as state_value.

The value in the State bits for an entry can be written, without modifying the Tag, by instruction:
CAM Write Statel[entry reg, state value]

CAM Write_State doesnot modify the LRU list.

Hardware Reference Manual 177

Intel® IXP2800 Network Processor

Microengines

Figure 59. CAM Block Diagram

178

Lookup Value

(from A port) 1

I Tag State Match >
I Tag State Match >
Match
I Tag State >1 Status
. A and
: : LRU
: : Logic

I Tag | State I&

Lookup Status
,(toDestReq) ,

“ Y a

. .
. ..
- .

I‘ State | Status |Entry Numberl

| oooo | misso | LRUEnty |

| stae | Hit1 | HitEnty |

A9354-01

One possible way to use the result of alookup isto dispatch to the proper code using instruction:
jump [register, label#], defer [3]

where the register holds the result of the lookup. The State bits can be used to differentiate cases
where the data associated with the CAM entry isin flight, or is pending a change, etc. Because the
lookup result wasloaded into bitg 11:3] of the destination register, the jump destinations are spaced
8 ingtructions apart. Thisis a balance between giving enough space for many applicationsto
complete their task without having to jump to another region, vs consuming too much Control
Store. Another way to use the lookup result is to branch on just the hit miss bit, and use the entry
number as a base pointer into a block of Local Memory.

When enabled, the CAM lookup result isloaded into Local_Addr as follows:
LM_Addr[5:0] = 0 ([1:0] are read-only bits)
LM_Addr[9:6] = lookup result [6:3] (entry number)
LM_Addr[11:10] = constant specified in instruction
This function is useful when the CAM is used as a cache, and each entry is associated with a block

of datain Local Memory. Note that the latency from when CAM_L ookup executes until the
LM_Addr isloaded is the same aswhen LM_Addr iswritten by aLoca CSR_Wr instruction.

Hardware Reference Manual

Intel® IXP2800 Network Processor
Microengines

INtal.

The Tag and State bits for a given entry can be read by instructions:
CAM_Read Tagldest_reg, entry reg]

CAM_Read_State[dest_reg, entry reg]

The Tag value and State bits value for the specified entry is written into the destination register,
respectively for the two instructions (the State bits are placed into bits [11:8] of dest_reg, with all
other bits 0). Reading the tag is useful in the case where an entry needs to be evicted to make room
for anew value—the lookup of the new value resultsin amiss, with the LRU entry number
returned as aresult of the miss. The cam read Tag instruction can then be used to find the value
that was stored in that entry. An alternative would be to keep the tag value in a GPR. These two
instructions can also be used by debug and diagnostic software. Neither of these modify the state of
the LRU pointer.

Note: Thefollowing rules must be adhered to when using the CAM.

¢ CAM isnot reset by Microenginereset. Software must either do acam_ciear prior to using the
CAM toinitialize the LRU and clear the tags to zero, or explicitly writeal entries with
CAM_write.

* No two tags can be written to have same vaue. If this rule isviolated, the result of alookup
that matches that value will be unpredictable, and LRU state is unpredictable.

The value 0x00000000 can be used as avalid lookup value. However, note that cam_clear
instruction puts 0x00000000 into all tags. So in order to not violate rule 2 after doing cam_clear, it
is necessary to write al entries to unique values prior to doing alookup of 0x00000000. An
algorithm for debug software to find out the contents of the CAM is shown in Example 25.

Example 25. Algorithm for Debug Software to Find out the Contents of the CAM

; First read each of the tag entries. Note that these reads
; don’t modify the LRU list or any other CAM state.

tag[0] = CAM_Read Tag(entry 0);

tag[15] = CAM Read_Tag(entry_15);

; Now read each of the state bits

state[0] = CAM Read_State(entry_0);

state[15] = CAM_Read_ State(entry 15);
; Knowing what tags are in the CAM makes it possible to

; create a value that is not in any tag, and will therefore
; miss on a lookup.

; Next loop through a sequence of 16 lookups, each of which will
; miss, to obtain the LRU values of the CAM.
for (i = 0; 1 < 16; i++)
BEGIN_LOOP

; Do a lookup with a tag not present in the CAM. On a

; miss, the LRU entry will be returned. Since this lookup

; missed the LRU state is not modified.

LRU[i] = CAM Lookup (some_tag not_in cam) ;
Now do a lookup using the tag of the LRU entry. This
lookup will hit, which makes that entry MRU.
This is necessary to allow the next lookup miss to
see the next LRU entry.

junk = CAM_Lookup (tag[LRU[i]]) ;
END_LOOP
; Because all entries were hit in the same order as they were
; LRU, the LRU list is now back to where it started before the
; loop executed.
; LRU[0] through LRU[15] holds the LRU list.

7
7
7
7

Hardware Reference Manual 179

Intel® IXP2800 Network Processor

Microengines

4.4

4.5

180

intel.

The CAM can be cleared with CAM_Clear instruction. This instruction writes 0x00000000
simultaneously to all entriestag, clears al the state bits, and putsthe LRU into an intial state
(whereentry OisLRU, ..., entry 15 is MRU).

CRC Unit

The CRC Unit operates in parallel with the Execution Datapath. It takes two operands, performs a
CRC operation, and writes back aresult. CRC-CCITT, CRC-32, CRC-10, CRC-5, and iSCS|
polynomials are supported. One of the operands is the CRC_Remainder Local CSR, and the other
isaGPR, Transfer In Register, Next Neighbor, or Local Memory, specified in the instruction and
passed through the Execution Datapath to the CRC Unit. The instruction specifies the CRC
operation type, whether to swap bytes and or hits, and which bytes of the operand to include in the
operation. The result of the CRC operation is written back into CRC_Remainder. The source
operand can a so be written into a destination register (however the byte/bit swapping and masking
do not affect the destination register; they only affect the CRC computation). This allows moving
data, for example, from S Transfer In registersto S Transfer Out registers at the same time as
computing the CRC.

Event Signals

Event Signals are used to coordinate a program with completion of external events. For example,
when aMicroengine issues acommand to an external unit to read data (which will be writteninto a
Transfer_In register), the program must insure that it does not try to use the data until the external
unit haswritten it. Thereis no hardware mechanism to flag that aregister writeis pending, and then
prevent the program from using it. Instead the coordination is under software control, with
hardware support.

When the program issues the command to the external event, it can request that the external unit
supply an indication (called an Event Signal) that the command has been completed. There are 15
Event Signals per Context that can be used, and Local CSRs per Context to track which Event
Signals are pending and which have been returned. The Event Signals can be used to move a
Context from Sleep state to Ready state, or alternatively, the program can test and branch on the
status of Event Signals.

Event Signals can be set in nine different ways.

1. When dataiswritten into S_Transfer_In Registers (part of S_Push_ID input)
When dataiswritten into D_Transfer_In Registers (part of D_Push_ID input)
When dataistaken from S_Transfer_Out Registers (part of S_Pull_ID input)
When dataistaken from D_Transfer_Out Registers (part of D_Pull_ID input)
On InterThread_Sig_In input
On NN_Sig_In input
On Prev_Sig_Ininput
On writeto Same ME_Signal Local CSR
By Internal Timer

© © N o g &~ w D

Any or all Event Signals can be set by any of the above sources.

Hardware Reference Manual

45.1

4511

Intel® IXP2800 Network Processor
Microengines

When a Context goes to Sleep state (executes actx_arb instruction, or aCommand instruction with
ctx_swap token), it specifies which Event Signal(s) it requiresto be put in Ready state. Ctx_arb
instruction also specifiesif thelogical AND or logical OR of the Event Signal(s) is needed to put
the Context into Ready state.

When a Context Event Signals arrive, it goesto Ready state, and then to Executing state. In the
case where the Event Signal is linked to moving data into or out of Transfer registers (numbers 1
through 4 in the list above), the code can safely use the Transfer register as the first instruction (for
example, using a Transfer_In register as a source operand will get the new read data). The sameis
true when the Event Signal is tested for branches (br_=signal or br_!signal instructions).

The ctx_arb instruction, CTX_Sig_Events, and CTX_Wakeup_# EventsLoca CSR descriptions
provide details.

Microengine “Endianness”

Microengine operation from an “endian” point of view can be divided into following categories:
¢ Read from RBUF (64-bits)
* Write to TBUF (64-bits)
* Read/write from/to SRAM
* Read/write from/to DRAM
* Read/write from/to SHAC and other CSRs
* Writeto Hash

Read from RBUF (64-bits)
Datain RBUF is arranged in LWBE order. Whenever Microengine reads from RBUF, the low

order long word (LDWO) is transferred into Microengine transfer register 0 (treg0), the high order
long word (LDW1) istransferred into tregl, and so on. Thisis explained in Figure 60.

Figure 60. Read from RBUF (64-bits)

0123 treg0
MicroEngine 4567 tregl
891011 treg2
12 1314 15 treg3
LDW1 H LDWO
4567 0123
12131415 891011
RBUF

A8941-01

Hardware Reference Manual 181

Intel® IXP2800 Network Processor

Microengines

4512

intel.

Datain TBUF isarranged in LWBE order. When writing from Microengine transfer registersto
TBUF, treg0 goesinto LDWO, tregl goesinto LDW1, and so on. See Figure 61.

Write to TBUF

Figure 61. Write to TBUF (64-bits)

45.1.3

4514

45.1.5

182

TBUF
0123 4567
891011 12 1314 15
0123 treg0
MicroEngine 4567 tregl
891011 treg2
12 13 14 15 treg3

A8942-01

Read/Write from/to SRAM

Datainside SRAM isin big-endian order. While transferring data from SRAM to aMicroengine,
no endianness isinvolved and first-read data goes into the first transfer register specified, the next
read data into the second and so on.

Read/Write from/to DRAM

Datainside DRAM isin LWBE order. When a Microengine reads from DRAM, LDWO goes into
the first transfer register specified in the instruction, LDW1 goes into the next, and so on. While
writing to DRAM, treg0 goes first followed by tregl and both are combined in the DRAM
controller as{LDW1, LDWGQ} and written as a 64-bit quantity into DRAM.

Read/Write from/to SHAC and Other CSRs
Read and write from SHAC and other CSRs happen as 32-bits operation only and are endian

independent. Low byte goesinto the low byte of transfer register and high byte goes into high byte
of transfer register.

Hardware Reference Manual

Intel® IXP2800 Network Processor
Microengines

intel.

45.1.6 Write to Hash Unit

Figure 62 explains 48-bit, 64-bit, and 128-bit hash operations. When the Microengine transfers a
48-hit hash operand to the hash unit, the operand resides in two transfer registers and is transferred,

as shown in Figure 62. In the second long word transfer, only the lower half is valid. Hash unit

concatenates the two long words as shown in Figure 62. Similarly, 64-bit and 128-bit hash operand
transfers from the Microengine to the hash unit happen as shown in Figure 62.

Figure 62. 48-bit, 64-bit, and 128-bit Hash Operand Transfers

48-bit Hash 64-bit Hash
63 32 31 0 63 32 31 0
111098 76543210 15141312111098 76543210
S-Push / S-Pull BusT S-Push / S-Pull BusT

treg0 treg0

MicroEngine 76543210 reg MicroEngine 76543210 red
Transfer Registers 111098 tregl Transfer Registers 15141312 11 10 9 8 | reg1

128-bit Hash
127 96 95 64 63 32 31 0
3130292827262524(2322212019181716|15141312111098 76543210
S-Push / S-Pull BusT

76543210 treg0
1

MicroEngine 15141312111098 |treg

Ti fer Regist
ransierRegISIers 1 5322 21 20 19 18 17 16 | treg2
313029 28 27 26 25 24 | treg3
A8943-01
4.5.2 Media Access
Media operation can be divided in two parts:
* Read from RBUF (Section 4.5.2.1)
* Writeto TBUF (Section 4.5.2.2)
Hardware Reference Manual 183

Intel® IXP2800 Network Processor

Microengines

4521

Figure 63.

184

intel.

To analyze the endianness on the mediareceive interface and how bytes are arranged inside RBUF,
abrief introduction of how bytes are generated from the serial interface is provided here. Pipe A
denote the serial stream of datareceived at the serial interface (SERDES). Bit O of byteO comes
first followed by bitl and so on. Pipe B converts this bit stream into byte stream byte0...byte7 and
so on. So byte O currently istheleast significant byte received. In PipeC before being transmitted to
the SPI-4 interface, these bytes are organized in 16-bit words in big-endian order where byteQ is at
B[15:8] and bytel isat B[7:Q].

Read from RBUF

When the SPI-4 interface inside the I XP2800 received these 16-bit words, they are put into RBUF
in LWBE order where long words inside one RBUF entry are organized in little-endian order as
shown in one RBUF element in Figure 63. In the |east-significant-longword, byteO is at higher
address than byte3 (therefore big endian). Similarly in the most-significant-longword byted is at
higher address than byte7 (therefore big endian). While transferring from RBUF to Microengine
the least significant longword from one RBUF element is transferred first followed by the most
significant longword into the Microengine transfer registers.

Bit, Byte and Long-Word Organization in One RBUF Element

B63 B32 B31 BO
byte | byte| byte|byte | byte | byte|byte [byte] RBUF Element
4151670123 Offsetn
T SPI-4 Bus
addrl5 addr8'addr7 addr0
byte 0 byte 1
byte 2 byte 3
byte 4 byte 5
byte 6 byte 7
T Pipe C
{76543210} byte 0

{1514 1312111098} |bytel

{2322212019 1817 16} | byte 2

{31 30 29 28 27 26 25 24} | byte 3

{63 62 61 60 59 58 57 56} | byte 7

A Pipe B
byte 0

Pipe A
A9725-01

Hardware Reference Manual

Intel® IXP2800 Network Processor

Microengines
u

INtal.
45.2.2 Write to TBUF

For writing to TBUF, the header comes from the Microengine and data comes from RBUF or
DRAM. Since the Microengine to TBUF header transfer happened in 8-byte chunks, it is possible
that the first long word that is inside trO may not contain any data if the valid header beginsin
transfer register trl. Since datain trO goesto LW1 location at offset 0 and datain tr2 will go to
LWO location at offset 0, there will be some white spaces or invalid bytes at the beginning of the
header at offset 0. These invalid bytes are removed by the aligner on the way out of TBUF based on
the control word for this TBUF element. The datafromtr2, tr3...tr6 is placed in TBUF as shownin
Figure 64 in big-endian order.

Figure 64. Write to TBUF

To SPI-4 €———

Remove the empty bytes
based on the control word

Lwi1 A LWo

X | X[X |X]X|hl]h2]h3|offset0

ha [h5 | he | h7 | h8 | h9 |h10[h11]| offset 1
h12|h13| X | X | x | x | x | x [offset2
X X[X34]|5]|6] 7 |offset3
8 |9 |10]|11)12]|13|14 |15]offset4
16 [17 [18 |19 | 20 [21 | 22 | 23 | offset 5 64-bit Read
—> from addr 1 by
A MicroEngine
treg O gets
w0 [X | X | X [x |x|x|x|3 4|5 6|7| 0123
1| X [h1l|h2]|h3 treg 1 gets
4567
tr2 | h4 [h5 [h6 | h7)
e
r3 | h8 [h9 [h10|h11
A63 [- --F -,addo
tr4 [h12|h13| X | X ~T L7
4ls5|e|7]oaf2]3
s | x | x| x| x 1° 4 2 addr 0000_0000

MicroEngine
Transfer Registers

12|13|14(15(8 [9 (10{11| addr 0001_0000

20]21(22|23(16]|17(18[19

RBUF or DRAM

A8945-01

Hardware Reference Manual 185

Intel® 1XP2800 Network Processor
Microengines

4.5.

186

intel.

Sincedatain RBUF or DRAM isarranged in LWBE order, it is swapped on theway into the TBUF
to makeit truly big endian as shown in Figure 64. Again the white space at the beginning of

payload that starts at offset 3 and at the end of header at offset 2 will be removed by the aligner on
the way out of TBUF by the aligner.

2.3 TBUF to SPI-4 Transfer

Figure 65 shows how the M SF interface removesinvalid bytes from TBUF data and transfers them
onto the SPI-4 interface in 16-bit (2-byte) chunks.

Figure 65. MSF Interface

To

To SPI-4 Interface als oo nalnzli _’I:|_> Sorial
AlS as | a7 A0 : Byte to bit-stream Link
Word to Byte conversion conversion
hl h2
h3 h4
h5 h6
h7 h8
h9 h10 Af) h
ter removing the
hii hi2 invalid bytes,
h13 3 data is packed in
4 5 two byte chunks.
6 7
8 9
10 11
12 13
14 15
Lw1 A LWO
X | X | X | X]| X |hil]|h2]|h3|offset0
h4 [h5 | h6 | h7 [h8 | h9 |h10|h11 | offset 1
h12[h13[X | X | X [X | x | x [offset2
X|X|X]|3Q4]|5]|6]7 |offset3
8|9 |10|11f12]| 13|14 |15 |offset4
16 |17 |18 [19 |20 | 21 | 22 | 23 | offset 5

A8946-01

Hardware Reference Manual

intgl.

Intel® IXP2800 Network Processor
DRAM

DRAM 5

5.1

This section describes Rambus* DRAM operation.

Overview

The 1XP2800 Network Processor has controllers for three Rambus DRAM (RDRAM) channels.
Either one, two, or three channels can be enabled. When more than one channel is enabled, the
channels are interleaved (also known as striping) on 128-byte boundaries to provide balanced
access to all populated channels. Interleaving is performed in hardware and is transparent to the
programmer. The programmer views the DRAM memory space as a contiguous block of memory.

The total address space of 2 GB is supported by the DRAM interface regardless of the number of
channels that are enabled. The controllers support 64 Mb, 128 Mb, 256 Mb, 512 Mb, and 1 Gb
devices, however because of the interleaving, each of the channels must have the same number,
size, and speed RDRAM s populated. Each channel can be populated with up to 32 RDRAMs
devices. While each channel must have the same size and speed RDRAMS, it is possible for each
individual channel to have different size and speed RDRAMS, aslong as the total amount of
memory is the same for all the channels.

ECC (Error Correcting Code) is supported. Enabling ECC requires that x18 RDRAMs be used. If
ECC isdisabled x16 RDRAMSs can be used.

The Microengines, Intel X Scale® technology, and PCI (external Bus Masters and DMA Channels)
have access to the DRAM memory space.

The controllers also automatically perform refresh aswell as 10 driver calibration to account for
variations in operating conditions due to process, temperature, voltage and board layout.

RDRAM Powerdown and nap modes are not supported.

Hardware Reference Manual 187

Intel® IXP2800
DRAM

5.2

Network Processor

Size Configuration

INlal.

Each channel can be populated with anywhere from one-to-four RDRAMSs (Short Channel Mode).
For supported loading configurations refer to Table 63. The RAM technology used will determine
the increment size and maximum memory per channel as shown in Table 64.

Note:

Table 63. RDRAM Loading

One or two channels can be left unpopulated if desired.

Bus Interface Max # of Loads Trace Length (inches)
Short Channel: . 1
Four devices per channel. 20

400 and 533 MHz

Long Channel: 2 RIMMs per channel, a maximum of 32 201

400 MHz devices in both RIMMs.

Long Channel: 1 RIMM and 1 C-RIMM per channel, a 20l

533 MHz maximum of 16 devices.

1.

Table 64. RDRAM Sizes

For termination, the DRAM'’s should be located as close as possible to the IXP2800 Network Processor.

RDRAM Technology1 Increment Size Maximum per Channel
64/72 Mb 8 MB 256 MB
128/144 Mb 16 MB 512 MB
256/288 Mb 32 MB 1 GB?
512/576 Mb 64 MB 2 GB?

NOTES:

1. The two numbers shown for each technology indicate x16 parts and x18 parts.

2. The maximum memory that can be addressed across all channels is 2GB. This limitation is based on the
partitioning of the 4GB address space (32-bit addresses). Therefore if all three channels are used, each
can be populated up to a maximum of 768MB. Two channels can be populated to a maximum of 1 GB

each. A single channel could be populated to a maximum of 1GB

RDRAMswith 1 x 16 dependent banks, 2 x 16 dependent banks, and 4 independent banks are
supported.

188

Hardware Reference Manual

intgl.
5.3

Intel® IXP2800 Network Processor
DRAM

DRAM Clocking

Figure 66 shows the clock generation for one channel (this descriptionisjust for reference, for
more details refer to Rambus design literature). The other channels use the same configuration.

Note: Refer to Section 10 for additional information on clocking.
Figure 66. Clock Configuration
RDRAM RDRAM
A A A A
Intel®
IXP2800
Network -l E™ nCT™ Direct
Processor : CFM, nCFM . Rambus
-- ‘v‘v"—| Clock
Generator
PCLKM - (DRCG)
SYNCLKN -
CLK_PHASE_REF > rer cLk
A9726-01

The RDRAM Controller receives two clocks, both generated internal to the I XP2800 Network
Processor.

Theinternal clock, isused to control al logic associated with communication with other on-chip
Units. This clock is %z of the Microengine frequency, and isin the range of 500 MHz to 700 MHz.

The other clock called, RMC clock isinternally divided by two and brought out on the
CLK_PHASE_REF pin, which is then used as the reference clock for the DRCG (see Figure 67
and Figure 68). The reason for thisis our internal RMC clock is derived from the Microengine
clock (supported programmable divide range is from 8 to 15 for A stepping, 6 - 15 for B stepping)
at aMicroengine frequency of 1.4 GHz (the available RMC clock frequencies are 100, and 127
MH2z). Inthe RMC implementation we have afixed 1:1 clock relationship between the RMC clock
and the SYNCLK (SYNCLK = Clock-to-Master(CTM)/4) therefore, in order to maintain this
relationship we provide the clock to the DRCG. CTM is received by the DRAM controller which it
drives back out as Clock-from-Master (CFM). Additionally the controller creates PCLKM and
SYNCLKN which are also driven to the DRCG

Hardware Reference Manual 189

Intel® IXP2800 Network Processor

DRAM

Figure 67. IXP2800 Clocking for RDRAM at 400 MHz

System
Ref_Clk

100 MHz

DRCG
50 MHz X 8 Bus CLK = 400 MHz
Phase Detector
A A
25 25
CLK_PHASE_REF MHz MHz
]
1
1
1
[04
PLL “— :
! 1 |
! PCLK = 1 <«
_____ — 100 MHz . sy LA T
1 100 MHz
1
RMC ' RAC

A9727-01

Figure 68. IXP2800 Clocking for RDRAM at 508 MHz

5.4

190

DRCG
63.5MHz X 8 Bus CLK = 508 MHz
Phase Detector
A A
31.75 31.75
CLK_PHASE_REF MHz MHz
]
1
1
_____ [2 | [12]1] 14|
| 1
System | 100MHz | pLL — 1
Ref_Clk > = | —
! PCLK = -«
_____ — 127 MHz : svnoes LA TS
1 127 MHz
1
RMC ' RAC
A9728-01

The RDRAM Controller uses a closed bank policy. Banks are activated long enough to do an
access and then closed and precharged. They are not left open in anticipation of another access to
the same page. Thisis unlike many CPU applications, where thereis a high degree of locality.
Since that locality does not exist in the typical applications that the | XP2800 Network Processor
uses RDRAM, the bank closed policy is used.

Hardware Reference Manual

intgl.
5.5

Intel® IXP2800 Network Processor
DRAM

Interleaving

The RDRAM channels areinterleaved on 128 byte boundariesin hardware to improve concurrency
and bandwidth utilization. Contiguous addresses are directed to different channels by rearranging
the physical address bits in a programmable manner described in Section 5.5.1 through

Section 5.5.3 and then remapped as described in Section 5.5.4. Figure 69 shows a block diagram of
the flow.

Figure 69. Address Mapping Flow

Bank 0
—» CMD FIFO
Address
ME, Intel XScale® Channel In-Channel Address Remappin
core, PCl initiateg—| Selection > PRing » Bank 1
address —» CMD FIFO
Bank 2
—» CMD FIFO
f ? Bank 3
RDRAM_CONTROL[NO_CHAN] RDRAM_CONTROL[BANK_REMAP] =¥ ~\\ o v
Note that the mapping of addresses to channelsis completely transparent to software. Software
deals with physical addressesin RDRAM space; the mapping is done completely by hardware.
Note that accessing an address above the amount of RDRAM populated will cause unpredictable
results.
55.1 Three Channels Active (3-Way Interleave)

When al three channels are active, the interleave scheme selects the channel for each block using
modulo-3 reduction (address bits[31:7] are summed as modul 0-3, and the remainder isthe selected
channel number). The algorithm ensures that adjacent blocks are mapped to different channels.

For Rev A, the address within the DRAM isthen selected by rearranging the received address, as
shown in Table 65. In this case the number of DRAMs on achannel must be either 1, 2, 4, 8, 16, or
32.

For Rev B, the address within the DRAM is selected by adding the received address to the contents
of one of the CSRs KO0 through K11, or zero, as shown in Table 66. The values to load into KO
through K11 are a function of the amount of memory on the channel, and are specified in the
Programmer’s Reference Manual. Note that for memory size 32 MB, 64 MB, 128 MB, etc. the
specified constants give the same remapping as was done in Rev A.

Hardware Reference Manual 191

Intel® IXP2800 Network Processor
DRAM

INlal.

Table 65. Address Rearrangement for 3-Way Interleave

When Shift Add this amount to shifted 30:7 (based on amount of memory on the channel)
these 30:7 Address within channel is {30:7+table_value), 6:0}
bits of | "9
address thiys
are aIIl many amB3 16MB 32mB3 64MB | 128MB3 | 256MB | 512MB3 1GB
s hits
30:7 26 N/A N/A N/A N/A N/A N/A N/A 8388607
28:7 24 N/A N/A N/A N/A N/A 2097151 | 4194303 | 8388606
26:7 22 N/A N/A N/A 524287 | 1048575 | 2097150 | 4194300 | 8388600
24:7 20 N/A 131071 | 262143 | 524286 | 1048572 | 2097144 | 4194288 | 8388576

22:7 18 65535 131070 | 262140 524280 | 1048560 | 2097120 | 4194240 | 8388480

20:7 16 65532 131064 | 262128 | 524256 | 1048512 | 2097024 | 4194048 | 8388096

18:7 14 65520 131040 | 262080 524160 | 1048320 | 2096640 | 4193280 | 8386560

16:7 12 65472 130944 | 261888 | 523776 | 1047552 | 2095104 | 4190208 | 8380416

14:7 10 65280 130560 261120 522240 | 1044480 | 2088960 | 4177920 | 8355840

12:7 8 64512 129024 | 258048 | 516096 | 1032192 | 2064384 | 4128768 | 8257536
10:7 6 61440 122880 245760 491520 983040 | 1966080 | 3932160 | 7864320
8:7 4 49152 98304 196608 | 393216 | 786432 | 1572864 | 3145728 | 6291456
None 2 0 0 0 0 0 0 0 0
NOTES:
1. ;ghlijsstiesdé priority encoder; when multiple lines satisfy the condition, the line with the largest number of ones

2. N/A means not applicable.

3. For these cases, the top 3 blocks (each block is 128 bytes) of the logical address space is not accessible.
For example if each channel has 8 MB, only (24MB - 384) total bytes are usable. This is an artifact of the
remapping method.

4. The numbers in the table are derived as follows.

For the first pair of ones (8:7) value is 3/4 the number of blocks. For each subsequent pair of ones, the
value is the previous value, plus another 3/4 the remaining blocks.

¢ [8:7]==11 - 3/4 * blocks

¢ [10:7]==1111 - (3/4 + 3/16) * blocks

¢ [12:7]==111111 - (3/4 + 3/16 + 3/64) * blocks

* etc.

192 Hardware Reference Manual

intgl.

Table 66.

5.5.2

5.5.3

Intel® IXP2800 Network Processor
DRAM

Address Rearrangement for 3-Way Interleave (Continued)(Rev B)

When these bits of address are all | Add the value in this CSRto
“17s..1 the address
30:7 K11
287 K10
26:7 K9
24:7 K8
227 K7
20:7 K6
18:7 K5
16:7 K4
14:7 K3
12:7 K2
10:7 K1
8:7 KO
None Value 0 added.
NOTES:
1. This is a priority encoder; when multiple lines satisfy the condition,
the line with the largest number of ones is used.
2. N/A means not applicable.

Two Channels Active (2-Way Interleave)

It is possible to have only two channels populated for system cost and area savings. If only two
channels are desired, than channels 0 and 1 should be populated and channel 2 should be | eft
empty. In the Two Channel Mode, the address interleaving is designed with the goal of spreading
adjacent accesses across the 2 channels.

When two channels are active, address bit 7 is used as the channel select. Addresses that have

address 7 equal to O are mapped to channel 0 while those with address 7 equal to 1 are mapped to
channel 1. The address within the channel is{[31:8], [6:0]}.

One Channel Active (No Interleave)

When only one channel is active, all accesses go to that channel. In this caseit is possible for an
access to split across two DRAM banks (which could be in different RDRAMS).

Hardware Reference Manual 193

Intel® IXP2800 Network Processor

DRAM

5.5.4

intel.

In addition to interleaving across the different RDRAM channels, addresses are also interleaved
across RDRAM chips and internal banks. This improves utilization since certain operations to
different banks can be performed concurrently. The interleaving is done based on rearranging the
remapped address derived from Section 5.5.1, Section 5.5.2, and Section 5.5.3 as a function of the
memory size as shown in Table 67. The two M SBs of the rearranged address are used to select
which Bank Command FIFO the command is placein. The rearranged addressis also partitioned to
choose RDRAM chip, bank within RDRAM, and page within bank.

Interleaving Across RDRAMs and Banks

Table 67. Address Bank Interleaving

5.6

5.6.1

194

Remapped Address
Memory Size on Based on RDRAM_Control[Bank_Remap]
Channel (MB)3
00 01 10 11
8 7:14, 22:15 9:14, 7:8, 22:15 11:14, 7:10, 22:15 13:14, 7:12, 22:15
16 7:14, 23:15 9:14, 7:8, 23:15 11:14, 7:10, 23:15 13:14, 7:12, 23:15
32 7:14, 24:15 9:14, 7:8, 24:15 11:14, 7:10, 24:15 13:14, 7:12, 24:15
64 7:14, 25:15 9:14, 7:8, 25:15 11:14, 7:10, 25:15 13:14, 7:12, 25:15
128 7:14, 26:15 9:14, 7:8, 26:15 11:14, 7:10, 2615 13:14, 7:12, 26:15
256 7:14, 27:15 9:14, 7:8, 27:15 11:14, 7:10, 27:15 13:14, 7:12, 27:15
512 7:14, 28:15 9:14, 7:8, 28:15 11:14, 7:10, 28:15 13:14, 7:12, 28:15
1024 7:14, 29:15 9:14, 7:8, 29:15 11:14, 7:10, 29:15 13:14, 7:12, 29:15
Bits used to select
Bank Command 7:8 9:10 11:12 13:14
FIFO
NOTES:

1. Table shows device/bank sorting of the channel remapped block address, which is in address 31:7. LSBs of
the address are always 6:0 (byte within the block), which are not remapped

2. Unused MSBs of address have value of 0.

3. Size is programmed in RDRAM_Control[Size].

Parity and ECC

DRAM can be optionally protected by byte parity or by an 8-bit error detecting and correcting code
(ECC). RDRAMN_Control[ECC] for each channel selects whether or not that channel should use
Parity, ECC, or no protection. When parity or ECC is enabled x18 RDRAMs must be used with the
extra bits connected to the dga[8] and dgb[8] signals. Eight bits of ECC code cover eight bytes of
data (aligned to an 8-byte boundary).

Parity and ECC Disabled

* Onreads, the datais delivered to the originator of the read; no error is possible.
* Partial writes (writes of less than eight bytes) are done as masked writes.

Hardware Reference Manual

in

5.6.2

5.6.3

Note:

Intel® IXP2800 Network Processor
DRAM

Parity Enabled

On writes, odd byte parity is computed for each byte and written into the corresponding parity bit.
Partial writes (writes of less than eight bytes) are done as masked writes.

On reads, odd byte parity is computed on each byte of data and compared to the corresponding
parity bit. If there isan error RDRAMN_Error_Status 1[Uncorr_Err] bit is set, which can interrupt
the Intel X Scale® coreif enabled. The Data Error signal will be asserted when theread datais
delivered on D_Push Data.

The address of the error, along with other information, islogged in

RDRAMN_Error_Status 1[ADDR] and RDRAMNnN_Error_Status 2. Once the error bit is set those
registers are locked. That is, the information relating to subseguent errors will not be loaded until
the error status bit is cleared by the Intel X Scal e® core write.

ECC Enabled

On writes, eight ECC check bits are computed based on 64 bits of data, and are written into the
check bits. Partial writes (writes of less than eight bytes) will cause the channel controller to do a
read-modify-write. Any single bit error detected during the read portion will be corrected prior to
merging with the write data. An uncorrectable error detected during the read will not modify the
data. Either type of error will set the appropriate error status bit as described during the read case

(next paragraph).

On reads, the correct value for the check hits is computed from the data and is compared to the
ECC check hits. If there is no error, datais delivered to the originator of the read as it came from
the RDRAMSs. If thereisasingle bit error it is corrected before bei ng delivered (the correction is
done automatically, the reader is given the correct data). The error isalso Iogged by setting the
RDRAMN_Error_Status_1[Corr_Err] bit, which can interrupt the Intel XScal €® coreif enabled.

If thereisan uncorrectable error the RDRAMN_Error_Status 1[Uncorr_Err] bit is set, which can
interrupt the Intel X Scale® coreif enabled. The Data Error signal will be asserted when the read
datais delivered on D Push Data, unlessthe token Ignore Data Error was asserted in the command.
In that case the RDRAM controller will not assert Data Error and will not assert a Signal (it will
use OxF, which isanull signal, in place of the requested signal number).

In both correctable and uncorrectable cases, the address of the error, along with other information,
islogged in RDRAMN_Error_Status 1[ADDR] and RDRAMnN_Error_Status 2. Once either of the
error bitsis set those registers are locked. That is, the information relating to subsequent errors will
not be loaded until both error status bits are clear. That does not prevent the correction of single bit
errors, only the logging.

When asingle hit error is corrected, the corrected datais not written back into memory (scrubbed)
by hardware; this can be done by software if desired since all of the information pertaining to the
error islogged.

Hardware Reference Manual 195

Intel® IXP2800 Network Processor

DRAM

5.6.4

5.7

196

intel.

To avoid the detection of false ECC errors, the RDRAM ECC mode must beinitialized using the

procedure described below:

* Ensure that parity/ECC is not enabled: program DRAM_CTRL[15:14] =00

* Writeall zerosto all the memory locations. By default thiswill initialize the memory with odd
parity and in this case (data al 0), it coincides with ECC and this does not require any read

modify writes because ECC is not enabled.

* Ensurethat al of the writes are completed prior to enabling ECC. Thisis done by performing

aread operation to 1000 locations.

* Enable ECC mode: program DRAM_CTRL[15:14] accordingly.

ECC Calculation and Syndrome

The ECC check bits are calculated by forming parity checks on groups of data bits. The check bits
are stored in memory during writes via the dga[8] and dqgb[8] signals. Note that memory
initialization code must put good ECC into al of memory by writing each location before it can be
read. Writing any arbitrary datainto memory, for example O, will accomplish this. Thiswill take

several ms per MB of memory.

On reads, the expected code is calculated from the data, and then compared to (XORed) the ECC
which was read. The result of the comparison is called the syndrome. If the syndrome is equal to
zero, then there was no error. There are eight syndromes that are cal culated based on the read data
and its corresponding ECC bit. When ECC is enabled, upon detecting a single bit error, the
syndrome is used to determine which bit needs to be flipped to correct the error.

Timing Configuration

Table 68 shows the example timing settings for RDRAMSs of various speeds. The parameters are
programmed in the RDRAM_Config CSRs (refer to the PRM for register descriptions).

Table 68. RDRAM Timing Parameter Settings

Parameter -40- -45- -50- -45- -50- -45- -53-

Name 800 800 800 711 711 600 600
CfgTred 7 9 11 7 9 5 7
CfgTrasSyn 5 5 6 5 5 4 5
CfgTrp 8 8 10 8 8 6 8
CfgToffpSyn 4 4 4 4 4 4 4
CfgTrasrefSyn 5 5 6 5 5 4 5
CfgTprefSyn 2 2 2 2 2 2 2

Hardware Reference Manual

intgl.
5.8

Intel® IXP2800 Network Processor
DRAM

Microengine Signals

Upon completion of aread or write, the RDRAM controller can signal a Microengine context,
when enabled. It does so using the sig_done token; see Example 26.

Example 26. RDRAM Controller Signaling a Microengine Context

5.9

dram [read, $xfer6,addr a,0,1], sig done 4
dram [read, $xfer7,addr b,0,1], sig done 6
ctx arbl[4, 5, 6, 7]

Because the RDRAM address space is interleaved, consecutive accesses can go to different
RDRAM channels. Thereis no ordering guaranteed among different channels, so, a separate signal
is needed for each.

In addition, because accesses start at any address, and can specify up to 16 64-bit words (128
bytes), they can also split across two channels (refer to Section 5.5). The ctx_arb instruction must
set two Wakeup_Events (an odd/even pair) per access. The RDRAM controllers coordinate as
follows:

¢ |f the access split across two channels, the channel handling the low part of the split delivers
the even numbered Event Signal, and the channel handling the upper part of the split delivers
the odd numbered Event Signal.

* If the access does not split, the channel delivers both Event Signals (by coordinating with the
D Push or D Pull arbiter for read and writes respectively).

¢ Inadl casesthe channel deliversthe Event Signal with the last data Push or Pull of aburst.

Using the above rules, the Microengine will be put into the Ready State (ready to resume
executing) only when all accesses have completed.

Serial Port

The RDRAM chips are configured through a serial port, which consists of signalsD_SIO,
D_CMD, D_SCK. Accessto the serial port isviathe RDRAM_Seria_Command and
RDRAM_Serial_Data CSRs (refer to the I XP2400/1 XP2800 Network Processor Programmer’s
Reference Manual for the register descriptions).

All serial commands are initiated by awriteto RDRAM_Serial_Command. Because the serial port
isslow, RDRAM_Seria_Command has a Busy bit, which indicates that a serial port command is
in progress. Software must test this bit before initiating acommand. This insures that software will
not lose a command, while eliminating the need for a hardware FIFO for serial commands.
Seria writes are done by the following steps:

1. Read RDRAM_Serial_Command; test Busy bit until itsaO.

2. Write RDRAM_Seria_Data.

3. Write RDRAM_Serial_Command to start the write.

Hardware Reference Manual 197

Intel® IXP2800 Network Processor

DRAM

5.10

Serial reads are done by the following steps:
1. Read RDRAM_Seria_Command; test Busy hit until itsaO.
2. Write RDRAM_Serial_Command to start the read.
3. Read RDRAM_Seria_Command; test Busy bit until itsa 0.
4. Read RDRAM_Serial_Datato collect the serial read data.

RDRAM Controller Block Diagram

The RDRAM controller consists of three pieces. Figure 70 isasimplified block diagram.

Figure 70. RDRAM Controller Block Diagram

Pre_RMC RMC RAC
CMD Bus ———>1 > > ——> RQ
Intel®
IXP2800
Network RDRAMs
Processor
Chassis
D_Push Bus -€— - < «—>» DQ
D_Pull Bus —>»

A9729-01

198

Pre_ RMC—has the queues for commands, data (both in and out) and interface to internal busses. It
checks incoming commands and addresses to determine if they are targeted to the channel, and if
so engueues them [note that if acommand splits across two channel s, the channel must enqueue the
portion of the command that it owns]. It sorts the enqueued commands to RDRAM banks, selects
which command to execute based on policy to get good bank utilization, and then hands off that
command to RMC. It also arbitrates for refresh and calibration, which it requests RMC to perform.
Pre RMC also contains the ECC logic, and the CSRs that set size, timing, ECC, etc.

RM C—controller that handlesthe pin protocol. It controls all timing dependencies, pin turnaround,
RAS-CAS, RAS-RAS, etc., including bank interactions. RMC handles all commands in the order
that it receivesthem. RMC is based on the Rambus RMC.

RAC—high speed parallel to serial and parallel to serial interface. Thisis a hard macro which
contains the 1/0 pads and drivers, DLL, and associated pin interface logic.

Following is a brief explanation of command operation.

Pre_ RMC engqueues commands and sends them to RMC. It isresponsible for initiating Pull
operations to get Microengine/RBUF/Intel X Scale® core/PCl datainto the Pull_DataFIFO. A
writeisnot eigibleto go to RMC until Pre RMC has all the datain the Pull Data FIFO.

Pre_ RMC provides the Full signal to the Command Arbiter to inform it stop allowing RDRAM
commands.

Hardware Reference Manual

in

5.10.1

5.10.2

Note:

5.10.2.1

Intel® IXP2800 Network Processor
DRAM

Commands

When avalid command is placed on the command bus, the control logic checks to seeif the
address matches the channel’s address range, based on interleaving as described in Section 5.5. The
command, address, length, etc. are enqueued into the command Inlet FIFO.

If the command Inlet FIFO becomes full, the channel sendsasignal to the command arbiter which
will prevent it from sending further DRAM commands. The full signal must be asserted while there
is still enough room in the FIFOs to hold the worst case number of in-flight commands.

DRAM Write

When awrite (or RBUF_RD, which doesa DRAM write) command is at the head of the Command
Inlet FIFO, it is moved to the proper Bank CMD FIFO, and the Pull_ID is sent to the Pull arbiter.
This can only be done if there is room for the command in the Bank’s CMD FIFO and for the pull
datain the Bank’s Pull Data FIFO (which must take into account al pull datain flight). If thereis
not room in the Bank’s CMD FIFO, or the Bank’s Pull Data FIFO, the write command will wait at
the head of the Command Inlet FIFO. When the Pull_ID is sent to the Pull Arbiter, the Bank
number is put into the PP (Pull in Progress) FIFO; this allows the channel to sort the Pull Datainto
the proper Bank Pull Data FIFO when it arrives.

The source of the Pull Data can be either RBUF, PCI, Microengine, or the Intel XScal €® core, and
is specified in the Pull_ID. When the source is RBUF or PCI, datawill be supplied to the Pull Data
FIFO 64 bits per cycle. When the source is Microengine or the Intel XScale™ core, datawill be
supplied 32 bits per cycle, justified to the low 32 bits of Pull Data. It is up Pull Arbiter to merge and
pack data as required. In addition, the data must be aligned according to the start address, which
has longword resolution; thisisdonein Pre RMC.

The Length field of the command at the head of the Bank CMD FIFO is compared to the number of
64-bit words in the Bank Pull_Data FIFO. When the number of 64-bit wordsin Pull_Data FIFO is
greater or equal to thelength, the write arbitrates for the RMC. When it wins arbitration it sendsthe
address and command to RMC. RMC will request the write datafrom Pull_Data FIFO at the proper
time to send it to the RDRAMS.

The Microengineis signaled when the last dataiis pulled.

Masked Write

Masked writes (write of less than 8-bytes) are done as either Read-M odify-Writes when ECC is
enabled, or as Rambus masked writes (using COLM packets), when ECC is not enabled. In both
cases the masked write will modify 7 or fewer bytes; thisis because the command bus limits a
masked write to aref_count of one.

If aRMW is used, no commands from that Bank’s CMD FIFO will be started in between the read
and the write; other Bank commands can be done during that time.

Hardware Reference Manual 199

Intel® IXP2800 Network Processor
DRAM

intel.

When aread (or TBUF_WR, which doesa DRAM read) command is at the head of the Command
Inlet FIFO, it is moved to the proper Bank CMD FIFO if there is room. If there is not room in the
Bank’s CMD FIFO, the read command will wait at the head of the Command Inlet FIFO.

5.10.3 DRAM Read

When aread command is at the head of the Bank CMD FIFO, and thereisroom for the read datain
the Push Data FIFO (including &l readsin flight at the RDRAM)), it will arbitrate for RMC. When
it winsarbitration it sends the address and command to RMC. The Push_ID isput into the RP FIFO
(Read in Progress), to coordinate it with read data from RMC.

When read dataisreturned from RMC it is placed into the Push_Data FIFO. Each Push _Datais
sent to the Push Arbiter with a Push_ID; the RDRAM controller increments the Push_ID for each
data phase. If Push Arbiter asserts the full signal, Push Datais stopped and held in the Push Data
skid FIFO. The Push Datais sent to the read destination under control of the Push Arbiter.

The destination of the Push Data can be either Intel XScale® core, PCI, TBUF or M icroengine, and
is specified in the Push_ID. When the destination is TBUF or PCI, data will be taken 64 bits per
cycle. When the destination is Microengine or the Intel X Scale® core, datawill be taken 32 bits per
cycle. The Push Arbiter justifies the datato thelow 32 bits of Push Data. Note that the Microengine
issignaled when the last data is pushed.

5.104 CSR Write

When a CSR write command is at the head of the Command Inlet FIFO, it is moved to the CSR
CMD Register, and the Pull_ID is sent to the Pull arbiter. This can only be done if the CSR CMD
Register is not currently occupied. If it is, the CSR write command will wait at the head of the
Command Inlet FIFO. When the Pull_ID is sent to the Pull Arbiter, atag put into the PP FIFO (Pull
in Progress); this allows the channel to identify the Pull Data as CSR datawhen it arrives.

When the CSR pull dataarrivesit is put into the addressed CSR, and the CSR CMD Register is
marked as empty.

5.10.5 CSR Read

When a CSR read command is at the head of the Command Inlet FIFO, it is moved to the CSR
CMD Register. This can only be done if the CSR CMD Register is not currently occupied. If itis,
the CSR read command will wait at the head of the Command Inlet FIFO.

On thefirst available cycle in which RDRAM datafrom RMC is not being put into the Push Data

FIFO, the CSR datawill be put into the Push Data FIFO. If it's convenient to guarantee a slot by
putting a bubble on the RMC input, that's OK.

200 Hardware Reference Manual

INtal.

5.10.6

5.10.7

Table 69.

5.11

Intel® IXP2800 Network Processor
DRAM

Arbitration
The channel needs to arbitrate among several different operations at RMC. Arbitration rules are
given here for those cases. From highest to lowest priority:

¢ Refresh RDRAM

® Current calibrate RDRAM

* Bank operations. When there are multiple bank operations ready the rules are: (1) round robin
among banks to avoid bank collisions, (2) skip abank to avoid DQ bus turnarounds. No bank
can be skipped more than twice.

Commands are given to RMC in the order in which they will be executed.

Reference Ordering

Table 69 lists the ordering of reads and writes to the same address for DRAM. The definition of
first and second is defined by the time the command is valid on the command bus.

Ordering of Reads and Writes to the Same Address for DRAM

First Second

Access | Access Ordering Rules

Read Read None. If there are no side effects on reads both readers will get the same data.

Reader must get the pre-modified data. This is not enforced in hardware. The write
Read Write instruction must not be executed until after the ME receives the signal of read
completion (i.e. program must use sig_done on the read).

Reader must get the post-modified data. This is not enforced in hardware. The read
instruction must not be executed until after the ME receives the signal of write

Write Read completion (i.e. program must use sig_done token on the write instruction and wait for
the signal before executing the read instruction).
Write Write The hardware guarantees the writes will complete in the order they are issued.

DRAM Push/Pull Arbiter

The DRAM Push/Pull Arbiter contains the push and pull arbiters for the D-Cluster (DRAM
Cluster). Both the PUSH and PULL data buses have multiple masters and multiple targets. The
DRAM Push/Pull Arbiter determines which master getsto drive the data bus for agiven
transaction and to make sure the data is delivered correctly.

This unit has the following features:
¢ Uptothree DX Unit (DRAM Unit) masters.
* 64-hit wide push and pull data buses.
* Round-robin arbitration scheme.
* Peak delivery of 64-bits per cycle.

* Supports third-party data transfers the Microengine's can command data movements between
the MSF (Media) and either the DX Units or the CR Units.

Hardware Reference Manual 201

Intel® IXP2800 Network Processor
DRAM

intel.

¢ Supportschaining for burst DRAM push operationsto tell the arbiter to grant consecutive push
requests.

* Supports data error bit handling and delivery.
Figure 71 shows the functional blocks for the DRAM Push/Pull Arbiter.
Figure 71. DRAM Push/Pull Arbiter Functional Blocks

DO-Unit D1-Unit D2-Unit

A A A

Y
DP-Unit

DPSA-FUB DPLA-FUB

A

n . .
Y y Y Y Y

Intel®
PCI TCO-Cluster | TC1-Cluster XScale™ TBUF/
Lae RBUF

A9731-01

5.11.1 Arbiter Push/Pull Operation

Within the arbiter there are two functional units: the push arbiter and the pull arbiter. Push and pull
always refer to the way datais flowing from the bus master, i.e., a Microengine makes a read
regquest, the DRAM channel does the read, and then “pushes’ the data back to the Microengine.

For a push transaction, a push master will drive command and data to the DRAM push arbiter
(DPSA) and into a dedicated request FIFO. When that command is at the head of the FIFO and it is
either the requesting unit’s turn to go based on the round-robin arbitration policy, or there are no
other reguesters, the arbiter will “grant” the request. This grant means that the arbiter will deliver
the push data to the correct target with all the correct handshakes and retire the request. (Note that a
data transaction is aways eight bytes.)

The DRAM pull arbiter (DPLA) is slightly different because it functions on bursts of data
transactions instead of single transactions. For a pull transaction, a pull master will drive a
command to the pull arbiter and into a dedicated request FIFO. When the command getsto the
head of the FIFO, it will be evaluated as was done for the push arbiter. The difference isthat each
command may reference bursts of data movements (always in multiples of 8 bytes). The arbiter
will grant the command, and keep it granted until it increments through all of the data movements
required by the command. Asthe dataisread from it's source, the command is modified to address
the next data address, and a handshake to the regquesting unit is driven when the datais valid.

202 Hardware Reference Manual

intgl.

5.11.2

Table 70.

Hardware Reference Manual

Intel® IXP2800 Network Processor
DRAM

DRAM Push Arbiter Description

The general data flow for a push operation is as shown in Table 70. Figure 72 shows the DRAM
Push Arbiter functional blocks.

DRAM Push Arbiter Operation

Push Bus Master/Requestor Data Source Data Destination

IXP2800 Network Processor

TCO Cluster (MEO-7)

DO Unit
D1 Unit TC1 Cluster (M(;ElO—l?)
D2 Unit Current Master Intel XScaIe. core
PCI Unit
MS Unit

The push arbiter takes push requests from any requestors. Each requestor has a dedicated request
FIFO. A request comesin the form of aPUSH_ID, and is accompanied by the data to be pushed, a
data error bit, and a chain bit. All of thisinformation is enqueued in the correct FIFO for each
request, that is, for each eight bytes of data. The push arbiter must drive afull signal to the
requestor if the FIFO reaches a predefined “full” level to apply back pressure and stop requests
from coming. The FIFO is 64 entries deep and goesfull at 40 entries. Thelong skid allowsfor burst
readsin flight to finish before stalling the DRAM controller. If the FIFO is not full, the push arbiter
can enqueued a new request from each requestor on every cycle.

The push arbiter monitors the heads of each FIFO, and does a round robin arbitration between any
available regquestors. If the chain bit is asserted, it indicates that once the head request of aqueueis
granted, the arbiter should continue to grant that queue until the chain bit de-asserts. It is expected
that the requestor will assert the chain bit for no longer than afull burst length. The push arbiter
must also take special notice of requests destined for the receive buffer in the MSF (Media Switch
Fabric). Finally, the push arbiter must manage the delivery of data at different rates depending on
how wide the busis going into a given target. The Microengines, PCI, and the Intel X Scale® core
all have 32-bit data buses. For these targets, the push arbiter takes 2 clock cycles to deliver 64-bits
of data by first delivering bits 31:0 in the first cycle, and then putting bits 63:32 onto the low 32-
bits of the PUSH_DATA in the second cycle.

203

Intel® IXP2800 Network Processor
DRAM

Figure 72. DRAM Push Arbiter Functional Blocks

Round
Robin

DO_PUSH_REQ

DO_PUSH_ID

DO_PUSH_DATA

-

DPXX_PUSH_ID

Y

D1_PUSH_REQ
D1_PUSH_ID

D1_PUSH_DATA
DPXX_PUSH_DATA

Y

D2_PUSH_REQ

mMm-+d—waxo >

D2_PUSH_ID

-

D2_PUSH_DATA

A9732-01

The DRM Push Arbiter boundary conditions are:

¢ Make sure each of the push_request queues assert the full signal and back pressure the
requesting unit.

