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Intel® IXP2800 Network Processor 
Introduction
Introduction 1

1.1 About this Document

This document is the hardware reference manual for the Intel® IXP2800 Network Processor. This 
information is intended for use by developers and is organized as follows:

Section 2, “Technical Description” contains a hardware overview.

Section 3, “Intel XScale® Core” describes the embedded Intel XScale® core.

Section 4, “Microengines” describes Microengine operation.

Section 5, “DRAM” describes the DRAM Unit.

Section 6, “SRAM Interface” describes the SRAM Unit.

Section 7, “SHaC—Unit Expansion” describes the Scratchpad, Hash Unit, and CSRs (SHaC).

Section 8, “Media and Switch Fabric Interface” describes the Media and Switch Fabric (MSF) 
Interface used to connect the network processor to a physical layer device.

Section 9, “PCI Unit” describes the PCI Unit.

Section 10, “Clocks, Reset, and Initialization” describes the clocks, reset and initialization 
sequence.

1.2 Related Documentation

Further information on the IXP2800 is available in the following documents:

IXP2800 Network Processor Datasheet - Contains summary information on the IXP2800 Network 
Processor including a functional description, signal descriptions, electrical specifications, and 
mechanical specifications.

IXP2400/IXP2800 Network Processor Programmer’s Reference Manual - Contains detailed 
programming information for designers.

IXP2400/IXP2800 Network Processor Development Tools User’s Guide - Describes the 
Workbench and the development tools you can access through the use of the Workbench.
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1.3 Conventions

Table 1 lists the terminology used in this manual.

Table 1. Data