* Maintain 100% bus utilization, i.e., no holes.

5.12 DRAM Pull Arbiter Description

The general dataflow for a push operation is as shown in Table 71. Figure 73 shows the DRAM
Pull Arbiter functional blocks.

Table 71. DPLA Description

Pull Bus Master/Requestor Data Source Data Destination

IXP2800 Network Processor

TCO Cluster (MEO-7)

DO Unit

D1 Unit TC1 Cluster (I\(/éES—lE)

D2 Unit Intel XScale. core Current Master
PCI Unit
MS Unit

The pull arbiter is very similar to the push arbiter, except that it gathers the data from a data source
ID and deliversit to the requesting unit where it iswritten to DRAM memory.

204 Hardware Reference Manual

Intel® IXP2800 Network Processor
DRAM

When arequestor getsa pull command on the CMD_BUS, the requestor sends the command to the
pull arbiter. Thisis enqueued into arequestor-dedicated FIFO. The pull request FIFOs are much
smaller than the push request FIFOs because pull requests can request up to 128 bytes of data. It is
eight entries deep and asserts full when it has six entries to account for in-flight requests.

The pull arbiter monitors the heads of each of the three FIFOs. A round robin arbitration schemeis
applied to all valid requests. When arequest is granted, the request is completed no matter how
many data transfers are required. Therefore, one request can take as many as 16-32 DRAMcycles.
The push data bus can only use 32-bits when delivering data to the Microengine's, PCl, and the
Intel XScale® core. For these data sources, it takes two cyclesto pull every eight bytes requested;
otherwise, it takes only one cycle per eight bytes. Note that on four byte cycles, datais delivered as
pulled.

Figure 73. DRAM Pull Arbiter Functional Blocks

Round
Robin

DO_PUSH_REQ

DO_PULL_ID
DPXX_PUSH_ID
A >
DI1_PUSH_REQ [R
D1_PULL_ID Ef DPXX_TAKE
T
E
D2_PUSH REQ | o
D2_PULL_ID I

ME_CLUSTER_0_DATA

ME_CLUSTER_1_DATA

XSCALE*_DATA DPXX_PULL_DATA[63:0] -

>

PCI_PULL_DATA

MSF_PULL_DATA

* Intel® XScale™ Architecture /

A9733-01

Hardware Reference Manual 205

Intel® IXP2800 Network Processor
DRAM

206

Hardware Reference Manual

intgl.

Intel® IXP2800 Network Processor
SRAM Interface

SRAM Interface 6

6.1

Overview

The IXP2800 Network Processor contains four independent SRAM controllers. SRAM controllers
support pipelined QDR* synchronous static RAM (SRAM) and a coprocessor that adheresto QDR
signaling. Any or all controllers can be left unpopulated if the application does not need to use
them.

Reads and writes to SRAM are generated by MicroEngines (ME), the Intel X Scale® core, and PCI
Bus masters. They are connected to the controllers through Command Buses and Push and Pull
Buses. Each of the SRAM controllers takes commands from the command bus and enqueues them.
The commands are de-queued, according to priority, and successive access to the SRAMs are
performed.

Each SRAM controller receives commands using two Command Buses, one of which may betied
off inactive, depending on the chip implementation. The SRAM Controller can enqueue a
command from each Command Busin each cycle. Data movement between the SRAM controllers
and the MEsis through the S-Push bus and S-Pull bus.

The overall structure of the SRAM controllersis shown in Figure 74.

Hardware Reference Manual 207

Intel® IXP2800 Network Processor
SRAM Interface

intel.

Figure 74. SRAM Controller/Chassis Block Diagram

6.2

208

Command P e, ' SRAM chips
Bus from ME and/or

Cluster 0 co-processor

Command
Bus from ME
Cluster 1

YY

.
>

SRAM <
Controller

\AJ

Push Bus /1D
to ME Cluster 0 < Push Arb |«

Push Bus /1D
to ME Cluster 1 < Push Arb |«

YY

Y

A

SRAM
Controller

L 2
Yy

Pulll ID to
ME Cluster 0 € PullArb <€

YY

A
Y

SRAM
Controller

Pulll ID to
ME Cluster 1

A

~«——| Pull Arb

.
Y Y

YY

A
Y

J 0010

SRAM
Controller

Pull Data from
ME Cluster 0

Pull Data from

ME Cluster 1

®
YY

A8951-01

SRAM Interface Configurations

Memory islogically four bytes (one longword) wide while physically the data pins are two bytes
wide and double-clocked. Byte parity is supported. Each of the four bytes has a parity bit, whichis
written when the byte is written and checked when the longword is read. There are byte enables
that select which bytesto write for lengths of less than alongword.

The QDR controller implements a big-endian ordering scheme at the interface pins. For write
operations bytes 0/1, (data bits [31:16]), and associated parity and byte enables are written on the
rising edge of K clock while bytes 2/3, (data bits[15:0]), and associated parity and byte enables are
written on the rising edge of K_n clock. For read operations bytes 0/1, (data bits [31:16]), and
associated parity and byte enables are captured on the rising edge of CINO clock while bytes 2/3,
(databits[15:0]), and associated parity and byte enables are captured on the rising edge of CINO_n
clock.

Hardware Reference Manual

6.3

6.3.1

6.3.2

6.3.3

6.4

Note:

Note:

Intel® IXP2800 Network Processor
SRAM Interface

In general, QDR and QDR |1 burst of two SRAMs s supported at speeds up to 250 MHz. As other
(larger) QDR SRAMs are introduced, they will also be supported.

The SRAM controller can also be configured to interface to an external coprocessor that adheresto
the QDR or QDR 11 electrical and functional specification.

SRAM Interface Configurations

This section describes SRAM interface information.

Internal Interface

Each SRAM channel receives commands through the command bus mechanism and transfers data
to and from the MEs, the Intel X Scale® core, and PCI usi ng SRAM push and SRAM pull buses.

Number of Channels

The IXP2800 supports four channels.

Coprocessor and/or SRAMs Attached to a Channel

Each channel will support the attachment of QDR SRAMS, a co-processor, or both depending on
the module level signal integrity and loading.

SRAM Controller Configurations

There are enough address pins (24) to support up to 64 MB of SRAM. The SRAM controllers can
directly generate multiple port enables (up to five pairs) to allow for depth expansion. Two pairs of
pins are dedicated for port enables. Smaller RAMs use fewer address signal's than the number
provided to accommodate the largest RAMS, so some address pins (23:18) are configurable as
either address or port enable based on CSR SRAM_ Control[Port_Control] as shown in Table 72.

All of the SRAMson agiven channel must be the same size.

Table 72 shows the capability of thelogic—1, 2, or 4 loads will be supported, and the table reflects
that information, but is subject to change.

Table 72. SRAM Controller Configurations

SRAM SRAM Size Addresses Needed | Addresses Used | Total Number of_ Port

Configuration to Index SRAM as Port Enables | Select Pairs Available
512K x 18 1MB 17:0 23:22,21:20 4
1M x 18 2MB 18:0 23:22,21:20 4
2M x 18 4 MB 19:0 23:22,21:20 4
4M x 18 8 MB 20:0 23:22 3

Hardware Reference Manual 209

Intel® IXP2800 Network Processor
SRAM Interface

intel.

Table 72. SRAM Controller Configurations (Continued)

S_RAM ‘ SRAM Size Addresses Needed | Addresses Used | Total Number of_Port

Configuration to Index SRAM as Port Enables | Select Pairs Available
8M x 18 16 MB 21:0 23:22 3
16M x 18 32 MB 22:0 None 2
32M x 18 64 MB 23:0 None 1

Each channel can be expanded in depth according to the number of port enables available. If
external decoding is used, then the number of SRAMsis not limited by the number of port enables
generated by the SRAM controller.

Note: External decoding may require external pipeline registers to account for the decode time,
depending on the desired frequency.

Maximum SRAM system sizes are shown in Table 73. Shaded entries require external decoding,
because they use more port enables than the SRAM controller can directly supply.

Table 73. Total Memory per Channel

Number of SRAMs on Channel
SRAM Size
1 2 3 4 5 6 7 8
512K x 18 1 MB 2 MB 3MB 4 MB 5 MB 6 MB 7 MB 8 MB
1M x 18 2 MB 4 MB 6 MB 8 MB 10 MB 12 MB 14 MB 16 MB
2M x 18 4 MB 8 MB 12 MB 16 MB 20 MB 24 MB 28 MB 32 MB
4M x 18 8 MB 16 MB 24 MB 32 MB 64 MB NA NA NA
8M x 18 16 MB 32 MB 48 MB 64 MB NA NA NA NA
16M x 18 32 MB 64 MB NA NA NA NA NA NA
32M x 18 64 MB NA NA NA NA NA NA NA

Figure 75 shows how the SRAM clocks on a channel are connected. For receiving data from the
SRAMSs, clock path and data path are matched to meet hold time requirements.

Figure 75. SRAM Clock Connection on a Channel

Intel® IXP2400
or A
Intel® IXP2800

Network c.Cn
Processor -

A

Y

A9734-01

210 Hardware Reference Manual

Intel® IXP2800 Network Processor
SRAM Interface

It isalso possible to pipeline the SRAM signals with external registers. Thisis useful for the case
when there is considerable loading on the address and data signals, which would slow down the
cycle time. The pipeline stages make it possible to keep the cycle time fast by fanning out the
address, byte write, and data signals. The RAM read data may also be put through a pipeline
register, depending on configuration. External decoding of port selects can also be done to expand
the number of SRAMSs supported. Figure 76 is a block diagram that shows the concept of external
pipelining.

A side effect of the pipeline registersis to add latency to reads, and the SRAM controller must
account for that delay by waiting extra cycles (relative to no external pipeline registers) before it
registers the read data. The number of extra pipeline delaysis programmed in
SRAM_Control[Pipeling].

Figure 76. External Pipeline Registers Block Diagram

6.5

6.5.1

SRAM SRAM
Intel® IXP2800
Network A A
Processor \ "
Q |- Register)
Addr, BWE, etc. Register >

A9735-01

Command Overview

This section will give an overview of the SRAM commands and their operation. The details will be
given later in the document. Memory reference ordering will be specified along with the detailed
command operation.

Basic Read/Write Commands

The basic read and write commands will transfer from 1 to 16 longwords of data to/from the QDR
SRAM external to the I XP2000 series processor.

For aread command, the SRAM isread and the data placed on the Push bus one longword at a
time. The command source (for example, the Microengine) is signaled that the command is
complete during the last data phase of the push bus transfer.

For awrite command, the dataisfirst pulled from the source, then written to the SRAM in
consecutive SRAM cycles. The command source is signaled that the command is complete during
the last data phase of the pull bus transfer.

Hardware Reference Manual 211

Intel® IXP2800 Network Processor
SRAM Interface

6.5.2

212

Table 74.

intel.

If aread operation stalls due to the pull-data FIFO filling, any concurrent write operation that isin
progress to the same address will be temporarily stopped. This technique results in atomic data
reads.

Atomic Operations

The SRAM Controller does read-modify-writes for the atomic operations, the pre-modified data
can also be returned if desired. Other (non-atomic) readers and writers can access the addressed
location in between the read and write portion of the read-modify-write. Table 74 describes the
atomic operations supported by the SRAM Controller.

Atomic Operations

Instruction Pull Operand Value Written to SRAM
Set_bits Optionall SRAM_Read_Data OR Pull_Data
Clear_bits Optional SRAM_Read_Data AND NOT Pull_Data
Increment No SRAM_Read_Data + 0x00000001
Decrement No SRAM_Read_Data - 0x00000001
Add Optional SRAM_Read_Data + Pull_Data
Swap Optional Pull_Data

1. There are two versions of the Set, Clear, Add, and Swap instructions. One version pulls operand data from the Microengine
transfer registers, while the second version passes the operand data to the SRAM Unit as part of the command.

Up to two Microengine signals will be assigned to each read-modify-write reference. Microcode
should always tag the read-modify-write reference with an even numbered signal. If the operation
requires a pull, then the requested signal will be sent on the pull. If the pre-modified datais to be
returned to the Microengine, then the Microengine will be sent (requested signal OR 1) when that
datais pushed.

In Example 27, the version of Test_and_Set requires both a pull and a push:

Example 27. SRAM Test_and_Set with Pull Data

immed [$xfer0, O0x1]
SRAM [test_and set, $xfer0, test address, 0, 1], sig done 2

// SIGNAL 2 is set when $xfer0 is pulled from this ME. SIGNAL 3 is
// set when $xfer0 is written with the test value. Sleep until both
// SIGNALS have arrived.

CTX_ARB[signal_ 2, signal_ 3]

Hardware Reference Manual

intgl.

Intel® IXP2800 Network Processor
SRAM Interface

In Example 28 the version of Test_and_Set does not require a pull, but does issue a push. A signal
is generated when the push is complete:

Example 28. SRAM Test_and_Set with Optional No-Pull Data

#define no pull mode bit 24
#define byte_mask_override_bit 20
#define no pull data bit 12
#define upper part_bit 21

// This constant can be created once at init time
ALU[no_pull_constant, --, b, 0x3, <<no_pull mode bit]
ALU[no_pull constant, no_pull constant, or, 1, <<byte mask override bit]

// Here is a no_pull test_and add

ALU[temp, no_pull constant, or, Oxfe, <<no pull data bit]
ALU[temp, temp, or, 0x5, <<upper part bit]

SRAM [test_and_add, $x0, addra, 0], indirect_ref, sig donel[sig2]

CTX_ARB[sig2]

In Example 29, an Increment operation does not require a pull:

Example 29. SRAM Increment without Pull Data

6.5.3

SRAM [incr, $xfer0, incr address, 0, 1], signal 2
// SIGNAL 2 is set when $xfer0 is written with the pre-increment value.

CTX_ARB[signal_2]

Queue Data Structure Commands

The ability to enqueue and dequeue data buffers at afast rate is key to meeting chip performance
goals. Thisisadifficult problem asit involves dependent memory references that must be turned
around very quickly. The SRAM controller includes a data structure (called the Q_array) and
associated control logic in order to perform efficient enqueue and dequeue operations. Optionally,
this hardware or a portion of this hardware can be used to implement rings and journals.

A queueisan ordered list of data buffers stored at non-contiguous addresses. Thefirst buffer added
to the queue will be the first buffer removed from the queue. Queue entries are joined together by
creating links from one data buffer to the next. This hardware implementation supportsonly a
forward link. A queueis described by a pointer toitsfirst entry (called the head) and a pointer to its
last entry (thetail). In addition, there isa count of the number of items currently on the queue. This
triplet (head, tail, and count) is referred to as the queue descriptor. In the I XP 2400 and I XP2800
chips, the queue descriptor is stored in that order—head first, then tail, then count. The longword
alignment of the head addresses for all queue descriptors must be a power of two. For example,
when there are no extra parameters on the queue descriptor, there will be one unused longword per
gueue descriptor.

Hardware Reference Manual 213

Intel® IXP2800 Network Processor
SRAM Interface

u
I ntel c
Figure 77 shows a queue descriptor and queue links for a queue containing four entries.

Figure 77. Queue Descriptor with Four Links

A: B: C: D:
Head: A > B > C > D > No Link
Tail: D f
Q_Count: 4

A9736-01

There are two different versions of the enqueue command, xQ_tail and 1link and ENQ tail.
ENQ tail and link iSused to enqueue one buffer at atime. In Figure 77, issuing an
ENQ tail and_link to buffer link address z will result in the queue shown in Figure 78.

Figure 78. Enqueueing One Buffer at a Time

A B C: D
Head: A > B > C > D > z
Tail: Z
Z:
Q_Count: 5 > No Link

A9737-01

ENQ tail and 1link followed by exg tai1 are used to enqueue a previoudly linked string of
buffers. The string of buffersis used in the case where one packet is too large to fit in one buffer.
Instead, it is divided among multiple buffers. Figure 79 is an example of a string of buffers.

Figure 79. Previously Linked String of Buffers

T: Start of Packet uU: V: W: End of Packet

No Link

Y
<
Y
=
Y

u

A9738-01

214 Hardware Reference Manual

Intel® IXP2800 Network Processor
SRAM Interface

intgl.

To engueue the string of buffersin Figure 79 to the example queue in Figure 77, first issue
ENQ tail_and link to address T. Figure 80 is the result.

Figure 80. First Step to Enqueue a String of Buffers to a Queue (ENQ_Tail_and_Link)

Head: A

Tail: T
Ty U V: W:
Q _Count: 5 U \Y W > No Link

A9739-01

Y
vs]
Y
O
A
@)
A
—
|

Y
Y

The second step isto issue and exg_tail to address W. Thiswill fix the Tail to point to the last
buffer of the string.

Note: o count isnot changed by exg tai1 because the string of buffers represents one packet.

Figure 81 isthe fina queue state.
Figure 81. Second Step to Enqueue a String of Buffers to a Queue (ENQ_Tail)

A B C: D
Head: A > B > c > D > T _|
Tail: T
T: * U: V: W:
Q_Count: 5 U > \% > W > No Link

A

A9740-01

There are two different modes for the dequeue command. One mode removes an entire buffer from
the queue. The second mode removes a piece of the buffer (referred to as acell). The mode (cell
degueue or buffer dequeue) is selectable on a buffer-by-buffer basis by setting the ce11_count bits
(<30:24>) inthe link longword.

A ringisan ordered list of datawords stored in afixed block of contiguous addresses. A ring is
described by a head pointer and atail pointer. Datais written, using the put command, to aring at
the address contained in the tail pointer and the tail pointer isincremented. Datais read, using the
get command, from aring at the address contained in the head pointer and the head pointer is
incremented. Whenever either pointer reaches the end of the ring, the pointer is wrapped back to
the address of the start of thering.

Hardware Reference Manual 215

Intel® IXP2800 Network Processor

SRAM Interface

intel.

A journal issimilar to aring. It is generally used for debugging. Journal commands only write to
the data structure. New data overwrites the oldest data. Microcode can choose to tag the journal
data with the Microengine number and CTX number of the journa writer.

Theq_array to support queuing, rings and journals contains 64 registers per SRAM channel. For a
design with alarge number of queues, the queue descriptors cannot all be stored on chip, and thusa
subset of the queue descriptors (16) is cached in the Q_array. To implement the cache, 16
contiguous Q_array registers must be allocated. The cache tag (the mapping of queue number to
Q_array registers) for theo_array ismaintained by microcode in the CAM of aMicroengine. The
writeback and load of the cached registersin the o array isunder the control of that microcode.

Note:

The size of theg_array doesnot set alimit on the number of queues supported.

For other queues (free buffer pools, for example), rings, and journals, the information does not
need to be subsetted and thus can be loaded into the o_array at initiaization time and left there to
be updated solely by the SRAM controller.

The sum total of the cached queue descriptors plus the number of rings, journals and static queues
must be less than or equal to 64 for agiven SRAM channel.

Thefieldsand sizes of theg_array registersare shown in Table 75 and Table 76. All addresses are
of typelongword, and are 32 bitsin length.

Table 75. Queue Format

Name Longword # | Bit #1 Definition
EOP 0 31 End of Packet—decrement Q_count on dequeue
SOP 0 30 Start of Packet—used by the programmer
Cell Count 0 29:24 | Number of cells in the buffer
Head 0 23:0 | Head pointer
Tail 1 23:0 | Tail pointer
Q_count 2 23:0 {\rl]lérrg‘zeézgf packets on the queue or number of buffers on
SW_Private 2 31:24 | Ignored by hardware, returned to Microengine
Head Valid N/A Cached head pointer valid—maintained by hardware
Tail Valid N/A Cached tail pointer valid—maintained by hardware

1.

Bits 31:24 of longword number 2 are available for use by ucode.

Table 76. Ring/Journal Format

Name Longword # | Bit# Definition
Ring Size 0 31:29 | See Table 77 for size encoding.
Head 0 23:0 | Get pointer
Tail 1 23:0 | Put pointer
Ring Count 2 23:0 | Number of longwords on the ring

Note:

216

For aRing or Journal, zeada and Tail must be initialized to the same address.

Hardware Reference Manual

intgl.

Intel® IXP2800 Network Processor
SRAM Interface

Journals/Rings can be configured to be one of eight sizes, as shown in Table 77.

Table 77. Ring Size Encoding

Note:

6.5.3.1

6.5.3.2

6.5.3.3

6.5.4

Ring Size Encoding | Size of Journal/Ring Area | Head/Tail Field Base | Head and Tail Field Increment
000 512 Longwords 23:9 8:0
001 1K 23:10 9:0
010 2K 23:11 10:0
011 4K 23:12 11:0
100 8K 23:13 12:0
101 16K 23:14 13:0
110 32K 23:15 14:0
111 64K 23:16 15:0

The following sections contain pseudo-code to describe the operation of the various queue and ring
instructions.

For these examples, NIL isthe value 0.

Read _Q_Descriptor Commands

These commands are used to bring the queue descriptor data from QDR SRAM memory into the
Q_array. Only portions of the 9_descriptor are read with each variant of the command in order
minimize QDR SRAM bandwidth utilization. It is assumed that microcode has previously evicted
theq descriptor datafor the entry prior to overwriting the entry datawith thenew @ descriptor
data. Refer to the IXP2400/1XP2800 Programmer’s Reference Manual, Section 3.2.47, “SRAM
(Read Queue Descriptor)” for more information.

Write_Q_Descriptor Commands

Thewrite_Q_descriptor commands are used to evict an entry inthe g _array and return it's
contents to QDR SRAM memory. Only the valid fields of the o descriptor arewritten in order
minimize QDR SRAM bandwidth utilization. Refer to the I XP2400/1 XP2800 Programmer’s
Reference Manual, Section 3.2.48, “ SRAM (Write Queue Descriptor)” for more information.

ENQ and DEQ Commands

These commands add or remove elements from the queue structure while updating the ¢ _array
registers. Refer to the I XP2400/1XP2800 Programmer’s Reference Manual, Section 3.2.49,
“SRAM (Enqueue)”and Section 3.2.5, “SRAM (Degueue)” for more information.

Ring Data Structure Commands

Thering structure commands use the o_array registers to hold the head tail and count data for a
ring data structure, which is afixed size array of datawith insert and remove pointers. Refer to the
I XP2400/1XP2800 Programmer’s Reference Manual, Section 3.2.53, “SRAM (Ring Operations)”
for more information.

Hardware Reference Manual 217

Intel® IXP2800 Network Processor
SRAM Interface

intel.

Journaling commands use the o_array registersto index into an array of memory in the QDR
SRAM that will be periodically written with information to help debug applications running on the
I XP 2400 and | XP2800 processors. Once the array has been completely written once, subsequent
journal writes will overwrite the previously written data—only the most recent data will be present
in the data structure. Refer to the I XP2400/1XP2800 Programmer’'s Reference Manual, Section
3.2.52, “SRAM (Journal Operations)” for more information.

6.5.5 Journaling Commands

6.5.6 CSR Accesses

CSR accesseswill write or read CSRs within each controller. The upper address bitswill determine
which channel will respond, while the CSR address within achannel are given in thelower address
bits.

6.6 Parity

SRAM can be optionally protected by byte parity. Even parity is used—the combination of eight
data bits and the corresponding parity bit will have an even number of ‘1's. The SRAM controller
generates parity on all SRAM writes. When parity is enabled (sraM_control [Par_Enable]l) the
SRAM controller checks for correct parity on all reads. Upon detection of a parity error on aread
or the read portion of an atomic read-modify-write, the SRAM controller will record the address of
the location with bad parity in sram_parity [address] and set the appropriate

SRAM Parity [Error] hit(s). Those bit(s) will interrupt the Intel X Scale™ core when enabled in
IRQ Enable [SRAM Parity] Of FIQ Enable [SRAM Parity]. TheDataError signal inthepush cmp
will be asserted when the data to be read is delivered (unless the token rgnore Dpata Error Was
asserted in the command; in that case the SRAM controller will not assert Data Error). When Data
Error is asserted, the Push Arbiter will suppress the Microengine signal if the read was originated
by aMicroengine (it will use oxo, which isanull signal, in place of the requested signal number).

Note: If incorrect parity is detected on the read portion of an atomic read-modify-write, the incorrect
parity will be preserved after the write (that is, the byte(s) with bad parity during the read will have
incorrect parity written during the write).

When parity is used, Intel XScal €® core software must initialize the SRAMs by:
1. Enable parity (writea1 to sRaM_control [Par_Enablel).
2. Writing to every SRAM address.

SRAM should not be read prior to doing the above initialization, otherwise parity errors are likely
to be recorded.

218 Hardware Reference Manual

intel.
6.7
Table 78.

Note:

Note:

Intel® IXP2800 Network Processor
SRAM Interface

Address Map

Each SRAM channel occupiesa 1GB region of addresses. Channel 0 starts at 0, Channel 1 at 1GB,
etc. Each SRAM controller receives commands from the command buses. It compares thetarget ID
to the SRAM target ID, and address bits 31:30 to the channel number. If they both match, then the
controller processes the command. See Table 78.

Address Map

Start Address End Address Responder
0x0000 0000 Ox3FFF FFFF Channel 0
0x4000 0000 Ox7FFF FFFF Channel 1
0x8000 0000 OxBFFF FFFF Channel 2
0xc000 0000 OxFFFF FFFF Channel 3

If an access addresses a non-existent address within an SRAM controller’s address space the results
are unpredictable.For example the result of accessing address oxo100 0000 when thereisonly
1 MB of SRAM populated on the channel will produce unpredictable results.

For SRAM (memory or CSR) references from the Intel X Scale® core, the channel select isin
address bits 29:28. The Gasket shifts those bitsto 31:30 to match addresses generated by the MEs.
Thus, the SRAM channel select |logic isthe same whether the command source is aMicroengine or
the Intel X Scale® core.

The same channel start and end addresses are used both for SRAM memory and CSR references.
CSR references are distinguished from memory references through the CSR encoding in the
command field.

Reads and writes to undefined CSR addresses will yield unpredictable results.

The IXP 2400 and | XP2800 addresses are byte addresses. As the fundamental unit of operation of
the SRAM controller is alongword access, the SRAM controller will ignore the 2 low order
address bitsin all cases and utilize the byte mask field on memory address space writesto
determine the bytes to write into the SRAM. Any combination of the four bytes can be masked.
The operation of bytewrites with alength other than 1 are unpredictable. That is, microcode should
not use aref_count greater than 1 longword when a byte mask is active. CSRs are not byte
writable.

Hardware Reference Manual 219

Intel® IXP2800 Network Processor
SRAM Interface

6.8

6.8.1

Table 79.

220

intel.

This section discusses the ordering between accesses to any one SRAM controller. Various
mechanisms are used to guarantee order—for example, references that always go to the same
FIFOsremain in order. Thereisa CAM associated with write addresses that is used to order reads
behind writes. Lastly, several counter pairs are used to implement “fences’. The input counter is
tagged to a command and the command is not permitted to execute until the output counter
matches the fence tag. All of thiswill be discussed in more detail in this section.

Reference Ordering

Reference Order Tables

Table 79 shows the architectural guarantees of order of accesses to the same SRAM address
between a reference of any given type (shown in the column labels) and a subsequent reference of
any given type (shown in the row labels). The definition of first and second is defined by the time
the command is valid on the command bus. Verification requires testing only the order rules shown
in Table 79 and Table 80. Note that a blank entry means no order is enforced.

Address Reference Order

151dref —> Queue/

2" ref Memory Memory . . Ring /
Read CSR Read Write CSR Write Atomics Q_Descr

Commands

Memory Read Order Order

CSR Read Order

Memory Write Order Order

CSR Write Order

Atomics Order Order

Queue / Ring / See

Q_Descr Table 80.

Commands

Table 80 shows the architectural guarantees of order to access to the same SRAM ¢_array entry
between a reference of any given type (shown in the column labels) and a subsequent reference of
any given type (shown in the row labels). The termsfirst and second are defined with reference to
the time the command is valid on the command bus. The same caveats that apply to Table 79 apply
to Table 80.

Hardware Reference Manual

Intel® IXP2800 Network Processor
SRAM Interface

Table 80. Q_array Entry Reference Order

6.8.2

Read_Q | Read
15t ref — P - —)
2nd ref _Descr | Q_Des | Write_Q Enqueue | Dequeue Put Get Journal
head, cr _Descr
tail other
Read_Q_Descr 1
head tail Order
Read_Q_
Descr other Order
Write_Q_
Descr
Enqueue Order Order Order Order®
Dequeue Order Order Order3 Order
Put Order
Get Order
Journal Order

1. The order of Read_Q_Descr_head/tail after Write_Q_Descr to the same element will be guaranteed only if it is to a different
descriptor SRAM address. The order of Read_Q_Descr_head/tail after Write_Q_Descr to the same element with the same
descriptor SRAM address is not guaranteed and should be handled by the Microengine code.

2. Write_Q_Descr reference order is not guaranteed after any of the other references. The Queue array hardware assumes
that the Microengine managing the cached entries will flush an element ONLY when it becomes the LRU in the Microengine
CAM. Using this scheme, the time between the last use of this element and the write reference is sufficient to guarantee the

order

3. Order between Enqueue references and Dequeue references are guaranteed only when the Queue is empty or near empty.

Microcode Restrictions to Maintain Ordering

It is the microcode programmer’s job to ensure order where the program flow requires order and
where the architecture does not guarantee that order.

One mechanism that can be used to do thisis signaling. For example, say that microcode needs to
update several locationsin atable. A location in SRAM is used to lock access to the table.
Example 30 is the microcode for this table update.

Example 30. Table Update Microcode

IMMED

SRAM [write,

IMMED

SRAM [write,

[$xfer0, 1]

sxfero0,

; At this point, the
the table updates.

SRAM [write, S$xferl,
SRAM [write, S$xfer3,
CTX_ARB [SIG DONE_ 3,

; At this point, the
flag to allow access
[$xfer0, 0]

sxfero,

[SIG DONE 2]
write to flag address has passed the point of coherency. Do

flag address, 0, 1, ctx swap

table base, offsetl, 2] ,
table base, offset2, 2] ,
SIG DONE_4]

table writes have passed the point of coherency. Clear the
by other threads.

sig done [SIG_DONE_3]

sig_done [SIG_DONE_4]

flag address, 0, 1, ctx swap [SIG_DONE_2]

Hardware Reference Manual

221

Intel® IXP2800 Network Processor
SRAM Interface

6.9

Note:

intel.

Other microcode rules:

All access to atomic variables should be through read-modify-write instructions.

If the flow must know that awrite is completed (actually in the SRAM itself), follow the write
with aread to the same address. The write is guaranteed to be complete when the read data has
been returned to the Microengine.

With the exception of initialization, never do write commands to the first 3 longwords of a
queue_descriptor data structure (these are the longwords that hold head, tail, and count). All
accesses to this data must be through the Q commands.

Toinitidizetheo array registers, perform amemory write of at least 3 longwords, followed
by a memory read to the same address (to guarantee that the write completed). Then, for each
entry intheg array, perform aread g descriptor_head followed by a

read g descriptor other US ng the address of the same 3 Iongwords

Coprocessor Mode

Each SRAM controller may interface to an external coprocessor through it’s standard QDR
interface. Thisinterface will allow for the cohabitation of both SRAM devices and coprocessors
operating on the same bus. The coprocessor will behave as a memory mapped device on the SRAM
bus. Figure 82 is asimplified block diagram of the SRAM contraller. Figure 82 showsthe
connection to a coprocessor through a standard QDR interface.

Most coprocessors will not need alarge number of address bits—connect as many bits of An as
required by the coprocessor.

Figure 82. Connection to a Coprocessor Though Standard QDR Interface

SRAM_Control Coproessor 1 Coprocessor
SRAM Push B Read
TP nternal |- Pu's:TF%ata <228 Pin < Qn[17:0]
Bus Control
Control State > RPE_Ln[1:0]
State_ Read Mechanics
Mechanics | Read cmd | Address
- FIFO -
RAM B
w» 3> An[x:0]
Write
I Write cmd [Address
L F?F% d L > BWEN[1:0]
Write
SRAM Pull Bus <« Pull Data Data > WPE_Ln[1:0]
—_— i FIFO -
> Dn[17:0]

A9746-01

222

Hardware Reference Manual

Intel® IXP2800 Network Processor

The external coprocessor interface is based on FIFO communication.

SRAM Interface

A thread can send parameters to the coprocessor by doing a normal SRAM write instruction:

sram[write, $sram xfer reg,

srcl,

src2,

ref count], optional_ token

The number of parameters (longwords) passed is specified by ref_count. The address can be used
to support multiple coprocessor FIFO ports. The coprocessor will perform some operation using
the parameters, and then, sometime later it will pass back some number of results values (the
number of parameters and results will be known by the coprocessor designers). The time between
the input parameter and return values is not fixed; it is determined by the amount of timethe
coprocessor requires to do its processing and can be variable. When the coprocessor is ready to
return the results it signals back to the SRAM controller through amailbox valid bit that the datain
theread FIFO isvalid. A thread can get the return values by doing a normal SRAM read

instruction:

sram[read, $sram xfer reg,

Figure 83 shows the coprocessor with 1 to n memory-mapped FIFO ports.

srcl,

src2,

ref count], optional_ token

Figure 83. Coprocessor with Memory Mapped FIFO Ports

_ Qn[17:0]

RPE_Ln[0]

An[x:0]

Y

Network Processor

BWER[1:0]

Y

Read
Control
Logic

Port 1

Write

~| control

WPE_Ln([0]

Y

Dn[17:0]

Y

Logic

Y

Y

Mail Box FIFO
Valid I
Port 2

Mail Box FIFO
Valid I
Port n

Mail Box RIFO
Valid I
Port 1

Mail Box HIFO
Port 2

Mail Box RIFO
Port n

Mail Box FIFO

A9749-01

If the read instruction executes before the return values are ready, the coprocessor will signal data
invalid through the mailbox register on the read data bus (Qn[17:0]). Signaling a thread upon

pushing its read data works exactly asin anormal SRAM read.

Hardware Reference Manual

223

There can be multiple operations in-progress in the coprocessor. The SRAM controller will send
parameters to the coprocessor in response to each SRAM write instruction without waiting for
return results of previous writes. If the coprocessor is capable of re-ordering operations—that is,
returning the results for a given operation before returning the results of an earlier arriving
operation—M icroengine code must manage matching results to operations. Tagging the operation
by putting a sequence value into the parameters, and having the coprocessor copy that value into
the resultsis one way to accomplish this requirement.

Flow control will be under the Network Processor's Microengine control. An Microengine thread
accessing a coprocessor port will maintain a count of the number of entriesin that coprocessor 's
write FIFO port. Each time an entry is written to that coprocessor port the count will be
incremented. When avalid entry is read from that coprocessor read port the count will be
decrement by the thread.

intgl.

Intel® IXP2800 Network Processor
SHaC—Unit Expansion

SHaC—Unit Expansion 7

7.1

7.1.1

Note:

This section covers the operation of the Scratchpad, Hash Unit and CSRs (SHaC).

Overview

The SHaC unit isamultifunction block containing Scratchpad memory and logic blocksto perform
hashing operations and interface with Intel X Scale® core peripherals and chip CSRs through the
APB and CSR buses, respectively. The SHaC also houses the global registers, aswell as chip Reset
logic.

The SHaC unit has the following features:

» Communication to Intel XScale® core peripherals, such as GPIOs and timers, through the
APB bus.

¢ Creation of hash indices of 48, 64, or 128-bit widths.

¢ Communication ring used by MicroEngines (MES) for interprocess communication.
* Third-option memory storage usable by Intel X Scale® core and MEs.

* CSR businterface to permit fast writesto CSRs, as well as standard read and writes.
* Push/Pull Reflector to transfer data from the Pull bus to the Push bus.

The CSR and ARM Advanced Peripheral Bus (APB) bus interfaces are controlled by the
Scratchpad state machine and will be addressed in the Scratchpad design detail section. (See
Section 7.1.2.)

Detailed information about CSRs is contained in the Intel® 1XP2400/1 XP2800 Network Processor
Programmer’s Reference Manual.

SHaC Unit Block Diagram

The SHaC unit contains two functional units: the Scratchpad and Hash Unit. Each will be described
in greater detail in the following sections. The CAP and APB bus interfaces will be addressed as
part of the Scratchpad description.

Hardware Reference Manual 225

Intel® 1XP2800 Network Processor
SHaC—Unit Expansion

INlal.

Figure 84. SHaC Top Level Diagram

— SH_APB_CTL]
Command TAXX_CMD_BUS_B | Scratch/CAP | SH_APB_WR_DATA Intel®
. > Control > XScale™
Arbiters .
< SH_CMDQ_FULL Logic < XP_RD_DATA Architecture
| ~_ XP_RDY |
——
SPO_PULL DATA SH_CSR_CTL N L
SP1_PULL_DATA >
Pull SPO_PULLQ FULL SHCSRWRDATA CSRs
- > CSR_RD_DATA
Arbiters SP1 PULLQ FULL -——
SPO_TAKE_DATA <RR0Y H
SP1 TAKE DATA
* SH_PULL_CMD
SPO_PUSHQ_FULL
SP1_PUSHQ FULL
Push >
Arbiters | g SH_PUSH_ID
D SH_PUSH_DE
A SH_PUSH_DATA
Scratch
SCR_HASH_TAKE_PULLL_DATA RAM
SCR_HASH_TAKE_PULLO_DATA <
@xx32) ||
SCR_SEND_HASH_DATA -«
SCR_HASH_CMD <
Hash HASH_PUSH_DATA_REQ
> Control
>| ogic HASH_PUSH_DATA
N HASH_PUSH_CMD
A9751-01

226 Hardware Reference Manual

INlal.

Intel® IXP2800 Network Processor
SHaC—Unit Expansion

7.1.2 Scratchpad

7.1.2.1 Scratchpad Description

The SHaC Unit contains a 16 Kbyte Scratchpad memory, organized as 4K 32-hit words, that is
accessible by the Intel X Scale® core and MicroEngines (MEs). The Scratchpad connects to the
internal Command, S_Push/S_Pull, CSR, and APB buses, as shown in Figure 85.

The Scratchpad memory provides the following operations:

Normal reads and writes. From oneto 16 longwords (32 bits) can be read/written with asingle
command. Note that Scratchpad is not byte-writable. Each write must write all four bytes.

Atomic read-modify-write operations, bit-set, bit-clear, increment, decrement, add, subtract,
and swap. The Read-Modify-Write (RMW) operations can also optionally return the
premodified data.

Sixteen Hardware Assisted Rings for interprocess communication.

Standard support of APB peripherals such as UART, Timers, and GPIOs through the ARM
Advanced Peripheral Bus (APB).

Fast write and standard read and write operations to CSRs through the CSR Bus. A fast write
is where the write data is supplied with the command, rather than pulling the data from the
source.

Push/Pull Reflector Mode that supports reading from a device on the pull bus and writing the
data to a device on the push bus (reflecting the data from one bus to the other). A typical
implementation of this modeisto allow aMicroengine to read or write the transfer registers or
CSRsin another Microengine. Note that the Push/Pull Reflector Mode only connectsto a
single Push/Pull bus. If a chassisimplements more than one Push/Pull bus, it can only connect
one specific bus to the CAP.

Scratchpad memory is provided as a third memory resource (in addition to SRAM and DRAM)
that is shared by the MEs and Intel XScale® core. The MEs and Intel X Scale® core can distribute
memory accesses between these three types of memory resources to provide a greater number of
memory accesses occurring in parallel.

1. AringisaFIFO that uses a head and tail pointer to store/read information in Scratchpad memory.

Hardware Reference Manual 227

Intel® 1XP2800 Network Processor
SHaC—Unit Expansion

Figure 85. Scratchpad Block Diagram

8-Stage CMD Pipe
o TACMD_ T T T
£< BUS_B b
go — > 3| CMD_INLET_ > 111 > CSR_CONTROL_SIGNALS 1,
2 QUEUE BN > (ARs
CSR_FAST_WR_DATA APB_CONTROL_SlGNALS\ To
> xpI
Scratchpad
State SH_PUSH_ID y a
SH_PULL_ID Machine > g
< SH_PUSH_DE =
SH_PULL_LEN < > g
< PULL_CMD)z
SPO_PULLQ_FULL §GENERATOR
SP1_PULLQ_FULL _ CMD_PIPE_FULL SCR_HASH_CMD >] <
> -« SCR_SEND_HASH_DATA .2%
%) S
e€ SPO_TAKE_DATA HASH_PUSH_DATA REQ] g =
e < s 2
L= | SP1_TAKE_DATA HASH_PUSH_CMD If
a TAKE_DATA -«]
HASH_TAKE_ CONTROL
< PULLO_DATA
g = SCR_READ_DATA_SEL SCR_PUSH_DATA_SEL
I HASH_TAKE_] SCR_ADDR
T _
e PULLT DATA <| < SCR RD
I SCR_WR
OI \—1|
- -
- -
o]
n-l ’ll
W w
¥ | X
=4 K
'_I '_I
) | o
< Ol O
go 28 K%}
E%{SPO_PUL'—_DATA PULLO FIFO <€ APB_READ_DATA
—_—> . -
o (16 x 32 hit) (from Intel® XScale Peripheral - \'
CSR_READ_DATA” a
2 (from CSRs) PUSH_ %
gi{spl‘PULL‘DATA PULLLFIFO [HASH_PUSH DATA | A2y |5
I (16 x 32 hit) (from Hash Unit) _ &
o} > [o
[a R C
Vﬁ > Scr?;/ip,lpad SCR_READ_DATA .
> (4Kx32)
SH_CSR_WR_DATA / -«
- L\ _ SCR_PULL_DATA SCR_RMW_DATA
_ SH_APB_WR_DATA
A9756-01

228 Hardware Reference Manual

In

7.1.2.2

Note:

7.1.2.21

71222

7.1.2.2.3

71224

Note:

7.1.2.3

Intel® IXP2800 Network Processor
SHaC—Unit Expansion

Scratchpad Interface

The Scratchpad command and S_Push and S_Pull bus interfaces actually are shared with the Hash
Unit. Only one command, to either of those units, can be accepted per cycle.

The CSR and APB buses will be described in detail in following sections.

Command Interface

The Scratchpad accepts commands from the Command Bus and can accept one command every
cycle.

For Push/Pull reflector write and read commands, the command busisrearranged before being sent
to the Scratchpad state machine in order to allow a single state (REFLECT_PP) to be used to
handle both commands.

Push/Pull Interface

The Scratchpad has the capability to interface to either one or two pairs of push/pull (PP) bus pairs.
Theinterface from the Scratchpad to the PP bus pair isthrough the Push/Pull Arbiters. Each PP bus
has a separate Push and Pull arbiter through which access to the Push bus and Pull bus,
respectively, isregulated. Refer to the SRAM Push Arbiter and SRAM Pull Arbiter chapters for
more information. When the Scratchpad is used in a chip that only utilizes one pair of PP buses, the
other interface is unused.

CSR Bus Interface

The CSR Bus providesfast write and standard read and write operations from the Scratchpad to the
CSRsin the CSR block.

Advanced Peripherals Bus Interface (APB)

The Advanced Peripheral Bus (APB) is part of the Advanced Microcontroller Bus Architecture
(AMBA) hierarchy of busesthat is optimized for minimal power consumption and reduced design
complexity.

The SHaC Unit uses amodified APB interface in which the APB peripheral isrequired to generate
an acknowledge signal (APB_RDY _H) during read operations. Thisis doneto indicate that valid
datais on the bus. The addition of the acknowledge signal is an enhancement added specifically for
the IXP Chassis. (For more details refer to the ARM AMBA Specification 1.6.1.3.)

Scratchpad Block Level Diagram
Scratchpad Command Overview

This section will detail the operations performed for each Scratchpad command. Command order is
preserved because all commands go through a single command inlet FIFO.

When avalid command is placed on the command bus, the control logic checks the instruction
field for the Scratchpad or CAP ID. The command, address, length, etc. are enqueued into the
Command Inlet FIFO. If the command requires pull data, signals are generated and immediately
sent to the Pull Arbiter. The command is pushed from the Inlet FIFO to the command pipe where it
will be serviced according to the command type.

Hardware Reference Manual 229

Intel® IXP2800 Network Processor
SHaC—Unit Expansion

7.1.23.1

230

u
I ntel o
If the Command Inlet FIFO becomes full, the Scratchpad controller will send afull signal to the

command arbiter which will prevent it from sending further Scratchpad commands.

Scratchpad Commands

The basic read and write commands will transfer from 1 to 16 longwords of data to/from the
Scratchpad.

Reads

When aread command is at the head of the Command queue, the Push Arbiter is checked to seeif
it has enough room for the data. If so, the Scratchpad RAM is read, and the data is sent to the Push
Arbiter one 32-bit word at atime (the Push_ID is updated for each word pushed). The Push Datais
sent to the specified destination.

Theread dataisplaced onthe S_Push bus one 32-bit word at atime. If the master isa Microengine,
itissignaled that the command is complete during the last phase of the push bus transfer. Other
masters (Intel X Scal €® core and PCI) must count the number of data pushesto know when the
transfer is complete.

Writes

When awrite command is at the head of the Command Inlet FIFO, signals are sent to the Pull
Arbiter. If there isroom in the queue, the command is sent to the Command pipe.

When awrite command is at the head of the Command pipe, the command waits for asignal from
the Pull Data FIFO, indicating the data to be written is valid. Once the first longword is received,
the data is written on consecutive cyclesto the Scratchpad RAM until the burst (up to 16
longwords) is completed.

If the master is aMicroengine, it is signaled that the command is complete during the last pull bus
transfer. Other masters (Intel XScale™ core and PCI) must count the number of data pulls to know
when the transfer is compl ete.

Atomic Operations

The Scratchpad supports the following atomic operations.

* bit set

* bit clear

* increment

* decrement

e add

* subtract

e swap
The Scratchpad does read-modify-writes for the atomic operations, the pre-modified data also can
be returned, if desired. The atomic operations operate on asingle longword. Thereis one cycle

between the read and write while the modification is done. In that cycle no operation is done, so an
access cycleislost.

When a read-modify-write command requiring pull data from a source is at the head of the
Command Inlet FIFO, asignal is generated and sent to the Pull Arbiter (if there isroom).

Hardware Reference Manual

Note:

7.1.2.3.2

Intel® IXP2800 Network Processor
SHaC—Unit Expansion

When the RMW command reaches the head of the Command pipe, the Scratchpad reads the
memory location inthe RAM. If the source requests the pre-modified data (Token[Q] set), it is sent
to the Push Arbiter at the time of the read. If the RMW requires pull data, the command waits for
the data to be placed into the Pull Data FIFO before performing the operation; otherwise the
operation is performed immediately. Once the operation has been performed, the modified datais
written back to the Scratchpad RAM.

Up to two Microengine signals will be assigned to each read-modify-write reference. Microcode
should always tag the read-modify-write reference with an even numbered signal. If the operation
requires apull, then the requested signal will be sent on the pull. If the read dataisto be returned to
the Microengine, then the Microengine will be sent (requested signal OR 1) when that dataiis
pushed.

For al atomic operations, whether or not the read datais returned is determined by Command bus
Token[o].

Intel XScaIe core can do atomic commands using aliased addressesin Scratchpad. An Intel

X Scale® core Store mstructlon to an atomic command address will do the RMW without returning
the read data, an Intel X Scale® core Swap instruction (SVVP) to an atomic command address will
do the RMW and return the read datato Intel XScale® core,

Ring Commands

The Scratchpad provides 16 Rings used for interprocess communication. The rings provide two
operations.

* Get(ring, length)
* Put(ring, length)

Ring isthe number of thering (0 through 15) to get from or put to, and length specifies the number
of longwords to transfer. A logical view of one of the rings is shown in Figure 86.

Figure 86. Ring Communication Logic Diagram

Address
Decoder

A

AR

Scratchpad RAM

| I— Read/Write/Atomic
,7 Addresses
—
10of 16 [Head Tail Base Size
Full

A9757-01

Hardware Reference Manual 231

Intel® 1XP2800 Network Processor
SHaC—Unit Expansion

232

Note:

Note:

intel.

Head, Tail, Base, and Size are registersin the Scratchpad Unit. Head and Tail point to the actual
ring data, which is stored in the Scratchpad RAM. For each ring in use, aregion of Scratchpad
RAM must be reserved for the ring data. The reservation is by software convention. The hardware
does not prevent other accesses to the region of Scratchpad used by the ring. Also, the regions of
Scratchpad memory allocated to different rings must not overlap.

Head points to the next address to be read on aget, and Tail points to the next address to be written
on aput. The size of each ring is selectable from the following choices: 128, 256, 512, or 1,024 32-
bit words. The sizeis specified in the Ring_Base register.

The above rule stating that rings must not overlap implies that many configurations are not legal.
For example, programming five rings to size of 1024 words would exceed the total size of
Scratchpad memory, and therefore is not legal.

Note that the region of Scratchpad used for aring is naturally aligned to it size.

Each ring asserts an output signal which is used as a state input to the MEs. The software
configures whether the Scratchpad asserts the signal if aring becomes empty or if thering is near
full.

If configured to assert status when the rings are near full, MEs must test the input state (by doing
Branch on Input Signal) before putting data onto aring. Thereisalag intimefrom a put instruction
executing to the Full signal being updated to reflect that put. To be guaranteed that a put will no
overfill thering thereis a bound on the number of Contexts and the number of 32-bit words per
write based on the size of the ring, shown in Table 81. Each Context should test the Full signal,
then do the put if not Full, and then wait until the Context has been signaled that the data has been
pulled before testing the Full signal again.

Table 81. Ring Full Signal Use -- Number of Contexts and Length Versus Ring Size

128 256 512 1024
1 16 16 16 16
2 16 16 16 16
4 8 16 16 16
8 4 12 16 16
16 2 6 14 16
24 1 4 9 16
32 1 3 7 15
40 Illegal 2 5 12
48 lllegal 2 4 10
64 Illegal 1 3 7
128 lllegal lllegal 1 3
NOTE:
1. Number in each table entry is the largest length that should be put. 16 is the largest length that a
single put instruction can generate.
2. lllegal - With that number of Contexts, even a length of 1 could cause ring to overfill.

Hardware Reference Manual

intgl.

Intel® IXP2800 Network Processor
SHaC—Unit Expansion

The ring commands operate as outlined in the pseudo code in Example 31. The operations are
atomic meaning that multi-word gets and puts do all the reads and writes with no other intervening
Scratchpad accesses.

Example 31. Ring Command Pseudo Code

Table 82.

Note:

GET Command

Get (ring, length)

If count[ring] >= length //enough data in the ring?

ME <-- Scratchpadl[head[ring]l] // each data phase

head[ring] += length % ringSize

count [ring] -= length

else ME <--nil // 1 data phase signals read off empty list

NOTE: The Microengine signal is delivered with last data. In the case of nil, the signal is delivered with the 1
data phase.

PUT Command

Before issuing a PUT command, it is the responsibility of the Microengine thread issuing the command to make
sure the Ring has enough room.

Put (ring, length)

SRAM [tail [ring]] <-- ME pull data // each data phase
tail [ringl+= length % ringSize

Count [ring] += length

Head/Tail, Base and Full by Ring Size

Sizevflig:)(;ss‘)zbit Base Address Head/Tail Offset Full(ggtrﬁzgold
128 13:9 8:2 32
256 13:10 9:2 64
512 13:11 10:2 128
1024 13:12 11:2 256
NOTE: Note that bits [1:0] of the address are assumed to be 00.

Prior to using the Scratchpad rings, software must initialize the Ring Registers (by CSR writes).
The Base address of the ring must be written, and also the size field which determines the number
of 32-bit words for the Ring.

Detailed information about CSRs is contained in the Intel® 1XP2400/1 XP2800 Network Processor
Programmer’s Reference Manual.

Writes

For an APB or CAP CSR write, the Scratchpad arbitrates for the S _Pull_Bus, pulls the write data
from the source identified in the instruction (either a Microengine transfer register or Intel XScale
core write buffer), and puts it into one of the Pull Data FIFOs. It then drives the address and writes
data on to the appropriate bus. CAP CSRs locally decode the address to match their own. The
Scratchpad generates a separate APB device select signal for each peripheral device (up to 15
devices). If thewriteisto an APB CSR, the control logic maintains valid signaling until the
APB_RDY _H signa isreturned (The APB RDY signal is an extension to the APB bus
specification specifically added for the I XP Chassis). Upon receiving the APB_RDY _H signal, the
APB select signal will be deasserted and the state machine returns to the idle state between
commands. The CAP CSR bus does not support a similar acknowledge signal on writes since the
Fast Write functionality requires that a write operation be retired each cycle.

Hardware Reference Manual 233

Intel® IXP2800 Network Processor
SHaC—Unit Expansion

intel.

For writes using the Reflector mode, Scratchpad arbitrates for the S _Pull_Bus, pullsthe write data
from the source identified in the instruction (either aMicroengine transfer register or Intel X Scal e®
core write buffer), and putsit into one of the Pull Data FIFOs (same as for APB and CAP CSR
writes). The datais then removed from the Pull Data FIFO and sent to the Push Arbiter.

For CSR Fast Writes, the command bypasses the Inlet Command FIFO and is acted on at first
opportunity. The CSR control logic has an arbiter that gives highest priority to fast writes. If an
APB writeisin progress when afast write arrives, both write operations will complete
simultaneously. For a CSR fast write, the Scratchpad extracts the write data from the command
rather than pulling the data from a source over the Pull bus. It then drives the address and writes
datato all CSRson the CAP CSR bus, using the same method used for the CAP CSR write.

The Scratchpad unit supports CAP write operations with burst counts greater than 1, except for fast
writes which only support aburst count of one. Burst support is required primarily for Reflector
mode and software must ensure that burst is performed to a non-contiguous set of registers. CAP
looks at the length field on the command bus and breaks each count into a separate APB write
cycle, incrementing the CSR number for each bus access.

Reads

For an APB read, the Scratchpad drives the address, write, select, and enable signals, and then
waits for the acknowledge signal (APB_RDY_H) from APB device. For a CAP CSR read, the
address is driven, which controls a tree of multiplexors to select the appropriate CSR. CAP then
waits for the acknowledge signal (CAP_CSR_RD_RDY). (Note that the CSR bus can support an
acknowledge signal since the read operations occur on a separate read bus and will not interfere
with Fast Write operations). In both cases, when the datais returned, the datais sent to the Push
Arbiter and the Push Arbiter pushes the data to the destination.

For reads using the Reflector mode, the write datais pulled from the source identified in
ADDRESS (either aMicroengine transfer register or Intel X Scale® core write buffer), and put into
one of the Scratchpad Pull Data FIFOs. The datais then sent to the Push Arbiter. The arbiter then
moves the data to the destination specified in the command. Note that thisisthe same asa
Reflector mode write, except the source and destination are identified using opposite fields.

The Scratchpad performs one read operation at atime. In other words CAP will not begin a APB
read until a CSR read has completed or vice versa. This simplifies the design by ensuring that,
when lengths are greater than 1, the datais sent to the Push Arbiter in a contiguous order and not
interleaved with data from aread on the other bus.

Signal Done

CAP can provide asignal to a Microengine upon completion of acommand. For APB and CAP
CSR operations, CAP signals the Microengine using the same method as any other target. For
Reflector mode reads and writes, CAP uses the TOKEN field of the Command to determine
whether to signal the command initiator, the Microengine that isthe target of the reflection, both, or
neither

234 Hardware Reference Manual

intal.

7.1.2.3.3

Table 83.

7.1.2.34

Clocks and Reset

Intel® IXP2800 Network Processor

SHaC—Unit Expansion

Clock generation and distribution is handled outside of CAP and is dependent on the specific chip
implementation. Separate clock rates are required for CAP CSRs/Push/Pull Buses and ARB since

APB devices tend to run slower. CAP provides reset signals for the CAP CSR block and APB

devices. These resets are based on the system reset signal and synchronized to the appropriate bus

clock.

Table 83 shows the Intel XScale® core and Microengine instructions used to access devices on

these buses and it shows which buses are used during the operation. For example, to read an APB

peri pheral such asa UART CSR, a Microengine would execute a csr[read] instruction and I ntel

XScale® core would execute aLoad (1d) instruction. Datais then moved between the CSR and the
Intel X Scale® core/Mi icroengine by first reading the CSR viathe APB bus and then writing the
result to the Intel X Scale® core/Microengine via the Push Bus.

Intel XScale® Core and Microengine Instructions

Accessing

Read Operation

Write Operation

APB Peripheral

Access Method:
Microengine: csr[read]
Intel XxScale® core: Id

Access Method:
Microengine: csr[write]
Intel XScale® core: st

Bus Usages:
Read source: APB bus
Write dest: Push bus

Bus Usages:
Read source: Pull Bus
Write dest: APB bus

CAP CSR

Access Method:
Microengine: csr[read]
Intel xScale® core: Id

Access Method:
Microengine: csrwrite], fast_wr
Intel XScale® core: st

Bus Usages:
Read source: CSR bus
Write dest: Push bus

Bus Usages:
csr[write] and st
Read source: Pull Bus
Write dest: CSR bus
fast_wr
Write dest: CSR bus

Microengine CSR or Xfer
Register

(Reflector Mode)

Access Method:
Microengine: csr[read]
Intel xScale® core: Id

Access Method:
Microengine: csr{write]
Intel XScale® core: st

Bus Usages:
Read source: Pull bus (Address)
Write dest: Push bus(PP_ID)

Bus Usages:
Reads: Pull Bus (PP_ID)
Write dest: Push bus (Address)

Reset Registers

Thereset registers reside in the SHaC. For more information on chip reset, refer Section 10,

“Clocks, Reset, and Initialization”. Strapping pinswill be used to select the reset count

(currently140 cycles after deassert). Options for reset count will be 64 (default), 128, 512, and
2048.

Hardware Reference Manual

235

Intel® 1XP2800 Network Processor
SHaC—Unit Expansion

intel.

7.1.3

Hash Unit

The SHaC unit contains a Hash Unit that can take 48-bit, 64-bit, or 128-bit data and produces a

48-bit, 64-bit, or a 128-hit hash index, respectively. The Hash Unit is accessible by the MEs and
Intel XScale® core. Figure 87 shows a block diagram of the Hash Unit.

Figure 87. Hash Unit Block Diagram

3-Stage
Command
Pipe HASH_
HASH CMD PUSH_CMD
— - @
“| Hash | HASH PUSH_ 3
E g{ SCR_HASH_CMD State | DATA REQ e
<4 _— — > R —
Lo Machine
HASH_CMD_VALID
HASH_REMINDER
5
=)
]
w
x
HASH_DATA 1 5
eq DATA SEL e P
§3 3{ SPO_PULL_DATA = ~leE (L RESULT_ | &
i —_— Hash Multiplier | £ S P
g x [SCR_HASH_TAKE_ | PULLO FIFO > < =
2 &Y PULLO_DATA (32 x 32 bit) HASH Hash Select 2
— ash Selec 3-Stage
PULL_DATA > Output
£2 4 Buffer
53¢ { SP1_PULL_DATA
g
£« [SCR_HASH_TAKE_ |PULL1 FIFO
S 8 PULL_DATA (32 x 32 hit)
Notes:
1. 128 bits, shifted 16 bits per CLK.
2. 128 bit, 64-bit, or 4-bit
A9758-01

236

Hardware Reference Manual

Intel® IXP2800 Network Processor
SHaC—Unit Expansion

intel.
7.1.3.1 Hashing Operation

Up to three hash indexes can be created using a single Microengine instruction. The Microengine
hash instructions are shown in Example 32.

Example 32. Microengine Hash Instructions

hashl_48[$xfer],
hash2_48[$xfer],
hash3_48[$xfer],

hash3_64 [$xfer],

hashl 64 [$xfer],
hash2 64 [$xfer],

optional_ token
optional_ token
optional_ token

optional token
optional token
optional_ token

hashl 128 [$xfer], optional_ token
hash2_ 128 [$xfer], optional_token
hash3_128[$xfer], optional_token

Where:

$xfer The beginning of a contiguous set of registersthat supply the data used
to create the hash input and receive the hash index upon completion of
the hash operation.

optional_token sig_done, ctx_swap, defer [1]

A Microengine initiates a hash operation by writing a contiguous set of SRAM Transfer Registers
and then executing the hash instruction. The SRAM Transfer Registers can be specified as either
Context-Relative, or Indirect; Indirect will allow for any of the SRAM Transfer Register to be
used. Two SRAM Transfer Registers are required to create hash indexes for 48-bit and 64-bit and
four SRAM Transfer Registers to create 128-bit hash indexes, as shown in Table 84. In the case of
the 48-bit hash, the Hash Unit ignores the upper two bytes of the second Transfer Register.

Table 84. S Transfer Registers Hash Operands

Register Address

48-Bit Hash Operations

Don't care ‘ hash 3[47:32] $xfer n+5
hash 3 [31:0] $xfer n+4

Don't care ‘ hash 2[47:32] $xfer n+3
hash 2 [31:0] $xfer n+2

Don't care ‘ hash 1[47:32] $xfer n+1
hash 1 [31:0] $xfer n

64-Bit Hash Operations

hash 3 [63:32] $xfer n+5
hash 3 [31:0] $xfer n+4
hash 2 [63:32] $xfer n+3
hash 2 [31:0] $xfer n+2
hash 1 [63:32] $xfer n+1

Hardware Reference Manual 237

Intel® 1XP2800 Network Processor
SHaC—Unit Expansion

238

Table 84. S Transfer Registers Hash Operands (Continued)

Note:

Register Address
hash 1 [31:0] $xfern
128-Bit Hash Operations
hash 3 [127:96] $xfer n+11
hash 3 [95:64] $xfer n+10
hash 3 [63:32] $xfer n+9
hash 3 [31:0] $xfer n+8
hash 2 [127:96] $xfer n+7
hash 2 [95:64] $xfer n+6
hash 2 [63:32] $xfer n+5
hash 2 [31:0] $xfer n+4
hash 1 [127:96] $xfer n+3
hash 1 [64:95] $xfer n+2
hash 1 [63:32] $xfer n+1
hash 1 [31:0] $xfern

Intel XScal€® core initiates a hash operation by writing a set of memory-mapped Hash Operand
Registers, which are built in the Intel X Scale® core gasket, with the data to be used to generate the
hash index. There are separate registers for 48-bit, 64-hit, and 128-hit hashes. Only one hash
operation of each type can be done at atime. Writing to the last register in each group informs the
gasket logic that it has all the operands for that operation, and it will then arbitrate for Command
bus to send the command to the Hash Unit.

Detailed information about CSRs is contained in the Intel® 1XP2400/1 XP2800 Network Processor
Programmer’'s Reference Manual.

For both Microengine generated commands and Intel XScale® core generated commands, the
command enters the Command Inlet FIFO. As with the Scratchpad write and RMW operations,
signals are generated and sent to the Pull Arbiter. The Hash unit Pull Data FIFO allows the data for
up to three hash operations to be read into the Hash Unit in asingle burst. When the command is
serviced, the first datato be hashed enters the hash array while the next two wait in the FIFO.

The Hash Unit uses a hard-wired polynomial algorithm and a programmable hash multiplier to
create hash indexes. Three separate multipliers are supported, one for 48-bit hash operations, one
for 64-bit hash operations and one for 128-hit hash operations. The multiplier is programmed
through registers (HASH_MULTIPLIER_64 1, HASH_MULTIPLIER_64 2,
HASH_MULTIPLIER_48_1, HASH_MULTIPLIER_48 2, HASH_MULTIPLIER_128 1,
HASH_MULTIPLIER_128 2, HASH_MULTIPLIER_128 3, HASH_MULTIPLIER_128 4).

The multiplicand is shifted into the hash array sixteen bits at atime. The hash array performsaones
complement multiply and polynomial divide, calculated using the multiplier and 16 bits of the
multiplicand. The result is placed into an output register and also feeds back into the array. This
processisrepeated 3 timesfor a48-bit hash (16 bits x 3 = 48), 4 times for a 64-bit hash (16 bits x 4
= 64) and 8 times for a 128-bit hash (16 x 8 = 128). After an entire multiplicand has been passed
through the hash array, the resulting hash index is placed into a two-stage output pipeline and the
next hash isimmediately started.

Hardware Reference Manual

7.1.3.2

Intel® IXP2800 Network Processor
SHaC—Unit Expansion

The Hash Unit shares the Scratchpad’s Push Data FIFO. After each hash index is completed, the
index is placed into a three-stage output pipe and the Hash Unit sendsa PUSH_DATA_REQ to the
Scratchpad to indicate that it has avalid hash index to put into the Push Data FIFO for transfer. The
Scratchpad will issue a SEND_HASH_DATA signal, transfers the hash index to the Push Data
FIFO, and sends the data to the Arbiter.

For Intel XScale® coreinitiated hash operations, Intel XScal €® core reads the results from its
memory-mapped Hash Result Registers. The addresses of Hash Results are the same as the Hash
Operand Registers. Because of queuing delays at the Hash Unit, the time to complete an operation
is not fixed. Intel XScale® core can do one of two operations to get the hash results.

¢ Poll the Hash Done Register. This reg|ster is cleared when the Hash Operand Registers are
written. Bit [0] of Hash Done Register is set when the Hash Result Registers get the return
result from the Hash Unit (when the last word of the result is returned). Intel X Scale® core
software can poll on Hash Done, and read Hash Result when Hash Done is equal to
0x00000001.

* Read Hash Result directly. The gasket Iog|CW|II acknowledge the read only when theresult is
valid. This method will result in Intel XScale® core stalling if the result is not valid when the
read happens.

The number of clock cycles required to perform a single hash operation equals: two or four cycles
through the input buffers, three, four, or eight cycles through the hash array, and two or four cycles
through the output buffers. With the pipeline characteristics of the Hash Unit, performanceis
improved if multiple hash operations are initiated with a single instruction rather than separate hash
instructions for each hash operation.

Hash Algorithm

The hashing a gorithm used by allows flexibility and uniqueness since it can be programmed to
provide different resultsfor agiven input. The algorithm uses binary polynomial multiplication and
division under modulo-2 addition. The input to the algorithm is a 48-bit, 64-bit, or 128-bit value.

The data used to generate the hash index is considered to represent the coefficients of an order-47,
order-63 or order-127 polynomial in x. The input polynomial (designated as A(x)) has the form:

46

Equation 1. Ajg(x) = a0+a1x+a2x2+ ot agX +a47x47 (48-bit hash operation)

Equation 2. Ag,(x) = a0+a1x+a2x2+ +a62x62+a63x63 (64-bit hash operation)

126 127

Equation 3. Aj5(x) = ag+a;x+ a2x2+ .otapgX tag,yx (128-bit hash operation)

This polynomial is multiplied by a programmable hash multiplier using a modulo-2 addition. The
hash multiplier, M(x) is stored in Hash Unit CSRs and represents the polynomial

Equation 4. M g(x) = my+myx+ m2x2+ ot m46x46+ m47x47 (48-bit hash operation)

Equation 5. Mg, (x) = my+myx+ m2x2+... +m62x62+m63x63 (64-bit hash operation)

127

Equation 6. My,5(x) = my+m;x+ m2x2+ ot m126x126+ my7x " (128-bit hash operation)

Since multiplication is performed using modul o-2 addition, the result is an order-94 polynomial, an
order-126 polynomial or an order-254 polynomial with coefficientsthat are also 1 or 0. This
product is divided by afixed generator polynomial given by:

Hardware Reference Manual 239

Intel® 1XP2800 Network Processor
SHaC—Unit Expansion

240

intel.

36

Equation 7. Gg(x) = 1+ x5 x4 X (48-bit hash operation)

35

Equation 8. Gg,(x) = 1+x x> (64-bit hash operation)

Equation 9. Gy,g(x) = 14T 45 5P 4

(128-bit hash operation)

The division results in a quotient Q(x), apolynomial of order-46, order-62 or order-126, and a
remainder R(x), a polynomial of order-47, order-63 or order-127. The operands are related by the
equation:

Equation 10. A(X)M(x) = Q(x)G(x) + R(x)

The generator polynomial has the property of irreducibility. Asaresult, for afixed multiplier M(x),
thereis aunique remainder R(x) for every input A(x). The quotient Q(x), can then be then
discarded, since input A(x) can be derived from its corresponding remainder R(x). A given
bounded set of input values A(x) (for example, 8K or 16K table entries), with bit weights of an
arbitrary density function can be mapped one-to-one into a set of remainders R(x) such that the bit
weights of the resulting Hashed Arguments (a subset of all values of R(x) polynomials) are all
about equal.

In other words, thereis a high likelihood that the low order set of bitsfrom the Hash Arguments are
unique, so they can be used to build an index into the table. If the hash algorithm does not provide
auniform hash distribution for a given set of data, the programmable hash multiplier (M(x)) may
be modified to provide better results.

Hardware Reference Manual

intgl.

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

Media and Switch Fabric Interface 3

8.1

Note:

Overview

The Media and Switch Fabric (MSF) Interface connects the I XP2800 Network Processor to a
physical layer device (PHY) and/or to a Switch Fabric. MSF consists of separate receive and
transmit interfaces. Each of the receive and transmit interfaces can be separately configured for
either SPI-4 Phase 2 (System Packet Interface) for PHY devices or CSIX-L1 protocol for Switch
Fabric Interfaces.

The receive and transmit ports are unidirectional and independent of each other. Each port has 16
data signals, a clock, a control signal, and a parity signal, all of which use LVDS (differential)
signaling, and are sampled on both edges of the clock. Thereisaso aflow control port consisting
of aclock, data, and ready status bits, and used to communicate between two I XP2800 Network
Processors, or alXP2800 Network Processor and a Switch Fabric Interface. These are also LVDS,
dual-edge data transfer.

The usage of the signals, aswell as the receive and transmit functions, are shown in the block
diagram in Figure 88, and described bel ow.

Detailed information about CSRs is contained in the Intel® 1XP2400/1 XP2800 Network Processor
Programmer’s Reference Manual.

Hardware Reference Manual 241

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

Figure 88. Example System Block Diagram

Receive protocol is SPI-4
Transmit mode is CSIX

Ingress
Intel® IXP2800
Network Processor
> | RDAT A f
TDAT —): —>

. 1
Frar[r;lng/MAC < RSTAT . Optional X Switch
(s}‘_"'%’ T 1 Gasket . Fabric

1

(Note 1) ¢
cois v Flow Control : : CSIX
- 1 Protocol

Protocol Egress 1 :

Intel IXP2800 : !

Network Processor ' X

! 1

> | TSTAT : !

RDAT |[<€—, 'I(—
< TDAT ftmmmmes
Receive protocol is CSIX
Transmit mode is SPI-4
Notes:

1. Gasket is used to convert 16-bit, dual-data Intel IXP2800 Network Processor signals to wider
single edge CWord signals used by Switch Fabric, if required.

2. Per the CSIX specification, the terms "egress" and ingress" are with respect to the Switch Fabric.
So the egress processor handles traffic received from the Switch Fabric and the ingress
processor handles traffic sent to the Switch Fabric.

A9759-01

The use of some of the receive and transmit pinsis based on protocol, SPI-4 or CSIX. For the
LVDS pins, only the active high nameis given (for LVDS there are two pins per signal). The
definitions of the pins can be found in the SPI-4 and CSIX specs, referenced below.

An alternate system configuration is shown in the block diagram in Figure 89. In this case asingle
I XP2800 Network Processor is used for both Ingress and Egress. The bit rate supported would be
lessthan in Figure 88. A hypothetical Bus Converter chip, external to the 1XP2800 Network
Processor is used. The block diagram in Figure 89 isonly an illustrative example.

242 Hardware Reference Manual

intgl.

Figure 89.

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

Full-Duplex Block Diagram

Receive and transmit protocol
is SPI-4 and CSIX on transfer-
by-transfer basis.

Intel® IXP2800
Network Processor

RDAT TDAT
A
Y
Framing/MAC >| Rx Tx >
Device Switch
(PHY) Fabric
Bus Converter
UTOPIA-3 CSIX
or IXBUS 4 T Ry | Protocol
Protocol < X X
Notes:

The Bus Converter chip receives and transmits both SPI-4 and CSIX protocols from/to Intel
IXP2800 Network Processor. It steers the data, based on protocol, to either PHY device or
Switch Fabric. PHY interface can be UTOPIA-3, IXBUS, or any other required protocol.

A9357-02

8.1.1

SPI-4

SPI-4 isan interface for packet and cell transfer between a physical layer (PHY) device and alink
layer device (the IXP2800 Network Processor), for aggregate bandwidths of OC-192 ATM and
Packet over SONET/SDH (POS), aswell as 10 Gb/s Ethernet applications.

The Optical Internetworking Forum (OIF), www.oiforum.com, controls the SPI-4 |mplementation
Agreement document.

SPI-4 has two types of transfers—Data when the RCTL signal is deasserted; Control when the
RCTL signal is asserted. The Control Word format is shown in Table 85 (thisinformation is from
SPI-4 specification, shown here for convenience).

Hardware Reference Manual 243

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

244

Table 85. SPI-4 Control Word Format

Bit
Position

Label

Description

15

Type

Control Word Type.
¢ 1: payload control word (payload transfer will immediately follow the control word).
¢ 0:idle or training control word.

14:13

EOPS

End-of-Packet (EOP) Status.

Set to the following values below according to the status of the immediately preceding
payload transfer.

* 00: Not an EOP.

¢ 01: EOP Abort (application-specific error condition).
¢ 10: EOP Normal termination, 2 bytes valid.

¢ 11: EOP Normal termination, 1 byte valid.

EOPS is valid in the first Control Word following a burst transfer. It is ignored and set to
“00” otherwise.

12

SOP

Start-of-Packet.

Set to 1 if the payload transfer immediately following the Control Word corresponds to the
start of a packet. Set to 0 otherwise.

Set to 0 in all idle and training control words.

11:4

ADR

Port Address.

8-bit port address of the payload data transfer immediately following the Control Word.
None of the addresses are reserved (all are available for payload transfer).

Set to all zeroes in all idle Control Words.
Set to all ones in all training Control Words.

3:0

DIP-4

4-bit Diagonal Interleaved Parity.

4-bit odd parity computed over the current Control Word and the immediately preceding
data words (if any) following the last Control Word.

Control words are inserted only between burst transfers; once atransfer has begun, datawords are
sent uninterrupted until either End of Packet or a multiple of 16 bytes is reached.

The order of byteswithin the SPI-4 data burst is shown in Table 86. The most significant bits of the
bytes correspond to bits 15 and 7. On datatransfers that do not end on an even byte boundary, the
unused byte on bits[7:0] is set to all zeros.

Hardware Reference Manual

INtal.

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

Table 86 shows the order of bytes on SPI-4; this example shows a 43 byte packet.

Table 86. Order of Bytes within the SPI-4 Data Burst

Bit 15| Bit8 | Bit7 | BitO
Data Word 1 Byte 1 Byte 2
Data Word 2 Byte 3 Byte 4
Data Word 3 Byte 5 Byte 5
Data Word 4 Byte 7 Byte 6
Data Word 21 Byte 41 Byte 42
Data Word 22 Byte 43 00

Figure 90 shows two ways in which the SPI-4 clocking can be done. Note that it is also possible to

use an internally supplied clock and leave TCLK _REF unused.

Figure 90. Receive and Transmit Clock Generation

PHY

RDCLK _

PHY chip generates RDCLK internally and
supplies it to Ingress Intel® IXP2800
Network Processor.

Ingress

IXP2800

Network
Processor

__ TDCLK

Y

RCLK_REF

y TCLK_REF

Y

Egress
IXP2800
Network

Processor

Ingress IXP2800 Network Processor supplies
RCLK_REF to TCLK_REF, so TDCLK is same
frequency as RDCLK.

Oscillator supplies TCLK_REF to Egress
Intel IXP2800 Network Processor, used to
generate TDCLK.
Ingress
IXP2800
Network
Processor
RDCLK _
I- >
1
1
PHY .
. RCLK_REF
1
. y TCLK_REF
:
1
1
1
v [TDCLK V
Egress
IXP2800
Network
Processor
PHY uses TDCLK to generate RDCLK to
Ingress IXP2800 Network Processor.
RCLK_REF is not used.

A9760-01

Hardware Reference Manual

245

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

8.1.2

Table 87.

8.1.3

246

intel.
CSIX

CSIX_L1 (Common Switch Interface) defines an interface between a Traffic Manager (TM) and a
Switch Fabric (SF) for ATM, IP, MPLS, Ethernet, and similar data communications applications.

The Network Processor Forum (NPF) www.npforum.org, controls the CSIX_L 1 specification.

The basic unit of information transferred between TMs and SFsis called a CFrame. There are a
number of CFrame types defined as shown in Table 87.

CFrame Types

Type Encoding CFrame Type

Idle

Unicast

Multicast Mask

Multicast ID

Multicast Binary Copy

Broadcast

Flow Control

N|o|ga| b~ W[IN|PF]| O

Command and Status

®
o

CSIX Reserved

For transmission from the | XP2800 Network Processor, CFrames are constructed for transmit
under Microengine software control, and written into the Transmit Buffer (TBUF).

On receive to the I XP2800 Network Processor CFrames are either discarded, placed into Receive
Buffer (RBUF), or placed into Flow Control Egress FIFO (FCEFIFO), according to mapping
defined in CSIX_Type Map CSR. CFrames put into RBUF are passed to a Microengine to be
parsed by software. CFrames put into FCEFIFO are sent to the Ingress 1XP2800 Network
Processor over the Flow Control bus. Link-level Flow Control information (CSIX Ready field) in
the Base Header of all CFrames (including Idle) is handled by hardware.

CSIX/SPI-4 Interleave Mode

SPI4 packets and CSIX cframes are interleaved when the RBUF and TBUF are configured in 3-
partition mode. When the protocol signal RPROT or TPROT is high, the data busis transferring
CSIX CFRAMES or IDLE cycles. When protocol islow, the databusistransferring SPI-4 packets
or idle cycles. When operating in interleave mode, RPROT must be driven high (logic 1) for the
entire CSIX CFRAME or low (logic 0) for the entire SPI4 burst. When in 3-partition mode, the
SPI-4 interval should be padded using SPI-4 idle cycles so that it ends on a 32 bit boundary or a
complete RCLK or TCLK clock cycle. The actual SPI-4 data length can be any size. However, the
SPI-4 interval which includes the SPI-4 control words and payload data must end on a 32-bit
boundary.

Hardware Reference Manual

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

intel.
8.2 Receive

The receive section consists of:
¢ Receive Pins (Section 8.2.1)
¢ Checksum (Section 8.2.2)
* Receive Buffer (RBUF) (Section 8.2.2)
¢ Full Element List (Section 8.2.3)
* Rx_Thread Freelist (Section 8.2.4)
¢ Flow Control Status (Section 8.2.7)

Figure 91 isasimplified block diagram of the receive section.

Figure 91. Simplified Receive Section Block Diagram

I Checksum I

A
CSIX
RDAT RBUF
RCTL Plr_c;tgiiol ______ \;\:,2 S_Push_Data (to MEs)
RPAR a sl """ \128
A > .. —>| Buffers | . b pull_Data (to DRAM)
AN .
sp4 LA/ | F----- - >
31 Protocol
Logic | Full Indication to Flow Control
RPROT i
Full | _Receive | csrwrite
Element Control | | __Thread _|[€———
List i
i Py is Freelists
<«——— Flow m
Control Y CSIX CFrames mapped by RX_Port_Map CSR

(normally Flow Control CFrames are mapped here)
FCEFIFO

RCLK Clockfor §* = ==~ - |
:—) Receive
RCLK REF Functions |~ -~~~ "
TXCFC

l (FCIFIFO full)

TXCDAT

A9339-01

Hardware Reference Manual 247

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

8.2.1

Table 88.

8.2.2

248

Table 89.

Receive Pins
The use of the receive pinsisafunction of RPROT input, as shown in Table 88.

Receive Pins Usage by Protocol

Name Direction SPI-4 Use CSIX Use
RCLK Input RDCLK TxCIk
RDAT[15:0] Input RDAT[15:0] | TxData[15:0]
RCTL Input RCTL TxSOF
RPAR Input Not Used TxPar
RSCLK Output RSCLK Not Used

RSTAT[1:0] Output RSTAT[1:0] Not Used

In general, hardware does framing, parity checking, and flow control message handling.
Interpretation of frame header and payload data is done by Microengine software.

Theinternal clock used istaken from RCLK pin. RCLK _Ref output is a buffered version of the
clock. It can be used to supply TCLK _Ref of the Egress | XP2800 Network Processor if desired.

Thereceive pins RDAT[15:0], RCTL, RPAR are sampled relative to RCLK. In order to work at
high frequencies, each of those pins has de-skewing logic as described in Section 8.6.

RBUF

RBUF isaRAM that holds received data. It stores received datain sub-blocks (referred to as
elements), and is accessed by Microengine or the Intel X Scale® core reading the received
information. Details of how RBUF elements are allocated and filled is based on the receive data
protocol, and is described in Section 8.2.2.1-Section 8.2.2.2. When data is received the associated
statusis put into the Full_Element_List FIFO and subsequently sent to Microengine to process.
Full_Element_L ist insuresthat received elements are sent to Microengine in the order that the
data was received.

RBUF contains atotal of 8 Kbyte of data. Table 89 shows the order in which received datais stored
in RBUF. Each number represents a byte, in order of arrival from the receiver interface.

Order in Which Received Data Is Stored in RBUF

Data/Payload Address Offset (Hex)
4 5 6 7 0 1 2 3 0
C D E F 8 9 A B 8
14 15 16 17 10 11 12 13 10

The mapping of elements to address offset in RBUF is based on the RBUF partition and element
size, as programmed in MSF_Rx_Control CSR. RBUF can be partitioned into one, two, or three
partitions based on MSF_Rx_Control[RBUF_Partition]. The mapping of received data to
partitions is shown in Table 90.

Hardware Reference Manual

intgl.

Table 90.

Table 91.

Hardware Reference Manual

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

Mapping of Received Data to RBUF Partitions

Data Use by Partition, Fraction of RBUF Used, Start Byte Offset (Hex)
Num_ber O.f Receive Data .
PartlttJlonsm Protocol Partition Number
se
0 1 2
SPI-4
1 SPI-4 only All n/a n/a
Byte 0
CSIX Data CSIX Control
2 CSIX only ¥ of RBUF Y of RBUF n/a
Byte 0 Byte 0x1800
CSIX Data SPI-4 CSIX Control
3 Both 5P and v of RBUF 3/8 of RBUF 1/8 of RBUF
Byte 0 Byte 0x1000 Byte 0x1C00

The data in each partition is further broken up into elements, based on
MSF_Rx_Control[RBUF_Element_Size #] (n=0,1,2). There are three choices of element size,
64, 128, or 256 bytes.

Table 91 shows the RBUF partition options. Note that the choice of element size isindependent for
each partition.

Number of Elements per RBUF Partition

Partition Number
RBUF_Partition Field RBUF_Element_Size_# Field
0 1 2
00 (64 byte) 128
00 (1 partition) 01 (128 byte) 64 Unused Unused
10 (256 byte) 32
00 (64 byte) 96 32
01 (2 partitions) 01 (128 byte) 48 16 Unused
10 (256 byte) 24 8
00 (64 byte) 64 48 16
10 (3 partitions) 01 (128 byte) 32 24 8
10 (256 byte) 16 12 4

Microengine can read data from the RBUF to Microengine S_Transfer_In registers using the

msf [read] instruction, where they specify the starting byte number (which must be aligned to
4-byte units), and number of 32-bit words to read. The number in the instruction can be either the
number of 32-bit words, or number of 32-bit word pairs, using the single and double instruction
modifiers, respectively. The datais pushed to the Microengine on the S Push Bus by RBUF control
logic.

msf [read, $s_xfer reg, ref cnt], optional_ token

src_op_1l, src_op_ 2,

249

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

intel.

Thesrc_op 1 and src_op_2 operands are added together to form the address in RBUF (note that
the base address of the RBUF is 0x2000). ref_cnt isthe number of 32-bit words or word pairs,
which are pushed into two sequential S_Transfer_In registers, starting with ss_xfer_reg.

Using the datain RBUF in Table 89 above, reading 8 bytes from offset 0 into transfer registers0
and 1 would yield the result in Example 33.

Example 33. Data from RBUF Moved to Microengine Transfer Registers

Transfer Bit Number within Transfer Register
Register
Number |31 24 |23 16 | 15 8|7 0
0 0 1 2 3
1 4 5 6 7

Microengine can move data from RBUF to DRAM using the instruction:

dram[rbuf_rd, --, src_opl, src_op2, ref cnt], indirect_ref

Thesrc_op 1 and src_op_2 operands are added together to form the addressin DRAM, so the
dram instruction must use indirect_ref modifier to specify the RBUF address (refer to the

I XP2800 Network Processor Chassis chapter for details). ref_cnt isnumber of 64-bit wordswhich
are read from RBUF.

Using the datain RBUF in Table 89 above, reading 16 bytes from offset 0 in RBUF into DRAM
would yield the result in Example 34 in DRAM. [Note that DRAM addresses must be aligned to
8-byte units. The data from lower offset RBUF offsets goes into lower addressesin DRAM]

Example 34. Data from RBUF Moved to DRAM

8.22.1

250

63 56 | 55 48 | 47 40 | 39 32|31 24 | 23 16 | 15 8|7 0

4 5 6 7 0 1 2
C D E F 8 9 A B

For both types of RBUF read, reading an element does not modify any RBUF data, and does not
free the element, so buffered data can be read as many times as desired.

SPI-4

SPI-4 datais placed into RBUF as follows:

At chip reset all elements are marked invalid (available).

When a SPI-4 Control Word isreceived (i.e., when RCTL is asserted) it is placed in atemporary
ncéll gi. ng register. The Checksum accumulator is cleared. The subsequent action is based on the Type
If Typeisldle or Training the Control Word is discarded.

If Typeisnot Idleor Training:

An available RBUF element is allocated by receive control logic. [If there is not an available
element the datais discarded and M SF_I nterrupt_Statug RBUF_Overflow] is set. Note that
this normally should not happen because when number of RBUF elements falls below a
programmed high water mark, flow control statusis sent back to the PHY device. Refer to

Hardware Reference Manual

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

Section 8.2.7.1.] The SPI-4 Control Word Type, EOPS, SOP, and ADR fields are placed into a
temporary status register. The Byte Count field of the element statusis set to 0x0. As each
Data Word isreceived the datais written into the element, starting at offset 0x0 in the element
and Byte Count is updated. Subsequent Data transfers are placed at higher offsets (i.e., 0x2,
0x4, etc.). The 16-bit Checksum Accumulator is aso updated with the ones complement
addition of each byte pair. [Note if the data transfer has an odd number of bytes, a byte of
zeroes is appended as the more significant byte before the checksum addition is done.]

If aControl Word isreceived beforethe element isfull — the element is marked valid. EOP for the
element is taken from the value of the EOPS field (see Table 85) from the just received Control
Word. If the EOPS field from the just received Control Word indicates that EOP is asserted,

Byte Count for the element is decremented by 0 or 1 according to the EOPS field (i.e., decrement
by 0if 2 bytesvalid, by 1if 1 bytevalid). If the EOPSfield indicates Abort, Byte Count is rounded
up to the next multiple of 4. The temporary status register value is put into Full_Element_List.

If the element becomes full before receipt of another Control Word — the element is marked as
pre-vaid. The eventual statusis based on the next SPI-4 transfer(s).

If the next transfer is a Data Word — the previous element is changed from pre-valid to valid. The
EOP for the element is 0. The temporary status register value is put into Full_Element_L.ist.
Another available RBUF element is allocated, and the new data is written into it. The temporary
status for the new element gets the same ADR field of the previous element, and SOP is set to 0.
Status word Byte Count field is set to 0x2, and will count up as more Data Words arrive.
Checksum Accumulator is cleared.

If the next transfer is a Control Word — the previous element is changed from pre-valid to valid.
EOP for the element istaken from the value of the EOPS field from the just received Control Word.
If the EOPS field from the just received Control Word indicates that EOP is asserted, Byte Count
for the element is decremented by 0 or 1 according to the EOPS field (i.e., decrement by 0 if 2
bytesvalid, by 1if 1 byte valid). The temporary status register valueis put into Full_Element_List.

Data received from the bus s placed into the element lowest offset first in big-endian order (that is,
with the first byte received in the most significant byte of the 32-bit word, etc.).

The status contains the following information:

313|2(2|2|2|2|(2|2|2|2(2|1|1|1]|1|1|1|1 11
1lo|ols|7|6|5|al3]|2|1|0|o|8|7|6|5|a|3|2]|2|0]®|8[7|6|5]4]|3[2]1|0
g ol 2

® =
2 Element Byte Count S18|Im|3|2|g|z = ADR
o O T OO m| =
3 3|30
6| 6|6|6|5|5|5|5|[5|5|5|5|5|5(4(4(4|4|4|4 4141313333 [3|3]3
312(1(0|9(8|7|6|5|4|3|2|1|]0|9|8|7|6|5]4[3|]2(1|10]9|8|7|6|5(4|3]|2

Reserved Checksum

The definitions of the fields are shown in Table 92.

Hardware Reference Manual 251

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

INtal.

Table 92. RBUF SPIF-4 Status Definition

Field Definition

This bit is a 0 indicating that the Status is for SPI-4. It is derived from the RPROT input

RPROT .
signal.

Null receive. If this bit is set, it means that the Rx_Thread_Freelist timeout expired
before any more data was received, and that a null Receive Status Word is being pushed
Null in order to keep the receive pipeline flowing. The rest of the fields in the Receive Status
Word must be ignored; there is no data or RBUF entry associated with a null Receive
Status Word.

The port number to which the data is directed. This field is taken from the ADR field of the

ADR Control Word that most recently preceded the data transfer.
Type This field is taken from the Type field of the Control Word that most recently preceded the
yP data transfer.

Indicates if the element is the start of a packet. This field is taken from the SOP field of

SOP the Control Word that most recently preceded the data transfer for the first element
allocated after a Control Word. For subsequent elements (i.e., if more than one element
worth of data follow the Control Word) this value is 0.

EOP Indicates if the element is the end of a packet. This field is taken from the EOPS field of

the Control Word that most recently succeeded the data transfer.

Indicates the number of Data bytes, from 1 to 256, in the element (value 0x00 means
Byte_Count 256). This field is derived from the number of data transfers that fill the element, and also
the EOPS field of the Control Word that most recently succeeded the data transfer.

The element number in the RBUF that holds the data. This is equal to the offset in RBUF

Element of the first byte in the element, shifted right by six places
Par Err Parity Error was detected in the DIP-4 parity field. See description in Section 8.2.8.1.
Length Err A non-EOP burst occurred that was not a multiple of 16 bytes.
An EOP with Abort was received on bits[14:13] of the Control Word that most recently
Abort Err
succeeded the data transfer.
Err Error. This is the logical OR of Par Err, Length Err, and Abort Err.
Checksum Checksum calculated over the Data Words in the element. This can be used for TCP.

8.2.2.2 CSIX
CSIX CFrames are placed into either RBUF or FCEFIFO asfollows:
At chip reset all RBUF elements are marked invalid (available) and FCEFIFO is empty.

When a Base Header is sent (i.e., when RxSof is asserted) it is placed in atemporary holding
register. The Ready Field is extracted and held to be put into FC_Egress Status CSR when (and
if) the entire CFrame is received without error. The Type field is extracted and used to index into
CSIX_Type Map CSR to determine one of four actions.

¢ Discard (except for the Ready Field as described in Section 8.2.7.2.1).
¢ Placeinto RBUF Control CFrame partition.

* Place into RBUF Data CFrame partition.

¢ Placeinto FCEFIFO.

252 Hardware Reference Manual

In

tel.

Note:

Note:

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

Normally Idle CFrames (Type 0x0) will be discarded, Command and Status CFrames (Type 0x7)
will be placed into Control Partition, Flow Control CFrames (Type 0x6) will be placed into
FCEFIFO, and all otherswill be placed into Data Partition (see Table 89). The remapping done
through CSIX_Type Map CSR allows for more flexibility in usage if desired.

If the action is Discard the CFrame is discarded (except for the Ready Field as described in
Section 8.2.7.2.1). The Base Header, as well as Extension Header and Payload (if any) are
discarded.

If the destination is FCEFIFO:

The Payload is placed into the FCEFIFO, to be sent to the Ingress 1XP2800 Network Processor
over the TXCDAT pins. If thereis not enough room in FCEFIFO for the entire CFrame, based on
the Payload Size in the Base Header, the entire CFrame is discarded and

M SF_Interrupt_StatugFCEFIFO_Overflow] is set.

If the destination is RBUF (either Control or Data):

An available RBUF element of the corresponding type is allocated by receive control logic.

If thereis not an available element the CFrame is discarded and
MSF_Interrupt_Satug§RBUF_Overflow] is set. Note that this normally should not happen
because when number of RBUF elements falls below a programmed high water mark, back
pressure is sent to the Switch Fabric. Refer to Section 8.2.7.2.] The Type, Payload Length, CR
(CSIX Reserved) and P (Private) bits, and (subsequently arriving) Extension Header are placed
into atemporary status register. Asthe Payload (including padding if any) isreceived, it is placed
into the allocated RBUF element, starting at offset 0x0. [Note—it is more exact to state that the
first four bytes after the Base Header are placed into the status register as Extension Header. For
Flow Control CFrames, there is no Extension Header; the first four bytes are part of the Payload.
They would be found in the Extension Header field of the Status—no bytes are lost.]

When al of the Payload data (including padding if any), as indicated by the Payload Length field,
and Vertical Parity has been received, the element is marked valid. If another RxSof is received
prior to receiving the entire Payload, the element is also marked valid, and the Length Error status
bit is set. If the Payload Length field of the Base Header is greater than the element size (as
configured in M SF_Rx_Control[RBUF_Element_Size], then the Length Error bit in the status
will be set, and al payload bytes above the element size will be discarded.] The temporary status
register valueisput into Full_Element_L ist.

In CSIX protocol, an RBUF element is allocated only on RxSof assertion. Therefore the element
size must be programmed based on the Switch Fabric usage. For example, if the switch never sends
apayload greater than 128 bytes, 128-byte elements can be selected. Otherwise, 256-byte elements
must be selected.

Hardware Reference Manual 253

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

intel.

Data received from the busis placed into the element lowest offset first in big-endian order
(that is, with the first byte received in the most significant byte of the 32-bit word, etc.).

The status contains the following information:

3 2121222 221|111 |1f1f1f1f1|1
1 706|543 1lolo|s|7|6|5|al3|2|2|o|2|8|7|®|%]4|3]|?|]|O
3 a e
m
g Element Payload Length ol o5 |?r| m|m = Reserved Type
= I3 =
6 5(5|5|5|5 5|5|5|5|4|4|4(4|4(4|4|4|4|4|3|3|3|3|3|3|3]|3
3 9(8|7|6|5 3(2(1(0|9|8|7(|6|5[4|3]|2 0(9(8|7|6|5[4|3]|2
Extension Header
The definitions of the fields are shown in Table 93.
Table 93. RBUF CSIX Status Definition
Field Definition
RPROT This bitis a 1 indicating that the Status is for CSIX-L1. It is derived from the RPROT input
signal.
Null receive. If this bit is set, it means that the Rx_Thread_Freelist timeout expired
before any more data was received, and that a null Receive Status Word is being pushed
Null in order to keep the receive pipeline flowing. The rest of the fields in the Receive Status
Word must be ignored; there is no data or RBUF entry associated with a null Receive
Status Word.
Type Type Field from the CSIX Base Header
Payload Length | Payload Length Field from the CSIX Base Header. A value of 0x0 indicates 256 bytes.
VP Err Vertical Parity Error was detected on the CFrame. See description in Section 8.2.8.2.2.
HP Err Horizontal Parity Error was detected on the CFrame. See description in Section 8.2.8.2.1.
Length Error; either
Lenath Err amount of Payload received (before receipt of next Base Header) did not match value
9 indicated in Base Header Payload Length field) or
Payload Length field was greater than size of RBUF element.
Err Error. This is the logical OR of VP Err, HP Err, and Length Err.
Element The element number in the RBUF that holds the data. This is equal to the offset in RBUF
of the first byte in the element, shifted right by 6 places.
CR CR (CSIX Reserved) bit from the CSIX Base Header.
P P (Private) bit from the CSIX Base Header.
Extension Header The Extension Header from the CFrame. The bytes are received in big-endian order; byte
0 is in bits 63:56, byte 1 is in bits 55:48, byte 2 is in bits 47:40, and byte 3 is in bits 39:32.
254 Hardware Reference Manual

INtal.

8.2.3

8.2.4

Table 94.

Hardware Reference Manual

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

Full Element List

Receive control hardware maintains the Full Element List to hold the status of valid RBUF
elements, in the order in which they were received. When an element is marked valid (as described
in Section 8.2.2.1 for SPI-4 and Section 8.2.2.2 for CSIX), its status is added to the tail of the Full
Element List. When aMicroengineis notified of element arrival (by having the status written to its
S Transfer register; see Section 8.2.4), it is removed from the head of the Full Element List.

Rx_Thread_Freelist_#

Each Rx_Thread_Freelist_#isaFIFO that indicates Microengine Contexts that are awaiting an
RBUF element to process. This allows the Contexts to indicate their ready status prior to the
reception of the data, as away to eliminate latency. Each entry added to a Freelist also has an
associated S_Transfer register and signal number. The receive logic maintains either one, two, or
three separate lists based on M SF_Rx_Control[RBUF_Partition],
MSF_Rx_Control[CSIX_Freelist], and Rx_Port_Map as shown in Table 94.

Rx_Thread_Freelist Use

Number of Rx_Thread_Freelist_# Used
P:rtitionsl Use CSIX_Freelist?
0 1 2
SPI-4 Ports equal SPI-4 Ports
1 SPI-4 only n/a to or below above Not Used
Rx_Port_Map Rx_Port_Map
0 CSIX Data CSIX Control Not Used
2 CsiX only CSIX Data and
1 CSIX Control Not Used Not Used
0 CSIX Data SPI-4 CSIX Control
3 Both SPI-4 CSIXD]
and CSIX ata an)
1 CSIX Control SPI-4 Not Used
1. Programmed in MSF_Rx_Control[RBUF_Partition].
2. Programmed in MSF_Rx_Control[CSIX_Freelist].

To be added as ready to receive an element, an Microengine does amsf [write] OF

msf [fast_write] t0the Rx_Thread_Freelist_# address; the write datais the Microengine/
Context/S_Transfer Register number to add to the Fredlist. Note that using the data (rather than the
command bus ID) permits a Context to add either itself or other Contexts as ready.

When thereis valid status at the head of the Full Element List it will be pushed to a Microengine.
Thereceive control logic pushes the status information (which includes the element number) to the
Microenginein the head entry of Rx_Thread_Freelist_#, and sends an Event Signal to the
Microengine. It then removes that entry from the Rx_Thread_Fredlist_#, and removes the status
from Full Element List. [Note that thisimplies the restriction—a Context waiting on status must
not read the S_Transfer register until it has been signaled.] See Section 8.2.6 for more detail. In the
event that Rx_Thread_Fredlist_# isempty, valid statuswill be held in Full Element List until an
entry isput into Rx_Thread_Freelist_#.

255

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

8.2.5

8.2.6

256

intel.

Each Rx_Thread_Fredlist_# has an associated countdown timer. If the timer expires and no new
receive datais available yet, the receive logic will autopush a Null Receive Status Word to the next
thread onthe Rx_Thread_Freelist #. A Null Receive Status Word has the “Null” bit set, and does
not have any data or RBUF entry associated with it.

Rx_Thread Freelist Timeout #

The Rx_Thread_Freelist_# timer is useful for certain applications. Its primary purposeisto keep
the receive processing pipeline (implemented as microcode running on the Microengine) moving
even when the line has goneidle. It is especially useful if the pipelineis structured to handle
mpackets in groups, i.e., eight mpackets at atime. If seven mpackets are received, then the line
goesidle, then the timeout will trigger the autopush of a null Receive Status Word, filling the
eighth dlot and allowing the pipeline to advance. Another example isif one valid mpacket is
received before the line goesidle for along period; seven null Receive Status Words will be
autopushed, allowing the pipeline to proceed. Typically the timeout interval is programmed to be
slightly larger than the minimum arrival time of the incoming cells or packets.

Thetimer is controlled using the Rx_Thread_Freelist_Timeout_# CSR. The timer may be
enabled or disabled, and the timeout value specified using this CSR.

The following rules define the operation of the Rx_Thread_Freelist timer.

1. Writing anon-zero value to the Rx_Thread Freelist Timeout_# CSR both resets the timer
and enablesit. Writing a zero value to this CSR resets the timer and disablesiit.

2. If thetimer isdisabled, then only valid (non-null) Receive Status Words are autopushed to the
receive threads; null Receive Status Words are never pushed.

3. If thetimer expiresand the Rx_Thread Fredlist_# is non-empty, but there is no mpacket
available, thiswill trigger the autopush of anull Receive Status Word.

4. If thetimer expiresand the Rx_Thread Freelist_#is empty, the timer staysin the EXPIRED
state and is not restarted. A null Receive Status Word cannot be autopushed, since thelogic has
no destination to push anything to.

5. Anexpired timer isreset and restarted if and only if an autopush, null or non-null, is
performed.

6. Whenever thereisachoice, autopush of anon-null Receive Status Word takes precedence over
anull Receive Status Word.

Receive Operation Summary

During receive processing received Cframes, cells and packets (which in this context are all called
mpackets) are placed into the RBUF, and then, when marked valid, are immediately handed off to a
Microengine to process. Normally, by application design, some number of Microengine Contexts
will be assigned to receive processing. Those Contexts will have their number added to the proper
Rx_Thread_Freelist # (viamsf [write] OF msf [fast_write]), and thenwill go to sleep to wait for
arrival of an mpacket (or alternatively poll waiting for arrival of an mpacket).

Hardware Reference Manual

tel.

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

When an mpacket becomes valid as described in Section 8.2.2.1 for SPI-4 and Section 8.2.2.2 for
CSIX, receive control logic will autopush 8 bytes of information for the element to the
Microengine/Context/S_Transfer Registers at the head of Rx_Thread_Freelist_#. The
information pushed is (see Table 92 and Table 93 for detailed definitions):

* Status Word (SPI-4) or Header Status (CSIX) to Transfer Register n (n isthe Transfer Register
programmed to the Rx_Thread Freelist_#)

* Checksum (SPI-4) or Extension Header (CSIX) to Transfer Register n+1

To handle the case where the receive Contexts temporarily fall behind and Rx_Thread_Freelist_#
is empty, all received element numbers are held in the Full Element List. In that case, as soon as an
Rx_Thread_Freelist_# entry isentered, the status of the head element of Full Element List will be
pushed to it.

The Microengine may read part of (or the entire) RBUF element to their S_Transfer registers (via
msf [read] instruction) for header processing, etc., and may also move the element datato DRAM
(Viadram[rbuf_rd] instruction).

When a Context is done with an element it does amsf [write] OF msf [fast_write] tO
RBUF_Element_Done address; the write data is the element number. This marks the element as
free and available to be re-used. There is no restriction on the order in which elements are freed;
Contexts can do different amounts of processing per element based on the contents of the
element—therefore elements can be returned in a different order than they were handed to
Contexts.

The states that an RBUF element goes through are shown in Figure 92.

Figure 92. RBUF Element State Diagram

Free. Element is empty Allocate new element

Reset and available to be (Done by Rx control logic) Allocated. Element is
allocated to received 3] being filled with data
information from the rx from rx pins.
pins

A
Set valid (done by

msf [write]or N
Rx control logic)

msf [fast_write]to
RBUF_Element_Done

Y

Processing. Element Valid. Element has
status has been pushed Autopush Status to ME been set valid. Status

to an ME context. ME < has not yet been pushed
is processing the data. to an ME context.

A9340-01

Table 95 summarizes the differences in RBUF operation between SPI-4 protocol and CSIX
protocol.

Hardware Reference Manual 257

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

intel.

Table 95. Summary of SPI-4 and CSIX RBUF Operations

8.2.7

8.2.7.1

258

Operation SPI-4 CSIX

Upon receipt of Payload Control Word or when
Element data section fills and more Data Words
arrive. The Payload Control Word allocates an
element for data that will be received subsequent to

Start of Frame and Base
Header Type is mapped to
RBUF (in CSIX_Type_Map

When is RBUF
Element Allocated

it CSR).
How Much Data is Put All Data Words received between two Payload Number of bytes specified in
. Control Words, or number of bytes in the element, Payload Length field of Base
into Element . .

whichever is less. Header.

Upon receipt of Payload Control Word or when
How is RBUF Element | Element data section fills. The Payload Control
Set Valid Word validates the element holding data received
prior to it.

All Payload is received (or if
premature SOF, which will set
an error bit in Element Status).

Element Status is pushed to Microengine at the head of the appropriate
Rx_Thread_Freelist_# (based on the protocol). Status is pushed to two consecutive
Transfer Registers; bits[31:0] of Element Status to the first Transfer Register and
bits[63:32] to the next higher numbered Transfer Register.

How is RBUF Element
Handed to
Microengine

How is RBUF Element

f CSR write to RBUF_Element_Done.
returned to free list - -

Receive Flow Control Status

Flow control is handled in hardware. There are specific functions for SPI-4 and CSIX.

SPI-4

SPI-4, FIFO status information is sent periodically over the RSTAT signals from the Link Layer

device (which isthe I XP2800 Network Processor) to the PHY device. [Note that TXCDAT pins

can act as RSTAT based on MSF_Rx_Control[RSTAT_Select] bit.] The information to be sent is
based on the number of RBUF &lements available to receive SPI-4.

The FIFO status of each port isencoded in a 2-bit data structure—code 0x3 is used for framing the
data, and the other three codes are valid status val ues.

The FIFO status words are sent according to a repeating calendar sequence. Each sequence begins
with the framing code to indicate the start of a sequence, followed by the status codes, followed by
a parity code covering the preceding frame. The length of the calendar is defined in
Rx_Calendar_L ength, which isa CSR field that isinitialized with the length of the calendar,
sincein many cases fewer than 256 ports arein use.

When MSF_Rx_Control[RSTAT_En] isdisabled, RSTAT isheld at 0x3.

The IXP2800 Network Processor transmits FIFO statusonly if M SF_Rx_Control[RSTAT_En] is
set. The logic sends “ Satisfied,” Hungry,” or “ Starving” based on either the high water mark of the
RBUF, aglobal overridevaluesetin MSF_Rx_Control[RSTAT_OV_VALUE], or aport-specific
override value set in RX_PORT_CALENDAR_STATUS #. The choice is controlled by
MSF_RX_CONTROL[RX_Calendar_M ode].

Hardware Reference Manual

8.2.7.2

8.2.7.2.1

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

When set to Conservative Value, the status value sent for each port is the most conservative of:
¢ The RBUF high water mark
* MSF_RX_CONTROL[RSTAT_OV_VALUE]
* RX_PORT_CALENDAR_STATUS #

“Satisfied” is more conservative than “Hungry,” which is more conservative than “ Starving.”

When MSF_RX_CONTROL[RX_Calendar_Mode] is set to Force_Override, the value of
RX_PORT_CALENDAR_STATUS #isused. to determine which status valueis sent. If
RX_PORT_CALENDAR_#is set to 0x3, then the global status value set in

MSF RX_CONTROL[RSTAT_OV_VAL UE] issent, otherwise the port-specific status value set
in RX_PORT_CALENDAR_#is sent.

The RBUF high water mark is based onthe M SF_Rx_Control Register and isdefined in Table 91.
The high water mark is programmed in HWM _Control[RBUF_S HWM]. Notethat either RBUF
partition O or partition 1 will be used for SPI-4 (Table 90).

CSIX

There are two types of CSIX flow control:
* Link-level
¢ Virtua Output Queue (VOQ)

Information received from the Switch Fabric by the Egress IXP2800 Network Processor, must be
communicated to the Ingress I XP2800 Network Processor, which is sending data to the Switch
Fabric.

Link-level

Link-level flow control can be used to stop all transmission. Separate Link-level flow control is
provided for Data CFrames and Control CFrames. CSIX protocol provides link-level flow control
asfollows. Every CFrame Base Header contains a Ready Field, which contains two bits; one for
Control traffic (bit 6 of byte 1) and one for Datatraffic (bit 7 of byte 1). The CSIX requirement for
responseis:

From the tick that the Ready Field leaves a component the maximum response time for a pause
operation is defined as: n* T, n=C+L where:

¢ Tistheclock period of the interface
* nisthe maximum number of ticks for the response

* Cisaconstant for propagating the field within the "other" component (or chipset as the case
may be) to the interface logic controlthe reverse direction data flow. C is defined to be 32
ticks.

¢ L isthe maximum number of ticks to transport the maximum fabric CFrame size.

Aseach CFrameis received, the value of these bitsis copied (by receive hardware) into the
FC_Egress SatugSF_CReady] and FC_Egress Status|SF_DReady] respectively. The value of
these two bitsis sent from the Egress to the Ingress | XP2800 Network Processor on TXCSRB
signal, and can be used to stop transmission to the Switch Fabric, as described in Section 8.3.4.2.
TXCSRB signal isdescribed in Section 8.5.1.

Hardware Reference Manual 259

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

8.2.7.2.2

8.2.8

8.28.1

260

intel.

CSIX protocol provides Virtual Output Queue Flow Control via Flow Control CFrames.

Virtual Output Queue

CFrames that were mapped to FCEFIFO (viaCSIX_Type Map CSR) are parsed by the receive
control logic and placed into FCEFIFO, which provides buffering while they are sent from the
Egressthe I XP2800 Network Processor to the Ingress | XP2800 Network Processor over the
TXCDAT signals (normally Flow Control CFrames would be mapped to FCEFIFO).

The entire CFrameis sent over TXCDAT, including the Base Header and Vertical Parity field. The
32-bit CWord is sent four bits at atime, most significant bits first. The CFrames are forwarded in a
“cut-through” manner, meaning the Egress | XP2800 Network Processor does not wait for the entire
CFrame to be received before forwarding (each CWord can be forwarded asit is received).

If FCEFIFO getsfull, asdefined by HWM _Control[FCEFIFO_HWM], then the
FC_Egress SatugTM_CReady] bit will be deasserted (to inform the Ingress 1XP2800 Network
Processor to deassert Control Ready in CFrames sent to the Switch Fabric).

The usage of the Flow Control information in the Ingress | XP2800 Network Processor is described
in Section 8.3.4.2.

Parity

SPI-4

The receive logic computes 4-bit Diagonal Interleaved Parity (DIP-4) as specified in the SPI-4
specification. The DIP-4 field received in a control word contains odd parity computed over the
current Control Word and the immediately preceding datawords (if any) following the last Control
Word. Figure 93 shows the extent of the DIP-4 codes.

Figure 93. DIP-4 Codes’ Extent

Note:

Payload Control Control | Control Payload Control

A
Y

| .
el >

A
Y
A

DIP-4 Extent
(between arrows)

A9342-01

ThereisaDIP-4 Error Flag and a 4-bit DIP-4 Accumulator Register. After each Control Word is
received the Flag is conditionally reset (see Note below this paragraph) and the Accumulator
Register is cleared. As each DataWord (if any), and the first succeeding Control Word is received,
DIP-4 parity is accumulated in the register as defined in the SPI-4 spec. The accumulated parity is
compared to the value received in the DIP-4 field of that first Control Word. If it does not match the
DIP-4 Error Flag is set. The value of the flag becomes the element status Par Err bit.

Anerror inthe DIP-4 code invalidates the transfer preceding the Control Word and also the transfer
succeeding it, since the control information is assumed to be in error. Therefore the DIP-4 Error

Hardware Reference Manual

8.2.8.2

8.28.2.1

8.2.8.2

8.2.9

2

Note:

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

Flag is not reset after a Control Word with bad DIP-4 parity. It is only reset after a Control Word
with correct DIP-4 parity.

CSIX

Horizontal Parity

The receive logic computes Horizontal Parity on each 16-bits of each received Cword (separate
parity for data received on rising and falling edge of the clock).

Thereisaninternal HP Error Flag. At the end of each CFrame the flag is reset. As each 16-bits of
each Cword is received, the expected odd parity value is computed from the data, and compared to
the value received on RxPar. If there isamismatch the flag is set. The value of the flag becomes
the element status HP Err bit.

If the HP Error Flag is set, the FC_Egress Satus[SF_CReady] and
FC_Egress SatugSF_DReady] bitsare cleared, andthe M SF_Interrupt_Status{HP_Error] bit
is set, which can interrupt the Intel XScal €® coreif enabled.

Vertical Parity
The receive logic computes Vertical Parity on CFrames.

ThereisaVP Error Flag and a 16-bit VP Accumulator Register. At the end of each CFrametheflag
isreset and the register is cleared. As each Cword is received, odd parity is accumulated in the
register as defined in the CSIX spec (16 bits of vertical parity are formed on 32 bits of received
data by treating the data as words; i.e., bit 0 and bit 16 of the data are accumulated into parity bit O,
bit 1 and bit 17 of the data are accumulated into parity bit 1, etc.). After the entire CFrame has been
received (including the Vertical Parity field; the two bytes following the Payload) the accumulated
value should be OxFFFF. If it isnot the VP Error Flag is set. The value of the flag becomes the
element status VP Err bit.

The Vertical Parity always follows the Payload, which may include padding to the CWord width if
the Payload Length field is not an integral number of CWords. The CWord width is programmed in
MSF_Rx_Control[Rx_CWord_Size].

If the VP Error Flag is set, the FC_Egress Satug[SF_CReady] and
FC_Egress SatugSF_DReady] bitsare cleared, and the M SF_Interrupt_SatugVP_Error] bit
is set, which can interrupt the Intel XScale® core.

Error Cases

Receive errors are specific to the protocol, SPI-4 or CSIX. The element status, described in
Table 92 and Table 93, has appropriate error bits defined. Also, there are some I XP2800 Network
Processor specific error cases, like when an mpacket arrives with no free elements, which are
logged inthe M SF_Interrupt_Status register, which can interrupt the Intel X Scal €® coreif
enabled.

Hardware Reference Manual 261

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface .

intel.
8.3 Transmit

The transmit section consists of:
* Transmit Pins (Section 8.3.1)
¢ Transmit Buffer (Section 8.3.2)
* Byte Aligner (Section 8.3.2)
Each of these is described below. Figure 94 isasimplified Block Diagram of Section 8.3.

Figure 94. Simplified of Transmit Section Block Diagram

SPI-4
S_Pull_Data TBUF Protocol z
(32-bits fromME) — ~ |- - - """ Logic 2 TDAT
""" < TCTL
D _Push Data _ |------ CSIX = TPAR
(64-bits from DRAM) — > |- - - - - - > Protocol o
Logic
0 Control
Y A
Valid
Element
Logic
- ME Reads ——3 TCLK
From Other CSRs > (S_Push_Bus)
I—) l«— TCLK REF
e
ECIFIFO Internal Clock
______ for Transmit |
______ Logic
Internal
""" lock
------ RXCSRB Cloc
t (Ready Bits)
RXCDAT
RXCFC
(FCIFIFO full) A9343-01

262 Hardware Reference Manual

intgl.

8.3.1

Table 96.

8.3.2

Table 97.

Hardware Reference Manual

Transmit Pins

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

The use of the transmit pinsisafunction of the protocol (which isdetermined by TBUF partitionin
MSF_Tx_Control CSR) as shown in Table 96.

Transmit Pins Usage by Protocol

Name Direction SPI-4 Use CSIX Use

TCLK Output TDCLK RxClk
TDAT[15:0] Output TDAT[15:0] RxData[15:0]

TCTL Output TCTL RxSOF

TPAR Output Not Used RTxPar

TSCLK Input TSCLK Not Used
TSTAT[1:0] Input TSTAT[1:0] Not Used

TBUF

The TBUF isaRAM that holds data and status to be transmitted. The datais written into sub-
blocks referred to as elements, by Microengine or the Intel X Scal €® core. TBUF contains atotal of
8 Kbyte of data, and associated control.

Table 97 shows the order in which data is written into TBUF. Each number represents a byte, in
order of transmission onto the tx interface. Note that thisis reversed on a 32-bit basis relative to
RBUF—the swap of 4 low bytes and 4 high bytesis done in hardware to facilitate the transmission
of bytes.

Order in Which Data is Transmitted from TBUF

Data/Payload Address Offset (Hex)

0 1 2 3 4 5 6 7 0
8 9 A B C D E F 8
10 11 12 13 14 15 16 17 10

The mapping of elements to address offset in TBUF is based on the TBUF partition and element
size, as programmed in MSF_Tx_Control CSR. TBUF can be partitioned into one, two, or three
partitions based on MSF_Tx_Control[TBUF_Partition]. The mapping of partitions to transmit
datais shownin Table 98.

263

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

intel.

Table 98. Mapping of TBUF Partitions to Transmit Protocol

Data Use by Partition, Fraction of TBUF Used, Start Byte Offset (Hex)
Number of | 1.0 mit Data .
Pgrtmons Protocol Partition Number
in Use
0 1 2
SPI-4
1 SPI-4 only All n/a n/a
Byte 0
CSIX Data CSIX Control
2 CSIX only ¥, of TBUF Ya of TBUF n/a
Byte O Byte 0x1800
CSIX Data SPI-4 CSIX Control
3 Both SR and v of TBUF 3/8 of TBUF 1/8 of TBUF
Byte O Byte 0x1000 Byte 0x1C00

The datain each segment is further broken up into elements, based on
MSF_Tx_Control[TBUF_Element_Size #] (n=0,1,2). There are three choices of element size,
64, 128, or 256 bytes.

Table 99 shows the TBUF partition options. Note that the choice of element size isindependent for
each partition.

Table 99. Number of Elements per TBUF Partition

Partition Number
TBUF_Partition Field TBUF_Element_Size_# Field
0 1 2
00 (64 byte) 128
00 (1 partition) 01 (128 byte) 64 Unused Unused
10 (256 byte) 32
00 (64 byte) 96 32
01 (2 partitions) 01 (128 byte) 48 16 Unused
10 (256 byte) 24 8
00 (64 byte) 64 48 16
10 (3 partitions) 01 (128 byte) 32 24 8
10 (256 byte) 16 12 4

Microengine can write datafrom Microengine S_Transfer_Out registers to the TBUF using the
msf [write] instruction, where they specify the starting byte number (which must be aligned to 4
bytes), and number of 32-bit words to write. The number in the instruction can be either the
number of 32-bit words, or number of 32-bit word pairs, using the single and double instruction
modifiers, respectively. Datais pulled from Microengineto TBUF via S Pull Bus.

msf [write, $s_xfer reg, src_op 1, src op 2, ref cnt], optional_ token

Thesrc_op 1 and src_op_2 operands are added together to form the address in TBUF (note that
the base address of the TBUF is 0x2000). ref_cnt isthe number of 32-bit words or word pairs,
which are pulled from sequential S_Transfer_Out registers, starting with $s_xfer reg.

264 Hardware Reference Manual

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

Microengine can move datafrom DRAM to TBUF using the instruction

dram[tbuf wr, --, src_opl, src_op2, ref cnt], indirect ref

Thesrc op 1 andsrc op 2 operands are added together to form the addressin DRAM, so the
dram instruction must use indirect mode to specify the TBUF address. ref_cnt isnumber of 64-bit
words which are written into TBUF.

Datais stored in big-endian order. The most significant (lowest numbered) byte of each 32-bit
word is transmitted first.

All elements within a TBUF partition are transmitted in the order. Control information associated
with the element (Section 100 and Section 101) defines which bytes are valid. The data from the
TBUF will be shifted and byte aligned to the TDAT pins as required. Four parameters are defined.

Prepend Offset—Number of the first byte to send. Thisisinformation that is prepended onto the
payload, for example as a header. It need not start at offset 0 in the element.

Prepend Length—Number of bytes of prepended information. This can be O to 31 bytes. If itisO,
then Prepend Offset must also be 0.

Payload Offset—Number of bytes to skip from the last 64-bit word of the Prepend to the start of
Payload. The absolute byte number of the first byte of Payload in the element is:
((Prepend Offset + Prepend Length + 0x7) & & OxF8) + Payload Offset

Payload Length—Number of bytes of Payload.

The sum of Prepend Length, Payload length and any gaps in between them (((prepend_offset +
preprend_length + 7) & OxF8) + payload_offset + payload_length) must be no greater than the
number of bytesin the element. Typically the Prepend will be computed by a Microengine and
written into the TBUF by ms £ [write] andthe Payload will bewritten by aramtbuf_wr1. These
two operations can be donein either order; the microcode is responsible for making sure the
element is not marked valid to transmit until al dataisin the element (see Section 8.3.3).

Example 35 illustrates the usage of the parameters. The element in Example 35 is shown as 8 bytes
wide because the smallest unit that can be moved into the element is 8 bytes. In Example 35, bytes
to be transmitted are shown in black (the offsets are byte numbers); bytesin gray are written into
TBUF (because the writes always write 8 bytes), but are not transmitted.

Prepend Offset = 6 (bytes 0x0 through 0x5 are not transmitted).
Prepend Length = 16 (bytes 0x6 through 0x15 are transmitted).

Payload Offset = 7 (bytes 0x16 through Ox1E are not transmitted). The Payload startsin the next 8-
byte row (i.e., the next “empty” row above where the Prepend stops), even if there isroom in the
last row containing Prepend information. Thisis done because the TBUF does not have byte write
capability, and therefore would not merge the msf [write] and dram[tbuf_wr]. The software
computing the Payload Offset only needs to know how many bytes of the payload that were put
into DRAM need to be removed.

Payload Length = 33 (bytes Ox1F through Ox3F are transmitted).

Hardware Reference Manual 265

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

Example 35. TBUF Prepend and Payload

6
8 9 A B C D E F
10 11 12 13 14 15

1F
20 21 22 23 24 25 26 27
28 29 2A 2B 2C 2D 2E Z2F
30 31 32 33 34 3 36 37
38 39 3A 3B 3C 3D 3E 3F

The transmit logic will send the valid bytes onto TDAT correctly aligned and with no gaps. The
protocol transmitted, SPI-4 or CSIX (and the value of the TPROT output) are based on which
partition of TBUF the data was placed (see Table 97).

8.3.2.1 SPI-4

For SPI-4, datais put into the data portion of the element, and information for the SPI-4 Control
Word that will precede the datais put into the Element Control Word.

When the Element Control Word is written the information is (note that the data comes from two
consecutive Transfer Registers; bits [31:0] from the lower numbered and bitg63:32] from the

higher numbered):
3(3|2|2|2|2|2(2|2(2|2|2f1|1|1f1f1|1|1|1|1]|1
1lo|ols|7|6|5|al3|2|1]o|ol8|7|6|5|al3]|2|1|o|2|8]7|6|5]|4|3]2|1|0
Prepend Payload || w| | @|m
Payload Length Offset Prepend Length Offset o _g ,% % % ADR
6|6|6|6|5|5|5|5|5|5|5|5|5|5|4(4|4|4|4|4|4|4|14]4|3|3|3[3|3[3|3]3
3(2(1|0|9|8|7|(6|5(4|3|2|1|0|9|8|7|6|5|4]|3 1/0(9|8|7|6|5|4|3]|2
Res
The definitions of the fields are shown in Table 100.
Table 100. TBUF SPI-4 Control Definition
Field Definition
ADR The port number to which the data is directed. This field will be sent in the ADR field of
the Control Word that will precede the data transfer.
sSop Indicates if the element is the start of a packet. This field will be sent in the SOPC field of
the Control Word that will precede the data transfer.
EOP Indicates if the element is the end of a packet. This field will be sent in the EOPS field of
the Control Word that will succeed the data transfer. Note 1.
NOTE:

266

1. Normally EOPS is sent on the next Control Word (along with ADR and SOP) to start the next element. If
there is no valid element pending at the end of sending the data, the transmit logic will insert an Idle
Control Word with the EOPS information.

Hardware Reference Manual

Intel® IXP2800 Network Processor

. Media and Switch Fabric Interface

INtal.

Table 100. TBUF SPI-4 Control Definition (Continued)

Field Definition

Indicates if the element is the end of a packet that should be aborted. If this bit is set the
Abort status code of EOP Abort will be sent in the EOPS field of the Control Word that will
succeed the data transfer. Note 1.

Prepend Offset | Indicates the first valid byte of Prepend, from 0 to 7, as defined in Section 8.3.2.

Prepend Length | Indicates the number of bytes in Prepend, from 0 to 31.

Payload Offset Indicates the first valid byte of Payload, from 0 to 7, as defined in Section 8.3.2.

Indicates the number of Payload bytes, from 1 to 256, in the element. The value of 0x00
means 256 bytes. The sum of Prepend Length and Payload Length will be sent. That
value will also control the EOPS field (1 or 2 bytes valid indicated) of the Control Word
that will succeed the data transfer. Note 1.

Payload Length

Allows software to allocate a TBUF element and then not transmit any data from it.
Skip O—transmit data according to other fields of Control Word.
1—free the element without transmitting any data.

NOTE:

1. Normally EOPS is sent on the next Control Word (along with ADR and SOP) to start the next element. If
there is no valid element pending at the end of sending the data, the transmit logic will insert an Idle
Control Word with the EOPS information.

8.3.2.2 CSIX

For CSIX protocol, the TBUF should be set to two partitionsin
MSF_Tx_Control[TBUF_Partition], one for Datatraffic and one for Control traffic.

Payload information is put into the Payload area of the element, and Base and Extension Header
information is put into the Element Control Word.

Datais stored in big-endian order. The most significant byte of each 32-bit word is transmitted
first.

When the Element Control Word is written the information is (note that the data comes from two
consecutive Transfer Registers; bits[31:0] from the lower numbered and bitg63:32] from the

higher numbered):
3|3|2|2|2(2|2|2|2|2|2|2f1|1f1j12|1f2]|1f1]21]|1
1lo|ol8|7|6|5|4a|3]|2|1|0|o|8|7|6|5|a|3|2]|1|0]®|8[7|6|5]4]|3[2]1|O
Prepend Payload | | @ | 1| 0
Payload Length Offset Prepend Length Offset 2 %-_ 2|w| T Res Type
6/6|6|6|5|5|[5|5|5|5|5|5|5|5|4(4|4(4|4|4|4|4|4|4|3[3|3[3|3[3[3]3
3|2|1/0|9|8|7|6|5|4|3|2|12|0|9|8|7|6|5|4|3|2|1|0|9|8|7|6|5|4|3]|2
Extension Header

The definitions of the fields are shown in Table 101.

Hardware Reference Manual 267

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

intel.

Table 101. TBUF CSIX Control Definition

8.3.3

268

Note:

Field Definition

Type Type Field to put into the CSIX Base Header. Idle type is not legal here.
CR CR (CSIX Reserved) bit to put into the CSIX Base Header.
P P (Private) bit to put into the CSIX Base Header.

The Extension Header to be sent with the CFrame. The bytes are sent in big-endian
Extension Header | order; byte 0 is in bits 63:56, byte 1 is in bits 55:48, byte 2 is in bits 47:40, and byte 3 is in
bits 39:32.

Prepend Offset | Indicates the first valid byte of Prepend, from 0 to 7, as defined in Section 8.3.2.

Prepend Length | Indicates the number of bytes in Prepend, from 0 to 31.

Payload Offset | Indicates the first valid byte of Payload, from 0 to 7, as defined in Section 8.3.2.

Indicates the number of Payload bytes, from 1 to 256, in the element. The value of 0x00
means 256 bytes. The sum of Prepend Length and Payload Length will be sent, and also
Payload Length | putinto the CSIX Base Header Payload Length field. Note that this length does not
include any padding which may be required. Padding is inserted by transmit hardware as
needed.

Allows software to allocate a TBUF element and then not transmit any data from it.
Skip O—transmit data according to other fields of Control Word
1—free the element without transmitting any data.

Transmit Operation Summary

During transmit processing data to be transmitted is placed into the TBUF under ME control. The
Microengine allocates an element in software; the transmit hardware processes TBUF elements
within apartition in strict sequential order so the software can track which element to allocate next.

Microengines may write directly into an element by msf [write] instruction, or have datafrom
DRAM written into the element by dram [tbuf_wr] instruction. Data can be merged into the
element by doing both.

ThereisaTransmit Valid bits per element, which marks the element as ready to be transmitted.
Microengines move all data into the element, by either or both of msf [write] and
dram[tbuf_wr]instructionsto the TBUF. MEs also write the element Transmit Control Word with
information about the element. The Microengines should use a single operation to perform the
TCW write, i.e., asingle msf[write] with aref_count of 2. When all the datamovement is complete
the Microengine sets the element valid bit as shown in the following steps.

1. Movedatainto TBUF by either or both of msf [write] and dram[tbuf_wr] instructionsto the
TBUF.

2. Wait for 1 to complete.

3. Write Transmit Control Word at TBUF_Element_Control_# address. Using this address sets
the Transmit Valid bit.

When moving data from DRAM to TBUF using dram[tbuf wr], it iSpossible that there could be
an uncorrectable error on the data read from DRAM (if ECC is enabled). In that case, the
Microengine does not get an Event Signal, to prevent use of the corrupt data. The error is recorded
in the DRAM controller (including the number of the Microengine that issued the TBUF_Wr
command, refer to the DRAM chapter for details), and will interrupt the Intel XScale® core, if
enabled, so that it can take appropriate action. Such action is beyond the scope of this document.

Hardware Reference Manual

8.3.3.1

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

However it must include recovering the TBUF element by setting it valid with Skip bit set in the
Control Word.

The transmit pipeline will be stalled since all TBUF elements must be transmitted in order; it will
be un-stalled when the element is skipped.

SPI-4

Transmit control logic sends valid elements on the transmit pinsin element order. First a Control
Word is sent—it is formed as shown in Table 102. After the Control Word, the datais sent; the
number of bytesto send isthe total of Element Control Word Prepend Length field plus the
Element Control Word Payload L ength.

Table 102. Transmit SPI-4 Control Word

Note:

Note:

S&,‘;?fgg?' Derived From
Type Type Bit of Element Control Word
EOPS EOP Bit, Prepend Length, Payload Length of previous element’s Element Control Word
SOP SOP Bit of Element Control Word
ADR ADR field of Element Control Word
DIP-4 Parity accumulated on previous element’s data and this Control Word

If the next sequential element is not valid when its turn comes up:

1. Send anidle Control Word with SOP set to 0, EOPS set to the val ues determined from the most
recently sent element, ADR field 0x00, correct parity.

2. Until an element becomes valid, send idle Control Words with SOP set to 0, EOPS set to 00,
ADR field 0x00, and correct parity.

Sequential elements with same ADR are not “merged”, a Control Word is sent for each element.

SPI-4 requiresthat all datatransfers, except the last fragment (with EOP), be multiples of 16 bytes.
Itis up to the software loading the TBUF element to enforce thisrule.

After an element has been sent on the transmit pins, the valid bit for that element is cleared. The
Tx_Sequence register isincremented when the element has been transmitted; by also maintaining
a sequence number of elements that have been all ocated (in software), the microcode can
determine how many elements are in-flight.

Hardware Reference Manual 269

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

8.3.3.2

Note:

intel.

Transmit control logic sends valid elements on the transmit pinsin element order. Each element
sends asingle CFrame. First the Base Header is sent—it isformed as shown in Table 103. Next the
Extension Header is sent. Finally, the datais sent; the number of bytes to send is the total of
Element Control Word Prepend Length field plus the Element Control Word Payload L ength; plus
padding to fill the final CWord if required (the CWord Sizeis programmed in
MSF_Tx_Control[Tx_CWord_Size]). Both Horizontal Parity and Vertical Parity aretransmitted, as
described in Section 8.3.5.2.1 and Section 8.3.5.2.2.

CSIX

When transmitting a Flow Control CFrame, the entire payload must be written into the TBUF
entry. The extension header field of the Transmit Control Word is not used for Flow Control
CFrames.

Table 103. Transmit CSIX Header

Note:

270

CSIX Header Field Derived From
Type Type field of Element Control Word
Data Ready FC_Ingress_Status[TM_DReady]

Control Ready FC_Ingress_Status[TM_CReady]

Payload Length Element Control Word Prepend Length + Element Control Word Payload Length

P P Bit of Element Control Word

CR CR Bit of Element Control Word

Extension Header | Extension Header field of Element Control Word

Control elements and Data elements share use of the transmit pins. Each will alternately transmit a
valid element, if present.

If the next sequential element is not valid when its turn comes up, or if transmission is disabled by
FC_Ingress Status|SF_CReady] or FC_Ingress Status[SF_DReady], then transmit logic will
alternate sending Idle CFrames with Dead Cycles; it will continue to do so until avalid element is
ready. Idle CFrames get the value for the Ready Field from FC_Ingress Satug TM_Cready] and
FC_Ingress SatusTM_DReady], the Payload Length is set to 0.

A Dead Cycleisany cycle after the end of a CFrame, and prior to the start of another CFrame (i.e.,
SOF is not asserted). The end of a CFrame is defined as after the Vertical Parity has been
transmitted. Thisin turnisfound by counting the Payload Bytes specified in the Base Header and
rounding up to CWord size.

After an element has been sent on the transmit pins, the valid bit for that element is cleared. The
Tx_Sequence register isincremented when the element has been transmitted; by also maintaining
a sequence number of elements that have been allocated (in software), the microcode can
determine how many elements are in-flight.

Hardware Reference Manual

intgl.

8.3.3.3

Transmit Summary

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

The states that a TBUF element goes through are shown in Figure 95.

Figure 95. TBUF State Diagram

Reset

Free. Element is empty
and available to be
allocated to be filled.

Allocate new element
(Next element is kept by
ME software)

All data in element

A

transmitted

Transmiting. Data in
element is being sent
out on Tx pins.

All previous elements
transmitted

Y

Allocated. Elementis
being filled with data
under ME control. There
is no limit to how many
elements may be in this
state.

Set valid by
msf[write]

Y

Valid. Element has been
set valid by ME code
using one of two methods.
In this state, it will wait to
be transmitted (FIFO

8.3.4

8.3.4.1

order is maintained).

A9344-01

Transmit Flow Control Status

Transmit Flow Control is handled partly by hardware and partly by software. Information from the
Egress 1XP2800 Network Processor can be transmitted to the I ngress 1XP2800 Network Processor
(as described in Section 8.2.7 on Receive Flow Control); how it isused is described in the
remainder of this section.

SPI-4

FIFO status information is sent periodically over the TSTAT signals from the PHY to the Link
Layer device (which isthe IXP2800 Network Processor). [Note that RXCDAT pins can act as
TSTAT based on MSF_Tx_Control[TSTAT _Select] bit.] The FIFO status of each port isencoded
in a 2-bit data structure—code 0x3 is used for framing the data, and the other three codes are valid
status values, which are interpreted by Microengine software.

The FIFO status words are received according to a repeating calendar sequence. Each sequence
begins with the framing code to indicate the start of a sequence, followed by the status codes,
followed by a DIP-2 parity code covering the preceding frame. The length of the calendar, as well
as the port values, are defined in this section, and shown in Figure 96.

Hardware Reference Manual 271

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

272

intel.

Figure 96. Tx Calendar Block Diagram

Tx_Calendar_Length
\ —2—

Calendar Counter

Y 8 \I‘_32—’|

— Tx
Port
To
MSF_Interrupt_Status Status . -:-tx |
and MSF_Tx_Control 256 ultiple | 16
Registers Port
Status
T Tx_Calendar

Frame 256 *
Pattern
Counter CSR

Reads

A —

Start of CSR
Frame Reads
Detect Parity X

A

TSTAT

A9761-02

Tx_Port_Status #isaregister file containing 256 registers, one for each of the SPI-4.2 ports. The
port status is updated each time a new calendar status is received for each port, according to the
mode programmed in MSF_Tx_Control[Tx_Status Update Mode]. Tx_Port_Satus # holds
the latest received status for each port, and can be read by CSR reads.

Thereare 16 Tx_Multiple Port_Status # registers. Each aggregates the status for each group of
16 ports. These registers provide an alternative method for reading the FIFO status of multiple
portswith asingle CSR read. For example, Tx_Multiple Port_Satus 0 contains the 2-bit status
for ports 0 through 16, and provides the same status as reading the individual registers
Tx_Port_Status 0through Tx_Port_Satus 15.

The TX_Port_Status # or the TX_Multiple_Port_Status # registers must be read by the
software in order to determine the status of each port and send data to them accordingly. The M SF
hardware does not check these registers for port status before sending data out to a particular port.

The MSF_Tx_Control[Tx_Satus Update Mode] field is used to select which of two methods
should be used for updating the port status. The first method updates the port status with the new
status value, regardless of the value received. The second method updates the port status only when
avalueisreceived that is equal to or less than the current value.

Hardware Reference Manual

Note:

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

Detailed information about the status update modes is contained in the Intel® 1XP2400/I XP2800
Network Processor Programmer’s Reference Manual.

Reading a port status causes its value to be changed. This provides a means to avoid reading stale
status bits. The MSF_Tx_Control[Tx_Satus Read Mode] field is used to select the method
used to change the bits after they are read.

Tx_Calendar isaRAM with 256 entries of 8 bits each. It isinitialized with the calendar
information by software (the calendar is a list that indicates the sequence of port status that will be
sent—the PHY and the I XP2800 Network Processor must be initialized with the same calendar).
Tx_Calendar_Length isaCSR field that isinitialized with the length of the calendar, sincein
many cases not all 256 entries of Tx_Calendar are used.

When the start of a Status frame pattern is detected (by a value of 0x3 on TSTAT) the Calendar
Counter isinitialized to zero. On each data cycle the Calendar Counter is used to index into
Tx_Calendar to read a port number. The port number isused as an index to Tx_Port_Satus, and
the information received on TSTAT is put into that location in TX_Port_Status. The count is
incremented each cycle.

DIP-2 Parity is aso accumulated on TSTAT. At the start of the frame, parity is cleared. When the
count reaches Tx_Calendar_L ength the next value on TSTAT isused to compare to the
accumulated parity. The control logic then looks for the next frame start. If the received parity does
not match the expected value MSF_Interrupt_Statug TSTAT _Par_Err] bit is set, which can
interrupt the Intel XScale® core if enabled.

An internal status flag records whether or not the most recently received DIP-2 was correct. When
that flag is set (indicating bad DIP-2 parity) al readsto Tx_Port_Satus return a status of
“Satisfied” instead of the valuein the Tx_Port_Status RAM. Theflag is re-loaded at the next
parity sample; so theimplication isthat all ports will return “ Satisfied” status for at least one
calendar.

SPI-4 protocol uses a continuous stream of repeated frame patterns to indicate a disabled status
link. The IXP2800 Network Processor flow control status block has a Frame Pattern Counter that
counts up each time aframe pattern isreceived on TSTAT, and is cleared when any other patternis
received. When the Frame Pattern Counter reaches 32

MSF _Interrupt_SatugDetect No Calendar] isset and Train_Data[Detect No_Calendar] is
asserted (M SF_Interrupt_StatusDetect_No_Calendar] must be cleared by awrite to the
MSF_Interrupt_Statusregister; Train_Data[Detect No_Calendar] will reflect the current
status and will deassert when the frame pattern stops). The transmit logic will generate training
sequence on transmit pins while both Train_Data[Detect No_Calendar] and
Train_Data[Train_Enable TSTAT] are asserted.

Hardware Reference Manual 273

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

8.3.4.2

8.34.2.1

8.3.4.2.2

8.3.5

8.35.1

274

CSIX

There are two types of CSIX flow control:
* Link-level
¢ Virtua Output Queue (VOQ)

Link-level

The Link-level flow control function is done via hardware and consists of two parts:
1. Enable/disable transmission of valid TBUF elements.
2. Ready field to be sent in CFrames sent to the Switch Fabric.

As described in Section 8.2.7, the Ready Field of received CFramesis placed into

FC_Egress SatugSF_CReady] and FC_Egress SatugSF_DReady]. Thevaluein those bitsis
sent to the Ingress | XP2800 Network Processor on TXCSRB. In Full Duplex Mode, the
information is received on RXCSRB by the Ingress | XP2800 Network Processor and put into
FC_Ingress SatugSF_CReady] and FC_Ingress Satus[SF_DReady]. Those bits allow or
stop transmission of Control and Data elements, respectively. When one of those hits transitions
from allowing transmission to stopping transmission, the current CFrame in progress (if any) is
completed, and the next CFrame of that typeis prevented from starting.

Also described in Section 8.2.7, if the Egress | XP2800 Network Processor RBUF gets near full, or
if the Egress | XP2800 Network Processor FCEFIFO gets near full, it will send that information on
TXCSRB. Those bitsare put into FC_Ingress SatusTM_CReady] and

FC_Ingress SatusTM_DReady], and are used as the value in CFrame Base Header Control

Ready and Data Ready, respectively.
Virtual Output Queue
The Virtual Output Queue flow control function is done by software, with hardware support.

As described in Section 8.2.7, CSIX Flow Control CFrames received on the Egress | XP2800
Network Processor are passed to the Ingress | XP2800 Network Processor over TXCDAT. The
information is received on RXCDAT and placed into the FCIFIFO. A Microengine reads that
information by msf [read], and usesit to maintain per-VOQ information. How that information is
used is application dependent and is done in software. The hardware mechanism is described in
Section 8.5.3.

Parity

SPI-4

DIP-4 parity is computed by Transmit hardware placed into the Control Word sent at the beginning
of transmission of a TBUF element, and also on Idle Control Words sent when no TBUF element is
valid. The value to place into the DIP-4 field is computed on the preceding Data Words (if any),
and the current Control Word.

Hardware Reference Manual

Intel® IXP2800 Network Processor

. Media and Switch Fabric Interface

INtal.
8.3.5.2 CSIX

8.3.5.2.1 Horizontal Parity

The transmit logic computes odd Horizontal Perity for each transmitted 16-bits of each Cword, and
transmitsit on TxPar.

8.3.5.2.2 Vertical Parity

The transmit logic computes Vertical Parity on CFrames. Thereis a 16-bit VP Accumulator
Register. At the beginning of each CFrame the register is cleared. As each Cword is transmitted,
odd parity is accumulated in the register as defined in the CSIX spec (16 bits of vertical parity are
formed on 32 hits of transmitted data by treating the data as words; i.e., bit 0 and bit 16 of the data
are accumulated into parity bit 0, bit 1, and bit 17 of the data are accumul ated into parity bit 1, etc.).
The accumulated valueis transmitted in the Cword along with the last byte of Payload and any
padding, if required.

8.4 RBUF and TBUF Summary

Table 104 summarizes and contrasts the RBUF and TBUF operations.

Table 104. Summary of RBUF and TBUF Operations

Operation RBUF TBUF
SPI-4
Hardware allocates an element upon receipt
of a non-idle Control Word, or when a
previous element becomes full and another
Data Word arrives with no intervening
Control Word. Any available element in the . .
SPI-4 partition may be allocated, however, Microengine allocates an element. Because
the elements are transmitted in FIFO order
Allocate elements are guaranteed to be handed to e L . ;
clement threads in the order they arrive. (within each TBUF partition), the M|croeng|_ne
can keep the number of the next element in
CSIX
software.
Hardware allocates an element upon receipt
of RxSof asserted. Any available elementin
the CSIX Control or CSIX Data partition may
be allocated (according to the type),
however, elements are guaranteed to be
handed to threads in the order they arrive.
SPI-4 Microcode fills the element from DRAM using
Fill element Hardware fills the element with Data Words. | dram[tbuf_wr] instruction and from
CSIX Microengine registers using msf [write]
Hardware fills the element with Payload. Instruction.
SPI-4
Set valid by hardware when either it
becomes full or when a Control Word is The element’s Transmit Valid bit is set. This
Set element received. is done by a write to the
valid CSIX TBUF_Element_Control_$_# CSR ($is A or
Set valid by hardware when the number of | B: # s the element number).
bytes in Payload Length have been
received.

Hardware Reference Manual 275

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

intel.

Table 104. Summary of RBUF and TBUF Operations (Continued)

8.5

8.5.1

276

Operation

RBUF

TBUF

Remove data
from element

Microcode moves data from the element to
DRAM using dram [rbuf_ rd] instruction
and to Microengine registers using

msf [read] instruction.

Hardware transmits information from the
element to the Tx pins. Transmission of
elements is in FIFO order within each
partition; that is an element will be
transmitted only when all preceding elements
in that partition have been transmitted.

Choice of element to transmit among
partitions is round-robin.

Returnelement
to Free List

Microcode writes to Rx_Element_Done
with the number of the element to free.

Microengine software uses the
TX_Sequence_n CSRs to track elements
that have been transmitted.

CSIX Flow Control Interface

This section describes the Flow Control Interface. Section 8.2 and Section 8.3 of this chapter also
contain descriptions of how those functionsinteract with Flow Control. There are two modes—Full
Duplex, where flow control information goes from Egress I XP2800 Network Processor to the
Ingress | XP2800 Network Processor, and Simplex mode, where the information from the Switch
Fabric is sent directly to the Ingress I XP2800 Network Processor, and from the Egress | X P2800
Network Processor to the Switch Fabric.

TXCSRB,

RXCSRB

TXCSRB and RXCSRBare used only in Full Duplex mode. (See Figure 97.) They send
information from the Egress | XP2800 Network Processor to the Ingress | XP2800 Network
Processor for two reasons:

1. Passthe CSIX Ready Field (link-level flow control) from the Switch Fabric to the Ingress
I XP2800 Network Processor. The information is used by the Ingress 1XP2800 Network
Processor’s transmit control logic to stop transmission of CFrames to the Switch Fabric.

2. Set the value of the Ready field sent from the Ingress | XP2800 Network Processor to the
Switch Fabric. Thisisto inform the Switch Fabric to stop transmitting CFrames to the Egress
I XP2800 Network Processor, based on receive buffer resource availability in the Egress
I XP2800 Network Processor.

Hardware Reference Manual

in

®

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

Figure 97. CSIX Flow Control Interface — TXCSRB and RXCSRB

Ingress s -
Intel® IXP2800 TBUF > —l TDAT >
Network Processor — - J L — Link Level Flow Control
Switch
msf[read] FC_Ingress_Status < RXCSRB Fabric
CSR <
Egress
Intel IXP2800 _ TXCSRB
Network Processor >
FC_Egress_Status | I‘ _ RDAT
msf[read] { CoR < <
A9762-01

Theinformation transmitted on TXCSRB can beread in FC_Egress Status CSR, and the
information received on RXCSRB can beread in FC_Ingress Satus CSR.

TXCSRB/RXCSRB signals carry the Ready information in a serial stream. Four bits of data are
carried in 10 clock phases, L SB first, as shown in Table 105.

Table 105. SRB Definition by Clock Phase Number

Clock
Cycle
Number

Desc

ription

Source of bit on Egress IXP2800 Network
Processor (TXCSRB)

Use of bit on Ingress 1XP2800 Network
Processor (RXCSRB)

0-5

Framing information. Data is 000001; this pattern
get synchronized to the serial stream regardless

allows the Ingress IXP2800 Network Processor to
of the data values.

Most recently received Control Ready from a
CFrame Base Header.

Also visible in
FC_Egress_Status[SF_CReady].

When 0—Stop sending Control CFrames to the
Switch Fabric.

When 1—OK to send Control CFrames to the
Switch Fabric.

Also visible in FC_Ingress_Status[SF_CReady].

Most recently received Data Ready from a
CFrame Base Header.

Also visible in
FC_Egress_Status[SF_DReady]

When 0—Stop sending Data CFrames to the
Switch Fabric.

When 1—OK to send Data CFrames to the
Switch Fabric.

Also visible in FC_Ingress_Status[SF_DReady].

RBUF or FCEFIFO are above high water mark.

Also visible in
FC_Egress_Status[TM_CReady].

Place this bit in the Control Ready bit of all
outgoing CSIX Base Headers.

Also visible in
FC_Ingress_Status[TM_CReady].

RBUF is above high water mark.
Also visible in
FC_Egress_Status[TM_DReady].

Place this bit in the Data Ready bit of all outgoing
CSIX Base Headers.

Also visible in
FC_Ingress_Status[TM_DReady].

Hardware Reference Manual

277

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

8.5.2

8.5.2.1

278

intel.

The Transmit Data Ready bit sent from Egress to Ingress | XP2800 Network Processor will be
deasserted if the following condition is met.

* RBUF CSIX Datapartition isfull, based on HWM _Control[RBUF_D_HWM].

The Transmit Control Ready bit sent from Egress to Ingress | XP2800 Network Processor will be
deasserted if either of the following conditionsis met.

* RBUF CSIX Control partition isfull, based on HWM _Control[RBUF_C HWM].
* FCEFIFO full, based on HWM_Control[FCEFIFO_HWM].

FCIFIFO, FCEFIFO

FCIFIFO and FCEFIFO are 1 Kbyte (256 entry x 32-hit) buffers for the flow control information.
FCEFIFO holds datawhile it is being transmitted off of the Egress | XP2800 Network Processor.
FCIFIFO holds data received into the Ingress | XP2800 Network Processor until Microengines can
read it. There are two usage models for the FIFOs—Full Duplex Mode and Simplex Mode,
selected by M SF_Rx_Control[Duplex_M ode].

Full Duplex CSIX

In Full Duplex Mode, the information from the Switch Fabric is sent to the Egress | XP2800
Network Processor and must be communicated to the Ingress 1 XP2800 Network Processor via
TXCSRB/RXCSRB. CSIX CFrames received from the Switch Fabric on the Egress | XP2800
Network Processor are put into FCEFIFO based on the mapping in CSIX_Type Map CSR
(normally they will be the Flow Control CFrames). The entire CFrameis put in, including the Base
Header and Vertical Parity field.

The CFrames are forwarded in a“cut-through” manner, meaning the Egress | XP2800 Network
Processor does not wait for the entire CFrame to be received before forwarding. The Egress
processor will corrupt the Vertical Parity of the CFrame being forwarded if either aHorizontal or
Vertical Perity is detected during receive to inform the Ingress processor that an error occured.The
Ingress | XP2800 Network Processor checks both Horizontal Parity and Vertical Parity and will
discard the entire CFrame if bad parity is detected. The signal protocol details of how the
information is sent from the Egress | XP2800 Network Processor to the Ingress | XP2800 Network
Processor is described in Section 8.5.3. (See Figure 98.)

Hardware Reference Manual

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

intgl.

Figure 98. CSIX Flow Control Interface — FCIFIFO and FCEFIFO in Full Duplex Mode

Ingress
Intel® IXP2800 msf[read] <€ TDAT >
Network Processor I
FCI_Not_Empty €«—|_ _____|
ToMes FCI_Full <e—|------1 Switch
I S Fabric
FCIFIFO]
A RXCSRB RXCFC A RXCDAT, RXCPAR, RXCSOF
TXCSRB Yy TXCFC TXCDAT, TXCPAR, TXCSOF
Egress
Intel®IXP2800 |------1
Network Processor FCEFIFO |~
MSF_Rx_Control[Duplex_Mode] H
From MES = = = = = 1 - RDAT

The Ingress I XP2800 Network Processor puts the CFrames into the FCIFIFO, including the Base
Header and Vertical Parity fields. It does not make a CFramevisiblein the FCIFIFO until the entire
CFrame has been received without errors. If there is an error the entire CFrame is discarded and

MSF_Interrupt_StatusFCIFIFO_Error] is set.

CFrames in the FCIFIFO of the Ingress | XP2800 Network Processor are read by Microengines,
which use them to keep current VOQ Flow Control information. [How and where that information
is stored and used is a software function and is application dependent.] The FCIFIFO suppliestwo

signals to Microengines, which can be tested using the BR_STATE instruction.

1. FCI_Not_Empty—indicatesthat thereisat least one CWord in the FCIFIFO. Thissignal stays
asserted until all CWords have been read. [Note that when FCIFIFO is empty, this signal will
not assert until afull CFrame has been received into FCIFIFO; as that CFrame is removed by
the Microengine this signal will stay asserted until all CWords have been removed, including

any subsequently received CFrames.]

2. FCI_Full—indicates that FCIFIFO is above the high water mark defined in
HWM_Control[FCIFIFO_Int_HWM].

The Microengine that has been assigned to handle FCIFIFO must read the CFrame, 32 bits at a
time, from the FCIFIFO using thems£ [read] instruction to the FCIFIFO address; the length of the
read can be anywhere from oneto 16. The FCIFIFO handler thread must examine the Base Header

to determine how long the CFrame is and perform the necessary number of reads from the

FCIFIFO to dequeue the entire CFrame. If aread isissued to FCIFIFO when it is empty then an
Idle CFrame will be read back (0xO000FFFF). Note that when FCIFIFO isreceiving a CFrame, it

does not make it visible until the entire CFrame has been received without errors.

Hardware Reference Manual

279

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

8.5.2.2

u

| ntel .
The nearly-full signal is based on the high watermark programmed into
HWM _Control[FCIFIFO_Int_ HWM]. When asserted, this means that higher priority needsto
be given to draining the FCIFIFO to prevent flow control from being asserted to the Egress
I XP2800 Network Processor (by assertion of RXCFC).

Simplex CSIX

In Simplex Mode, the Flow Control signals are connected directly to the Switch Fabric; flow
control information is sent directly from the Egress IXP2800 Network Processor to the Switch
Fabric, and directly from the Switch Fabric to the Ingress I XP2800 Network Processor. (See
Figure 99.)

Figure 99. CSIX Flow Control Interface — FCIFIFO and FCEFIFO in Simplex Mode

280

Ingress
Intel® IXP2800 msf[read] <& TDAT >
Network Processor I
FCI_Not_Empty €«— | _____|
ToMes FCI_Full <— [------1 Switch
I S Fabric
FCIFIFO
A
A RXCSRB RXCFC RXCDAT, RXCPAR, RXCSOF
TXCSRB Yy TXCFC TXCDAT, TXCPAR, TXCSOF i
Egress
Intel®IXp2800 - |------
Network Processor FCEFIFO |~
MSF_Rx_Control[Duplex_Mode] H
From MES = = = = = 1 -« RDAT

A9764-01

The TXCSRB/RXCSRB pinsare not used at all in Simplex Mode. The RXCFC and TXCFC pins
are used for flow control in both Simplex and Duplex Modes.

The Egress 1 XP2800 Network Processor usesthe TXCSOF, TXCDAT, and TXCPAR pinsto send
CFrames to the Switch Fabric.

The Ingress 1 XP2800 Network Processor uses the RXCSOF, RXCDAT, and RXCPAR pinsto
receive CFrames from the Switch Fabric (the Switch Fabric is expected to send Flow Control
CFrames on these pinsinstead of the RDAT pinsin Simplex Mode).

FC_Ingress SatugSF_CReady] and FC_Ingress Satus[SF_DReady] bits are set are from the
"Ready hits" received in all incoming CFrames received on thisinterface. Transmit hardwarein the
Ingress I XP2800 Network Processor uses the FC_Ingress Status[SF_CReady] and

FC_Ingress Status/SF_DReady] bitsto flow control the data and control transmit on TDAT.

CFramesin the FCIFIFO of the Ingress | XP2800 Network Processor are read by Microengines,

which use them to keep current VOQ Flow Control information (thisis the same asfor Full Duplex
Mode). The FCI_Not_Empty and FCI_Full status flags, as described in Section 8.5.2.1 let the

Hardware Reference Manual

8.5.3

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

Microengine know if the FCIFIFO has any CWords in it. When FCI_Full is asserted
FC_Ingress SatugTM_CReady] will be deasserted; that bit is put into the Ready field of
CFrames going to the Switch Fabric, to inform it to stop sending Control CFrames.

Flow Control CFrames to the Switch Fabric are put into FCEFIFO, instead of into TBUF asin the
Full Duplex Mode case. In this mode, the Microengines create CFrames and write them into
FCEFIFO using mst [write] instruction to the FCEFIFO address; the length of the write can be
anywhere form one to 16. The Microengine creating the CFrame must put a header that conforms
to CSIX Base Header format in front of the message (in order to inform the hardware how many
bytes to send).

The Microengine must first test if there is room in FCEFIFO by reading

FC_Egress StatugFCEFIFO_Full] status bhit. After the CFrame has been written to FCEFIFO,
the Microengine writesto FCEFIFO_Validate register to indicate that the CFrame should be sent
out on TXCDAT. Thisisrequired to prevent underflow by insuring that the entire CFrameisin
FCEFIFO before it can be transmitted. A validated CFrame at the head of FCEFIFO will be started
on TXCDAT if FC_Egress SatugSF_CReady] is asserted, and held off if it is deasserted.
However, once started the entire CFrame is sent regardless of changesin

FC_Egress SatugSF_CReady]. FC_Egress Status|SF_DReady] isignored in controlling
FCEFIFO.

FC_Egress Satug§TM_CReady] and FC_Egress SatugTM_DReady] are placed by hardware
into the Base Header of those outgoing CFrames. Horizontal and Vertical parity are created by
hardware.

If thereisno valid CFramein FCEFIFO, or if FC_Egress Status|SF_CReady] is deasserted, then
idle CFrames are sent on TXCDAT. Theidle CFrames also carry

FC _Egress Satug§TM_CReady] and FC_Egress Statu§ TM_DReady] in the Base Header
Ready Field. In all cases the Switch Fabric must honor the "ready bits" to prevent overflowing
RBUF.

TXCDAT/RXCDAT, TXCSOF/RXCSOF, TXCPAR/RXCPAR,
and TXCFC/RXCFC

TXCDAT and RXCDAT, along with TXCSOF/RXCSOF and TXCPAR/RXCPAR are used to
send CSIX Flow Control information from the Egress 1 XP2800 Network Processor to the Ingress
| XP2800 Network Processor.

The protocol is basically the same as CSIX-LI, but with only four data signals.

TXCSOF is asserted to indicate start of anew CFrame. The format is the same as any normal
CFrame—Base Header, followed by Payload and Vertical Parity, the only difference isthat each
CWord issent on TXCDAT in four cycles, most significant bitsfirst. TXCPAR carries odd parity
for each four bits of data. The transmit logic also creates valid Vertical Perity at the end of the
CFrame, with one exception. If the Egress I XP2800 Network Processor detected an error on the
CFrame, it will create bad Vertical parity so that the Ingress | XP2800 Network Processor will
detect that and discard it.

The Egress | XP2800 Network Processor sends CFrames from FCEFIFO in cut-though manner. If
thereis no datain FCEFIFO then the Egress | XP2800 Network Processor alternates sending Idle
CFrames and Dead Cycles. [Note that FCIFIFO never enqueues |dle CFramesin either Full Duplex
or Simplex Modes. The transmitted I dle CFrames are injected by the control state machine, not
taken from the FCEFIFQ.]

Hardware Reference Manual 281

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

Note:

8.6

intel.

The Ingress I XP2800 Network Processor asserts RXCFC to indicate that FCIFIFO isfull, as
defined by HWM _Control[FCIFIFO_Ext HWM]. The Egress | XP2800 Network Processor,
upon receiving that signal asserted, will complete the current CFrame, and then transmit Idle
CFrames until RXCFC deasserts. During that time the Egress | XP2800 Network Processor can
continue to buffer Flow Control CFrames in FCEFIFO, however if that fills further CFrames
mapped to FCEFIFO will be discarded.

If thereis no Switch Fabric present, this port could be used for interchip message communication.
FC pins must connect between network processors asin Full Duplex Mode. Set
MSF_RX_CONTROL[DUPLEX_MODE] =0and MSF_TX_CONTROL[DUPLEX_MODE]
=0 (Simplex) and FC_STATUS OVERRIDE=0x3ff. MEs write CFrames to the FCEFIFO CSR
asin Simplex Mode. The RXCFC and TXCFC pins must be connected between network
processors to provide flow control.

Deskew and Training

Thiss section describes the mechanisms used for deskewing and training.

There are three methods of operation that can be used, based on the application requirements.

1. Static Alignment — the receiver latches al data and control signals at afixed point in time
relative to clock.

2. Static Deskew — the receiver latches each data and control signal at a programmable point in
time relative to clock. The programming value for each signal is characterized for a given
system design and loaded into deskew control registers at system boot time.

3. Dynamic Deskew — the transmitter periodically sends atraining pattern, which the receiver
uses to automatically select the optimal timing point for each data and control signal. The
timing values are loaded into the deskew control registers by the training hardware.

The I XP2800 Network Processor supports all three methods. There are three groups of high speed
pins which this applies, as shown in Table 106, Table 107, and Table 108. The groups are defined
by which clock signal is used.

Table 106. Data Deskew Functions

282

Clock Signals IXP2800 Network Processor Operation
RDAT 1. Sample point for each pin is programmed in Rx_Deskew.
2. Deskew values set automatically when training pattern (Section 8.6.1) is
RCLK RCTL received and is enabled in Train_Data[lgnore_Training].
RPAR
RPROT
TDAT 1. Send training pattern
TCTL « under software control (write to Train_Data[Continuous_Train] or
TCLK Train_Data[Single_Train])
TPAR « when TSTAT input has framing pattern for more than 32 cycles and enabled in
TPROT Train_Data[Train_Enable].

Hardware Reference Manual

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

Table 107. Calendar Deskew Functions

Clock Signals IXP2800 Network Processor Operation

1. Used to indicate need for data training on receive pins by forcing to continual
framing pattern (write to Train_Data[RSTAT_En]).

RSCLK RSTAT 2. Send training pattern under software control (write to
Train_Calendar[Continuous_Train] or Train_Calendar[Single_Train]).
1. Sample point for each pin is set in Rx_Deskew, either by manual programming
or automatically.
TSCLK TSTAT 2. Deskew values set automatically when training pattern (Section) is received

and is enabled in Train_Calendar[lgnore_Training].
3. Received continuous framing pattern can be used to initiate data training
(Train_Data[Detect_No_Calendar]), and/or interrupt the Intel XScale® core.

Table 108. Flow Control Deskew Functions

Clock Signals IXP2800 Network Processor Operation

RXCSOF | 1. Sample point for each pin is programmed in Rx_Deskew.
2. Deskew values set automatically when training pattern (Section 8.6.2) is

RXCDAT ; ; ; ; i
RXCCLK received and is enabled in Train_Flow_Control[lgnore_Training].

RXCPAR | Note 1, 2

RXCSRB

TXCSOF | 1. Send training pattern

TXCDAT « under software control (write to Train_Flow_Control[Continuous_Train] or
Train_Flow_Control[Single_Train])

« when TXCFC input has been asserted for more than 32 cycles and enabled in
Train_Flow_Control[Train_Enable].

Note 1, 2

TXCCLK | TXCPAR

TXCSRB

NOTES:

1. TXCFC is not trained. RXCFC is driven out relative to RXCCLK; TXCFC is received relative to TXCCLK,
but is treated as asynchronous.

2. RXCFC can be forced asserted by write to Train_Flow_Control[RXCFC_En].

8.6.1 Data Training Pattern

The data pin training sequence is shown in Table 109. Thisisasuperset of SPI-4 training sequence,
because it includesthe TPAR/RPAR and TPROT/RPOT pins, which are not included in SPI-4.

Hardware Reference Manual 283

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

Table 109.

8.6.2

284

Table 110.

Data Training Sequence

Cycle 2lo|o DATA

(Note 4) ol%|7E

= 15(14|13|12(11|10| 9 |8 | 7|6 |5|4|3|2|1]|0

1 (Note 5) O|lx|1|0fx|x|O|]O|J]OjO]J]O|]O]J]O|O|]O|a|bj]ci|d

2to 11 ofi1|1j0fO0jOjOf2|1|2f2|1)|2f2|21]|1|212|1]|1

12t0 21 i1/0(0f2|1|2f(2|0|0O|lO0O|jO|JO|O|]O]JO|O|]O]O]|O

200-18t020009 (O | 1|21 |O0O|O0O|O|Of2 |12 |2|1|2f2|1]|]1|212|1]|1

200-8t020c+1 {1 |O|(O0O|1|2|12|1)J0|l0O|O|JO|O|O]JO|O|O]JO|O]O

NOTES:

1. In cycle 1, x and abcd depend on the contents of the interval after the last preceding control word. This is
an Idle Control Word.

2. o represents the number of repeats, as specified in SPI-4 specification. When the IXP2800 Network
Processor is transmitting training sequences the value is in Train_Data[Alpha].

3. On receive, the IXP2800 Network Processor will do dynamic deskew when Train_Data[lgnore_Training]
is 0, and RCTL =1 and RDATA = 0xOFFF for three consecutive samples. Note that RPROT and RPAR are
ignored when recognizing the start of training sequence.

4. These are really phases (i.e.,each edge of the clock is counted as one sample).

5. This cycle is valid for SPI4, it is not used in CSIX training.

Flow Control Training Pattern

This section definestraining for the flow control pins (Table 110). These pins are normally used for
CSIX flow control (Section 8.5), but can be programmed for use as SPI-4 Status Channel. The
training pattern used is based on the usage.

The flow control pin training sequence when the pins are used for CSIX flow control is shownin
Table 110.

Flow Control Training Sequence

Cycle 5 XCDAT ?é é

(Note 3) 9 3|2 110):E g

1to 10 1|11)]1|0|0|0]|O

11t0 20 o|jo|O0f|1|1|1]|1

200-19t0200-10 | 1 | 1 |1 | O | O | O | O

200-9 to 200 ojojo|1|1|1]1
NOTE:

1. a represents the number of repeats, as specified
in SPI-4 specification. When the IXP2800 Network
Processor is transmitting training sequences the
value is in Train_Flow_Control[Alpha].

2. On receive, the IXP2800 Network Processor will
do dynamic deskew when
Train_Flow_Control[lgnore_Training] is 0, and
RXCSOF = 1, RXCDATA = 0xC, RXCPAR =0,
and RXCSRB = 0 for three consecutive samples.

3. These are really phases (i.e.,each edge of the
clock is counted as one sample).

Hardware Reference Manual

intgl.

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

The training sequence when the pins are used for SPI-4 Status Channel is shown in Table 111. This
is compatible to SPI-4 training sequence.

Table 111. Calendar Training Sequence

8.6.3

Cycle XCDAT
(Note 3) 1 0
1to 10 0 0
11to0 20 1 1
200-19 to 200-10 0 0
200-9 to 20 1 1

NOTE:

1. o represents the number of repeats,
as specified in SPI-4 specification.
When the IXP2800 Network
Processor is transmitting training
sequences the value is in
Train_Calendar[Alpha].

2. On receive, the IXP2800 Network
Processor will do dynamic deskew
when
Train_Calendar[lgnore_Training] is
0, and TCDAT= 0x0 for ten
consecutive samples.

3. These are really phases (i.e.,each
edge of the clock is counted as one
sample).

4. Only XCDAT[1:0] are included in
training.

Use of Dynamic Training

Dynamic training is done by cooperation of hardware and software as defined in this section.

The IXP2800 Network Processor will need training at reset or it losestraining. Loss of training will
typically be detected by parity errors on received data. Table 112 lists the steps to initiate the
training. SPI-4, CSIX Full Duplex, and CSIX Simplex cases follow similar but slightly different
sequences. SPI-4 protocol uses the calendar status pins, TSTAT/RSTAT (or RXCDAT/TXCDAT
if those are used for calendar status), as an indicator that datatraining is required. For CSIX use,
the IXP2800 Network Processor uses a proprietary method of in-band signaling using Idle
CFrames and Dead Cyclesto indicate need for training.

Until the LVDS 10s are deskewed correctly, dip4 errors will occur. At startup, the receiver should
request training followed by the transmitting device being sent training. The receive should
initially seereceived training set and dip4 parity errors. The receiver should then clear the parity
errors, wait for receive training set and dip4_error cleared and check that all of the applicable
RX_PHASEMON registersindicate no training errors. Then the LVDS |Os are properly trained.

Hardware Reference Manual 285

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

286

Table 112. IXP2800 Network Processor Requires Data Training

INtal.

Step

SPI-4
(IXP2800 Network Processor
is Ingress Device)

CSIX
(IXP2800 Network Processor is Egress Device)

Full Duplex

Simplex

Detect need for training (for example, reset or excessive parity errors)

Force RSTAT (when using
LVTTL status channel) to
continuous framing pattern
(Write a 0 to
Train_Data[RSTAT_En]), or
force RXCDAT (when using
LVDS status channel) to
continuous training (Write a 1 to
Train_Calendar[Continous_Tr
ain])

Force Transmission of Idle
CFrames on Flow Control
(Write a 1 to
Train_Flow_Control
[Force_FCldle])

Force Transmission of Dead
Cycles on Flow Control (Write a
1 to Train_Flow_Control
[Force_FCDead])

Framer device detects RSTAT
in continuous framing (when
using LVTTL status channel, or
RXCDAT in continuos training
(when using LVDS status
channel)

Ingress IXP2800 Flow Control
port detects Idle CFrames and
sets Train_Flow_Control
[Detect_FCldle]

Framer device transmits
Training Sequence (IXP2800
receives on RDAT)

Ingress IXP2800 sends Dead
Cycles on TDAT (if Train_Data
[Dead_Enable_FCldle] is set)

Switch Fabric detects Dead
Cycles on Data

Switch Fabric detects Dead
Cycles on Flow Control

Switch Fabric transmits Training Sequence on Data

When MSF_Interrupt_Status[Received_Training_Data] interrupt indicates training happened,
MSF_lInterrupt_Status[DIP4_ERR] write DIP4_ERR bit sent to clear previous errors and check that
all of the applicable RX_PHASEMON registers indicate no training errors.

Write a 1 to
Train_Data[RSTAT_En] or
Write a 0 to
Train_Calendar[Continous_Tr
ain]

Write a 0 to
Train_Flow_Control
[Force_FCldle]

Write a 0 to
Train_Flow_Control
[Force_FCDead]

The second case is when the Switch Fabric or SPI-4 framing device indicates it needs Data

training. Table 113 lists that sequence.

Hardware Reference Manual

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

Table 113. Switch Fabric or SPI-4 Framer Requires Data Training

CSIX
Step SPI-4
Full Duplex Simplex
Framer sends continuous
framing code on IXP2800
calendar status pins TSTAT
1 (when using LVTTL status Switch Fabric sends continuous | Switch Fabric sends continuous
channel) or sends continuos Dead Cycles on Data. Dead Cycles on Flow Control.
training on 1XP2800 calendar
status pins RXCDAT (when
using LVDS status channel).
IXP2800 detects no calendar
on TSTAT (when using LVTTL
status channel) or detects Egress IXP2800 detects Dead
2 continuos training on RXCDAT | Cycles and sets
(when using LVDS status Train_Data[Detect_CDead]
channel), and sets Train_Data
[Detect_No_Calendar]
Ingress IXP2800 detects Dead
Egress IXP2800 Flow Control Cycles and sets
3 port sends continuous Dead Train_Flow_Control
Cycles if Train_Flow_Control | [Detect_FCDead]
[TD_Enable_CDead]
IXP2800 transmits Training Ingress IXP2800 Flow Control
Pattern (if Train_Data port detects continuous Dead
4 [Train_Enable_TDAT] is set) Cycles and set
Train_Flow_Control
[Detect_FCDead]
5 Ingress IXP2800 transmits continuous Training Sequence on data
if Train_Data[Train_EN_FCDead]
When Framer/Switch Fabric is trained it indicates that fact by reverting to normal operation.
6 1":rraﬁr11r1?r?£] sctgg: g,ﬂmctg:r?éj; Switch Fabric stops continuous | Switch Fabric stops continuous
status pins. Dead Cycles on Data. Dead Cycles on Flow Control.

The IXP2800 Network Processor will need training at reset, or if it loses training. Loss of training
will typically be detected by parity errors on received flow control information. Table 114 lists the
stepsto initiate thetraining. CSIX Full Duplex, and CSIX Simplex casesfollow similar but slightly
different sequences.

Hardware Reference Manual 287

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

288

Table 114. IXP2800 Network Processor Requires Flow Control Training

Step

CSIX
(IXP2800 Network Processor is Ingress Device)

Full Duplex Simplex

Force TXCFC pin asserted
(Write a 0 to
Train_Flow_Control
[RXCFC_En])

Force Data pins to continuos
Dead Cycles (Write a 1 to
Train_Data[Force_CDead])

Egress IXP2800 Network
Processor Flow Control port
detects RXCFC sustained Switch Fabric detects Dead
assertion and sets Cycles on Data
Train_Flow_Control
[Detect_ TXCFC_Sustained]

Ingress IXP2800 Network

Processor transmits Training Switch Fabric transmits
Sequence on Flow Control pins | Training Sequence on Flow
(if Train_Flow_Control Control pins.

[Train_Enable_CFC] is set)

When MSF_Interrupt_Status[Received_Training_FC] interrupt
indicates training happened and all of the applicable
RX_PHASEMON registers indicate no training errors, write CSR
bits set in Step 1 to inactive value.

Write a 1 to Write a 1 to
Train_Flow_Control i
[RXCFC. Edi Train_Data[Force_CDead]

The last case is when the Switch Fabric indicates it needs Flow Control training. Table 115 lists
that sequence.

Table 115. Switch Fabric Requires Flow Control Training

Ste Simplex
P (IXP2800 Network Processor is Egress Device)
1 Switch Fabric sends continuous Dead Cycles on

Data.

Egress IXP2800 Network Processor detects Dead
2 Cycles and sets Train_Data
[Detect_CDead]

Egress IXP2800 Network Processor transmits
Training Sequence on Flow Control pins (if

3 Train_Flow_Control
[Train_Enable_CDead] is set)
4 Switch Fabric, upon getting trained stops continuous

Dead Cycles on Data.

Hardware Reference Manual

Intel® IXP2800 Network Processor

- Media and Switch Fabric Interface

INtal.
8.7 CSIX Startup Sequence

This section defines the sequence required to startup the CSIX interface.

8.7.1 CSIX Full Duplex

8.7.1.1 Ingress IXP2800

1. Onreset, FC_STATUS OVERRIDE[Egress Force En] isset to forcethe Ingress 1XP2800 to
send ldle CFrames with low CReady and DReady bits to the Egress I XP2800 over TXCSRB.

2. The Microengine or the Intel X Scal €® corewritesaltoM SF_Rx_Control[RX_En_C] so that
Idle CFrames can be received.

3. TheMicroengine or the Intel XScale® core polls on
MSF_Interrupt_Status] Detected CSIX_Idl€] to see when the first Idle CFrame is received.
The Intel XScale® core may use the Detected_CSIX_Idle Interrupt if
MSF_Interrupt_Enable[Detected CSIX _Idl€] is set.

4. When thefirst Idle CFrame is received, ME or the Intel XScale® core writes a0 to
FC_STATUS OVERRIDE[Egress Force En] to deactivate SRB Override or writes 2’'b11 to
FC_STATUS _OVERRIDE[7:6] ([TM_CReady] and [TM_DReady]). Thiswill inform the
Egress | XP2800 that the Switch Fabric has sent an Idle CFrame and the Ingress I XP2800 has
detected it.

8.7.1.2 Egress IXP2800

1. Onreset, FC_STATUS OVERRIDE[Ingress Force En] isset.

2. TheMicroengineor the Intel X Scale® corewritesalto MSF_Tx_Control[Transmit_|dle] and
MSF_Tx_Control[Transmit_Enable] so that Idle CFrames with low CReady and Dready bits
are sent over TDAT.

3. The Microengine or the Intel XScal €® corewritesa0to
FC_STATUS _OVERRIDE[Ingress Force En]. The Egress|XP2800 will then be sending Idle
CFrames with CReady and DReady according to what is received on RXCSRB from the
Ingress I XP2800. If the Egress I XP2800 has not detected an Idle CFrame, low TM_CReady
and TM_DReady bitswill be transmitted over its TXCSRB pin. If it has detected an Idle
CFrame, the TM_CReady and TM_DReady bits are high. The TM_CReady and TM_DReady
bits received on RXCSRB by the Ingress I XP2800 are used in the Base Headers of CFrames
transmitted over TDAT.

4. The Microengine or the Intel XScale® core polls on FC_Ingress Status{TM_CReady] and
FC_Ingress_Status| TM_DReady]. When they are seen active, ME or the Intel XScale® core
writesalto MSF_Tx_Control[TX_En_CC] and MSF_Tx_Control[TX_En_CD]. Egress
I XP2800 then resumes normal operation. Likewise, when the Switch Fabric recognizes Idle
CFrames with "ready bits" high, it will assume normal operation.

Hardware Reference Manual 289

8.7.1.3

8.7.2

8.7.2.1

8.7.2.2

Single IXP2800

1

The Microengine or the Intel XScal €® corewritesaltoM SF Tx_Control[Transmit_Idle] and
MSF_Tx_Control[Transmit_Enable] so that Idle CFrames with low CReady and DReady bits
are sent over TDAT.

The Microengine or the Intel X Scal €® corewritesaltoM SF_Rx_Control[RX_En_C] so that
Idle CFrames can be received.

The Microengine or the Intel XScale® core writesa 0 to
FC_STATUS OVERRIDE[Ingress Force En].

The Microengine or the Intel XScale® core polls on

MSF_Interrupt_. Status[Detected CSIX_ldl€] to see when thefirst Idle CFrameis received.
The Intel XScale® core may use the Detected CSIX_Idle Interrupt if
MSF_Interrupt_Enable[Detected CSIX_Idl€] is set.

When thefirst Idle CFrame is received, the Microengine or the Intel X Scale® core writes a0
to FC_STATUS OVERRIDE[Egress Force En] to deactivate SRB Override or writes 2'b11
to FC_STATUS OVERRIDE[7:6] ([TM_CReady and TM_DReady]).

The Microengine or the Intel X Scal €® corewritesalto M SF_Tx_Control[TX_En_CC] and
MSF_Tx_Control[TX_En_CD]. I XP2800 resumes normal operation.

CSIX Simplex

Ingress IXP2800

1

Onreset, FC_STATUS OVERRIDE[Egress Force En] is set to force Ingress | XP2800 to
send Idle CFrames with low CReady and DReady bitsto Switch Fabric over TXCDAT.

The Microengine or the Intel X Scal €® corewritesaltoM SF_Rx_Control[RX_En_C] so that
Idle CFrames can be received.

The Microengine or the Intel XScale® core polls on

MSF_Interrupt_. Status[Detected CSIX_ldl€] to see when thefirst Idle CFrame s received.
The Intel XScale® core may use the Detected_CSIX_Idle Interrupt if
MSF_Interrupt_Enable[Detected CSIX _Id e] is set.

When thefirst Idle CFrame is received, the Microengine or the Intel X Scal €® core writesa 0
to FC_STATUS OVERRIDE[Egress Force En]. Idle CFrameswith "ready bits" high will be
transmitted over TXCDAT. Ingress | XP2800 may resume normal operation.

Egress IXP2800

1. Onreset, FC_STATUS OVERRIDEJ[Ingress Force En] isset.
2. TheMicroengine or the Intel X Scal €® corewritesaltoM SF_Tx_Control[Transmit_Idle] and

MSF_Tx_Control[Transmit_Enable] so that Idle CFrames with low CReady and DReady bits
are sent over TDAT.

3. The Microengine or the Intel XScale® core polls on

MSF_Interrupt_: Status[Detected CSIX_FC _ldl€e] to see when thefirst Idle CFrameis
received. The Intel XScale® core may use the Detected CSIX_FC_Idle Interrupt if
MSF_Interrupt_Enable] Detected_CSIX_FC _ldl€] is set.

4. When thefirst Idle CFrameis received, ME or the Intel X Scale® core writesa0to

FC_STATUS OVERRIDE[Ingress Force En] to deactivate SRB Override.

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

intgl.

5. The Microengine or the Intel XScale® core polls on FC_Ingress Status) TM_CReady] and
FC_Ingress Statug TM_DReady]. When they are seen active, the Microengine or the Intel
X Scale® corewritesalto M SF_Tx_Control[TX_En_CC] and
MSF_Tx_Control[TX_En_CD]. Egress 1XP2800 then resumes normal operation. Likewise,
when the Switch Fabric recognizes Idle CFrames with "ready bits" high, it will assume normal
operation.

8.7.2.3 Single IXP2800

Both CSIX startup routines described above will be needed to complete the CSIX startup sequence.
Using Simplex mode on a single IXP2800 with RDAT, TDAT and RXCDAT, TXCDAT using
CSIX, there are essentially two independent CSIX receive and transmit busses.

8.8 Interface to Command and Push and Pull Busses

The block diagram in Figure 100 shows the interface of the M SF to the command and push and
pull busses.

Datatransfers to and from the TBUF/RBUF are done in the following cases (refer to section for
details):

* RBUF or MSF CSR to Microengine S Transfer In Register for instruction:
* Microengine S Transfer Out Register to TBUF or MSF CSR for instruction:
* Microengineto MSF CSR for instruction:

* From RBUF to DRAM for instruction:

* From RBUF to DRAM for instruction:

Hardware Reference Manual 291

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

INtal.

Figure 100. MSF to Command and Push and Pull Busses Interface Block Diagram

DPush TBUF
D_Push Bus ;b Data \ TBUF Write R E S
- - Req > Data I *Dat | = .
\128 P one 1 [[Transmit
o >0 1 S
SO_Pull_Bus 432#) SPEIIIF%ata > \ b @
1 1 1 1 1
S1_Pull_Bus AL) SPE”:%ata :/ R
To MSF S
CSRs | Control*
I_I Address
D_Push_ID > Decode
Lol TBUF
Address
U_S_Pull_ID pull I ————t
(Goesto_both - Buffer — Write
Push Arbiters) CMD FIFO To MSF CSRs
fast_wr_CMD Sl
CMD B Bus Command_‘ T T T T
ME. Intel® Inlet FIFO ~ Read
XScale Commands ;C'\{ID;F”;:O;
&——> To MSF CSRs
U_(SG_PutshEIch RBUE RBUF
0€s 10 DO
Push Arbiters) <& > \ Address Address
Decode
D_Pull_ID B >
1 1 1 1 1
[I T | Read
R ' *Data ! > \ Data
From Receive Pins — 3 : . :
1 1 1 1 1
[T T -
DPull EE—
128
U_D_Pull_Bus (464& Data |«€ : =
Req
32 SPush
U_S_Push-ID <€=t—] Data
(Goes to both Re
Push Arbiters) d MSF CSR Data
* The RBUF, TBUF, TBUF Control can be addressed on 32-bit work boundaries.
B1630-01

292 Hardware Reference Manual

In

8.8.1

8.8.2

8.8.3

8.8.4

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

RBUF or MSF CSR to Microengine S Transfer In Register for
instruction:

msf [read, $s_xfer reg, src_op 1, src_op 2, ref cnt], optional_ token

For transfers to a Microengine, the M SF acts as a target. Commands from Microengines and the
Intel XScale® core are received on the command bus. The commands are checked to seeif they are
targeted to the M SF. If so, they are enqueued into the Command Inlet FIFO, and then moved to the
Read Cmd FIFO. When the Command Inlet FIFO is nearly full, it asserts a signal to the command
arbiters. The command arbiters prevent further commands to the M SF until after the full signal is
asserted. The RBUF element or CSR specified in the address field of the command is read and the
dataisregistered in the SPUSH_DATA Register. The control logic then arbitrates for

S PUSH_BUS, and when granted, it drives the data.

Microengine S Transfer Out Register to TBUF or MSF CSR
for instruction:

msf [write, $s_xfer reg, src_op 1, src_op 2, ref cnt], optional_ token

For transfers from Microengine, the M SF acts as a target. Commands from Microengines are
received on the two command busses. The commands are checked to see if they are targeted to the
MSF. If so, they are enqueued into the Command Inlet FIFO, and then moved to the Write Cmd
FIFO. When the Command Inlet FIFO is nearly full, it asserts asignal to the command arbiters.
The command arbiters prevent further commands to the MSF until after the full signal is asserted.
The control logic then arbitratesfor S PULL_BUS, and when granted, it receives and registers the
datafrom the Microengineintothe S PULL_DATA register. It then writesthat datainto the TBUF
element or CSR specified in the address field of the command.

Microengine to MSF CSR for instruction:
msf [fast_write, src_op_1, src_op_ 2]

For fast write transfers from the Microengine, the M SF acts as a target. Commands from
Microengines are received on the two command busses. The commands are checked to seeif they
aretargeted to the MSF. If so, they are enqueued into the Command Inlet FIFO, and then moved to
the Write Cmd FIFO. When the Command Inlet FIFO is nearly full, it asserts asignal to the
command arbiters. The command arbiters prevent further commands to the MSF until after the full
signal isasserted. The control logic uses the address and data, both found in the addressfield of the
command. It then writes the data into the CSR specified.

From RBUF to DRAM for instruction:
dram[rbuf rd, --, src_opl, src_op2, ref cnt], indirect ref

For the transfersto DRAM, the RBUF acts like aslave. The address of the datato beread is given
inD_PULL_ID. The dataisread from RBUF and registered inthe D_PULL_DATA register. It is
then multiplexed and driven to the DRAM channel on D_PULL_BUS.

Hardware Reference Manual 293

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

8.8.5

8.9

intel.

For the transfers from DRAM, the TBUF acts like a slave. The address of the data to be written is
givenin D_PUSH_ID. The dataisregistered and assembled from D_PUSH_BUS, and then written
into TBUF.

From DRAM to TBUF for instruction:

dram[tbuf wr, --, src_opl, src_op2, ref cnt], indirect_ref

Receiver and Transmitter Interoperation with Framers and
Switch Fabrics

The Intel® 1XP2800 Network Processor can process data received at a peak rate of 16 Gb/s and
transmit data at a peak rate of 16 Gh/s. In addition, data may be received and transmitted via the
PCI bus at an aggregate peak rate of 4.2 Gb/s, as shown in Figure 101.

Figure 101. Basic I/0O Capability of the Intel® IXP2800

Intel® IXP2800 _|
16 Gb/s Peak g Network 8 | 16 Gb/s Peak
D Processor 2
[3
x g
PCI
4.2 Gbl/s
Peak

B2734-01

The network processor’sreceiver and transmitter can beindependently configured to support either
an SPI-4.2 framer interface or afabric interface consisting of DDR LV DS signaling and the CSIX-
L1 protocol. The dynamic training sequence of SPI-4.2, used for de-skewing the signals, has been
optionally incorporated into the fabric interface.

“SPI-4.2 is an interface for packet and cell transfer between a physical layer (PHY) deviceand a
link layer device, for aggregate bandwidths of OC-192 ATM and Packet over SONET/SDH (POS),
aswell as 10 Gb/s Ethernet applications.”t “CSIX-L1 is the Common Switch Interface. It definesa
physical interface for transferring information between atraffic manager (Network Processor) and
aswitching fabric.. "2 The network processor adopts the protocol of CSIX-L1, but usesaDDR
LVDS physical interface rather than an LVCMOS or HSTL physical interface.

SPI-4.2 supports up to 256 port addresses, with independent flow control for each. For data
received by the PHY and passed to the link layer device, flow control is optional. The flow control
mechanism is based upon independent pools of credits, corresponding to 16-byte blocks, for each
port.

1. “System Packet Interface Level 4 (SPI-4) Phase 2: OC-192 System Interface for Physical and Link Layer Devices,” Implementation
Agreement: OIF-SPI14-02.0, Optica Internetworking Forum
2. “CSIX-L1: Common Switch Interface Specification-L1,” CSIX

294

Hardware Reference Manual

8.9.1

8.9.1.1

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

The CSIX-L1 protocol supports 4096 ports and 256 unicast classes of traffic. It supports various
forms of multicast and 256 multicast queues of traffic. The protocol supports independent link-
level flow control for dataand control traffic and supports virtual output queue (VOQ) flow control
for datatraffic.

Receiver and Transmitter Configurations

The network processor receiver and transmitter independently support three different
configurations:

* Simplex (SPI-4.2 or CSIX-L1 protocol), described in Section 8.9.1.1.

¢ Hybrid ssimplex (transmitter only, SPI-4.2 data path, and CSIX-L1 protocol flow control),
described in Section 8.9.1.2.

¢ Dual NPU, full duplex (CSIX-L1 protocol), described in Figure 8.9.1.3.
Additionally, the combined receiver and transmitter support a single NPU, full-duplex
configuration using two different protocols:

¢ Multiplexed SPI-4.2 protocol, described in Section 8.9.1.4.

® CSIX-L1 protocoal, described in Section 8.9.1.5.
In both the simplex and hybrid simplex configurations, the path receiving from a framer, fabric, or
NPU isindependent of the path transmitting to a framer, fabric, or NPU. In afull duplex

configuration, the receiving path forwards CSIX-L 1 control information for the transmit path and
vice versa

Simplex Configuration

In the simplex configuration, as shown in Figure 102, the reverse path provides control information
to the transmitter. This control information may include flow control information and requests for
dynamic training sequences.

Figure 102. Simplex Configuration

Forward Path
(18 to 20 Signals)

Receiver

<
<

Janiwsuel |

Reverse Path
(3 to 7 Signals)

B2735-01

The SPI-4.2 mode of the simplex configuration supports an LVTTL reverse path or status interface
clocked at up to 125 MHz or aDDR LV DS reverse path or statusinterface clocked at up to 500
MHz. The SPI-4.2 mode status interface consists of aclock signal and two data signals.

Hardware Reference Manual 295

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

8.9.1.2

intel.

The CSIX-L1 protocol mode of the simplex configuration supports a full-duplex implementation
of the CSIX-L 1 protocol, but no Data CFrames are transferred on the reverse path and the reverse
path is a quarter of the width of the forward path. The CSIX-L1 protocol mode supports a DDR
LV DS reverse path interface clocked at up to 500 MHz. The CSIX-L1 protocol mode reverse path
control interface consists of a clock signal, four data signals, a parity signal, and a start-of-frame
signal.

Hybrid Simplex Configuration

In the hybrid simplex configuration, data transfers and link-level flow control is supported via the
SPI-4.2 modes of the receiver and transmitter, as shown in Figure 103. Only the LVTTL SPI-4.2
status interface is supported in this configuration.

Figure 103. Hybrid Simplex Configuration

296

SPI-4.2 Forward Path

>

SPI-4.2 LVTTL Reverse Path

<<

DDR LVDS Flow Control -
CSIX Protocol DDR LVDS Reverse Path

Jonlwsuel |
NdN
Fabric
Receiver

B2736-01

Virtual output queue flow control information (or other information) is delivered to the transmitter
viathe CSIX-L1 protocol viaan interface similar to the reverse path of the CSIX-L 1 protocol mode
of the simplex configuration. Flow control for the CSIX-L1 CFramesis provided by an

asynchronous LV DS signal back to the fabric and not by the "ready bits" of the CSIX-L1 protocol.

The hybrid simplex configuration for a fabric interface may be especially useful to implementers
when an SPI-4.2 interface implementation is readily available. The CSIX-L1 protocol reverse path
may not need to operate at aclock rate as aggressive as the SPI-4.2 interface and, as such, may be
easier to implement than afull-rate data interface.

Hardware Reference Manual

intgl.

8.9.1.3

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

Dual NPU Full Duplex Configuration

In the dual NPU, full duplex configuration, an ingress NPU and an egress NPU are integrated to
offer asingle full duplex interface to afabric, similar to the CSIX-L1 interface, as shownin
Figure 104. This configuration provides an interface that is closest to the standard CSIX-L1
interface. It is easiest to bridge between this configuration and an actual CSIX-L1 interface.

Figure 104. Dual NPU, Full Duplex Configuration

i > 2
o @
Ingress > | o)
NPU 3 o 04
= 2
D X
= | ul
) .
QP z |3 Fabric
1 85 2) Interface
PCI g= 0 2 .
o) o 3 Chip
T n 2 =
Y G < s |9
B
3
D= 3 o
Egress 3 Q
NPU < =
)
=
B2737-01

Flow control CFrames are forwarded by the egress NPU to the ingress NPU over a separate flow
control interface. The bandwidth of thisinterface is a quarter of the primary interface offered to the
fabric. A signal from ingress NPU to egress NPU provides flow control for thisinterface. (This
interfaceisthe sameinterface that was used in the hybrid simplex configuration.) A separate signal
from egress NPU to ingress NPU provides the state of the CSIX-L1 "ready bits" that were received
from the fabric, conveying the state of the fabric receiver, and those that should be sent to the
fabric, conveying the state of the egress NPU receiver.

The PCI may be used to convey additional information between the egress NPU and ingress NPU.

Hardware Reference Manual 297

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

intel.

The single NPU, full duplex configuration (SPI-4.2 only) allows asingle NPU to interface to
multiple discrete devices, processing both the receiver and transmitter data for each, as shown in
Figure 105. Up to 256 devices can be addressed by the SPI-4.2 implementation. The bridge chip
implements the specific interfaces for each of those devices.

8.9.14 Single NPU Full Duplex Configuration (SPI-4.2)

Figure 105. Single NPU, Full Duplex Configuration (SPI-4.2 Protocol)

Intel®1XP2800
Network
Processor

Full Duplex A
SPI-4.2
1 Interface Y

_ <f— Bridge Chip e _
Device 0 (Provides multiple interfaces Device N
pr—- | to other devices.) .

‘1 ‘1

Device 1 ..« | Device N-1

B2743-01

298 Hardware Reference Manual

intgl.

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

8.9.1.5 Single NPU, Full Duplex Configuration (SPI-4.2 and CSIX-L1)

The Single NPU, Full Duplex Configuration (SPI-4.2 and CSIX-L1 Protocol) allows asingle NPU
to interface to afabric viaa CSIX-L1 interface and to multiple other discrete devices, as shown in
Figure 106. The CSIX-L1 and SPI-4.2 protocols are multiplexed on the network processor receiver
and transmitter interface. Independent processing and buffering resources are allocated to each

protocol.

Figure 106. Single NPU, Full Duplex Configuration (SPI-4.2 and CSIX-L1 Protocols)

Intel® 1IXP2800
Network
Processor

Multiplexed A
Full Duplex
SPI1-4.2
and CSIX
v Protocols

Device 0

Bridge Chip
(A single CSIX protocol
instance is bridged to the
CSIX-L1 interface. The SPI-4.2
port addresses are mapped to
other devices.)

€1 Fabric

CSIX-L1 | Interface
Interface Chip

v 1 v 1

Device 1 Device N

B2744-01

Hardware Reference Manual

299

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

intel.

The receiver and transmitter configurations in the preceding Section 8.9.1 enable several system
designs, as shown in Figure 107 through Figure 111.

8.9.2 System Configurations

8.9.2.1 Framer, Single NPU Ingress and Egress, and Fabric Interface Chip

Figure 107 illustrates the baseline system configuration consisting of the dua chip, full-duplex
fabric configuration of network processors with aframer chip and a fabric interface chip

Figure 107. Framer, Single NPU Ingress, Single NPU Egress, and Fabric Interface Chip

- Ingress
- Intel® 1XP2800 3
3 Network
Processor
Fabric
Framer AFlOW Interface
PCl Control Chip
Y
> Egress
Intel IXP2800 | <c——
o Network
- Processor

B2745-01

300 Hardware Reference Manual

intgl.

8.9.2.2

8.9.2.3

Figure 108. Framer, Dual NPU Ingress, Single NPU Egress, and Fabric Interface Chip

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

Framer, Dual NPU Ingress, Single NPU Egress, and Fabric Interface
Chip

If additional processing capacity isrequired in the ingress path, an additional network processor
can be added to the configuration, as shown in Figure 108. The configuration of the interface
between the two ingress network processors can use either the SPI-4.2 or CSIX-L 1 protocol.

- Ingress - Ingress
- Intel®IXP2800 [Intel IXP2800
Network >

Network
— Processor 0 pr— Processor 1
Fabric

Framer f f Interface
PCl IFlOW Chip
/

’ \ Control
- Egress
Intel IXP2800 h
Network

> Processor

B2746-01

Framer, Single NPU Ingress and Egress, and CSIX-L1 Chips for
Translation and Fabric Interface

To interface to existing standard CSIX-L1 fabric interface chips, atranslation bridge can be
employed, as shown in Figure 109. Trang ation between the network processor interface and
standard CSIX-L1isvery simple by design.

Figure 109. Framer, Single NPU Ingress, Single NPU Egress, CSIX-L1 Translation Chip

and CSIX-L1 Fabric Interface Chip

. Ingress
- Intel® IXP2800]]
> Network
Processor Translation CSIX-L1
F Chip Fabric
ramer Flow DDR LVDS Interface
PCI to Chip
\ Control CSIX-L1
c HSTL
- gress
Intel IXP2800
- Network € €
- Processor
B2747-01

301

Hardware Reference Manual

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

intel.

If aprocessor card requires access to the fabric, a single network processor can provide both
ingress and egress access to the fabric for the processor viathe PCI interface, as shown in

Figure 110. In many cases the available aggregate peak bandwidth of 4.2 Gb/sis sufficient for the
processor’s capacity.

8.9.24 CPU Complex, NPU, and Fabric Interface Chip

Figure 110. CPU Complex, NPU, and Fabric Interface Chips

CPU
A pr—
Y Ingress
Intel® XP2800 Fabric
Memory | PCl > Network Interface
Controller Processor Chip
A
Y
_
Memory
B2748-01

302 Hardware Reference Manual

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

intel.
8.9.2.5 Framer, Single NPU, Co-Processor, and Fabric Interface Chip

The network processor supports multiplexing the SPI-4.2 and CSIX-L 1 protocols over its physical
interface viaaprotocol signal. This capability enables using abridge chip to alow asingle network
processor to support the ingress and egress paths between a framer and afabric, provided the
aggregate system bandwidth does not exceed the capabilities of that single network processor, as
shownin Figure 111.

Figure 111. Framer, Single NPU, Co-Processor, and Fabric Interface Chip

Intel® IXP2800
Network
Processor
A
Y
Framer > Ccsix-L1
Bridge Chip Fabric
— Interface

Co-Processor

B2749-01

Hardware Reference Manual 303

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

8.9.3

intel.

Dataistransferred across the SPI-4.2 interface in variously-sized bursts and encapsulated with a
leading and trailing control word. The control words provide annotation of the data with port
address (0-255) information, start-of-packet and end-of-packet markers, and an error detection
code (DIP-4). Datamust be transferred in 16-byte integer multiples, except for the final burst of a
packet.

SPI-4.2 Support

Figure 112. SPI-4.2 Interface Reference Model with Receiver and Transmitter Labels

8.9.3.1

304

Corresponding to Link Layer Device Functions

Receiver . :
Signals - Ingress :
: Intel® 1XP2800 } >
. ' Network '
- : Processor !
PHY : T '
Device SPI-42 . " Link :
Interface . + Layer :
0 Device .
L Egress '
D Intel IXP2800 '
< 0 Network 4:
Transmitter ! Processor .

Signals '

B2750-01

The status interface transfers state as an array of state or calendar, two bits per port, for al of the
supported ports. The status information provides for reporting one of three status states for each
port (satisfied, hungry, and starving) corresponding to credit availability for the port. The mapping
of calendar offset to port is flexible. Individual ports may be repeated multiple times for greater
frequency of update.

SPI-4.2 Receiver

The network processor receiver stores received SPI-4.2 bursts into receiver buffers. The buffers
may be configured as 128 buffers of 64 bytes, 64 buffers of 128 bytes, or 32 buffers of 256 bytes.
Information from the control words, the length of the burst, and the TCP checksum of the data are
stored in an additional eight bytes of control storage. The buffers support storage of bursts
containing an amount of datathat islessthan or equal to the buffer size. A burst that is greater than
the configured size of the buffersis stored in multiple buffers. Each buffer is made available to
software as it becomes filled.

Asthefilling of each buffer completes, the buffer is dispatched to athread of a Microengine that
has been registered in afreelist of threads, and the eight bytes of control information are forwarded
to the register context of the thread. If no thread is currently available, the receiver waits for anew
thread to become available as other buffers are also filled (and then also have “waiting queues’).

Hardware Reference Manual

8.9.3.2

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

Asthreads complete processing of the datain a buffer, the buffer is returned to afreellist.
Subsequently, the thread also returns to a separate free list. The return of buffers and threads to the
freelists may occur in adifferent order than the order of their removal.

All SPI-4.2 ports sharing the interface have equal accessto the buffering resources. Flow control
can transition to a non-starving state when 25%, 50%, 75%, or 87.5% of the buffers are consumed,
as configured by HWM_Control[RBUF_S HWM]. At this point, the remaining buffers are
available and, additionally, 2K bytes of packed FIFO (corresponding to 128 SPI-4.2 credits) are
available for incoming data storage. If receiver flow control is expected to be asserted and for a
sufficiently large number of ports and values of MaxBurst1 or MaxBurst2, it may be necessary for
the PHY deviceto discard credits already granted if a state of Satisfied is reported by the network
processor to the device, treating the Satisfied state more as an X OFF state. Otherwise, excessive
credits may be outstanding for the storage available and receiver overruns may occur.

For more information about the SPI-4.2 receiver, see Section 8.2.7.

SPI-4.2 Transmitter

The network processor transmitter transfers SPI-4.2 bursts from transmitter buffers. The buffers
may be configured as 128 buffers of 64 bytes, 64 buffers of 128 bytes, or 32 buffers of 256 bytes.
The control word information and other control information for the burst are stored in additional
control storage. The buffers are always transmitted in a fixed order. Software can determine the
index of the last buffer transmitted, and keep track of the last buffer committed to the transmitter.
The transmitter buffers are used as aring, with the “get index” updated by the transmitter and the
“put index” updated due to committing a buffer element to transmission.

Each transmit buffer supports a limited gather capability to stitch together a protocol header and a
payload. The buffer supports independent prefix (or prepended) data and payload data. The prefix
data can begin at any offset from 0 to 7 and have alength of from 0 to 31 bytes. The payload begins
at an offset of 0to 7 bytes from the next octal-byte boundary following the prefix and can fill out
the remainder of the buffer. For more complicated merging or shifting of data within a burst, the
data should be passed through a Microengine to perform any arbitrary merging and/or shifting.

Buffers may be statically allocated to different portsin an inter-leaved fashion so that bandwidth
availability is balanced for each of the ports. Transmit buffers may be flagged to be skipped if no
datais available for aparticular port.

The transmitter schedul er, implemented on aMicroengine, is responsible for reacting to the status
information provided by the PHY device. The status information can be read viaregisters. The
status information is available in two formats: a single status per register and status for 16 portsin
asingle register. For more information, see Section 8.3.4.

Hardware Reference Manual 305

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

8.9.4

8.9.4.1

intel.

CSIX-L1 Interface Reference Model: Traffic Manager and Fabric
Interface Chip

CSIX-L1 Protocol Support

The CSIX-L1 protocol operates between a Traffic Manger and a Fabric Interface Chip(s) across a
full-duplex interface. It supports mechanisms to interface to afabric that avoid congestion using
virtual output queue (VOQ) flow control and enables a fabric that offers lossless, non-blocking
transfer of data from ingress port to egress ports. Both data and control information pass over the
receiver and transmitter interfaces.

Figure 113. CSIX-L1 Interface Reference Model with Receiver and Transmitter Labels

306

Corresponding to Fabric Interface Chip Functions

: . Receiver
: Ingress . Signals

— Network -
. Processor 0
' Fabric
' Traffic » + CSIX-L1 Interface
Manager ' Interface Chip(s)
' Egress '

h: Network (
: Processor i Transmitter
: . Signals

; Printed Circuit Card

B2751-01

The Traffic Manger on fabric ingressis responsible for segmentation of packet data and scheduling
the transmission of data segments into the fabric. The fabric oningressis responsible for
influencing the scheduling of data transmission through link-level flow control and Virtual Output
Queue (VOQ) flow control so that the fabric does not experience blocking or dataloss due to
congestion. The fabric on egressis responsible for scheduling the transfer of data to the Traffic
Manager according to the flow control indications from the Traffic Manager.

The CSIX-L1 protocol supports addressing up to 4096 fabric ports and identifies up to 256 classes
of unicast traffic. It optionally supports multicast and broadcast traffic, supporting identification of
up to 256 queues of such traffic. Virtual output queue flow control is supported at the ingressto the
fabric and the egress from the fabric.

The standard CSIX-L 1 interface supports interface widths of 32, 64, 94, and 128 bits. A single

clocked transfer of information across the interface is called a CWord. The CWord size isthe width
of the interface.

Hardware Reference Manual

8.9.4.2

8.9.4.21

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

Information is passed across the interface in CFrames. CFrames are padded out to an integer
multiple of CWords. CFrames consist of a 2-byte base header, an optional 4-byte extension
header, a payload of 1 to 256 bytes, padding, and a 2-byte vertical parity. Transfers across the
interface are protected by a horizontal parity. When there is no information to pass over the
interface, an alternating sequence of Idle CFrames and Dead Cycles are passed across the interface.

There are 16 possible codes for CFrame types. Each CFrame type is either adata CFrame or a
control CFrame. Data CFrame types include Unicast, Multicast Mask, Multicast 1D, Multicast
Binary Copy, and Broadcast. Control CFrames include Flow Control.

CSIX-L1 supports independent link-layer flow control for data CFrames and control CFrames by
using “ready bits’ (CRdy and DRdy) in the base header. The response time for link-level flow
control is specified to be 32 interface clock ticks, but allows for additional time to complete
transmission of any CFrame already in progress at the end of that interval.

Intel® IXP2800 Support of the CSIX-L1 Protocol

The adaptation of the CSIX-L1 protocol to the network processor physical interface has been
accomplished in a straightforward manner.

Mapping to 16-Bit Wide DDR LVDS

The CSIX-L1interfaceis built in units of 32 data bits. For each group of 32 datasignals, thereisa
clock signal (RxClk, TxCIk), a start-of-frame signal (RxSOF, TxSOF) and a horizontal -parity
signal (RxPar, TxPar). If the CWord or interface width is greater than 32 bits, the assertion of the
Start-of-Frame signal associated with each group of 32 data bitsis used to synchronize the transfers
across the independently clocked individual 32-bit interfaces.

The network processor supports 32-bit data transfers across two transfers or clock edges of the SPI-
4.2 16-bit DDR LVDS datainterface. The CSIX-L1 RxSOF and TxSOF signals are mapped to the
SPI-4.2 TCTL and RCTL signals. For the transfer of CFrames, the start-of-frame signal is asserted
on only the first edge of the 32-hit transfer. (Assertion of the start-of-frame signal for multiple
contiguous clock edges denotes the start of a de-skew training sequence as described below.)

Receiver logic for the interface should align the start of 32-bit transfers to the assertion of the start-
of-frame signal. The network processor always transmits the high order bits of a 32-bit transfer on
the rising edge of the transmit clock, but areceiver may de-skew the signals and align the received
data with the falling edge of the clock. The network processor receiver always aligns the received
data according to the assertion of the start-of-frame signal.

The network processor supports CWord widths of 32, 64, 96, and 128 bits. It will pad out CFrames
(including Idle CFrames) and Dead Cycles according to this CWord width. The physical interface
remains just 16 data bits. The start-of-frame signal is only asserted for the high order 16 bits of the
first 32-hit transfer. It is not asserted for each 32-bit transfer. Support for multiple CWord widthsis
intended to facilitate implementation of Intel® 1XP2800-to-CSIX-L 1 trandlator chips and to
facilitate implementation of chips with native network processor interfaces, but with wider internal
transfer widths.

The network processor supports a horizontal parity signal (RPAR, TPAR). The horizontal parity
signal coversthe 16 data bitsthat are transferred on each edge of the clock. It does not cover 32 bits
asin CSIX-L1. Support for horizontal-parity requires an additional physical signal beyond that
required for SPI-4.2. Checking of the horizontal parity can be optionally disabled on reception. If a
fabric interface chip does not support TPAR, then the checking of RPAR should be disabled.

Hardware Reference Manual 307

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

8.9.4.2.2

308

intel.

The network processor supports a variation of the standard CSIX-L1 vertical parity. Instead of a
single vertical XOR for the calculation of the vertical parity, the network processor can be
configured to calculate as DIP-16 code, as documented within the SPI-4.2 specification (see Figure
6.8 of that document). If horizontal parity is not enabled for the interface, the use of the DIP-16
code is recommended to provide for better error coverage than that provided by avertical parity.

Support for Dual Chip, Full-Duplex Operation

A dual-chip configuration of network processors consisting of an ingress and egress network
processor, can present a full-duplex interface to a fabric interface chip, consistent with the
expectations of the CSIX-L1 protocol. A flow control interface is supported between the ingress
and egress chips to forward necessary flow control information from the egress network processor
to the ingress network processor. Additional information can be transferred between the ingress
and egress network processors through the PCI bus.

The flow control interface consists of adatatransfer signal group, a serial signal for conveying the
state of the CSIX-L1 "ready bits' (TXCSRB, RXCSRB), and a backpressure signal (TXCFC,
RXCFC) to avoid overrunning the receiver in theingress network processor. (The orientation of the
signal names is consistent with the egress network processor, receiving CFrames from the fabric,
and forwarding flow control information out through the transmit flow control pins.) The data
transfer signal group consists of:

¢ four datasignas (TXCDAT[O0..3], RXCDAT[O0..3])
* aclock (TXCCLK, RXCCLK)

* astart-of-frame signal (TXCSOF, RXCSOF)

¢ ahorizontal-parity signal (TXCPAR, RXCPAR)

The network processor receiver forwards Flow Control CFrames from the fabric in a cut-through
fashion over the flow control interface. The flow control interface has one-fourth of the bandwidth
of the network processor fabric datainterface. The Crdy bit in the base header of the CSIX-L1
protocol (link-level flow control) prevents overflowing of the FIFO for transmitting out the flow
control interface from the egress network processor. The fabric can implement arate limit on the
transmission of Flow Control CFrames to the egress network processor, consistent with the
bandwidth available on the flow control interface. With arate limit, the fabric can detect
congestion of Flow Control CFrames earlier, instead of waiting for the assertion of cascaded
backpressure signals.

The CRdy and DRdy bits of CFrames sent across the flow control interface are set to 0 on
transmission and ignored upon reception at the ingress network processor. If no CFrames are
available to send from the egress network processor to the ingress network processor, an alternating
sequence of Idle CFrames and Dead Cyclesis sent from the egress to the ingress network
processor, consistent with the CSIX-L1 protocol.

The state of the CRdy and DRdy bits sent to the egress network processor by the fabric and the
state of the CRdy and DRdy bits that should be sent to the fabric by the ingress network processor,
reflecting the state of the egress network processor buffering, are sent through the TXCSRB signal
and received through the RXCSRB signal. A new set of bits are conveyed every 10 clock edges or
five clock cycles, of the interface. A de-assertion of a "ready bit" is forwarded immediately upon
processing the "ready bit". An assertion of a"ready bit" isforwarded only after all of the horizontal
parities and the vertical parity of the CFrame are checked. A configuration of ingress and egress
network processors is expected to respond to the de-assertion of a CRdy or DRdy bit within 32
clock cycles (RCLK), consistent with the formulation described for CSIX-L 1.

Hardware Reference Manual

8.9.4.2.3

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

The backpressure signal (TXCFC, RXCFC) is an asynchronous signal and is asserted by the
ingress network processor to prevent overflow of the ingress network processor ingress flow
control FIFO. If the egress network processor is so optionally configured, it will react to assertion
of the backpressure signal for 32 clock cycles (64 edges) as arequest for a de-skew training
sequence to be transmitted on the flow control interface.

The flow control interface only supports a 32-bit CWord. Flow Control CFrames that are received
by the egress network processor are stripped of any padding associated with large CWord widths
and forwarded to the flow control interface.

The various options for parity calculation and checking supported on the data interface are
supported on the flow control interface. Horizontal parity checking may be optionally disabled.
The standard cal culation of vertical parity may be replaced with a DIP-16 calculation.

Support for Simplex Operation

The network processor supports amaode of operation that supportsthe CSIX-L1 protocol, but offers
an independent interface for the ingress and egress network processors. In this mode, the ingress
and egress network processors each offer an independent full-duplex CSIX-L1 flavor of interface
to the fabric, but the NPU-to-fabric interface on the egress network processor and the fabric-to-
NPU interface of the ingress network processor are of reduced width, consisting of four (instead of
16) datasignals. These narrow interfaces are referred to as Reverse Path Control Interfaces and use
the same physical interface asthe flow control interface in the dual-chip, full duplex configuration.
They support the transfer of Flow Control CFrames and the CRdy and DRdy “ready” hits, but are
not intended to support the transfer of data CFrames.

Figure 114. Reference Model for Intel® IXP2800 Support of the Simplex Configuration Using

Hardware Reference Manual

Independent Ingress and Egress Interfaces

Primary
|ng ress Interface
——— Network >
Processor <
RPCI Fabric
Interface
Chip(s)
Egress RPCI -
_ Network i
Processor - "
Primary
Interface
Printed Circuit Card

B2752-01

The Reverse Path Control Interfaces (RPCI) support only the 32-bit CWord width of the dual chip,
full duplex flow control interface. The variations of parity support provided by the data interface
and the flow control interface are supported by the RPCI.

309

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

8.9.4.24

intel.

The transfer time of CFrames across the RPCI is four times that of the data interface. The latency
of link-level flow control notifications depends on the frequency of sending new CFrame base
headers. As such, the maximum size of CFrames supported on the RPCI should be limited to
provide sufficient link-level flow control responsiveness.

The behavior of state machines for a full-duplex interface regarding interface initialization, link-
level flow control, and requests to send a de-skew training sequence is supported by the data
interface in combination with its reverse path control interface asif the two interfaces were
equivalent to afull-duplex interface.

The simplex mode of interfacing to the ingress and egress network processor isan alternativeto the
dual chip full-duplex configuration. It provides earlier notification of Flow Control CFrame
congestion within the ingress network processor and marginaly less latency for delivery of Flow
Control CFrames to the ingress network processor. It allows more of the bandwidth on the data
interface to be used for the transfer of data CFrames as Flow Control CFrames are transferred on
the RPCI.

The simplex configuration provides a straightforward mechanism for the egress network processor
to send VOQ flow control to the fabric if the fabric supports such functionality. In the dual chip,
full-duplex configuration, the egress network processor sends a request across the PCI to the
ingress network processor, requesting that a Flow Control CFrame be sent to the fabric.

Support for Hybrid Simplex Operation

The SPI-4.2 interface may be used to transfer data to and from afabric, although thereis no
standard protocol for such conveyance. The necessary addressing information for the fabric and
egress network processor may be encoded within the address bits of the preceding control word or
stored in the initial data words of the SPI-4.2 burst. The LVTTL status interface may be used to
provide link-level flow control for the data bursts. (The SPI-4.2 LV DS status interface cannot be
used, because it shares the same pins with the fabric flow control interface.)

Figure 115. Reference Model for Hybrid Simplex Operation

310

SPI-4.2
Data Interface
Ingress -«
Network SPI-4.2 Status
Processor Interface
——
Fabric
Interface
Back Pressure - Chip(s)
~ Flow Control
Interface
SPI1-4.2
Egress Status Interface
~e— Network >
Processor
SPI-4.2 Data
Interface] o
Printed Circuit Card

B2753-01

Hardware Reference Manual

8.9.4.25

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

The SPI-4.2 interface does not support avirtual output queue (VOQ) flow control mechanism. The
Intel® 1XP2800 Network Processor supports use of the CSIX-L 1 protocol-based flow control
interface (as used in the dual chip, full-duplex configuration) on the ingress network processor,
while SPI-4.2 is operational on the data interface. Thisinterface can provide VOQ flow control
information from the fabric and allow the transmitter scheduler, implemented in a Microengine
within the ingress network processor, to avoid sending data bursts to congested destinations.

The fabric should send alternating Idle CFrames and Dead Cycles when there are no Flow Control
CFrames to transmit. The CRdy and DRdy “ready bits” should be set to 0 on transmission and are
ignored on reception.

The fabric should respond to the RXCFC backpressure signal. In this mode of operation, the
RXCSRB signal that would normally receive the state of the CRdy and DRdy “ready bits’ is not
used. If dynamic de-skew is configured on the interface, and the backpressure signal is asserted for
32 clock cycles, thefabric sends a (de-skew) training sequence on the flow control interface. It may
be acceptable in this configuration to operate the flow control interface at a sufficiently low clock
rate that dynamic de-skew is not required.

Operation in the hybrid simplex mode for the ingress network processor is slightly more taxing on
the transmit scheduler computation than the homogenous CSIX-L 1 protocol configurations. The
status reported for the data interface must be polled by the transmit scheduler. In this configuration,
the response to link-level flow control is performed in software and is slower than in the
homogenous CSIX-L 1 protocol configurations where it is accomplished in hardware.

Intel® reference software does not currently support this mode of fabric inter-operation.

Support for Dynamic De-Skew Training

The SPI-4.2 interface incorporates a training sequence for dynamic de-skew of its signals relative
to the source synchronous clock. This training sequence has been extended and incorporated into
the CSIX-L1 protocol support of the Intel® 1 XP2800 Network Processor.

Thetraining pattern for the 16-bit datainterface consists of 20 words, 10 repetitions of OxOfff
followed by 10 repetitions of 0xf000. The CTL and PAR signals are asserted for the first 10 words
and de-asserted for the second 10 words. The PROT signal (see below) is de-asserted for the first
10 words and asserted for the second 10 words. A training sequence consists of “alpha’ repetitions
of the training pattern. The idle control word that precedes a training sequence in SPI-4.2 is not
used in conjunction with the CSIX-L1 protocol. See Section 8.6.1 for more information.

A receiver should detect atraining sequence in the context of the CSIX-L1 protocol
implementation by the assertion of the start-of-frame signal for three adjacent clock edges and the
correct value on the data signals for those three adjacent clock edges.

A receiver may request a training sequence to be sent by transmitting continuous Dead Cycles on
the interface. Reception of two adjacent Dead Cycles triggers the transmission of atraining
sequence in the opposite direction. If an interface is sending Dead Cycles and a training sequence
becomes pending, the interface must send the training sequence at a higher priority than the Dead
Cycles. Otherwise, a deadlocked situation may arise.

In the simplex configuration, the request for training, and the response to it, occur between a
primary interface and its associated reverse path control interface. In the dual chip, full-duplex
configuration, requests for training and Dead Cycles are encoded across the flow control interface
as either continuous Dead Cycles or continuous Idle CFrames, both of which violate the standard
CSIX-L1 protocal.

Hardware Reference Manual 311

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

8.9.4.3

312

intel.

The training pattern for the flow control data signals consists of 10 nibbles of Oxc followed by 10
nibbles of 0x3. The parity and serial "ready bits" signal is de-asserted for the first 10 nibbles and
asserted for the second 10 nibbles. The start-of-frame signal is asserted for the first 10 nibbles and
de-asserted for the second 10 nibbles. See Section 8.6.2 for more information.

When atraining sequence is received, the receiver should update the state of the received CRdy
and DRdy “ready hits’ to a de-asserted state until they are updated by a subsequent CFrame.

CSIX-L1 Protocol Receiver Support

The Intel® 1XP2800 Network Processor receiver support for the CSIX-L1 protocol is similar to
that for SPI-4.2. CFrames are stored in the receiver data buffers. The buffers are configured to be of
asize of 64, 128, or 256 bytes. The contents of the CFrame base header and extension header are
stored in separate storage with the reception status of the CFrame. Unlike SPI-4.2 data bursts, the
entire CFrame must fit into a single buffer. The receiver does not progress to the next buffer to
store subsequent parts of a single CFrame. (The buffer is required only to be sufficiently large to
accommodate the payload, not the header, the padding, or the vertical parity.) Designated CFrame
types, typically Flow Control CFrames, are forwarded in cut-through mode directly to the flow
control egress FIFO and not stored in the receiver buffers.

The receiver resources are separately allocated to the processing of data and control CFrames.
Separate free lists of buffers and Microengine threads for each category of CFrametype are
maintained. The size of the buffersin each resource pool is separately configurable. The mapping
of CFrame type to data or control category is completely configurable viathe CSIX_Type Map
register. Thisregister also allows for any types to be designated for cut-through forwarding to the
flow control egress FIFO. Typically, only the Flow Control CFrame type is configured in this way.

The receiver buffers are partitioned into two poolsviaMSF_Rx_Control[RBUF_Partition],
providing 75% of the buffer memory (6 Kbytes) for data CFrames and 25% of the buffer memory
(2 Kbytes) for control CFrames. The number of buffers available per pool depends on the
configured buffer size. For 64-byte buffers, there are 96 and 32 buffers, respectively. For 128-byte
buffers, there are 48 and 16 buffers, respectively. For 256-byte buffers, there are 24 and 8 buffers,
respectively.

Aswith SPI-4.2, link-level flow control for a buffer pool can be asserted by configuration when
buffer consumption reaches 25%, 50%, 75%, or 87.5% within that pool. The receiver has an
additional 1024 bytes of packed FIFO storage for each traffic category to accept additional
CFrames after link-level flow control (CRdy or DRdy) is asserted. Link-level flow control for
control CFrames (CRdy) is also asserted if the flow-control egress FIFO contents exceeds a
threshold as configured by HWM _Control[FCEFIFO_HWM]. The threshold may be set to 16, 32,
64, or 128 32-bit words. The total capacity of the FIFO is 512 32-bit words.

Within the base header, the receiver hardware processes the CRdy bit, the DRdy hit, the Typefield,
and the Payload L ength. Only the Flow Control Frame CFrame is expected to lack the 32-bit
extension header. The receiver hardware validates the vertical parity of the CFrame and only writes
it to the receiver buffer if the write operation also includes payload data. The hardware supports
configuration options for processing all 16 CFrame types. In all other respects, processing of the
CFrame contents is done entirely by software. Variationsin the CSIX-L1 protocol are supported
that only affect the software processing. These variations might include address swapping (egress
port address swapping with ingress port address) and use of reserve bits to encode start and end of
packets.

When the network processor is configured to forward Flow Control Frame CFrames to the flow
control egress FIFO, software does not process those CFrames. Processor interrupts occur if there
are reception errors, but the actual CFrames are not made available for further processing.

Hardware Reference Manual

In

8.9.44

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

CSIX-L1 Protocol Transmitter Support

The Intel® I XP2800 Network Processor transmitter support for the CSIX-L1 protocol issimilar to
that for SPI-4.2. The transmitter fetches CFrames from transmitter buffers. An entire CFrame must
fit within a single buffer. In the case of SPI-4.2, the array of transmitter buffers operates asasingle
ring. In the case of CSIX-L1 protocol support, the array of buffers operates as two rings, one for
data CFrames and another for control CFrames. The partitioning of the transmitter buffersis
configured viaMSF_Tx_Control[TBUF_Partition]. The portion of the aggregate transmitter buffer
storage (8 Kbytes) allocated to data CFrames is 75% (6 Kbytes), with the remainder (2 Kbytes)
allocated to control CFrames. The size of the buffers within each partition is independently
configurable to a size of 64, 128,0r 256 bytes. The payload size of CFrames sent from the buffers
may vary from 1 to the size of the buffer.

The CSIX-L1 protacol link-level flow control operates directly upon the hardware that processes
the two (control and data) transmitter rings. The transmitter services the two rings in round-robin
order when allowed by link-level flow control. The transmitter transmits Idle CFrames and Dead
Cycles according to the CSIX-L1 protocol if there are no CFrames to transmit.

Virtual output queue flow control is accommodated by atransmit scheduler implemented on a
Microengine. In all three network processor ingress configurations, Flow Control CFrames are
loaded by hardware into the flow control ingress FIFO. Two bits of state associated with this FIFO
are distributed to all of the Microengines:

* TheFIFO is non-empty.

* The FIFO contains more than a threshold amount of CFrame 32-bit words
(HWM_Control[FCIFIFO_Int. HWM]).

Any Microengine can perform transmitter scheduling by sensing the state associated with the flow
control ingress FIFO, using the branch-on-state instruction. If the FIFO is not empty, the transmit
scheduler processes some of the FIFO by performing aread of the FCIFIFO registers. A single
Microengineinstruction can perform ablock read of up to 16 32-bit words. The datafor theread is
likely to arrive after several subsequent scheduling decisions. The scheduler should incorporate the
new information from the newly-read Flow Control CFrame(s) in its later scheduling decisions. If
the FIFO state indicates that the threshold capacity has been exceeded, the scheduler should
suspend further scheduling decisions until the FIFO is sufficiently processed, otherwise it risks
making scheduling decisions with information that is too stale.

The responsiveness of the network processor to VOQ flow control depends on the length of the
transmit pipeline, from transmit scheduler to CFrames on the interface signals. For rates at and
above 10 Gb/s, the pipeline length is likely to be 32 to 64 CFrames, assuming four pipeline stages
(schedule, de-queue, data movement, and transmit) and 8 to 16 CFrames concurrently processed
per stage.

In the simplex configuration, the egress network processor can send CFrames over the Reverse
Path Control Interface. The CFrames are loaded into the flow control egress FIFO by performing
writes of 32-hit words to the FCEFIFO registers. The base header, the extension header, the
payload, the padding, and a dummy vertical parity must be written to the FIFO. The transmitter
hardware cal culates the actual vertical parity asthe CFrameis transmitted.

Hardware Reference Manual 313

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

Note:

8.9.4.5

314

intel.

The transmitter hardware for the transmitter buffers and the flow control egress FIFO expects that
only the Flow Control CFrame type does not have an extension header of 32 hits. All other types
have a 32-bit extension header. The hardware disregards the contents of the extension header or the
payload.

The limited gather capability described for SPI-4.2 also is available for CFrames. A prefix header
of up to 31 bytesand adisjoint payload is supported. The prefix header may start at an offset of 0to
7 bytes. The payload may start at an offset of O to 7 bytes from the octal-byte boundary following
the end of the prefix header. For more complicated merging or shifting of data within a CFrame,
the data should be passed through a Microengine to perform any arbitrary merging and/or shifting.

Implementation of a Bridge Chip to CSIX-L1

The Intel® 1XP2800 Network Processor support for the CSIX-L1 protocol in the dual chip, full-
duplex configuration minimizesthe difficulty inimplementing abridge chip to astandard CSIX-L1
interface. If dynamic de-skew training is not employed, the bridge chip can directly pass through
the different CSIX-L 1 protocol elements, CFrames, and Dead Cycles. The horizontal parity must
be re-calculated on each side of the bridge chip. If the standard CSIX-L1 interface implements a
CWord width that is greater than 32 hits, it must implement a synchronization mechanism for
aligning the received 32-bit portions of the CWord before passing the CWord to the network
processor.

For transmitting the standard CSIX-L 1 interface, the bridge chip must assert the start-of-frame
signal for each 32-hit portion of the CWord, as the network processor only assertsit for the first 32-
bit portion. If the bridge chip requires clock frequencies on the network processor interface and the
standard CSIX-L 1 interface to be appropriate, exact multiples of each other (2x for 32-bit CWord,
4x for 64-bit CWord, 6x for 96-bit CWord, and 8x for 128-bit CWord), then the bridge chip
reguires only minimal buffering and does not need to implement any flow control mechanisms.

A slightly more complicated bridge allows incorporating dynamic de-skew training and/or
independent clock frequencies for the network processor and standard CSIX-L 1 interfaces. The
bridge chip must implement a control and data FIFO for each direction and the link-level flow
control mechanisms specified in the protocol using CRdy and DRdy. The FIFOs must be large
enough to accommodate the response latency of the link-level flow control mechanisms. Idle
Cframes and Dead Cycles are not directly passed through this more complicated bridge chip, but
are discarded on reception and generated on transmission. The network processor interface of this
bridge chip can support the dynamic de-skew training protocol extensionsimplemented on the
network processor because it can send a training sequence to the network processor between
CFrames without regard to CFrames arriving over the standard CSIX-L 1 interface. (In the simpler
bridge design, these CFrames must be forwarded immediately to the network processor.)

Hardware Reference Manual

In

8.9.5

8.9.5.1

8.9.5.2

8.9.5.3

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

Dual Protocol (SPI and CSIX-L1) Support

In many system designs that are less bandwidth-intensive, a single network processor can forward
and process data from the framer to the fabric and from the fabric to the framer. A bridge chip must
pass data between the network processor and multiple physical devices. The network processor
supports multiplexing SPI-4.2 and CSIX-L1 protocol elements over the same transmitter and
receiver physical interfaces, differentiated by a protocol signal that is de-asserted for SPI-4.2
protocol elements and asserted for CSIX-L1 protocol elements.

In the dual protocol configuration, the CSIX-L1 configuration of the network processor
corresponds to the dual chip, full duplex configuration. The flow control transmitter interfaceis
looped back to the flow control receiver interface, either externally or internaly. Only the LVTTL
status interface is available for the SPI-4.2 interface.

Dual Protocol Receiver Support

When the network processor receiver is configured for dual protocol support, the aggregate
receiver buffer is partitioned in three ways: 50% for data CFrames (4 Kbytes), 37.5% for SPI-4.2
bursts (3 Kbytes) and 12.5% for control CFrames (1 Kbyte). The buffer sizes within each partition
are independently configurable. Link-level flow control can be independently configured for
assertion at thresholds of 25%, 50%, 75%, or 87.5%. For the traffic associated with each partition,
an additional 680 bytes of packed FIFO storage is available to accommodate received traffic after
assertion of link-level flow control.

Dual Protocol Transmitter Support

When the network processor transmitter is configured for dual protocol support, the aggregate
transmitter buffer is partitioned three ways, in the same proportions as the receiver. Each partition
operates as a separate ring. The transmitter services each ring in round-robin order. If no CFrames
are pending, an Idle CFrame is transmitted to update link-level flow control. If no SPI-4.2 bursts
are pending, idle control words are not sent.

Implementation of a Bridge Chip to CSIX-L1 and SPI-4.2

A bridge chip can provide support for both standard CSIX-L 1 and standard physical layer device
interfaces such as SPI-3 or UTOPIA Level 3. The bridge chip must implement the functionality of
thelesstrivial CSIX-L1 bridge chip described previously and additionally, implement bridge
functionality between SPI-4.2 and the other physical device interfaces. The size of the FIFOs must
be in accordance with the response times of the flow control mechanisms. Figure 116 is a block
diagram of a dual protocol (SPI-4.2 and CSIX-L1) bridge chip.

Hardware Reference Manual 315

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

intel.

Figure 116. Block Diagram of Dual Protocol (SPI-4.2 and CSIX-L1) Bridge Chip

B
| Data <« <
> | | x CSIX-L1 _
2 >
- :
9| | o R i -
8 O | — Control <« «
5 < | | | | SPI/
E UTOPIA-3
1T [<F -
_g < SPI - T |«
38 | < |
sa <
©x
oo <
:335; B) SPI/
3 — Data = UTOPIA-3
: [| A L> >
e | |3 R
% 5 —- Control
—]] o <
A SPI/
< || UTOPIA-3
- |5P|| > >
B2754-01

8.9.6 Transmit State Machine

Table 116 describes the transmitter state machine by providing guidance in interfacing to the
network processor. The state machine is described as three separate state machines for SPI-4.2,
training, and CSIX-L1. When each machineisinactive, it tracks the states of the other two state
machines.

316 Hardware Reference Manual

intgl.

SPI-4.2 Transmitter State Machine

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

The SPI-4.2 Transmit State M achine makes state transitions on each bus transfer of 16 bits, as
described in Table 116.

Table 116. SPI-4.2 Transmitter State Machine Transitions on 16-Bit Bus Transfers

Current State

Next State

Conditions

Idle Control

Idle Control

No data pending and no training sequence pending,
CSIX-L1 mode disabled.

Payload Control

Data pending and no training sequence pending,
CSIX-L1 mode disabled.

Training Training sequence pending, CSIX-L1 mode disabled.
CSIX CSIX-L1 mode enabled.
Payload Control | Data Burst Always
Data Burst Data Burst Until end of burst as programmed by software.
Idle Control f{) gﬁ%tdaet(érs\gglig.r training sequence pending or CSIX-
Tracking Other State Machine States
Training Training Training SM not entering CSIX-L1 or SPI state.
CSIX Training SM entering CSIX-L1 state.
Payload Control Training SM entering SPI state and data pending.
Idle Control Training SM entering SPI state and no data pending.
CSIX CSIX CSIX-L1 SM not entering Training or SPI state.
Training CSIX-L1 SM entering Training state.

Payload Control

CSIX-L1 SM entering SPI state and data pending.

Idle Control

CSIX-L1 SM entering SPI state and no data pending.

Hardware Reference Manual

317

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

8.9.6.2

Table 117.

8.9.6.3

intel.

Training Transmitter State Machine

The Training State M achine makes state transitions on each bus transfer of 16 bits, as described in

Table 117.

Training Transmitter State Machine Transitions on 16-Bit Bus Transfers

Current State

Next State

Conditions

Training Control

Training Control

Until 10 control cycles.

Training Data

After 10 control cycles.

Training Data

Training Data

Until 10 data cycles.

Training Control

After 10 data cycles and repetitions of training
sequence or new training sequence pending.

After 10 data cycles and no training sequence pending

CSIX and CSIX-L1 mode enabled.
Spl After 10 data cycles a_nd No training sequence pending
and CSIX-L1 mode disabled.
Tracking Other State Machine States
CSIX CSIX CSIX-L1 SM not entering SPI or Training state.
SPI CSIX-L1 SM entering SPI state.
Training Control CSIX-L1 SM entering Training state.
SPI SPI SPI SM not entering CSIX-L1 or Training state.
CSIX SPI SM entering CSIX-L1 state.

Training Control

SPI SM entering Training state.

CSIX-L1 Transmitter State Machine

The CSIX-L1 Transmit State Machine makes state transitions on CWord boundaries. CWords can
be configured to consist of 32, 64, 96, or 128 bits, corresponding to 2, 4, 6, or 8 bus transfers, as
described in Table 118.

Table 118. CSIX-L1 Transmitter State Machine Transitions on CWord Boundaries

Current State

Next State

Conditions

SoF CWord

CFrame CWord

CFrame longer than a CWord.

Dead Cycle

CFrame fits in a CWord.

CFrame CWord

CFrame CWord

CFrame remainder pending.

SoF CWord

Un-flow-controlled CFrame pending, no training
sequence pending, and SPI mode not enabled.

Dead Cycle

No un-flow-controlled CFrame pending or training
sequence pending or requesting training sequence or
SPI mode enabled and data pending.

Dead Cycle

SoF CWord

Un-flow-controlled CFrame pending and no training
sequence pending and no SPI data pending and not
requesting training sequence.

Idle CFrame

No un-flow-controlled CFrame pending and no training
sequence pending and no SPI data pending and not
requesting training sequence.

318

Hardware Reference Manual

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

intgl.

Table 118. CSIX-L1 Transmitter State Machine Transitions on CWord Boundaries (Continued)

Current State Next State Conditions
Dead Cycle Requesting reception of_ training sequence and no
training sequence pending.
Training Training sequence pending.
splI Training sequence not pending and SPI data pending
and not requesting training sequence.
Idle CFrame Dead Cycle Always.
Tracking Other State Machine States
SPI SPI SPI SM not entering CSIX-L1 or Training state.
SoF CWord SPI SM entering CSIX-L1 state and un-flow-controlled
CFrame pending.
SPI SM entering CSIX-L1 state and un-flow-controlled
Idle CFrame -
CFrame not pending.
Training SPI SM entering Training state.
Training Training Training SM not entering CSIX-L1 or Training state.
SoF CWord Training SM entering CS_IX-Ll state and un-flow-
controlled CFrame pending.
Training SM entering CSIX-L1 state and un-flow-
Idle CFrame -
controlled CFrame not pending.
SPI Training SM entering SPI state.

8.9.7 Dynamic De-Skew

The Intel® 1XP2800 Network Processor supports optional dynamic de-skew for the signals of the
16-bit data interface and the signals of the 4-hit flow control interface or the signals of the 2-hit
SPI-4.2 LV DS status interface. (The flow control interface and the LVDS status interface are
alternate configurations of the same signal balls and pads. They share the same de-skew circuits.)

In both cases, eight evenly-spaced phases of the received clock are generated for each bit time.
Asthe transition occurs during training a pattern, the best pair of clock phasesisidentified for
sampling each received signal. An interpolated clock is generated from a pair of clock phases for
each signal and that clock is used as areference for sampling the data. This provides maximum
quantization error in the sampling of the signals of 6.25%.

Hardware Reference Manual 319

Intel® IXP2800 Network Processor
Media and Switch Fabric Interface

8.9.8

320

Figure 117 summarizes the Receiver and Transmitter Signals.

Figure 117. Summary of Receiver and Transmitter Signaling

in

Summary of Receiver and Transmitter Signals

RDAT (CSIX:TxData) [15:0]

Y

RCTL (CSIX:TXSOF)

Y

RCLK (CSIX:TxClk)

RPAR (CSIX:TxPar)

RPROT

YYY

__ RSCLK

__ RSTAT[L:0]

TXCCLK or RSCLK

TXCDAT[1:0] or RSTAT[1:0]

A A

TXCDAT[3:2]

TXCSOF

A A

TXCPAR

A

TXCFC

Y

__ TXCSRB

Reciever

DDR LVDS
SPI-4.2 Data Path
and Interface
for CSIX Protocol

LVTTL SPI-4.2
Status Interface

DDR LVDS
SPI-4.2 Status Interface
and Inter-Chip
CSIX Flow Control

Intel® IXP2800
Network Processor

Joniwsuel |

TDAT (CSIX:RxData) [15:0]

\J

TCTL (CSIX:RXSOF)

TCLK (CSIX:RXCIK)

YVYY

TPAR (CSIX:RxPar)

TPROT

Y

TCLK_REF

A

TSCLK

A

TSTAT[L:0]

A

RXCCLK or TSCLK

RXCDATI[1:0] or TSTAT[1:0]

A A

RXCDAT[3:2]

RXCSOF

A A

RXCPAR

A

RXCFC

Y

RXCSRB

A

B2755-01

Hardware Reference Manual

Intel® IXP2800 Network Processor
PCI Unit

intel.

PCI Unit 9

9.1

This section contains information on the | XP2800 Network Processor PCl Unit.

Overview

The PCI Unit allows PCI target transactions to internal registers, SRAM, and DRAM. It also
generates PCI initiator transactions from the DMA Engine, Intel X Scal €® core, and Microengines.

The PCI Unit main functional blocks are shown in Figure 118 and include;
* PCI CoreLogic
* PCI Bus Arbiter
* DRAM Interface Logic
¢ SRAM Interface Logic
¢ Mailbox and Message registers
¢ DMA Engine
* Intel XScale® core Direct Accessto PCI

The main function of the PCI Unit isto transfer data between the PCI Bus and the internal devices,
which are the Intel X Scale® core, the internal registers and memories.

These are the data transfer paths supported as shown in Figure 119:
* PCI Slave read and write between PCI and internal buses
— CSRs(PCI_CSR_BAR)
— SRAM (PCI_SRAM_BAR)
— DRAM (PCI_DRAM_BAR)

¢ Push/Pull Master (Intel XScale® core, Microengine, or PCI) accesses to internal registers
within PCI unit

* DMA
— Descriptor read from SRAM
— Data transfers between PCl and DRAM
¢ Push/Pull Master (Intel X Scale® core and Microengines) direct read and writeto PCI Bus

Note: Detailed information about CSRs is contained in the Intel® 1XP2400/1XP2800 Network Processor
Programmer’s Reference Manual.

Hardware Reference Manual 321

Intel® IXP2800 Network Processor
PCI Unit

Figure 118. PCI Functional Blocks

64-bit PCI Bus
(@ 33/66 MHz)
A A
PCI UNIT v v
Core Interface PCl Bus
Host Functions
Initiator Initiator Initiator PCI Target Target Target
Address FIFO Read FIFO | | Write FIFO || Configuration|| Read FIFO || Write FIFO || Address FIFO
A A A A
FIFO Bus (FBUS
Y () Y Y
M / \4 Slave Slave
aster V‘ * | PCI Write Address
Address “ | CSRs Buffer Register
Register DMA Direct
Rad/Write Buffer Buffer
T Slave
A Interface
Slave
Interface
DMA DRAM DMA SRAM Direct
Interface Interface Interface
A _
7| | DRAM Data || SRAM Data Address
> Interface Interface Interace
Master Interface
Command Bus Slave Command Bus Master
A A A A
32 32 91 91 32 32 64) 64
Y Y Y Y
Pull Push Command Command Pull Push Pull Push
SRAM Bus Bus Bus SRAM BUS DRAM BUS
A9765-01

322 Hardware Reference Manual

intel.

Intel® IXP2800 Network Processor
PCI Unit

Figure 119. Data Access Paths

PCI Bus

!

Note:

PCI UNIT
TGT CSR RIW - CSRs (via SRAM
Target Push/Pull Buses)
FIFO
TGT DRAM R/W - DRAM (via DRAM
Slave Push/Pull Buses)
<J-> N e Buffer TGT SRAM RIW . SRAM (via SRAM
"~ Push/Pull Buses)
Y
Intel XScale™ Architecture,
CsR &tCOnf Local Internal Reg R/W & Microengines, and PCI (via
egisters SRAM Push/Pull Buses)
Descriptor Unit Descriptor Read SRAM (via SRAM
Registers " Push/Pull Buses)
- . | DMA DMA Memory R/W - DRAM (via DRAM
‘ | Buffer ”" Push/Pull Buses)
Master
<«}>| FFo/ [<> Intel®
Register XScale™ Push/Pull Bus to PCI R/W Push/Pull Command Master
9 €| Architecture [€ (via SRAM Push/Pull Buses)
Register
Command Master —» Command Slave
A9766-01

9.2

PCI Pin Protocol Interface Block

This block generates the PCI compliant protocol logic. It operates either as an initiator or a target
device onthe PCI Bus. Asaninitiator, al bus cycles are generated by the core. Asa PCl target, the
core responds to bus cycles that have been directed towards it.

On the PCI Bus, the interface supports interrupts, 64-bit data path, 32-bit addressing, and single
configuration space. The local configuration registers are accessible from the PCI Bus or from the
Intel XScale® core through an interna path.

The PCI block interfaces with the other sub-blocks with a FIFO bus called FBus. The FBus speed
is the same as the internal Push/Pull bus speed. The FIFOs are implemented with clock
synchronization logic between the PCI speed and the internal Push/Pull bus speed.

There are four data FIFOs and two address FIFOs in the core. The separate slave and master data
FIFOs allows simultaneous operations and multiple outstanding PCI bus transfers. Table 119 lists
the FIFO sizes. The target address FIFO latches up to four PCI read or write addresses.

Hardware Reference Manual 323

Intel® IXP2800 Network Processor
PCI Unit

intel.

If aread address is latched, the subsequent cycles will be retried and no address will be latched
until the read completes. The initiator address FIFO can accumulate up to four addresses which can
be PCI reads or writes.

These FIFOs are inside the PCI Core which stores data that are received from the PCI Bus or to be

sent out to the PCI Bus. There are additional buffersimplemented in other sub-blocks that buffers
data to and from the internal push/pull buses.

Table 119. PCI Block FIFO Sizes

Location Depth

Target Address 4

Target Write Data

Target Read Data

Initiator Write Data

8
8
Initiator Address 4
8
8

Initiator Read Data

Table 120 lists the maximum PCI Interface loading.

Table 120. Maximum Loading?

Bus Interface Max # of Loads Trace Length (inches)

Four loads at 66 MHz bus frequency
PCI) 5t07
Eight loads at 33 MHz bus frequency

1. These specifications are currently under evaluation.

9.2.1 PClI Commands

Table 121 lists the supported PCI commands and identifies them as either atarget or initiator.

Table 121. PCI Commands (Sheet 1 of 2)

Support
C_BE_L Command
Target Initiator
0x0 Interrupt Acknowledge Not Supported Supported
0x1 Special Cycle Not Supported Supported
0x2 10 Read cycle Not Supported Supported
0x3 10 Write cycle Not Supported Supported
0x4 Reserved - -
0x5 Reserved - -
0x6 Memory Read Supported Supported
0x7 Memory Write Supported Supported
0x8 Reserved - -
0x9 Reserved - -
OxA Configuration Read Supported Supported

324 Hardware Reference Manual

Intel® IXP2800 Network Processor

PCI Unit
u
I ntel :
Table 121. PClI Commands (Sheet 2 of 2)
Support
C_BE_L Command
Target Initiator
0xB Configuration Write Supported Supported
Aliased as Memory Read except
Memory Read SRAM accesses where the number
oxC Multiple of Dwords to read is given by the Supported
cache line size
0xD Reserved
Aliased as Memory Read except
OXE Memory read line SRAM accesses where the number Supported
y of Dwords to read is given by the PP
cache line size
Memory Write and ; .
OxF Invalidate Aliased as Memory Write Not Supported

9.2.2

9.221

PCI functions not supported by the PCI Unit include:
* |O Space response as a target
* Cacheable memory
* VGA palette snooping
¢ PCI Lock Cycle
¢ Multi-function devices
¢ Dual Addresscycle

IXP2800 Network Processor Initialization

When the I XP2800 Network Processor is atarget, the internal CSR, DRAM, or SRAM addressis
generated when the PCI address matches the appropriate base address register. The window sizesto
the SRAM and DRAM Base Address Registers (BARS) can be optionally set by PClI_SWIN and
PCI_DWIN strap pins or mask registers depending on the state of the PROM_BOOT signal.

There are two initialization modes supported. They are determined by the PROM_BOOT signal
sampled on the de-assertion edge of Chip Reset. If PROM _BOOT isasserted, which indicates that
thereis aboot prom in the system. The Intel X Scale® core will boot from the prom and be ableto
program the BAR space mask registers. If PROM_BOOT is not asserted, the Intel XScale® coreis
held in reset and the BAR sizes are determined by strap pins.

Initialization by the Intel XScale® Core

The PCI unit is initialized to an inactive, disabled state until the Intel X Scale® core has set the
Initialize Complete bit in the Control register. This bit is set after the Intel X Scale® core has
initialized the various PCI base address and mask registers (which should occur within 1 ms of the
end of PCI_RESET). The mask registers are used to initiaize the PCl base address registers to
values other than the default power-up values which includes the base address visible to the PCI
host and the prefetchable bit in the base registers (see Table 122).

Hardware Reference Manual 325

Intel® IXP2800 Network Processor

PCI Unit

intel.

Table 122. PCI BAR Programmable Sizes

9.2.2.2

Base Address | Address

Register Space Sizes

PCI_CSR_BAR CSR | 1Mbyte

0Byte,128Kbyte, 256Kbyte, 512Kbyte, 1Mbyte, 2Mbyte, 4Mbyte,

PCI_SRAM_BAR | SRAM | g\1h\te. 16Mbyte, 32Mbyte, 64MByte,128Mbyte, 256Mbyte

0Byte, 1Mbyte,2Mbyte, 4Mbyte, 8Mbyte, 16Mbyte, 32Mbyte, 64Mbyte, 128Mbyte,

PCI_DRAM_BAR | DRAM | 5oeMhyte,512Mbyte, 1Gbyte

When the PCI unit isin the inactive state, it returns retry responses as the target of PCI
configuration cyclesif the PCI Unit is not configured asthe PCI host. In the case of PCI Unit being
configured as the PCI host, the PCI bus will be held in reset until the Intel XScale® core completes
the PCI Bus configurations and clears the PCI Reset (as described in Section 9.2.11).

Initialization by a PCI Host

In this mode, the PCI Unit is not hosting the PCI Bus regardless of the PCI CFG[O] sngnal The
host processor is allowed to configure the internal CSRs while the Intel XScale® coreis held in
reset. The host processor configures the PCI address space, the memory controllers, and other
interfaces. Also, the program code for the Intel X Scale€® core may be downloaded into local
memory.

The host processor then clears the Intel X Scale® core reset bit in the PCl Reset register. This de-
asserts the internal reset signal to the Intel X Scale® core and the core beginsitsinitialization
process. The PCI_SWIN and PCI_DWIN strap signals are used to select the window sizesto
SRAM BAR and DRAM BAR (see Table 123).

Table 123. PCI BAR Sizes with PCI host Initialization

9.2.3

326

Base A_ddress Address Sizes
Register Space
PCI_CSR_BAR CSR 1MByte
PCI_SRAM_BAR SRAM | 32M/64MByte/128MByte/256MByte
PCI_DRAM_BAR DRAM | 128MByte/256MByte/512MByte/1GByte

PCI Type 0 Configuration Cycles

A PCI accessto a configuration register occurs when the following conditions are satisfied:
* PCI_IDSEL isasserted. (PCI_IDSEL only support PCI_AD[23:16] hits).
* The PCl command is a configuration write or read.
* ThePCI_AD [1:0] are 00.
A configuration register is selected by PCI_AD[7:2]. If the PCl master attempts to do a burst

longer than one 32-bit Dword, the PCI unit signals a target disconnect. PCI unit does not issue
PCI_ACK®64 for configuration cycle.

Hardware Reference Manual

INtal.

9.23.1

9.23.2

9.2.4

Intel® IXP2800 Network Processor
PCI Unit

Configuration Write

A write occursif the PClI command is a Configuration Write. The PCI byte enables determine
which bytes are written.If a nonexistent configuration register is selected within the configuration
register address range, the data is discarded and no error action is taken.

Configuration Read

A read occurs if the PClI command is a Configuration Read. The data from the configuration
register selected by PCI_AD[7:2] isreturned on PCI_AD[31:0]. If a nonexistent configuration
register is selected within the configuration register address range, the data returned are zeros and
no error action is taken.

PCIl 64-Bit Bus Extension

The PCI Unit isin 64-bit mode when PCI_REQG64# is sampled active on the de-assertion edge of
PCI Reset. These are the general rulesin assertions of PCI_REQ64# and PCl_ACK 64#:
Asatarget:

1. PCI Unit asserts PCI_ACK®64# only in 64-bit mode.

2. PCI Unit asserts PCI_ACK®64# only to target cycles that matches the PCI_SRAM_BAR and
PCI_DRAM_BAR and a 64-bit transaction is negotiated.

3. PCI Unit does not assert PCI_ACK64# target cycles that matchesthe PCI_CSR_BAR even a
64-bit transaction is negotiated.
Asaninitiator:
1. PCI Unit asserts PClI_REQ64# only in 64-bit mode.

2. PCI Unit asserts PCI_REQ64# to negotiate a 64-hit transaction only if the addressis double
Dword aligned (PCI_AD[2] must be 0 during the address phase).

3. If thetarget responses to PCI_ REQ#64 with PCl_ACK 64# de-asserted, PCI Unit will
complete the transaction acting as a 32-bit master by not asserting PClI_REQ64# on
subsequent cycle.

4. If the target responses to PCl_ REQ#64 with PCl_ACK64# de-asserted and PCI STOP#
asserted, PCI Unit will complete the transaction by not asserting PCl_REQ64# on subsequent
cycles.

Hardware Reference Manual 327

Intel® IXP2800 Network Processor

PCI Unit

9.2.5

9.251

9.25.2

9.25.3

9.254

328

PCI Target Cycles

The following PCI transactions are not supported by the PCI Unit as a target:
* [Oread or write
¢ Type 1 configuration read or write
* Special cycle
¢ |ACK cycle
* PCI Lock cycle
* Multi-function devices
¢ Dual Addresscycle

PCIl Accesses to CSR

A PCI accessto a CSR occursif the PCl address matches the CSR base address register
(PCI_CSR_BAR).The PCI Bus will be disconnected after the first data-phase if the datais more
than one data phase. For 64-bit CSR accesses, the PCI Unit will not assert PCI_ACK64# on the
PCI bus.

PCIl Accesses to DRAM

A PCI accessto DRAM occursif the PCI address matches the DRAM base address register
(PCI_DRAM_BAR).

PCl Accesses to SRAM

A PCI accessto SRAM occursif the PCI address matches the SRAM base address register
(PCI_SRAM_BAR). The SRAM is organized as three distinct channel and the addressis not
contiguous. The PCI_SRAM_BAR programmed window size will be used as the total memory
space. The upper two bits of the address will be used as channel number in addressing the
particular channel and the remaining address bits will be used as the memory address.

Target Write Accesses From PCI Bus

A PCI write occurs if the PCl address matches one of the base address registers and the PCI
command is either aMemory Write or Memory Write and Invalidate. The corewill store up to four
write addresses into the target address FIFO along with the BAR IDs of the transaction. The write
datawill be stored into the target write FIFO.When either the address FIFO or data FIFO isfull, a
retry isforced on the PCI Busin response to write accesses.

The FIFO datais forwarded to an internal slave buffer before being written into SRAM or DRAM.
If the FIFO fills during the write, the address is crossing the 64-byte address boundary, or in the
case of the command being a burst to the CSR space, the PCI unit signals target disconnect to the
PCI master.

Hardware Reference Manual

In

9.255

9.2.6

®

Intel® IXP2800 Network Processor
PCI Unit

Target Read Accesses From PCI Bus

A PCI read occurs if the PCl address matches one of the base address registers and the PCI
command is either a Memory Read, Memory Read Line, or Memory Read Multiple.

Theread is completed as a PCl delayed read. That is, on the first occurrence of the read, the PCI
unit signals aretry to the PCl master,. If there is no prior read pending, the PCI unit latches the
address and command and places it into the target address FIFO. When the address reaches the
head of the FIFO, the PCI unit reads the DRAM. Subsequent reads will also get retry responses
until datais available.

When the read datais returned into the PCI Read FIFO, the PCI unit begins to decrement its
discard timer. If the PCI bus master has not repeated the read by the time the timer reaches zero, the
PCI unit discards the read data, invalidates the delayed read address and sets Discard Timer
Expired (bit 16) in the Control register (PCI_CONTROL). If enabled, the PCI unit interrupts the
Intel XScale® core. The discard timer counts 21° (32768) PCI clocks.

When the master repeats the read command, the PCI unit compares the address and checks that the
command isaMemory Read, a Memory Read Line, or aMemory Read Multiple. If thereisa
match, the responseis as follows:

* If the read data has not yet been read, the response isretry.

* If the read data has been read, assert trdy | and deliver the data. If the master attemptsto
continue the burst past the amount of data read, the PCI unit signals atarget disconnect.

* CSRreads are always 32-bit reads.
¢ |f the discard timer has expired for aread, the subsequent read will be treated as a new read.

PCI Initiator Transactions

PCI master transactions are caused by either the Intel XScale® core loads and stores that fall into
the various PCI address spaces, Microengine read and write commands, or by DMA engine. The
command register (PCI_COMMAND) bus master bit (BUS MASTER) must be set for the PCI
unit to perform any of the initiator transactions.

The PCI cycleisinitiated when there is an entry in the PCI Core Interface initiator address FIFO.
The core handshakes with the master interface with the FBus FIFO status signals. The PCI core
supports both burst and non-burst master read transfers by the burst count inputs
(FB_BstCntr[7:0]), driven by Master Interface to inform the core the burst size. For a Master write,
FB_WBstonN indicates to the PCI core whether the transfers are burst or non-burst, on a 64-bit
double Dword basis.

The PCI core supports read and write memory cycles as an initiator while taking care of all
disconnect/retry situations on the PCI Bus.

Hardware Reference Manual 329

Intel® IXP2800 Network Processor

PCI Unit

9.26.1

9.2.6.2

9.2.6.3

9.2.6.4

330

intel.

If an external arbiter isused (PClI_CFG_ARBJ[1] isnot active), the regl[0] and gnt[0] are connected
to the PCI_REQ# and PCI_GNT# pins. Otherwise, they are connected to the internal arbiter.

PCIl Request Operation

The PCI unit asserts req_I[0] to act as a bus master on the PCI. If gnt_I[0] is asserted, the PCI unit
can start a PCI transaction regardless of the state of req_[[0]. When the PCI unit requests the PCI
bus, it performs a PCI transaction when gnt_1[0] isreceived. Oncereq |[0] is asserted, the PCI unit
never de-assertsit prior to receiving gnt_I[0] or de-asserts it after receiving gnt_I[0] without doing
atransaction. PCl Unit de-assertsreq 1[0] for two cycleswhen it receives aretry or disconnect
response from the target. However,

PClI Commands

The following PCI transactions are not generated by PCI Unit as an initiator:
* PCI Lock Cycle
¢ Dual Addresscycle
¢ Memory Write and Invalidate

Initiator Write Transactions

The following general rules apply to the write command transactions:

* If the PCI unit receives either atarget retry response or atarget disconnect response before all
of the write data has been delivered, it resumes the transaction at the first opportunity, using
the address of the first undeliverable data.

¢ |f the PCI unit receives amaster abort, it discards all of the write data from that transaction and
sets the status register (PCI_STATUS) received master abort bit, which, if enabled, interrupts
the Intel XScale™ core.

* |f the PCI unit receives atarget abort, it discards all of the remaining write data from that
transaction, if any, and setsthe statusregisters (PCl_STATUS) received target abort bit, which,
if enabled, interrupts the Intel X Scal e® core.

* ThePCI unit can dessert frame | prior to delivering all data due to the master |latency timer, If
this occurs, it resumes the write at the first opportunity, using the address of the first
undeliverable data.

Initiator Read Transactions

The following general rules apply to the read command transactions:

* |f the PCI unit receives a target retry, it repeats the transaction at the first opportunity until the
whole transaction is compl eted.

¢ |f the PCI unit receives a master abort, it substitutes OxFFFF FFFF for the read data and sets

the status re%ster (PCI_STATUS) received master abort bit, which, if enabled, interrupts the
Intel XScale™ core.

¢ If the PCI unit receives atarget abort, it setsthe status registers (PCl_STATUS) received target
abort bit, which, if enabled, interrupts the Intel X Scal €® core and does not try to get any more
read data. PCI unit will substitute OxFFFF FFFF for the data which are not read and compl ete
the cycle.

Hardware Reference Manual

INtal.

9.2.6.5

9.2.6.6

9.2.7

9.2.8

9.2.9

Intel® IXP2800 Network Processor
PCI Unit

Initiator Latency Timer

When the PCI unit begins PCI transaction as an initiator, asserting frame |, it begins to decrement
its master latency timer. When the timer value reaches zero, the PCI unit checks the value of
gnt_I[0]. If gnt_I[0] is de-asserted, the PCI unit de-asserts frame | (if it is still asserted) at the
earliest opportunity. Thisis normally the next data phase for all transactions.

Special Cycle

Asan initiator, special cycles are broadcast to al PCI agents, so DEV SEL# is not asserted and no
error can be received.

PCI Fast Back to Back Cycles

The core supports fast back-to-back target cycles on the PCI Bus. The core does not generate
initiator fast back-to-back cycles on the PCI Bus regardless of the value in the fast back to back
enable bit of the Status and Command register in the PCI configuration space.

PCI Retry

Asaslave, the PCI Unit generatesretry on:
* A slave write when the Datawrite FIFO isfull.
* When address FIFO isfull

¢ Dataread ishandled as delay transactions. If the HOG_MODE bit is set in the
PCI_CONTROL register, the bus will be held for 16 PCI clocks before asserting retry.

Asaninitiator, the core supports retry by maintaining an internal counter of the current address. On
receiving aretry, the core de-asserts PciFrameN and then re-assert PciFrameN with the current
address from the counter.

PCIl Disconnect

Asasdlave, it disconnects for the following conditions:
¢ Bursted PCI configuration cycle.
¢ Bursted accessto PCI_CSR_BAR.
* PCI reads past the amount of datain the read FIFO.

* PCI burst cyclesthat cross 1K PCI address boundary which includes PCI burst cycles that
cross memory decodes from the core as atarget to decodes that are outside the core (e.g.,
started inside a BAR and ends outside of that BAR).

Asan initiator, the core supports retry and disconnect by maintaining an internal counter of the
current address. On receiving aretry or disconnect, the core de-asserts PciFrameN and then re-
assert PciFrameN with the current address + “current transfer byte size” from the counter.

Hardware Reference Manual 331

Intel® IXP2800 Network Processor

PCI Unit

9.2.10

9.2.11

intel.

The IXP2800 Network Processor supports BIST when there is an external PCI host. The PCI host
will set the STRT hit in the PCI _CACHE_LAT_HDR BIST conflguratlon register. Aninterrupt is
generated to the Intel XScaIe coreif it is enabled by the Intel XScale® core Interrupt Enable
register. The Intel X Scale® software can respond to thelnterrupt by running an application specific
test. Upon successful completion of the test, the Intel X Scale® corewill reset the STRT bit. If this
bit is not reset 2 seconds after the PCI host sets the STRT bit, the host will indicate that the IXP
failed the test.

PCI Built In System Test

PCI Central Functions

The CFG_RSTDIR pin isactive high for enabling the PCI Unit central function.

The CFG_PCI_ARB(GPIO[2]) pinisthe strap pin for the internal arbiter. When this strap pinis
high during reset then the XPI Unit owns the arbitration.

The CFG_PCI_BOOT_HOST(GPIO[1]) pinisthe strap pin for the PCI host.When
PCI_BOOT_HOST isasserted during reset then PCI Unit will support as a PCI host.

Table 124. Legal Combinations of the Strap Pin Options

9.2111

332

CFG_PCI_BOOT_HOST | CFG_PCI_Arbiter | CFG_PCI_RSTDIR | CFG_PROM_BOOT
(GPIO[1]) (GPIO[2]) (Central function) (GPIOJ[0])
OK 0 0 0 0
OK 0 0 0 1
OK 0 0 1 1
Not supported 0 1 0 X
OK 0 1 1 1
Not supported 1 0 0 X
OK 1 0 1 1
Not supported 1 1 0 X
OK 1 1 1 1

Note * CFG_PCI_RSTDIR = 1 then central function.
* PCI_Host must be central function.
* PCI_Arbiter must be central function.

PCI Interrupt Inputs
The PCI Unit supports two interrupt lines from the PCI Bus as host. One of the interrupt lines will

be open-drain output and input. The other interrupt line WI|| be selected as PCI interrupt input.
Both the interrupt lines can be enabled in the Intel XScale® core Interrupt Enable register.

Hardware Reference Manual

In

9.2.11.2

9.2.11.3

®

PCI Reset Output

Intel® IXP2800 Network Processor
PCI Unit

If the IXP2800 Network Processor is central function (CFG_RSTDIR =1), PCI Unit will be
asserting the PCI_RST# after the system power-on. The Intel XScal €® core has to write to the PCI

External Reset bit in the IXP Reset register to de-assert the PCI_RST#. In this case, chip reset

(SYS RESET_L) isdriven by asignal other than PCI_RST#.

When the PCI Unit is not configured as the central function (CFG_RSTDIR =0), PCI_RST#is

used as a chip reset input.

PCI Internal Arbiter

The PCI unit contains a PCI bus arbiter that supports two external mastersin addition to the PCI
Unit'sinitiator interface. To enable the PCl arbiter, the CFG_PCI_ARB(GPIQ[2]) strapping pin
must be 1 during reset. As shown in Figure 120, the local bus request and grant pair become
externally not visible. These signals will be made available to external debug pins for debug

purpose.

Figure 120. PCI Arbiter Configuration Using CFG_PCI_ARB(GPIO[2])

Pin CFG_PCI_ARB(GPIO[2]) = 0 (during reset) CFG_PCI_ARB(GPIO[2]) = 1(during reset)
GNT#[0] PCI Bus Grant Input to IXP2800 Network Processor PCI Bus Grant Output to Master 1

GNT#[1] Not Used, Float PCI Bus Grant Output to Master 2

REQ#[0] PCI Bus Request Output from IXP2800 Network Processor PCI Bus Request Input from Master 1
REQ#[1] Not Used, Tied High PCI Bus Request Input from Master 1

PCI UNIT

PCI Arbiter

GNT#[1]

Yy

REQ#[2:0]
GNT#[2:0]

t 0L CFG_PCI_ARB
PCI Master GNT#

State Machine

X Z V7

GNT#{0]

Y

REQ# |

REQ#[0]

P2Y

REQ#[1]

A9767-01

The arbiter uses a simple round-robin priority algorithm, The arbiter asserts the grant signal
corresponding to the next request in the round-robin during the current executing transaction on the
PCI bus (thisis aso called hidden arbitration). If the arbiter detects that an initiator has failed to

Hardware Reference Manual 333

Intel® IXP2800 Network Processor

PCI Unit

9.3

intel.

assert frame | after 16 cycles of both grant assertion and PCI bus idle condition, the arbiter de-
asserts the grant. That master does not receive any more grants until it de-asserts its request for at
least one PCI clock cycle. Bus parking isimplemented in that the last bus grant will stay asserted if
no request is pending.

To prevent bus contention, if the PCI busisidle, the arbiter never asserts one grant signal in the
same PCI cyclein which it de-asserts another, It de-asserts one grant, and then asserts the next
grant after one full PCI clock cycle has elapsed to provide for bus driver turnaround.

Slave Interface Block

The dave interface logic supportsinternal slave devices interfacing to the target port of the FBus.
* CSR—register access cyclesto local CSRs.
* DRAM—memory access cycles to the DRAM push/pull Bus.
* SRAM—memory access cycles to the SRAM push/pull Bus.

The dave port of the FBus is connected to a 64-byte write buffer to support bursts of up to 64 bytes

to the memory interfaces. The slave read data are directly downloaded into the FBus read FIFO.
See Table 125.

Table 125. Slave Interface Buffer Sizes

9.3.1

334

Location Slave Address Slave Write Slave Read
Buffer Depth 1 64Byte 0
Usage CSR, SRAM, DRAM SRAM, DRAM NONE

Asapush/pull command bus master, the PCI Unit translates these accesses into different types of
push/pull command. As the push/pull data bus target, the write datais sent through the pull data
bus and the read data is received on the push data bus.

CSR Interface

The internal Control and Status registers data is directed to or from the Slave FIFO port of the PCI
core FBus when the BAR id matches PCI_CSR_BAR (BARO). The CSR accesses from the PCI
Bus directed towards CSRs not in PCI Unit istranslated into a push/pull CSR type command. PCI
local CSRs are handled within the PCI Unit.

For writes, the dataiis sent when the pull busisvalid and the ID matches. The addressis unloaded
from the FBus target address FIFO as indication to the PCI core logic that the cycle is completed.
The slave write buffer is not used for CSR access.

For reads, the dataisloaded into the target receive FIFO as soon as the push busisvalid and the ID
matches. The address is unloaded from the FBus address FIFO.

One example of a PCl host access to internal registersistheinitialization of internal registers and
memory to enablethe Intel XScal €® core to boot off the DRAM in the absence of aboot up PROM.

The accesses to the CSRs inside the PCI Unit are completed internally without sending the
transaction out to the push pull bus, just like the other internal register accesses.

Hardware Reference Manual

INtal.

9.3.2

9.3.2.1

Intel® IXP2800 Network Processor
PCI Unit

SRAM Interface

The SRAM interface connects the FBus to the internal push/pull command bus and the SRAM
push/pull data buses. Request to memory is sent on the command bus. Data request is received as
valid push/pull ID sent by the SRAM push/pull data bus.

If the PCI_SRAM_BAR isused, the target state machine generates a request to the command bus
for SRAM access. Once the grant is received, the address, then data is directed between the lave
FIFOs of the PCI core and the SRAM push/pull bus.

SRAM Slave Writes

The slave write buffer is used to support memory burst accesses. The buffer is added to guarantee
datatransfer for each clock and burst size can be determined before memory request isissued. Data
is assembled in the buffers before being sent to memory for SRAM write.

On the push/pull bus, AM access can start at any address and have length up to 16 Dwords as
shown in Figure 121. For masked writes, only size 1 is supported to transfer up to four bytes.

Figure 121. Example of Target Write to SRAM of 68 Bytes

Memory Transfer
Address Byte Enables Size

0x0

PCI Bus Internal m 2 bytes

Byte Enables Bus Data
0x8
ooh11111 b iane l_/—> 1111 64 bytes
00000000 | ——> 1111
00000000 1111
00000000 1111
00000000 1111
00000000 1111
00000000 1111
00000000 1111
00000000 1111
11111700 B 1111
1111
1111
1111
1111
1111
1111

Slave Write Burst to memory
Starting address = 0x4

2 bytes

A9768-01

The dave interface also has to make sure there is enough data in the slave write buffer to complete
the memory data transfer before making a memory request.

Hardware Reference Manual 335

Intel® IXP2800 Network Processor

PCI Unit

9.3.2.2

9.3.3

9.3.3.1

336

intel.

For adave read from SRAM, a 32-bit DWORD is fetched from the memory for memory read
command, one cache lineis fetched for memory read line command, and two cache lines are read
for memory read multiple command. Cache line size is programmable in the CACHE_LINE field
of the PCI_CACHE_LAT_HDR_BIST configuration register. If the computed read size is greater
than 64 bytes, the PCI SRAM read will default to the maximum of 64 bytes. No pre-fetch is
supported in that the PCI Unit will not read beyond the computed read size.

SRAM Slave Reads

The PCI coreresets the target read FIFO before issuing a memory read data request on FBus. The
maximum size of SRAM dataread is 64 bytes. The PCI core will disconnect at the 64-byte address
boundary.

DRAM Interface

The memory is accessed using the push/pull mechanism. Request to memory is sent on the
command bus. If the PCI_DRAM_BAR isused, the target state machine generates a request to the
command bus for DRAM access with the address in the slave address FIFO. Once the push/pull
request isreceived. The datais directed between the Slave FIFOs of the PCI core and DRAM push/
pull bus.

DRAM Slave Writes

The dave write buffer is used to support memory burst accesses. The buffer is added to guarantee
datatransfer for each clock and burst size can be determined before memory request isissued. Data
is assembled in the buffers before being sent to memory for memory write.

DRAM target write access is only required to be 8-byte address aligned and the address does not
wrap around the 64-byte address boundary on a DRAM burst. Each 8-byte accesswhichisa partia
write to the memory is treated as single write. Remaining writes of the 64-byte segment is written
as one single burst. Transfers which cross a 64 -byte segment are split in to separate transfers.
Figure 123 splitsthe 68 bytestransfersin to two partial 8-byte transfer to address 06 and address 48
and one 56 byte burst transfer in the first 64-byte segment from address 08 to 38 and one 8-byte
transfer to address 40.

For write to DRAM on the push/pull bus, the burst must be broken down into address aligned
smaller transfer sizes (see Figure 122).

The Target interface al so must make sure there is enough datain the target write buffer to complete
the memory data transfer before making a memory request.

Hardware Reference Manual

INtal.

Intel® IXP2800 Network Processor
PCI Unit

| Figure 122, Example of Target Write to DRAM of 68 Bytes

PCI Bus
Byte Enables

00L11111
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
11111100

Byte Lane

Memory Transfer
Address
0x0

Byte Enables Size

.

Internal - 000000f11| 1 64-bit double Dword

Bus Data 0x08 _

6 64-bit double Dwords

,_ 11111111
11111111

11111111

11111111

11111111

11111111
11111111

11111111

0x48

Slave Write Burst to memory
Starting address = 0x6

J ; 1 64-bit double Dword

A9769-02

Hardware Reference Manual

337

Intel® IXP2800 Network Processor
PCI Unit

intel.

For target reads from 1 XP2400 Network Processor memory, the entire 64-byte block is fetched
from DRAM. For target reads from 1 XP2800 Network Processor memory, the block size

is16 bytes. Depending on the address for the target request, extra datais discarded at the beginning
until the target addressis reached. Also, extradatais discarded at the end of the transfer also when
the burst ends in the middle of adata block. No pre-fetch is supported for DRAM access. See

9.3.3.2 DRAM Slave Reads

Figure 123.
Figure 123. Example of Target Read from DRAM Using 64-Byte Burst
Memory Transfer Internal PCI Bus
Address Byte Enables Size Bus Data Address Byte Enables
0x08
ox0 [11111111]| 64byte 0000000}
11111111 li 00000000
11111111 00000000
11111111 Byte Lane 00000000
11111111 - Swap 00000000
11111111 - 00000000
11111111 00000000
11111111 .
Disconnect
0x40
0x40 11111111 64 byte 00000000
11111111 00000000
11111111 J 11111]100
11111111
11111111 Discard
11111111 Discard
11111111 -
Discard Slave Read Burst from memory
11111111 Discard Starting address = 0x9
- Transfer Size - 73 bytes
Discard
A9770-01

The PCI core resets the read FIFO before issuing a memory read data request on FBus. The PCI
core will disconnect at the 64-byte address boundary.

338 Hardware Reference Manual

In

9.3.4

®

Intel® IXP2800 Network Processor
PCI Unit

Mailbox and Doorbell Registers

Mailbox and Doorbell registers provide hardware support for communication between the Intel
X Scale® core and a device on the PCI Bus.

Four mailbox registers are provided so that messages can be passed between the Intel X Scale® core
and a PCI device. All four reglsters are 32 hits and can be read and written with byte resolution
from both the Intel XScale® core and PCI. How the reglsters areusedis appllcatlon dependent and
the messages are not used internally by the PCI Unit in any way. The mailbox registers are often
used with the Doorbell interrupts.

Doorbell interrupts provide an efficient method of generating an interrupt as well as encoding the
purpose of the interrupt. The PCI Unit supports an Intel XScale® core Doorbell register that is used
by a PCI device to generate an Intel XScale® core FIQ and aseparate PCl Doorbell register that is
used by the Intel XScale® core to generate a PCI mterrupt A source generating the Doorbell
interrupt can write a software defined bitmap to the register to indicate a specific purpose. This
bitmap is translated into a single interrupt signal to the destination (either a PCI interrupt or a

I XP2800 Network Processor interrupt). When an interrupt is received, the Doorbell registers can
be read and the bit mask can be interpreted. If alarger bit mask isrequired than that is provided by
the Doorbell register, the Mailbox registers can be used to pass up to four 32-bit blocks of data.

The doorbell interrupts are controlled through the registers shown in Table 126.

Table 126. Doorbell Interrupt Registers

Register Name Description

Intel XScale® core

® .
Doorbell Used to generate the Intel XScale™ core Doorbell interrupts.

Intel XScale® core

Doorbell Setup Used to initialize the Intel XScale™ core Doorbell register and for diagnostics.

PCI Doorbell Used to generate the PCI Doorbell interrupts.

PCI Doorbell Setup Used to initialize the PCI Doorbell register and for diagnostics.

The Intel XScale® core and PCI devices write to the corresponding DOORBELL register to
generate up to 32 doorbell mterrupts Each bit inthe DOORBELL register isimplemented asan SR
flip-flop. The Intel XScale® corewritesa 1 to set the flip-flop and the PCI device writesa 1 to clear
the flip-flop. Writing a 0 has no effect on the reglsters The PCI interrupt signal isthe output of an
NOR functlons of all the PCI DOORBELL register bits (outputs of the SR flip-flops). The Intel

X Scale® coreinterrupt signal is the output of an NAND function of all the Intel X Scale® core
DOORBELL register bits (outputs of the SR flip-flops).

To assert aninterrupt (i.e., to “push a doorbell”):

¢ A write of 1 to the corresponding bit of the DOORBELL reglster generates an interrupt. This
isthe case for either PCI device or the Intel XScale® core®5| nce writing 1 changes the doorbell
bit to the proper asserted state (i.e., O for an Intel XScale™ coreinterrupt and 1 for a PCl

interrupt).

To dismiss an interrupt:

¢ A write of 1 to the corresponding bit of the DOORBELL register clearsaninterrupt. Thisis
the case for either PCI device or the Intel X Scale® core, smce writing 1 changes the doorbell
bit to the proper de-asserted state (i.e., 1 for an Intel XScale® core interrupt and O for a PCI
interrupt).

Hardware Reference Manual 339

Intel® IXP2800 Network Processor
PCI Unit

intel.

Figure 124 and Figure 125 illustrates how a Doorbell interrupt is asserted and cleared by both the
Intel XScale® core and a PCI device.

Figure 124. Generation of the Doorbell Interrupts to PCI

DO—> PCIL_INT#

= 2. PCI Reads PCI_DOORBELL to
Q determine the Mailbox interrupt
1. Write 1 to set bit and s DOORBELL gf— (&:0.reads0x80000300)
i Register S
Generate a PCl interrupt. 3. PCl Writes back read value to
g D clear interrupt.

(e.g., write 0x8000 03000)

A9771-01

Figure 125. Generation of the Doorbell Interrupts to the Intel XScale® Core

FIQ or IRQ <—((

2. Intel XScale™ Reads
XSCALE_DOORBELL to L

_determlne the Doorbell ¢ Q
interrupt. —— 35S Intel® XScale™ R 1. PCI device write 1 to
(e.g.: reads 0x0030 F2F1) DOORBELL clear bit and generate
) Register a FIZIIRQ
3. XScale* inverts the read
value and write back the D

results to clear interrupt
(e.g., write 0x0030 F2F1 » OxFFFF FFFF = OxFFCF OCOE)

A9772-01

The Doorbell Setup register allows the Intel X Scale® core and aPCl device to perform two
functions that are not possible using the Doorbell register. Thisregister is used during setup and
diagnostics and is not used during normal operations. First, it allows the Intel XScale™ core and
PCI device to clear an interrupt that it has generated to the other device. If the Intel X Scale® core
sets an interrupt to PCI device using the Doorbell register, the PCI device is the only one that can
use the Doorbell register to clear the interrupt by writing one. With the Doorbell setup register, the
Intel XScale® core can clear the interrupt by write O to it.

Second, it allows the Intel XScale® core and PCI device to generate a doorbell interrupt to itself.
This can be used for diagnostic testing. Each bit in the Doorbell Setup register is mapped directly to
the datainput of the Doorbell register such that the datais directly written into the Doorbell
register.

340 Hardware Reference Manual

Intel® IXP2800 Network Processor
PCI Unit

During system initialization, the doorbell registers must be initialized by clearing the interrupt bits
in the Doorbell register using the Doorbell Setup register by writing zeros to the PCI Doorbell
setup register and ones to the Intel X Scale® core Doorbell setup register.

9.3.5 PCI Interrupt Pin

An external PCI interrupt can be generated in the following way:
* Thelntel XScale® coreinitiates a Doorbell interrupt XSCALE_INT_ENABLE.
* One or more of the DMA channels have completed the DMA transfers.
* ThePNI bit is cleared by the Intel X Scal e® coreto generate a PCl interrupt

* Aninterna functional unit generates either an interrupt or an error directly to the PCI host.

Table 127 describes how IRQ are generated for each silicon stepping.

Table 127. IRQ Interrupt Options by Stepping

Stepping Description
A stepping IRQ interrupts can be handled only by the Intel XScale® core.
IRQ interrupts can be handled by either the Intel XScale® core or a
B Stenpin PCI host. Refer to the description of the PCI_OUT_INT_MASK and
PPING | bc| OUT_INT_STATUS registers in the in the Intel® IXP2400/
IXP2800 Network Processor Programmer’s Reference Manual.

Figure 126 shows how PCI interrupts are managed via the PCI and the Intel X Scale® core

Figure 126. PCI Interrupts

PNI bit to set PCI interrupt

| PCI_CONTROL I

Intel® XScale™ Core writes

Read Intel XScale™ ||
Core PCl interruptto || I

| I
| : || all doorbell bits

Enable PCI interrupt from

PCI_OUT_INT_MASK

|
|
|
|
|
|
|
|
| determine interrupt || I T PCI_INTA#
™ ells whether or not PCI
| Other source Il Intel XScale™ Core sets 1 interrupt was from Doorbell
| interrupts FIORG] I Dot_)rbells bits to generate Il |
| ————> RAW INT STATUS an interrupt to the PCI PCI_OUT_INT_STATUS|<-| |
I 1 = I | PCI_DOORBELL II :: I
| T I |
| — H I DMA Channels (done) |
| {FIQIRQ} 11| Pcisets Doorbells bits to 1 |
| _INT_ENABLE 11| generate an interrupt to 1 |
| ¥ the Intel XScale™ Core 1 |
™
I 'gfr'eﬁﬁtcea}ﬁpt I XSCALE_DOORBELL : : I
| I |
| . I I |
| Registers accessed by 11 1 |
| Intel XScale™ Core | I I |
| I Bitwise I |
| I AND I—LI— XSCALE_INT_ENABLE| |
| I I -
| 1 XSCALE_INT_STATUS PCl INTB#
o ___ e . | B
A9773-01

Hardware Reference Manual

341

Intel® IXP2800 Network Processor
PCI Unit

intel.

The Master Interface consists of the DMA engine and the Push/pull target interface. Both can
generate initiator PCI transactions:

9.4 Master Interface Block

941 DMA Interface

There are two DMA channels, each of which can move blocks of datafrom DRAM to the PCI or
from the PCI to DRAM. The DMA channels read parameters from alist of descriptorsin SRAM,
perform the data movement to or from DRAM, and stop when the list is exhausted. The descriptors
are loaded from predefined SRAM entries or may be set directly by CSR writesto DMA registers.
Thereis no restriction on byte alignment of the source address or the destination address. For PCI
to DRAM transfers, the PCI command is Memory Read, Memory Read line, or Memory Read
Multiple. For DRAM to PCI transfers, the PCI command is Memory Write. Memory Write
Invalidate is not supported.

DMA reads are unmasked reads (all byte enables asserted) from DRAM. After each transfer, the
byte count is decremented by the number of bytes read, and the source address isincremental by
one 64-bit double Dword. The whole data block is fetched from the DRAM. For a system using
RDRAM (like the I XP2800 Network Processor), the block sizeis 16 bytes.

DMA reads are masked reads from the PCI and writes are masked for both the PCI and DRAM.
When moving ablock of data, the internal hardware adjusts the byte enables so that the datais
aligned properly on block boundaries and that only the correct bytes are transferred if the initial
and final data requires masking.

For DMA data, the DMA FIFO consists of two separate FBus initiator read FIFOs and two initiator
write FIFOs, which areinside the PCI Core and three DMA buffers (corresponding to the DMA

channels), whichisfor buffering datato and from the DRAM. Since thereisno simultaneous DMA
read and write outstanding, one shared 64-byte buffer is used for both read and write DRAM data

Up to two DMA channels are running at atime with three descriptors outstanding. The two DMA
channels and the direct access channel to PCI Bus from Command Bus Master are contending to
use the address, read and write FIFOs inside the Core.

Effectively, the active channels interleave bursts to or from the PCI Bus. Each channel is required
to arbitrate for the PCI FIFOs after each PCI burst request.

94.1.1 Allocation of the DMA Channels

Static allocation are employed such that the DMA resources are controlled exclusively by asingle
device for each channel. The Intel X Scale® core, aM icroengine and the external PCI host can
access the two DMA channels. The first two channels can function in one of the following modes,
as determined by the DMA_INF_MODE register:

* TheIntel XScale® core owns both DMA channel 1 and channe! 2.
* The Microengines owns both DMA channel 1 and channel 2.

* PCI host owns both DMA channel 1 and channel 2.

* Thelntel XScale® core owns both DMA channel 1 and channel 2.

The third channel can be allocated to either the Intel X Scale® core, PCI host, or Microengines.

342 Hardware Reference Manual

9.4.1.2

9.4.1.3

Intel® IXP2800 Network Processor
PCI Unit

The DMA mode can be changed only by the Intel XScale® core under software control. The
software should signal to suspend DMA transactions and wait until all DMA channels are free
before changing the mode. Software should determine when all DMA channels are free either by
polling XSCALE_INT_STATUS register bits DMA1 and DMAS3 until both DMA channels are
done.

Special Registers for Microengine Channels

Interrupts are generated at the end of DMA operation for the Intel X Scale® core and PCI initiated
DMA. However, the Microengine does not provide the interrupt mechanism. The PCI Unit will
instead use an “ Auto-Push” mechanism to signal the particular Microengine on completion of
DMA.

When the Microengine sets up the DMA channel, it would also writethe CHAN_X_ME_PARAM
with Microengine number, Context number, Register number, and Signal number. When the DMA
channel completes, it writes some status information (Error or OK status) to the Microengine/
Context/Register/Signal. PCI Unit will arbitrate for the SRAM Push bus. The Push ID is from the
parameters in the register.

The ME_PUSH_STATUS reflects the DMA Done bit in each of the CHAN_X_CONTROL
registers. The Auto-Push operation will proceed after the DMA is done for the particular DMA
channel if the corresponding enable bit inthe ME_PUSH_ENABLE is set.

DMA Descriptor

Each descriptor occupies four 32 bit Dwords and is aligned on a 16-byte boundary. The DMA

channels read the descriptors from local SRAM into the four DMA working registers once the
control register has been set to initiate the transaction. This control must be set explicitly. This
starts the DMA transfer. The register names for the DMA channels are listed in Figure 127.

Hardware Reference Manual 343

Intel® IXP2800 Network Processor
PCI Unit

Figure 127. DMA Descriptor Reads

Local SRAM

Last Next

Descriptor Descriptor
4 >
3
H
Prior Current

Descriptor Descriptor

1 /—) 5
7 7

7

1 Working Register

DMA Channel Register

Channel Register Name (X can be 1, 2, or 3)

Byte Count Register

PCI Address Register
DRAM Address Register
Descriptor Pointer Register

CHAN_X_BYTE_COUNT
CHAN_X_PCI_ADDR
CHAN_X_DRAM_ADDR
CHAN_S_DESC_PTR

Control Register

DMA Channel Register

Channel Register Name (X can be 1, 2, or 3)

Control Register

CHAN_X_CONTROL

A9774-01

After adescriptor is processed, the next descriptor isloaded in the working registers. This process
repeats until the chain of descriptorsisterminated (i.e., the End of Chain bit is set). See Table 128.

Table 128. DMA Descriptor Format

Offset from Descriptor Pointer Description
0x0 Byte Count
0x4 PCI Address
0x8 DRAM Address
oxC Next Descriptor Address

344 Hardware Reference Manual

INtal.

Intel® IXP2800 Network Processor
PCI Unit

94.1.4 DMA Channel Operation

Since a PCI device, Microengine, or the Intel X Scal €® core can access the internal CSRs and
memory in asimilar way, the DMA channel operation description that follows will apply to all
channels. CHAN_1 , CHAN_2_, or CHAN_3_can be placed before the name for the DMA
registers.

The DMA channel owner can either set up the descriptorsin SRAM or it can write the first
descriptor directly to the DMA channel registers.

When descriptors and the descriptor list are in SRAM, the procedure is as follows:

1.

6.

The DMA channel owner writes the address of the first descriptor into the DMA Channel
Descriptor Pointer register (DESC_PTR).

The DMA channel owner writesthe DMA Channel Control register (CONTROL) with
miscellaneous control information and also sets the channel enable bit (bit 0). The channel
initial descriptor bit (bit 4) in the CONTROL register must also be cleared to indicate that the
first descriptor isin SRAM.

Depending on the DMA channel number, the DMA channel reads the descriptor block into the
corresponding DMA registers, BY TE_COUNT, PCI_ADDR, DRAM_ADDR, and
DESC_PTR.

The DMA channel transfers the data until the byte count is exhausted, and then sets the
channel transfer done (bit 2) in the CONTROL register.

If the end of chain bit (bit 31) in the BY TE_COUNT register is clear, the channel checks the
Chain Pointer value. If the Chain Pointer valueis not equal to 0. it reads the next descriptor
and transfers the data (step 3 and 4 above). | F the Chain Pointer valueis equal to 0O, it waits for
the Descriptor Added bit of the Channel Control register to be set before reading the next
descriptor and transfers the data (step 3 and 4 above). If bit 31 is set, the channel sets the
channel chain done bit (bit 7) in the CONTROL register and then stops.

Proceed to the Channel End Operation.

When single descriptors are written directly into the DMA channel registers, the procedureis as
follows:

1.

The DMA channel owner writes the descriptor values directly into the DMA channel registers.
The end of chain bit (bit 31) in the BY TE_COUNT register must be set, and the value in the
DESC_PTR register is not used.

The DMA channel owner writes the base address of the DMA transfer into the PCI_ADDR to
specify the PCI starting address.

When the first descriptor isinthe BY TE_COUNT register, the DRAM_ADDR register must
be written with the address of the data to be moved.

The DMA channedl owner writes the CONTROL register with miscellaneous control
information, along with setting the channel enable bit (bit 0). The channel initial descriptor in
register bit (bit 4) inthe CONTROL register must also be set to indicate that the first descriptor
isaready in the channel descriptor registers.

The DMA channel transfers the data until the byte count is exhausted, and then sets the
channel transfer done bit (bit 2) in the CONTROL register.

Since the end of the chain bit (bit 31) inthe BY TE_CONT register is set, the channel setsthe
channel chain done bit (bit 7) in the CONTROL register and then stops.

Proceed to the Channel End Operation.

Hardware Reference Manual 345

Intel® IXP2800 Network Processor

PCI Unit

9.4.1.5

9.4.1.6

9.4.1.7

346

DMA Channel End Operation

n
intel.
1. Channel owned by PCI

If not masked viathe PCI Outbound Interrupt Mask register, the DMA channel interrupts the
PCI host after the setting of the DMA done bit in the CHAN_X_ CONTROL register, which is
readable in the PCl Outbound Interrupt Status register.

2. Channel owned by the Intel X Scale® core

If enabled viathe Intel XScale® core Interrupt Enable registers, the DMA channel interrupts
the Intel X Scale® core by setting the DMA channel done bit in the CHAN_X_ CONTROL
register, which is readable in the Intel X Scal €® core Interrupt Status register.

3. Channel owned by Microengine

If enabled via the Microengine Auto-Push Enable registers, the DMA channel signalsthe
Microengine after setting the DMA channel done bit in the CHAN_X CONTROL register,
which is readable in the Microengine Auto-Push Status register.

Adding Descriptor to an Unterminated Chain

It is possible to add a descriptor to a chain while a channel isrunning. To do so the chain should be
left un-terminated, that is the last descriptor should have End of Chain clear, and the Chain Pointer
value equal to 0. A new descriptor (descriptors) can be added to the chain by overwriting the Chain
Pointer value of the un-terminated descriptor (in SRAM) with the Local Memory address of the
(first) added descriptor (Note that the added descriptor must actually be valid in Local Memory
prior to that). After updating the Chain Pointer field, the software must write a 1 to the Descriptor
Added bit of the Channel Control register. Thisis necessary for the case where the channel was
paused in order to re-activate the channel. However, software need not check the state of the
channel before writing that bit; there is no side-effect of writing that bit in the case where the
channel had not yet read the unlinked descriptor.

If the channel was paused or had read an unlinked Pointer, it will re-read the last descriptor
processed (i.e.,the one that originally had the zero value for Chain Pointer) to get the address of the
newly added descriptor.

A descriptor can not be added to a descriptor which has End of Chain set.

DRAM to PCI Transfer
For aDRAM-to-PCI transfer, the DMA channel reads data from DRAM and placesit into the
DMA buffer for transfer to the FBus FIFO when the following conditions are met:

* Thereisat least free space for aread block in the buffer.

* The DRAM controller issues data valid on DRAM push data bus to the DMA engine.

¢ DMA transfer is not done.
Before datais stored into the DMA buffer, the DRAM starting addressiis evaluated. Extradatawill
be discarded in case the DRAM starting address does not start at aligned addresses. The lower
address bits determine the byte enables for the first data double Dword. At the end of the DMA
transfer, extra data will be discarded and byte enables are calculated for the last 64-bit double

Dword. After the datais loaded into the buffer, the PCI starting address is evaluated and the buffer
is shifted byte wise to align the starting DRAM data with the starting PCI starting address.

Hardware Reference Manual

intel.

Intel® IXP2800 Network Processor
PCI Unit

A 64-bit double Dword with byte enablesis pushed into the FBus FIFO from the DMA buffers as
soon asthereis dataavailablein the buffer and thereis spacein the FBus FIFO. The Corelogic will
transfer the exact number of bytes to the PCI Bus. The maximum burst size on the PCI bus varies
according to the stepping and is described in Table 129

Table 129. PClI Maximum Burst Size

9.4.1.8

9.4.2

9421

Stepping Description

A Stepping The maximum burst size is 64 bytes.

The maximum burst size can be greater than 64 bytes
for certain operations.

The register PCI_IXP_PARAM configures the burst
length for target write operations.

The register CHAN_#_CONTROL configures the burst
length for DMA read and write operations.

The register PCI_CONTROL configures the atomic
feature for target write operations of 64 bytes or fewer.

Note: Bursts longer than 64 bytes are not supported for
PCI target read operations.

B Stepping

PCIl to DRAM Transfer

The DMA channel issues a sequence of PCI read request commands through the FBus address
FIFO to read the precise byte count from PCI.

The DMA engine will continue to load the DMA write buffer with FBus FIFO data as soon as data
isavailable.

The DMA engine determines the largest size of memory request possible with the current DRAM
address and remaining byte count. It also has to make sure there is enough data in the write buffer
before sending the memory request.

Push/Pull Command Bus Target Interface

Through the command bus target interface, the command bus masters (PCI, Intel X Scale® core,
and Microengines) can access the PCI Unit internal registersincluding the local PCI configuration
registers and the local PCI Unit CSRs. Also, the Microengine and the Intel X Scale® core can issue
transactions on the PCI bus. The requests are generated from the command master to the command
bus arbiter. The arbiter selects amaster and sends it a grant. That master then sends a command,
which is passed through by the arbiter.

PCI Unit will issue the push and pull data responses to the SRAM push/pull data buses. When the
read command is received, the PCI Unit will issue the push data request on the SRAM push data
bus. When the write command is received, PCI Unit will issue the pull command on the SRAM
pull data bus.

Command Bus Master Access to Local Configuration Registers

The configuration register within the PCI unit can be accessed by push/pull command bus accessto
configuration space through the FBus interface of the PCI core. When the IXP2800 Network
Processor is a PCl hogt, these registers have to be accessed through thisinternal path and no PCI
bus cycle will be generated.

Hardware Reference Manual 347

Intel® IXP2800 Network Processor
PCI Unit

9.4.2.2

9.4.2.3

9.4.2.3.1

intel.

These are CSRs within the PCI Unit that are accessible from push/pull bus masters. The masters
include the Intel XScale® core, Microengines. Thereis no PCI bus cycles generated. The CSRs
within the PCI Unit can be accessed internally by external PCI devices.

Command Bus Master Access to Local Control and
Status Registers

Command Bus Master Direct Access to PCI Bus

The Intel XScale® core and M icroengines are the only command bus masters that have direct
access to the PCI bus as a PCI Businitiator. The PCI Bus can be accessed by push/pull command
bus accessto PCI bus address space. The PCI Unit will share the internal SRAM push/pull data bus
with SRAM for the datatransfers.

The data from the SRAM push/pull data bus are transferred through the master data port of the
FBusinterface of the PCI core. The PCI Corewill handle all the PCI Bus protocol handshakes. The
SRAM pull datareceived for awrite command will be transferred to the Master write FIFO for PCI
writes. For PCI reads, datais transferred from the read FIFO to the SRAM push data bus. A 32-
byte Direct buffer is used to support up to 32 bytes of data responses to the direct accessto PCI
Bus.

The Command Bus Master accessto PCI buswill require internal arbitration to gain access to the
data FIFOs inside the core, which are shared between the DMA engine and direct access to PCI.

PCI Address Generation for 10 and MEM cycles

When push/pull command bus master is accessing the PCI Bus, the PCI addressis generated based
on the PCI address extension register (PCI_ADDR_EXT). Figure 128 shows how the addressis
generated from a Command Bus Master address.

Figure 128. PCI Address Generation for Command Bus Master to PCI

31

16 15 13 12 0
T

T T
PIOADD PMSA RES PCI Address for PCI
Memory Accesses
I Y Y Y O Y Y I 11 I T Y Y I O |
31 16 15 13 12 0
T .
PCI Extension
PIOADD PMSA RES Register
N N T I T Y T T T T T I O |
31 NG 15 2 1 0
T T T T T T T T T T T T T T T T T L T T T T T T T T T dd f
PCI Address for
™ .
PIOADD Intel® XScale™ Core Address[15:2] | 00 PCI /O Accesses
N N T I Y T T Y Y OO | I O Y |

A9775-01

348

Hardware Reference Manual

intel.

9.4.2.3.2

Intel® IXP2800 Network Processor
PCI Unit

PCI Address Generation for Configuration Cycles

When a push/pull command bus master is accessing the PCI Busto generate a configuration cycle,
the PCI addressis generated based on the a Command Bus Master address as shown in Table 130
and Figure 129:

Table 130. Command Bus Master Configuration Transactions

Figure 129. PCI Address Generation for Command Bus Master to PCI Configuration Cycle

9.4.2.3.3

9.4.2.3.4

9.4.2.35

Cycle Result

Type 1 Configuration Cycle Command Bus address bits [31:24] are equal to 0OXDA

Command Bus address bits [31:24] are equal to OXDB.

Type 0 Configuration Cycle

A9776-01

PCIl Address Generation for Special and IACK Cycles
The PCI address is undefined for special and IACK PCI cycles

PCIl Enables

The PCI byte enables are generated based on the Command Bus Master instruction and the PCI
unit does not change the states of the enables.

PCI Command

The PCI command is derived from the Command Bus Master address space map. The different
spaces supported are listed in Table 131:

Table 131. Command Bus Master Address Space Map to PCI

PCI Command Intel XScale® Core Address Space
PCI Memory 0XE000 0000 to OXFFFF FFFF
Local CSR 0xDFO00 0000 to OXDFFF FFFF

Local Configuration Register 0xDEOO 0000 to OXDEFF FFFF

PCI Special Cycle/PCI IACK Read

0xDCO0 0000 to OXDDFF FFFF

PCI Type 1 Configuration Cycle

0xDBO0O0 0000 to OXDBFF FFFF

PCI Type 0 Configuration Cycle

0xDA00 0000 to OXDAFF FFFF

PCI I/0

0xD800 0000 to OxD8FF FFFF

Hardware Reference Manual

349

Intel® IXP2800 Network Processor
PCI Unit

intel.
95 PCI Unit Error Behavior

9.5.1 PCI Target Error Behavior

95.1.1 Target Access Has an Address Parity Error

1. If PCI_CMD_STAT[PERR_RESP] is not set, PCI Unit will ignore the parity error.
2. If PCI_CMD_STAT[PERR_RESP] is set:

a. PCI corewill not claim the cycle regardless of internal device select signal.
b. PCI corewill let the cycle terminate with master abort.
c. PCI corewill not assert PCl_SERR#.
d. SlaveInterface sets PCI_CONTROL[TGT_ADR_ERR], which will interrupt the Intel
X Scale® coreif enabled.
9.51.2 Initiator Asserts PClI_PERR# in Response to One of Our Data
Phases

1. Core does nothing.
2. Responsibility lieswith theinitiator to discard data, report this to the system, etc.

9.5.1.3 Discard Timer Expires on a Target Read

1. PCI unit discards the read data.

2. PCI Unit invalidates the delayed read address

3. PCI Unit sets Discard Timer Expired bit (DTX) inthe PCI_CONTROL.

4. If enabled (XSCALE_INT_ENABLE [DTE]), the PCI unit interrupts the Intel XScale® core.

95.1.4 Target Access to the PCI_CSR_BAR Space Has lllegal
Byte Enables

Note: The acceptable byte enables are BE[3:0] = 0x0 or OxF.
1. Slave Interface will set PCI_CONTROL[TGT_CSR_BE]
2. Slave Interface will issue target abort for target read and drop the transaction for target write.

9.5.15 Target Write Access Receives Bad Parity PCI_PAR with the Data

1. If PCI_CMD_STAT[PERR_RESP] is not set, PCI Unit will ignore the parity error.
2. If PCI_CMD_STAT[PERR_RESP] is set:
a. core asserts PCI_PERR# and sets PCI_CMD_STAT[PERR].

b. Slave Interface sets PCI_CONTROL[TGT_WR_PAR], which will interrupt the Intel
X Scale® coreif enabled.

c. Dataisdiscarded.

350 Hardware Reference Manual

Intel® IXP2800 Network Processor
PCI Unit

INtal.

9.5.1.6 SRAM Responds With a Memory Error on One or More Data Phases
on a Target Read

1. Slave Interface sets PCI_CONTROL[TGT_SRAM_ERR], which will interrupt the Intel
XScale® coreif enabled.

2. Assert PCI Target Abort at or before the datain question is driven on PCI.

9.5.1.7 DRAM Responds With a Memory Error on One or More Data Phases
on a Target Read

1. SlaveInterface sets PCI_CONTROL[TGT_DRAM_ERR], which will interrupt the Intel
XScale® coreif enabled.

2. Slave Interface asserts PCI Target Abort at or before the datain question is driven on PCI.

9.5.2 As a PClI Initiator During a DMA Transfer

9.5.2.1 DMA Read From DRAM (Memory-to-PCI Transaction) Gets a
Memory Error

1. Set PCI_CONTROL[DMA_DRAM_ERR] which will interrupt the Intel XScale® coreif
enabled.

2. Master Interface terminates transaction before bad datais transferred (okay to terminate
earlier).

3. Master Interface clears the Channel Enable bitin CHAN_X CONTROL.
4. Master Interface sets DMA channel error bitin CHAN_X_ CONTROL.

5. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer pointing to
the DMA descriptor of the failed transfer.

6. Master Interface resets the state machines and DMA buffers.

9.5.2.2 DMA Read From SRAM (Descriptor Read) Gets a Memory Error

1. Set PCI_CONTROL[DMA_SRAM_ERR] which will interrupt the Intel XScale® coreif
enabled.

2. Master Interface clears the Channel Enable bitin CHAN_X CONTROL.
3. Master Interface sets DMA channel error bitin CHAN_X_ CONTROL.

4. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer pointing to
the DMA descriptor of the failed transfer.

5. Master Interface resets the state machines and DMA buffers.

Hardware Reference Manual 351

Intel® IXP2800 Network Processor
PCI Unit

intel.
9.5.2.3 DMA From DRAM Transfer (Write to PCI) Receives PClI_PERR# on
PCI Bus
1. If PCI_CMD_STAT[PERR_RESP] is not set, PCI Unit will ignore the parity error.

2. If PCI_CMD_STAT[PERR_RESP] is set:

a Master Interface sets PCI_CONTROL[DPE] which will interrupt the Intel XScal €® core
if enabled.

b. Master Interface clears the Channel Enable bitin CHAN_X_ CONTROL.
c. Master Interface sets DMA channel error bitin CHAN_X CONTROL.

d. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer
pointing to the DMA descriptor of the failed transfer.

e. Master Interface resets the state machines and DMA buffers.
f. Coresets PCI_CMD_STAT[PERR] if properly enabled.

9.5.2.4 DMA To DRAM (Read from PCI) Has Bad Data Parity

1. If PCI_CMD_STAT[PERR_RESP] is not set, PCI Unit will ignore the parity error.
2. If PCI_CMD_STAT[PERR_RESP] is set:
a. Core asserts PClI_PERR# on PCI if PCI_CMD_STAT[PERR_RESP] is set.

b. Master Interface sets PCI_CONTROL[DPED] which can interrupt the Intel XScale® core
if enabled.

c. Master Interface clears the Channel Enable bit in CHAN_X CONTROL.
d. Master Interface sets DMA channel error bitin CHAN_X_ CONTROL.

e. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer
pointing to the DMA descriptor of the failed transfer.

f. Master Interface resets the state machines and DMA buffers.

9.5.2.5 DMA Transfer Experiences a Master Abort (Time-Out) on PCI

Note That is, nobody asserts DEV SEL during the DEV SEL window.

1. Master Interface sets PCI_ CONTROL[RMA] which will interrupt the Intel XScale® coreif
enabled.

2. Master Interface clears the Channel Enable bit in CHAN_X_ CONTROL.
3. Master Interface sets DMA channel error bitin CHAN_X_CONTROL.

4. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer pointing to
the DMA descriptor of the failed transfer.

5. Master Interface resets the state machines and DMA buffers

352 Hardware Reference Manual

In

9.5.2.6

9.5.2.7

9.5.3

9531

9.5.8.2

9.5.3.3

Intel® IXP2800 Network Processor
PCI Unit

DMA Transfer Receives a Target Abort Response During a
Data Phase
1. Core terminates the transaction.

2. Master Interface sets PCI_ CONTROL[RTA] which can interrupt the Intel XScale® coreif
enabl ed.

3. Master Interface clears the Channel Enable bitin CHAN_X_CONTROL.
4. Master Interface sets DMA channel error bitin CHAN_X_CONTROL.

5. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer pointing to
the DMA descriptor of the failed transfer.

6. Master Interface resets the state machines and DMA buffers.

DMA Descriptor Has a 0x0 Word Count (Not an Error)

1. No dataistransferred.
2. Descriptor isretired normally.

As a PCI Initiator During a Direct Access from the Intel
XScale® Core or Microengine

Master Transfer Experiences a Master Abort (Time-Out) on PCI

1. Core aborts the transaction.

2. Master Interface sets PCI_CONTROL[RMA] which will interrupt the Intel X Scale® core if
enabled.

Master Transfer Receives a Target Abort Response During
a Data Phase
1. Core aborts the transaction.

2. Master Interface sets PCI_CONTROL[RTA] which will interrupt the Intel X Scale® core if
enabled.

Master from the Intel XScale® Core or Microengine Transfer
(Write to PCI) Receives PClI_PERR# on PCI Bus
1. If PCI_CMD_STAT[PERR_RESP] is not set, PCI Unit will ignore the parity error.
2. If PCI_CMD_STAT[PERR_RESP] is set:
a Coresets PCI_CMD_STAT[PERR].

b. Master Interface sets PCI_CONTROL[DPE] which will interrupt the Intel X Scale® core
if enabled.

Hardware Reference Manual 353

Intel® IXP2800 Network Processor

PCI Unit

9.5.34

9.5.3.5

9.5.3.6

9.6

intel.
Master Read From PCI (Read from PCI) Has Bad Data Parity

1. If PCI_CMD_STAT[PERR_RESP] is not set, PCI Unit will ignore the parity error.
2. If PCI_CMD_STAT[PERR_RESP] is set:
a. Core asserts PCI_PERR# on PCI.

b. Master Interface sets PCI_CONTROL[DPED] which will interrupt the Intel XScale®
coreif enabled.

c. Datathat has been read from PCI is sent to the Intel X Scal€® core or Microengine.

Master Transfer Receives PClI_SERR# from the PCI Bus

Master Interface sets PCI_CONTROL[RSERR] which will interrupt the Intel X Scal e® coreif
enabled.

Intel XScale® Core Microengine Requests Direct Transfer when
the PCI Bus is in Reset

Master Interface will complete the transfer and drop the write data and return all ones on the read
data.

PCI Data Byte Lane Alignment

During any endian conversion, PCI does not need to do any long word swapping between two 32
bits long words(LW1, LWO). But PCI may need to do byte swapping within the 32-bits long word.
Because of the different endian convention between PCI Bus and the memory, all data going
between the PCI core FIFO and memory data bus passes through the byte lane reversal as shownin
Table 132 through Table 139.

PCI allows byte-enable swapping only without the data swapping or alow data swapping only
without byte enable swapping. When PCI handle the mis align datain above two cases, PCI will
only care about valid data. So PCI will drive any data values for those misalign invalid data
portions.

Table 132. Byte Lane Alignment for 64-Bit PCI Data In (64 Bits PCI Little Endian to Big Endian

354

with Swap)

PCI Data IN[63:56] | IN[55:48] | IN[47:40] | IN[39:32] | IN[31:24] | IN[23:16] | IN[15:8] IN[7:0]
OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24] | OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24]

SRAM Data Long Word1 (32 bits) Long WordoO (32 bits)

LW1 drive after LWO LWO drive first

DRAM Data | OUT[39:32] | OUT[47:40] | OUT[55:48] | OUT[63:56] | OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24]

Hardware Reference Manual

Intel® IXP2800 Network Processor
Inte|®

PCI Unit
Table 133. Byte Lane Alignment for 64-bit PCI Data In (64 Bits PCI Big Endian to Big Endian
without Swap)
PCI Data IN[39:32] | IN[47:40] | IN[55:48] | IN[63:56] IN[7:0] IN[15:8] IN[23:16] | IN[31:24]
OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24] | OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24]
SRAM Data
Long Word1 (32 bits) Long WordO (32 bits)
LW1 drive after LWO LWO drive first
DRAM Data | OUT[39:32] | OUT[47:40] | OUT[55:48] | OUT[63:56] | OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24]
Table 134. Byte Lane Alignment for 32-bit PCI Data In (32 Bits PCI Little Endian to Big Endian
with Swap)
PCI Add[2]=1 PCI Add[2]=0
Long Word1 (32 bits) Long WordO ((32 bits)
LW1 drive after LWO LWO drive first
PCI Data IN[31:24] IN[23:16] IN[15:8] IN[7:0] IN[31:24] | IN[23:16] | IN[15:8] IN[7:0]
OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24] | OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24]
SRAM Data
Long Word1 (32 bits) Long WordO ((32 bits)
LW1 drive after LWO LWO drive first
DRAM Data | OUT[39:32] | OUT[47:40] | OUT[55:48] | OUT[63:56] | OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24]
Table 135. Byte Lane Alignment for 32-bit PCI Data In (32 Bits PCI Big Endian to Big Endian
without Swap)
PCI Add[2]=1 PCI Add[2]=0
Long Word1 (32 bits) Long Word0 ((32 bits)
LW1 drive after LWO LWO drive first
PCI Data IN[7:0] IN[15:8] IN[23:16] | IN[31:24] IN[7:0] IN[15:8] IN[23:16] IN[31:24]
SRAM Data | OUTI7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24] | OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24]
Long Word1 (32 bits) Long WordO ((32 bits)
LW1 drive after LWO LWO drive first
gicrietc(f qrap | ING7:0] IN[15:8] | IN[23:16] | IN[31:24] | IN[7:0] IN[15:8] | IN[23:16] | IN[31:24]
DRAM Data | OUT[39:32] | OUT[47:40] | OUT[55:48] | OUT[63:56] | OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24]
Table 136. Byte Lane Alignment for 64-bit PCI Data Out (Big Endian to 64 Bits PCI Little
Endian with Swap)
IN[7:0] ‘ IN[15:8] IN[23:16] ‘ IN[31:24] IN[7:0] IN[15:8] IN[23:16] | IN[31:24]
SRAM Data Long Word1 (32 bits) Long Word0 ((32 bits)
LW1 drive after LWO LWO drive first
DRAM Data | IN[39:32] | IN[47:40] | IN[55:48] | IN[63:56] IN[7:0] IN[15:8] IN[23:16] | IN[31:24]
PCI Side OUT[63:56] | OUT[55:48] | OUT[47:40] | OUT[39:32] | OUT[31:24] | OUT[23:16] | OUT[15:8] | OUT[7:0]

Hardware Reference Manual

355

Intel® IXP2800 Network Processor
PCI Unit

without Swap)

intel.

Table 137. Byte Lane Alignment for 64-bit PCI Data Out (Big Endian to 64 Bits PCI Big Endian

SRAM Data | IN[7:0] IN[15:8] | IN[23:16] | IN[31:24] IN[7:0] IN[15:8] | IN[23:16] | IN[31:24]
Long Word1 (32 bits) Long WordO ((32 bits)
LW1 drive after LWO LWO drive first
DRAM Data | IN[39:32] | IN[47:40] | IN[55:48] | IN[63:56] IN[7:0] IN[15:8] | IN[23:16] | IN[31:24]
S‘Criefg nee IN[7:0] IN[15:8] | IN[23:16] | IN[31:24] IN[7:0] IN[15:8] IN[23:16] | IN[31:24]
PCI Side | OUT[39:32] | OUT[47:40] | OUT[55:48] | OUT[63:56] | OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24]

Table 138. Byte Lane Alignment for 32-bit PCI Data Out (Big Endian to 32 Bits PCI Little

Endian with Swap)

SRAM Data IN[7:0] IN[15:8] IN[23:16] IN[31:24] IN[7:0] IN[15:8] IN[23:16] IN[31:24]
Long Word1 (32 bits) Long WordO ((32 bits)
LW1 drive after LWO LWO drive first

DRAM Data IN[39:32] IN[47:40] IN[55:48] IN[63:56] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

PCI Data OUT[31:24] | OUT[23:16] | OUT[15:8] | OUT[7:0] | OUT[31:24] | OUT[23:16] | OUT[15:8] | OUT[7:0]
Long Word1 (32 bits) Long Word0 ((32 bits)
LW1 drive after LWO LWO drive first

PCI Add[2]=1 PCI Add[2]=0

Table 139. Byte Lane Alignment for 32-bit PCI Data Out (Big Endian to 32 Bits PCI Big Endian

without Swap)

SRAM Data IN[7:0] IN[15:8] IN[23:16] IN[31:24] IN[7:0] IN[15:8] IN[23:16] IN[31:24]
Long Word1 (32 bits) Long WordO ((32 bits)
LW1 drive after LWO LWO drive first
DRAM Data IN[39:32] IN[47:40] IN[55:48] IN[63:56] IN[7:0] IN[15:8] IN[23:16] IN[31:24]
PCI Data OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24] | OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24]
Long Word1 (32 bits) Long WordO ((32 bits)
LW1 drive after LWO LWO drive first
PCI Add[2]=1 PCI Add[2]=0

The BE_DEMI hit of the PCI_CONTROL register can be set to enable big endian on the incoming
data from the PCI Bus to both the SRAM and DRAM. The BE_DEMO bhit of the PCI_CONTROL
register can be set to enable big endian on the outgoing data to the PCI Bus from both the SRAM

and DRAM.

356

Hardware Reference Manual

Intel® IXP2800 Network Processor
PCI Unit

intel
9.6.1 Endian for Byte Enable

During any endian conversion, PCI does not need to do any long word byte enable swapping
between two 32-bit long words(LW1, LWO0). But PCI may need to do byte enable swapping within
the 32 bitslong word byte enable. Because of the different endian convention between PCI Busand
the memory, all data going between the PCI core FIFO and memory data bus passes through the
byte lane reversal as shown in Table 140 through Table 147:

Table 140. Byte Enable Alignment for 64-bit PCI Data In (64 Bits PCI Little Endian to Big
Endian with Swap)

PCI Data IN_BE[7] | IN_BE[6] | IN_BE[5] | IN_BE[4] | IN_BE[3] | IN_BE[2] | IN_BE[1] | IN_BE[0]

OUT_BE[3] | OUT_BE[2] | OUT_BE[1] | OUT_BE[0] | OUT_BE[0] | OUT_BE[1] | OUT_BE[2] | OUT_BE[3]

SRAM Data Long Word1byte enable Long WordO byte enable
LW1 byte enable drive after LWO byte enable LWO byte enable drive first

DRAM Data | OUT_BE[4] | OUT_BE[5] | OUT_BE[6] | OUT_BE[7] | OUT_BE[0] | OUT_BE[1] | OUT_BE[2] | OUT_BE[3]

Table 141. Byte Enable Alignment for 64-bit PCI Data In (64 Bits PCI Big Endian to Big Endian
without Swap)

PCI Data IN_BE[4] | IN_BE[5] | IN_BE[6] | IN_BE[7] | IN_BE[0] | IN_BE[1] | IN_BE[2] | IN_BE[3]

OUT_BE[0] | OUT_BE[1] | OUT_BE[2] | OUT_BE[3] | OUT_BE[0] | OUT_BE[1] | OUT_BE[2] | OUT_BE[3]

SRAM Data
Long Word1byte enable Long WordO byte enable

LW1 byte enable drive after LWO byte enable LWO byte enable drive first

DRAM Data | OUT_BE[4] | OUT_BE[5] | OUT_BE[6] | OUT_BE[7] | OUT_BE[0] | OUT_BE[1] | OUT_BE[2] | OUT_BE[3]

Table 142. Byte Enable Alignment for 32-bit PCI Data In (32 bits PCI Little Endian to Big
Endian with Swap)

PCIl Add[2]=1 PCI Add[2]=0
Long Word1byte enable Long WordO byte enable
LW1 byte enable drive after LWO byte enable LWO byte enable drive first
PCI Data IN_BE[3] IN_BE[2] IN_BE[1] IN_BE[0] IN_BE[3] IN_BE[2] IN_BE[1] IN_BE[0]
OUT_BE[0] | OUT_BE[1] | OUT_BE[2] | OUT_BE[3] | OUT_BE[0] | OUT_BE[1] | OUT_BE[2] | OUT_BEJ[3]
SRAM Data
Long Word1lbyte enable Long WordO byte enable
LW1 byte enable drive after LWO byte enable LWO byte enable drive first

DRAM Data | OUT_BE[4] | OUT_BE[5] | OUT_BE[6] | OUT_BE[7] | OUT_BE[0] | OUT_BE[1] | OUT_BE[2] | OUT_BE[3]

Hardware Reference Manual 357

Table 143. Byte Enable Alignment for 32-bit PCI Data In (32 Bits PCI Big Endian to Big Endian
without Swap)

PCI Add[2]=1 PCI Add[2]=0
Long Word1lbyte enable Long WordO byte enable
LW1 byte enable drive after LWO byte enable LWO byte enable drive first
PCI Data IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]
SRAM Data OUT_BE[0] | OUT_BE[1] | OUT_BE[2] | OUT_BE[3] | OUT_BE[0] | OUT_BE[1] | OUT_BE[2] | OUT_BEJ3]
Long Word1lbyte enable Long WordO byte enable
LW1 byte enable drive after LWO byte enable LWO byte enable drive first
S'C’ietcot Grap | IN_BE[0] | IN_BE[1] | IN_BE[2] | IN_BE[3] | IN_BE[0] | IN_BE[1] | IN_BE[2] | IN_BE[3]
DRAM Data | OUT_BE[4] | OUT_BE[5] | OUT_BE[6] | OUT_BE[7] | OUT_BE[0] | OUT_BE[1] | OUT_BE[2] | OUT_BE[3]

Table 144. Byte Enable Alignment for 64-bit PCI Data Out (Big Endian to 64 Bits PCI Little
Endian with Swap)

IN_BE[0] ‘ IN_BE[1] | IN_BE[2] | IN_BE[3] | IN_BE[0] ‘ IN_BE[1] | IN_BE[2] | IN_BE[3]
SRAM Data Long Word1byte enable Long WordO byte enable
LW1 byte enable drive after LWO byte enable LWO byte enable drive first
DRAM Data | IN_BE[4] | IN_BE[5] | IN_BE[6] | IN_BE[7] | IN_BE[0] | IN_BE[1] | IN_BE[2] | IN_BE[3]
PCI Side OUT_BE[7] | OUT_BE[6] | OUT_BE[5] | OUT_BE[4] | OUT_BE[3] | OUT_BE[2] | OUT_BE[1] | OUT_BE[0]

Table 145. Byte Enable Alignment for 64-bit PCI Data Out (Big Endian to 64 Bits PCI Big
Endian without Swap)

SRAM Data | IN_BE[0] | IN_BE[1] | IN_BE[2] | IN_BE[3] | IN_BE[0] | IN_BE[1] | IN_BE[2] | IN_BE[3]
Long Wordlbyte enable Long WordO byte enable
LW1 byte enable drive after LWO byte enable LWO byte enable drive first
DRAM Data | IN_BE[4] | IN_BE[5] | IN_BE[6] | IN_BE[7] | IN_BE[0] | IN_BE[1] | IN_BE[2] | IN_BE[3]
PCI Side OUT_BE[4] | OUT_BE[5] | OUT_BE[6] | OUT_BE[7] | OUT_BE[0] | OUT_BE[1] | OUT_BE[2] | OUT_BE[3]

Table 146. Byte Enable Alignment for 32-bit PCI Data Out (Big Endian to 32 Bits PCI Little
Endian with Swap)

SRAM Data | IN_BE[0] | IN_BE[1] | IN_BE[2] | IN_BE[3] | IN_BE[0] | IN_BE[1] | IN_BE[2] | IN_BE[3]
Long Wordlbyte enable Long WordO byte enable
LW1 byte enable drive after LWO byte enable LWO byte enable drive first
DRAM Data | IN_BE[4] | IN_BE[5] | IN_BE[6] | IN_BE[7] | IN_BE[0] | IN_BE[1] | IN_BE[2] | IN_BE[3]
PCI Data OUT_BE[3] | OUT_BE[2] | OUT_BE[1] | OUT_BE[0] | OUT_BE[3] | OUT_BE[2] | OUT_BE[1] | OUT_BE[0]
Long Wordlbyte enable Long WordO byte enable
LW1 byte enable drive after LWO byte enable LWO byte enable drive first
PCI Add[2]=1 PCI Add[2]=0

Intel® IXP2800 Network Processor
PCI Unit

u
Inte|®
Table 147. Byte Enable Alignment for 32-bit PCI Data Out (Big Endian to 32 Bits PCI Big
Endian without Swap)

SRAM Data | IN_BE[0] | IN_BE[1] | IN_BE[2] | IN_BE[3] | IN_BE[0] | IN_BE[1] | IN_BE[2] | IN_BE[3]

Long Word1lbyte enable Long WordO byte enable
LW1 byte enable drive after LWO byte enable LWO byte enable drive first

DRAM Data | IN_BE[4] | IN_BE[5] | IN_BE[6] | IN_BE[7] | IN_BE[0] | IN_BE[1] | IN_BE[2] | IN_BE[3]

PCI Data OUT_BE[0] | OUT_BE[1] | OUT_BE[2] | OUT_BE[3] | OUT_BE[0] | OUT_BE[1] | OUT_BE[2] | OUT_BE[3]
Long Word1byte enable Long WordO byte enable
LW1 byte enable drive after LWO byte enable LWO byte enable drive first
PCI Add[2]=1 PCI Add[2]=0

The BE_BEM I bit of the PCI_CONTROL register can be set to enable big endian on the incoming
byte enable from the PCI Busto both the SRAM and DRAM. The BE_BEMO bit of the
PCI_CONTROL register can be set to enable big endian on the outgoing byte enable to the PCI
Bus from both the SRAM and DRAM.

The B-stepping silicon provides a mechanism to enable byte swapping for PCI 1/O operations as
described in Table 148.

Hardware Reference Manual 359

Intel® IXP2800 Network Processor
PCI Unit

INlal.

Table 148. PCI I/O Cycles with Data Swap Enable

Stepping Description
A PCI 10O cycle is treated like CSR where the data bytes are not swapped. Itis sentin
A Stepping the same byte order whether the PCI bus is configured in Big Endian or Little Endian
mode.
When PCI_CONTROL[IEE] is 0, PCI data is sent in the same byte order whether the
PCI bus is configured in Big Endian or Little Endian mode.
When PCI_CONTROL[IEE] is 1, PCI IO data will follow the same memory space
swapping rule. The address always follows the physical location, Example:
BEs not Swapped(1l byte access) BEs Swapped(1l byte access)
ad[1:0] BE3 BE2 BE1 BEO ad[1:0] BE3 BE2 BE1 BEO
00 1110 11 0 1 1 1
01 11 0 1 10 1 0 1 1
10 1 01 1 01 1 1 0 1
11 01 11 00 1 1 1 0
BEs not Swapped(2 byte access) BEs Swapped(2 byte access)
. ad[1:0] BE3 BE2 BE1 BEO ad[1:0] BE3 BE2 BE1 BEO
B Stepping
00 1 1 00 10 0 01 1
01 1 0 0 1 01 1 0 0 1
10 0 0 11 00 1 1 0 O
BEs not Swapped(3 byte access) BEs Swapped(3 byte access)
ad[1:0] BE3 BE2 BE1 BEO ad[1:0] BE3 BE2 BE1 BEO
00 1 0 0O 01 0 0 0 1
01 0 0 0 1 00 1 0 0 O
BEs not Swapped(4 byte access) BEs Swapped(4 byte access)
ad[1:0] BE3 BE2 BE1 BEO ad[1:0] BE3 BE2 BE1 BEO
00 0 0 0O 00 0O 0 0O

360 Hardware Reference Manual

intgl.

Intel® IXP2800 Network Processor
Clocks, Reset, and Initialization

Clocks, Reset, and Initialization 10

10.1

This section describes the I XP2800 Network Processor clocks, reset, and initialization sequence.

Clocks

The block diagram in Figure 130 shows how the 1XP2800 Network Processor implements an
onboard clock generator to generate the internal clocks used by the various functional unitsin the
device. It takes an external reference frequency and multipliesit to a higher frequency clock using
aPLL. That clock isthen divided down by a set of programmable dividers to prowde clocksto
SRAM and DRAM controllers. The Intel X Scale® core and MEs get clocks using fixed divide
ratios. The Media and Switch Fabric Interface clock is selected based on the strap pin

(CFG MSF_FREQ_SEL) sothat when CFG_MSF_FREQ_SEL ishigh, mternally generated clock
using the programmable divider is used and when CFG_MSF_FREQ_SEL islow, externally
received clock on M SF interface is used. PCI controller use external clocks. Each of the units also
interfaces to internal busses, which run at ¥2 the Microengine frequency. Figure 130 shows the
overall clock generation and distribution. Table 149 summarizes the clock usage.

Hardware Reference Manual 361

Intel® IXP2800 Network Processor
Clocks, Reset, and Initialization

Figure 130. Overall Clock Generation and Distribution

362

S_clk0 S_clkl S_clkk2 S _clk3
A A A A
SRAMO | [SRAM1 | | SRAM2 | | SRAM3
A A $ A $ ‘\ $ A Media > tdclk
Slow Port 1 1 1 1
Devices. |€ Slow Scratch, H H H H and < rdclk
i.e., Flash] Fort <] Hash |<€-4-po---bopo--- é-f----4--> | Switch telk_ref
€., ' > Control CSR H i -
ROM ! Fabric
1 Interface
1
Intel® ,
XScale™ Gasket |- - -
Core
External
Oscillator ref_clk_| L
Clock Unit with PLL
ref_clk_h
Constant
(Multiplier) H|
Peripherals !
(Timers, [®€======q======= 4 I
UART, etc.) |
+_I_________) PCI ~——— PCl_ck
1
'V
r=——t-—@-=--t--@¢----0@ |
1 1 1 1
1 1 1 1
1 1 1 1 I
YY YVY XYY YY
DRAMO | [DRAM1 | [DRAM2 || MEs Intel® IXP2800
Network Processor
Y Y Y
D_clkO D_clk1 D_clk2
Key:
— =— — Fast Clock ===== Y Fast Clock Divided Clock
A9777-01
Table 149. Clock Usage Summary
Unit Name Description Comment
Microengine | MEs internal.
Command/Push/Pull interface of
Internal DRAM, SRAM, Intel XScale® 1 Microenaine frequenc
Busses core, Peripheral, MSF, and PCI 2 9 q Y-
Units.
Intel Intel XScale® core
XScale® microprocessor, caches, % of Microengine frequency.
core microprocessor side of Gasket.
DRAM pins and control logic (all | Divide of Microengine frequency. All DRAM channels use
DRAM of DRAM unit except Internal Bus | the same frequency. Clocks are driven by IXP2800 to
interface). external DRAMs.

Hardware Reference Manual

In

tel.

Intel® IXP2800 Network Processor
Clocks, Reset, and Initialization

Table 149. Clock Usage Summary (Continued)

Unit Name Description Comment

SRAM pins and control logic (all Divide of Microengine frequency. Each SRAM channel
SRAM of SRAM unit except Internal Bus | has its own frequency selection. Clocks are driven by
interface). IXP2800 to external SRAMs and/or Coprocessors.

%, of Microengine frequency. Note that Slow Port has no
clock. Timing for Slow Port accesses is defined in Slow
Port registers.

Scratch, Scratch RAM, Hash Unit, CSR
Hash, CSR | access block

The transmit clock for the Media and Switch interface can
be derived in two different ways.

MSE Receive and Transmit pins and ¢ From TCLK input signal (supplied by PHY device).
control logic. « Divided from internal clock.
For details please refer to Chapter 8, “Media and Switch
Fabric Interface”.
APB APB logic Divide of Microengine frequency
PCl PCI pins and control logic. External reference. Either from Host system or on-board

oscillator.

The fast frequency on the I XP2800 Network Processor is generated by an on-chip PLL that
multiplies areference frequency provided by an on-board LVDS oscillator (frequency 100 MHz)
by a selectable multiplier. The multiplier is selected by using external strap pins SP_AD[5:0] and
can be viewed by software viathe STRAP_OPTIONS[CFG_PLL_MULT] CAP CSR register bits.
The multiplier range is even multiples between 16 and 48, so the PLL can generate a1.6 GHz to
4.8 GHz clock (with a 100M hz reference frequency).

The PLL output frequency is divided by 2 to get the ME clock and by 4 to get the Intel X Scale®
core and the internal Command/Push/Pull bus frequency. An additional division (after the divide
by 2) is used to generate the clock frequencies for the other internal units. The divisors are
programmable viathe CLOCK_CONTROL CSR. APB divisor specified in the
CLOCK_CONTROL CSR clock isscaled by 4 (that isavaue of 2in the CSR selects a divisor of
8).

Table 150 showsthe frequencies that are available based on a 100Mhz oscillator and various values
of PLL multipliers, for the supported divisor values of 3 to 15.

Hardware Reference Manual 363

Intel® IXP2800 Network Processor
Clocks, Reset, and Initialization

Table 150. Clock Rates Examples

Input Oscillator Frequency (MHz) 100
PLL Output Frequency (MHz) 2000 2200 2400 2600 2800 | 4000 | 4800
[PLL Multiplier] [20] [22] [24] [26] [28] [40] [48]
Microengine Frequency2 1000 1100 1200 1300 1400 2000 2400

Intel XScale® core & Command/Push/

Pull Bus Frequency 3 500 550 600 650 700 1000 | 1200

26 500 550 600 650 700 1000 | 1200
3 333 367 400 433 467 666 800
4 250 275 300 325 350 500 600
5 200 220 240 260 280 400 480
6 167 183 200 217 233 334 400
7
8
9

143 157 171 186 200 286 342
125 138 150 163 175 250 300
111 122 133 144 156 222 266
10 100 110 120 130 140 200 240
11 91 100 109 118 127 182 218

Divide Ratio for other Units
(except APB)*

Divisor®

12 83 92 100 108 117 166 200
13 7 85 92 100 107 154 184
14 71 79 86 93 100 142 172
15 67 73 80 87 93 134 160

This multiplier is selected via SP_ADI5:0] strap pins.

This frequency is the PLL output frequency divided by 2.

This frequency is the PLL output frequency divided by 4.

The ABP divisor specified in the CLOCK_CONTROL CAP CSR is scaled by an additional x4.

This divisor is selected via the CLOCK_CONTROL CAP CSR. The Base Frequency is the PLL output frequency di-
vided by 2

This divide ratio is only used by test logic. In the normal functional mode, this ratio is reserved for Push/Pull clocks
only.

apwNbE

o

Figure 131 shows the clocks generation circuitry for the IXP2800. When the chip is powered up,
bypass clock will be sent to all the units. After the PLL islocked, clock unit will switch all units
from bypass clock to afixed frequency clock which is generated by dividing PLL OUTPUT
FREQUNCY by 16. Once Clock Control CSR iswritten, clock unit will replace fixed frequency
clock with the defined clocks for different units.

364 Hardware Reference Manual

intgl.

Intel® IXP2800 Network Processor
Clocks, Reset, and Initialization

Figure 131. IXP2800 Network Processor Clock Generation

10.2

Note:

PLL
ivi Internal Buses (CPP),
Divide by 4 interhal Suses (CPP)
Bypass Clk |
Divide by 2 ME
DFT TBD
Divide by N
(reset value: 15) DRAMs
Divide by N
(resetvalue: 15) [SRAMO
Divide by N
(reset value: 15) — SRAM1
Divide by N
(reset value: 15) - SRAM2
Divide by N
(resetvalue: 15) [SRAM3
Divide by N
(reset value: 15) [MEDIA
Divide by Nx4
(reset value: 15) — APB

A9778-03

Synchronization Between Frequency Domains

Dueto theinternal design architecture of the IXP2800, it is guaranteed that one of the clock
domains of an asynchronous transfer will be the Push/Pull domain (PLL/4). Additionally, all other
clocks are derived by further dividing the ME clock (PLL/2n where nis 3 or more); refer to
Figure 132.

The exception is the PCI unit where the PCI clock is fully asynchronous with the PP clock.
Therefore in the PCI unit, data is synchronized using the usual 3 flop synchronization method.

Therefore the clock A and clock B relationship will always be apart by at least 2 PLL clocks. To
solve hold problem between clock A and clock B, adelay isadded anytime dataistransferred from
clock A to clock B. The characteristic of thisdelay element is such that it is high enough to resolve
any hold issue in fast environment but in the slow environment its delay is still lessthan 2 PLL
clocks.

Hardware Reference Manual 365

Intel® IXP2800 Network Processor
Clocks, Reset, and Initialization

intel.

Figure 132. Synchronization Between Frequency Domains

10.3

10.3.1

366

Clock B domain

Clock A domain Delay Element
Data in : Data_Out
Clock A Clock B

Since ClockA and ClockB are guaranteed to be at least 2 PLL clocks apart therefore if
the delay element is such that it is more than the hold time required by flop B but less
than the setup required by clock B, data should transfer glitch free from clock A

to clock B domain

Reset

The IXP2800 Network Processor can be reset four ways.
* Hardware Reset Using NRESET or PCI_RST#
* PCI Initiated Reset
* Watchdog Timer Initiated Reset
* Software Initiated Reset

Hardware Reset Using nRESET or PCI_RST#

The IXP2800 Network Processor provides the nRESET pin so that it can be reset by an external
device. Asserting this pin resets the internal functions and generates an external reset viathe
NRESET_OUT pin.

Upon power-up, NRESET (or PCI_RST#) must remain asserted for 1Ims after VDD is stable to
properly reset the | XP2800 Network Processor and ensure that the external clocks are stable. While
NRESET is asserted, the processor is held in reset. When nRESET is released, the Intel X Scale®
core begins executing from address 0XO0. If PCI_RST# isinput to the chip, NnRESET should be
removed before or at the same time as PCI_RST#.

All the strap options are latched with nRESET except for PCI strap option BOARD_IS 64 which
islatched with PCI_RST# only (by latching the status of REQ64# at the trailing edge of
PCI_RST#).

If NRESET is asserted, while the Intel X Scale® core is executi ng, the current instruction is
terminated abnormally and the reset sequenceisinitiated.

The nRESET_OUT signal de-assertion depends upon settings of “reset_out_strap” and

IXP_RESETO0[22] also called EXTRST_EN bit. During power up, IXP_RESETO0[22] isreset to
“0" therefore value to be driven on nRESET_OUT is defined by “reset_out_strap”. When

Hardware Reference Manual

Intel® IXP2800 Network Processor

- Clocks, Reset, and Initialization
intel.

“reset_out_strap” issampled “0” on the trailing edge of reset, NRESET_OUT is de-asserted based
on thevalue of IXP_RESETO0[17] which iswritten by software. If “reset_out_strap” issampled “1”
on the trailing edge of reset, NRESET_OUT is de-asserted after PLL locks.

During normal function mode, if software wants to assert NRESET_OUT, it should set

IXP_RESETOQ[22] and then set IXP_RESETOQ[17]. To de-assert nRESET_OUT again, software
should write IXP_RESETO0[17] bit back to “0".

Figure 133. Reset Out Behavior

IXP_RESETO
Register

15
RESET_OUT 0 EXTRST [1s]

EXTRST_EN | [22]

0 PLL
Lock Signal

RESET_OUT_STRAP

A9780-01

Hardware Reference Manual 367

Intel® IXP2800 Network Processor
Clocks, Reset, and Initialization

Figure 134. Reset Generation

10.3.2

10.3.3

368

Watchdog Event Watchdog History
Register (WHR)

D

SOFTWARE RESET

Reset

nRESET#

)

PLL_RST
_\ pLL | CORE_RST

PCI_RST# Logic———>

Counter to
guarantee
minimum
assertion
time

CFG_PCI_RST_DIR
(1: Output, 0:Input)

WATCHDOG_RESET

Notes:
When Watchdog event happens the register gets set.
This register gets reset when WHR_Reset gets asserted or software reads it.

A9781-01

PCI Initiated Reset

CFG_RST_DIRisnot asserted and PCI_RST# is asserted.

When the CFG_RST_DIR strap pinis not asserted (sampled “0”), PCI_RST# isinput to the
I XP2800 Network Processor and is used to reset all the internal functions. Its behavior is the same
as ahardware reset using nNRESET pin.

Watchdog Timer Initiated Reset

The IXP2800 Network Processor provides awatchdog timer that can cause areset if the Watchdog
timer expires and the Watchdog enable bit WDE in Timer Watchdog Enable Register is also set.
The Intel XScale® core should be programmed to reset the watch dog timer periodically to ensure
that the timer does not expire. If awatchdog timer expires, it is assumed that the Intel X Scale® core
has ceased executing instructions properly. When the timer expires, the Watchdog History Register
bit[0]"is set which can be read by the software later on.

I XP2800 Network Processor behavior for the watchdog event is defined in the sections that follow.

Hardware Reference Manual

intgl.

10.3.3.1

10.3.3.2

10.3.3.3

10.3.4

Intel® IXP2800 Network Processor
Clocks, Reset, and Initialization

Slave IXP (Non-Central Function)

¢ |f the Watchdog timer reset enable bit set to 1, Watchdog reset will trigger the soft reset

¢ If the Watchdog timer reset enable bit set to 0, Watchdog reset will trigger the PCI interrupt to
external PCI host (if interrupt is enabled by PCI Outbound Interrupt Mask Register[3]).
External PCI host can check the IXP2800 error status and log the error then reset the Slave
I XP2800 Network Processor only or reset all the PCI devices (assert the PCI_RST L).

¢ |f the Watchdog history hit is already set when a new watchdog event happens, Watchdog
timer reset enable bit is disregarded and soft reset is generated.

Master IXP (PCI Host, Central Function)

¢ |f Watchdog timer reset enable bit set to 1, Watchdog reset will trigger the soft reset and set
watchdog history bit.

¢ |f Watchdog timer reset enable bit set to 0, check watchdog history hit. If is already set,
generate soft reset. If watchdog history bit is not set already, watchdog reset will just set the
watchdog history bit and no further action is taken.

Master IXP (Central Function)

¢ |f Watchdog timer reset enable bit set to 0, Watchdog reset will trigger the PCI interrupt to
external PCI host (if interrupt is enabled by PCI Outbound Interrupt Mask Register[3]).

¢ |If Watchdog history bit is already set when a hew watchdog event happens, Watchdog timer
reset enable bit is disregarded, and soft reset is generated.

¢ |f Watchdog timer reset enable bit set to 1, Watchdog reset will trigger the soft reset.

Software Initiated Reset

The Intel XScale® core or external PCI bus master can reset specific functionsin the X P2800
Network Processor by writing to the IXP_RESETO and IXP_RESET1 registers. All the individual
micro-engines and specific units can be reset individually in this fashion.

Software reset initiated by “Reset All” bit in IXP_RESETO register behaves almost the same as
hardware resets in the sense that PLL and rest of the core gets reset. The only difference between
soft reset and hard reset isthat a 512 cycle counter is added at the output of “RESET_ALL" bit
going to PLL unit for chip reset generation. PCI unit in the meantime detects the busidle condition
and generates local reset. Thislocal reset is removed once chip reset is generated and chip reset
reset then takes over the reset function of PCI unit.

Both hardware and software resets (software reset after 512 cycles delay) combined generate
PLL_RST for the PLL logic. During the assertion of PLL_RST, PLL block remainsin the bypass
mode and passes the incoming clock directly to the corelogic. At thistime everyoneinside the core
gets the same basic clock. The Clock Control Register is reset to “OxOFFF_FFFF" using the same
signal.

Once PLL_RST signal goes away, PLL starts generating divide by 2 clock for MicroEngines,
divide by 4 clock for the Intel X Scal €® core and divide by 16 clock for the rest of the chip (not
using divide_by_4 clock) after inserting 16-32 idle clocks. Once clock control CSR iswritten by
software, PLL block detectsit by finding change in value of thisregister.

Hardware Reference Manual 369

Intel® IXP2800 Network Processor
Clocks, Reset, and Initialization

10.3.5

10.3.5.1

10.3.5.2

10.3.6

370

intel.

Once in operation, if watchdog timer expires with watchdog timer enable bit WDE from Timer
Watchdog Enable Register set, reset pulse from the watchdog timer logic goesto PLL unit after
passing through a counter to guarantee minimum assertion time which in turn resets the
IXP_RESETnN registers that causes entire chip to be reset.

Figure 134 explains the reset generation for PLL logic and for the rest of the core. CORE_RST is
used inside the I XP2800 to reset everything. PLL_RST can be disabled

Reset Removal operation based on CFG_PROM_BOOT
Reset removal operation based on the CFG_PROM_BOQT strap option (BOOT_PROM) can be
divided into two parts:

1. When CFG_PROM_BOOT is“1” (BOOT_PROM is present).

2. When CFG_PROM_BOOT is“0" (BOOT_PROM is not present)
When CFG_PROM _BOOT is 1 (BOOT_PROM is Present)
After CORE_RST is de-asserted, reset from the Intel XScale® core, SHAC and CMDARB is
removed. Once the Intel XScaIe® corereset isremoved, the Intel XScaIe® core startsinitializing
the chip. The Intel X Scale® core writes “clock control CSR” to define the operating frequencies of

different units. The Intel X Scale® core writes IXP RESETO[21] to allow PCI logic to start
accepting transactions on the PCI bus as part of initialization process.

When CFG_PROM_BOOT is 0 (BOOT_PROM is Not Present)
After CORE_RST is de-asserted, IXP_RESETO[21] is set aIIOW| ng PCI unit to start accepting
transactions on the PCI bus. In this mode, the Intel X Scale® coreis kept in reset. Reset from

DRAM logic isremoved by the PCI host by writing “0” to specific bitsin the IXP_RESETO
register. C.

Strap Pins

The IXP2800 Strap pins for reset and initialization operation are described in Table 151.

Hardware Reference Manual

Intel® IXP2800 Network Processor
Clocks, Reset, and Initialization

Table 151. IXP2800 Network Processor Strap Pins

Signal

Name

Description

CFG_RST_DIR

RST_DIR

PCI_RST direction pin: (Also called PCI_HOST) Need to
be a dedicated pin.

1: IXP is the host supporting central function. PCI_RST# is
output

0: IXP is not central function. PCI_RST# is input

This pin is Stored at XSC[31] (XScale_Control Register) at
the trailing edge of reset.

CFG_PROM_BOOT

GPIO[0]

PCI PROM BOOT Pin:

1: IXP will boot from PROM: Whether Intel XScale® core
will configure the system or not will be defined by
CFG_PCI_BOOT_HOST strap option.

0: IXP will not boot from PROM. So after host has
downloaded image od boot code into DRAM, Intel XScale®
core will boot from DRAM address “0".

This pin is Stored at XSC[29] (XScale_Control Register) at
the trailing edge of reset.

CFG_PCI_BOOT_HOST

GPIO[1]

PCI BOOT HOST pin

1: IXP2800 Network Processor will configure the PCI
system

0: IXP2800 Network Processor will not configure the PCI
system

This pin is Stored at XSC[28] (XScale_Control Register) at
the trailing edge of reset.

CFG_PCI_ARB

GPIO[2]

PCI Arbiter Pin
1: IXP2800 Network Processor is the arbiter on the PCI bus

0: IXP2800 Network Processor is not the arbiter on the PCI
bus

PLL_MULT[5:0]

SP_AD[5:0]

PLL Multiplier

Valid values are 010000-110000 for multiplier range of 16
to 48. Other values will result in undefined behavior by PLL.

RESET_OUT_STRAP

SP_AD[7]

When “1": nRESET_OUT is removed after PLL locks
When “0”: nRESET_OUT is removed by software using
bit IXP_RESETO[17]

CFG_PCI_SWIN[1:0]

GPIO[6:5]

SRAM Bar Window

11: SRAM BAR size of 256 MByte
10: SRAM BAR size of 128 MByte
01: SRAM BAR size of 64 MByte
00" SRAM BAR size of 32 MByte

CFG_PCI_DWIN[1:0]

GPIO[4:3]

DRAM BAR Window

11: DRAM BAR size of 1024 MByte
10: DRAM BAR size of 512 MByte
01: DRAM BAR size of 256 MByte
00: DRAM BAR size of 128 MByte

CFG_MSF_FREQ_SEL

SP_AD[6]

Select source of MSF Tx Clock
0—TCLK_Ref input pin
1—Internally generated clock

Hardware Reference Manual

371

Intel® IXP2800 Network Processor
Clocks, Reset, and Initialization

intel.

Table 152 lists the supported Strap combinations of CFG_PROM_BOOT, CFG_RST DIR, and
CFG_PCI_BOOT_HIST.

Table 152. Supported Strap Combinations

{CFG_PROM_BOOT, CFG_RST_DIR, CFG_PCI_BOOT_HOST} Result
000 ALLOWED
001 ALLOWED
010 NOT ALLOWED
011 NOT ALLOWED
100 ALLOWED
101 ALLOWED
110 ALLOWED
111 ALLOWED

One more restriction in PCI unit isthat if IXP2800 Network Processor is PCI_HOST or
PCl_ARBITER, it should also be PCI_CENTRAL_FUNCTION.

10.3.7 Powerup Reset Sequence

When the system is powered up, bypass clock is sent to all the units as the chip beginsto power up.
It will merely be used to allow a gradual power up and to begin clocking state elements to remove
possible circuit contention. When PLL gets locked after nRESET is de-asserted, it will start
generating divide by 16 clocksfor al the units. Reset from IXP_RESET register is also removed
at the same time. When software updates the clock count register, clocks are again stopped for 32
cycles and then start again.

The reset sequence described above is the same in the case when reset happens through the
PCI_RST# signal and CFG_RST_DIR is asserted.

Oncein operation, if watchdog timer expires with watchdog timer enable bit (bit [0] in Timer

Watchdog Enable Register ON, areset pulse from the watchdog timer logic resets the
IXP_RESETn registers and in turn causes entire chip to be reset.

10.4 Boot Mode

The I1XP2800 can boot in following two modes:
* Flash ROM
* PCI Host Download

Figure 135 shows the | XP2800 Network Processor Boot process.

372 Hardware Reference Manual

INtal.

Figure 135. Boot Process

Intel® IXP2800 Network Processor
Clocks, Reset, and Initialization

START

Reset Signal asserted
(hardware, software, PCI or Watchdog)

1. Intel® XScale™ Core is
held in reset.

2. PCI BAR window sizes
are configured by strap
options.

3. External PCI host
configures PCI registers
and DRAM registers.

4. External PCI host loads
boot image in DRAM.

5. Release Intel XScale™
Core from reset and Intel
XScale™ starts code
fetch from DRAM at 0xO.

Reset Signal deasserted. If CFG_RST_DIR
is 1, Intel® IXP2000 Network Processor
drives PCI RST# signal. If CFG_RST_DIR
is 0, PCI_RST# is input.

CFG_PROM_BOOT-
Boot From Present

\

1. Intel XScale™ Core boots
off PROM.

2. Configures SRAM, DRAM,
Media, etc.

3. If CFG_RST# signal after
1 ms timeout once PCI
clock active is detected.

4. Retries PCI config cycles.

5. Programs PCI BAR
window size.

5. Intel XScale™ Core writes
the IXP_RESETO0[21]
register to enable PCI bus.

Yes CFG_PROM_

BOOT_HOST

v

Intel XScale™ Core
initializes the system
by initiating PCI
config cycles.

|

A9782-01

Hardware Reference Manual

373

Intel® IXP2800 Network Processor
Clocks, Reset, and Initialization

10.4.1

10.4.2

374

intel.
Flash ROM

At power up, if FLASH_ROM is present, strap pin CFG_PROM_BOOT should be sampled “1”
(should be pulled up). Therefore after reset being removed by the PLL logic from the

IXP_| RESETO register, the Intel X Scale® core reset is automatically removed. Flash Alias
Disable " (bit [8] of Misc Control Register) information is used by the Intel XScale® gasket to
decide where to forward address “0” from the Intel XScale® core when the Intel X Scale® core
wakes up and starts accessing the code from address 0. In this mode, since “flash alias disable: bit
isreset to “0”, the Intel XScale® gasket will convert accessto address “0” to PROM accesfrom
address“ 0" usi ng the CAP command. Based on the code residing inside PROM, the Intel X Scale®
core starts removing reset from SRAM, PCI, DRAM, MicroEngines etc. by writing “0” in their
corresponding bit location of IXP_RESETN register and then initializing their configuration
registers.

Boot codein PROM can change flash alias disable bit to "1" anytime to map DRAM at address
zero and therefore block further accesses to PROM at address "0". This change should be done
before putting any datain DRAM at address “0”.

The Intel X Scale® core also sets different BARsinside PCI unit to define memory requirements for
different windows.

The Intel XScale® core behavior asa host is controlled by CFG_PClI_BOOT_HOST strap optlon
If CFG_PCI_BOOT_HOST is sampled asserted mthede—assertmg edgeof reset, the Intel X Scale®
core will behave as boot host and configure the PCI system.

PCI Host Download

At power up, if FLASH_ROM is not present, strap pin CFG_PROM_BOQOT should be sampled
“0” (should be pulled down). In thismode CFG_RST_DIR pin should be “0” at power up signaling
PCI_RST# pinis an input that behaves as global chip reset.

1. Even after reset isremoved by the PLL logic from IXP_RESETO register (after PCI_RST#
reset is de-asserted), the Intel X Scale® core reset is not “removed.

2. PCI Reset through IXP_RESETO [16] isremoved automatically after being set and reset being
removed.

3. IXP_RESETOQ[2]] is set after PClI_RST# has been removed and PLL_L OCK is sampled
asserted.

4. Once IXP_RESETO0[21] is set, PCI unit starts responding to transactions.

5. PCI Host first configures CSR, SRAM and DRAM base address registers after reading size
requirements for these BARs. The size for CSR, SRAM and DRAM is defined by the use of
Strap pins. Pre-fetchability for the window is defined by bit [3] of the respective BAR registers
therefore when host reads these registers, bit [3] isreturned as“0” for CSR, SRAM and
DRAM defining CSRs and also if SRAM and DRAM are to be non-prefetchable. “Type” Bits
[2:0] are always Read-Only and return the value of “0x0” when read for CSR, SRAM and
DRAM BAR registers.

6. PCI Host also programs “Clock Control CSR”, for PLL unit to generate proper clocks for
SRAM, DRAM and other units.

Once these base address registers have been programmed, PCI host programs DRAM channels by
initializing SDRAM_CSR, SDRAM_MEMCTLO, SDRAM_MEMCTL1 and SDRAM_MEMINIT
registers. Once these registers have been programmed, PCI host writes the BOOT Code in DRAM

Hardware Reference Manual

10.5

Intel® IXP2800 Network Processor
Clocks, Reset, and Initialization

starting at DRAM address “0”. PCI Host can also program other registersif required. Once the
boot codelswrltten in DRAM, PCI host writes“1" at bit [8] of Misc_Control reglster called “Flash
Alias Disable” (Reset value“0”). Alias Disable bit can be wired to the Intel XScaIe gasket
directly so that gasket knows how to transform address O from the I ntel XScaIe core After writing
“1" a “Flash Alias Disable” bit, host removes reset from the Intel XScale® core by writing “0” in
bit [0] of IXP_RESETO register. The Intel XScale® core starts booting from address 0, which is
now directed by the gasket to DRAM.

Initialization

Boot Sequence task must be performed by the IXP2800 Network Processor after reset for proper
processor function. The boot sequence tasks configure the I XP2800 Network Processor resources
to a determined state by writing predetermined values to certain registers. Some register settings
are determined by the components selected, such as SDRAM, SRAM, and BootROM. Other
register settings are determined by the desired processor performance and system configuration.

The resources that must be configured after reset are the Phase-Locked Loop (PLL), PROM
interface, the SRAM controller, the SDRAM controller, and the Memory Management Unit
(MMU). There are other resources that if used during the boot sequence must be configured at this
time. They arethe UART and the PCI Interface. For amore detailed description of the registers and
their settings, please refer to the appropriate sections in the I XP2400/1 XP2800 Networ k Processor
Programmers Reference Manual.

The configuration tasks must be performed in the following sequence.

1. Configure PLL. Since PLL output frequency is determined using the configuration pins
(SP_ADI5:0], these pin should be pulled up or pulled down to define the operating frequency
of PLL. These strap options are stored in Strap_Options_Register as defined in the 1 XP2400/
I XP2800 Network Processor Programmers Reference Manual.

2. Configure Clock Switching: Details will be added | ater.
3. Configure XPI Interface to access PROM if CFG_PROM_BOOT is set:
Following registers should be programmed.

— SP_CCR: To configure the clocks for the slow port. Initialy these clocks start at some
default value which may not be optimal.

— SP_WTC: Thisregister should be programmed for PROM interface to define proper write
timing

— SP_RTC: Thisregister should be programmed for PROM interface to define proper read
timing

— SP_FAC: To define the address size of flash memory device used.

— SP_FRM: To define the data width of the read back from the flash memory.

4. Configure clock logic:

To define the operating frequency of SRAM and DRAM interface, following registers that
define the operation of stepping stone logic must be initialized:

— CCR: Clock Control CSR to define the frequency of SRAM and DRAM channels,
MSF and APB

Hardware Reference Manual 375

Intel® IXP2800 Network Processor
Clocks, Reset, and Initialization

376

intel.

. Release from Reset. After reset, units not coming out of reset automatically are brought out of

reset by programming the following registers.
— IXP_RESETO
— IXP_RESET1

. Configure SRAM.

Configure the SRAM controller. The registers that configure the SRAM controller are;
SRAM_Control:To define the configuration of SRAM Controller
SRAM_Parity_Statusl:For parity control and recording of last faulty address
SRAM_Parity_Status?:Recording of source of request which generated parity error

. Configure DRAM channels. Configure the in-use DRAM channels. Thisis done through a

sequence of register writes.
— DU_CSRA_[2:0]

— DU_CSRB_[2:0]

— DU_INIT_[2:0]

. Configure and Enable MMU (Optional). Configure the Memory Mapped Unit, Cache, and

Buffer.
Thisisdone by configuring the following register:
StrongARM Coprocessor 15—CONTROL_CP15

. Configure PCI.

If CFG_PROM_BOOT is not set, loading of boot image by the PCI host is required into
DRAM. For this to happen, de-asserting edge of reset should set these registersto their
required value.

IXP_RESETO: IXP_RESETO0[21] should be setto“1".
— DRAM_BASE_ADDR_MASK
— PCI_DRAM_BAR: Strap pins define the window size
— PCI_SRAM_BAR: Strap pins define the window size

— PCI_CSR_BAR: Strap pins define the window size

After boot imageis loaded into DRAM, “Flash_Alias Disable’ bit in Misc Control register
from IXP_CHASSIS should be set to “1” so that DRAM appears at address 0.

If CFG_PROM_BOOT is set, configure the following four registers:
— PCI_MEM_BAR
— PCI_IO_BAR
— PCI_DRAM_BAR
— PCI_CMD_STAT

— IXP_RESETO0[2]]

In this mode, code jumps to normal flash location and then disables the "map flash to zero"
feature. If CFG_PCI_BOOT_HOST is not true, then CFG_RST_DIR will program the

I XP2800 Network Processor PCI interface based on its memory requirements. If
CFG_PCI_BOOT_HOST istrue, then the IXP2800 Network Processor will program its PCI
interface.

Hardware Reference Manual

Intel® IXP2800 Network Processor
Clocks, Reset, and Initialization

"
intel.
10. Configure Serial Port.

If serial interface is required, the following registers must be configured.

— UART_DLRH

— UART_DLRL

— UART_IER

— UART_FCR

— UART_LCR

Hardware Reference Manual 377

	Intel® IXP2800 Network Processor
	Copyright
	Contents
	Introduction 1
	1.1 About this Document
	1.2 Related Documentation
	1.3 Conventions

	Technical Description 2
	2.1 Overview
	2.2 Intel XScale® Core Microarchitecture
	2.2.1 ARM Compatibility
	2.2.2 Features

	2.3 Microengines
	2.3.1 Microengine Bus Arrangement
	2.3.2 Control Store
	2.3.3 Contexts
	2.3.4 Datapath Registers
	2.3.5 Addressing Modes
	2.3.6 Local CSRs
	2.3.7 Execution Datapath
	2.3.8 CRC Unit
	2.3.9 Event Signals

	2.4 DRAM
	2.4.1 Size Configuration
	2.4.2 Read and Write Access

	2.5 SRAM
	2.5.1 QDR Clocking Scheme
	2.5.2 SRAM Controller Configurations
	2.5.3 SRAM Atomic Operations
	2.5.4 Queue Data Structure Commands
	2.5.5 Reference Ordering

	2.6 Scratchpad Memory
	2.6.1 Scratchpad Atomic Operations
	2.6.2 Ring Commands

	2.7 Media and Switch Fabric Interface
	2.7.1 SPI-4
	2.7.2 CSIX
	2.7.3 Receive
	2.7.4 Transmit
	2.7.5 The Flow Control Interface

	2.8 Hash Unit
	2.9 PCI Controller
	2.9.1 Target Access
	2.9.2 Master Access
	2.9.3 DMA Channels
	2.9.4 Mailbox and Message Registers
	2.9.5 PCI Arbiter

	2.10 Control and Status Register Access Proxy
	2.11 Intel XScale® Core Peripherals
	2.11.1 Interrupt Controller
	2.11.2 Timers
	2.11.3 General Purpose I/O
	2.11.4 Universal Asynchronous Receiver/Transmitter
	2.11.5 Slow Port

	2.12 I/O Latency
	2.13 Performance Monitor

	Intel XScale® Core 3
	3.1 Introduction
	3.2 Features
	3.2.1 Multiply/ACcumulate (MAC)
	3.2.2 Memory Management
	3.2.3 Instruction Cache
	3.2.4 Branch Target Buffer
	3.2.5 Data Cache
	3.2.6 Performance Monitoring
	3.2.7 Power Management
	3.2.8 Debug
	3.2.9 JTAG

	3.3 Memory Management
	3.3.1 Architecture Model
	3.3.2 Exceptions
	3.3.3 Interaction of the MMU, Instruction Cache, and Data Cache
	3.3.4 Control

	3.4 Instruction Cache
	3.4.1 Instruction Cache Operation
	3.4.2 Instruction Cache Control

	3.5 Branch Target Buffer
	3.5.1 Branch Target Buffer (BTB) Operation
	3.5.2 Update Policy
	3.5.3 BTB Control

	3.6 Data Cache
	3.6.1 Overviews
	3.6.2 Data Cache and Mini-Data Cache Operation
	3.6.3 Data Cache and Mini-Data Cache Control
	3.6.4 Re-configuring the Data Cache as Data RAM
	3.6.5 Write Buffer/Fill Buffer Operation and Control

	3.7 Configuration
	3.8 Performance Monitoring
	3.8.1 Performance Monitoring Events
	3.8.2 Multiple Performance Monitoring Run Statistics

	3.9 Performance Considerations
	3.9.1 Interrupt Latency
	3.9.2 Branch Prediction
	3.9.3 Addressing Modes
	3.9.4 Instruction Latencies

	3.10 Test Features
	3.10.1 IXP2800 Network Processor Endianness

	3.11 Intel XScale® Gasket Unit
	3.11.1 Overview
	3.11.2 Intel XScale® Gasket Functional Description
	3.11.3 CAM Operation
	3.11.4 Atomic Operations
	3.11.5 I/O Transaction
	3.11.6 Hash Access
	3.11.7 Gasket Local CSR
	3.11.8 Interrupt

	3.12 Intel XScale® Core Peripheral Interface
	3.12.1 XPI Overview
	3.12.2 UART Overview
	3.12.3 UART Operation
	3.12.4 Baud Rate Generator
	3.12.5 General Purpose I/O (GPIO)
	3.12.6 Timers
	3.12.7 SlowPort Unit

	Microengines 4
	4.1 Overview
	4.1.1 Control Store
	4.1.2 Contexts
	4.1.3 Datapath Registers
	4.1.4 Addressing Modes

	4.2 Local CSRs
	4.3 Execution Datapath
	4.3.1 Byte Align
	4.3.2 CAM

	4.4 CRC Unit
	4.5 Event Signals
	4.5.1 Microengine “Endianness”
	4.5.2 Media Access

	DRAM 5
	5.1 Overview
	5.2 Size Configuration
	5.3 DRAM Clocking
	5.4 Bank Policy
	5.5 Interleaving
	5.5.1 Three Channels Active (3-Way Interleave)
	5.5.2 Two Channels Active (2-Way Interleave)
	5.5.3 One Channel Active (No Interleave)
	5.5.4 Interleaving Across RDRAMs and Banks

	5.6 Parity and ECC
	5.6.1 Parity and ECC Disabled
	5.6.2 Parity Enabled
	5.6.3 ECC Enabled
	5.6.4 ECC Calculation and Syndrome

	5.7 Timing Configuration
	5.8 Microengine Signals
	5.9 Serial Port
	5.10 RDRAM Controller Block Diagram
	5.10.1 Commands
	5.10.2 DRAM Write
	5.10.3 DRAM Read
	5.10.4 CSR Write
	5.10.5 CSR Read
	5.10.6 Arbitration
	5.10.7 Reference Ordering

	5.11 DRAM Push/Pull Arbiter
	5.11.1 Arbiter Push/Pull Operation
	5.11.2 DRAM Push Arbiter Description

	5.12 DRAM Pull Arbiter Description

	SRAM Interface 6
	6.1 Overview
	6.2 SRAM Interface Configurations
	6.3 SRAM Interface Configurations
	6.3.1 Internal Interface
	6.3.2 Number of Channels
	6.3.3 Coprocessor and/or SRAMs Attached to a Channel

	6.4 SRAM Controller Configurations
	6.5 Command Overview
	6.5.1 Basic Read/Write Commands
	6.5.2 Atomic Operations
	6.5.3 Queue Data Structure Commands
	6.5.4 Ring Data Structure Commands
	6.5.5 Journaling Commands
	6.5.6 CSR Accesses

	6.6 Parity
	6.7 Address Map
	6.8 Reference Ordering
	6.8.1 Reference Order Tables
	6.8.2 Microcode Restrictions to Maintain Ordering

	6.9 Coprocessor Mode

	SHaC-Unit Expansion 7
	7.1 Overview
	7.1.1 SHaC Unit Block Diagram
	7.1.2 Scratchpad
	7.1.3 Hash Unit

	Media and Switch Fabric Interface 8
	8.1 Overview
	8.1.1 SPI-4
	8.1.2 CSIX
	8.1.3 CSIX/SPI-4 Interleave Mode

	8.2 Receive
	8.2.1 Receive Pins
	8.2.2 RBUF
	8.2.3 Full Element List
	8.2.4 Rx_Thread_Freelist_#
	8.2.5 Rx_Thread_Freelist_Timeout_#
	8.2.6 Receive Operation Summary
	8.2.7 Receive Flow Control Status
	8.2.8 Parity
	8.2.9 Error Cases

	8.3 Transmit
	8.3.1 Transmit Pins
	8.3.2 TBUF
	8.3.3 Transmit Operation Summary
	8.3.4 Transmit Flow Control Status
	8.3.5 Parity

	8.4 RBUF and TBUF Summary
	8.5 CSIX Flow Control Interface
	8.5.1 TXCSRB, RXCSRB
	8.5.2 FCIFIFO, FCEFIFO
	8.5.3 TXCDAT/RXCDAT, TXCSOF/RXCSOF, TXCPAR/RXCPAR, and TXCFC/RXCFC

	8.6 Deskew and Training
	8.6.1 Data Training Pattern
	8.6.2 Flow Control Training Pattern
	8.6.3 Use of Dynamic Training

	8.7 CSIX Startup Sequence
	8.7.1 CSIX Full Duplex
	8.7.2 CSIX Simplex

	8.8 Interface to Command and Push and Pull Busses
	8.8.1 RBUF or MSF CSR to Microengine S Transfer In Register for instruction:
	8.8.2 Microengine S Transfer Out Register to TBUF or MSF CSR for instruction:
	8.8.3 Microengine to MSF CSR for instruction:
	8.8.4 From RBUF to DRAM for instruction:
	8.8.5 From DRAM to TBUF for instruction:

	8.9 Receiver and Transmitter Interoperation with Framers and Switch Fabrics
	8.9.1 Receiver and Transmitter Configurations
	8.9.2 System Configurations
	8.9.3 SPI-4.2 Support
	8.9.4 CSIX-L1 Protocol Support
	8.9.5 Dual Protocol (SPI and CSIX-L1) Support
	8.9.6 Transmit State Machine
	8.9.7 Dynamic De-Skew
	8.9.8 Summary of Receiver and Transmitter Signals

	PCI Unit 9
	9.1 Overview
	9.2 PCI Pin Protocol Interface Block
	9.2.1 PCI Commands
	9.2.2 IXP2800 Network Processor Initialization
	9.2.3 PCI Type 0 Configuration Cycles
	9.2.4 PCI 64-Bit Bus Extension
	9.2.5 PCI Target Cycles
	9.2.6 PCI Initiator Transactions
	9.2.7 PCI Fast Back to Back Cycles
	9.2.8 PCI Retry
	9.2.9 PCI Disconnect
	9.2.10 PCI Built In System Test
	9.2.11 PCI Central Functions

	9.3 Slave Interface Block
	9.3.1 CSR Interface
	9.3.2 SRAM Interface
	9.3.3 DRAM Interface
	9.3.4 Mailbox and Doorbell Registers
	9.3.5 PCI Interrupt Pin

	9.4 Master Interface Block
	9.4.1 DMA Interface
	9.4.2 Push/Pull Command Bus Target Interface

	9.5 PCI Unit Error Behavior
	9.5.1 PCI Target Error Behavior
	9.5.2 As a PCI Initiator During a DMA Transfer
	9.5.3 As a PCI Initiator During a Direct Access from the Intel XScale® Core or Microengine

	9.6 PCI Data Byte Lane Alignment
	9.6.1 Endian for Byte Enable

	Clocks, Reset, and Initialization 10
	10.1 Clocks
	10.2 Synchronization Between Frequency Domains
	10.3 Reset
	10.3.1 Hardware Reset Using nRESET or PCI_RST#
	10.3.2 PCI Initiated Reset
	10.3.3 Watchdog Timer Initiated Reset
	10.3.4 Software Initiated Reset
	10.3.5 Reset Removal operation based on CFG_PROM_BOOT
	10.3.6 Strap Pins
	10.3.7 Powerup Reset Sequence

	10.4 Boot Mode
	10.4.1 Flash ROM
	10.4.2 PCI Host Download

	10.5 Initialization

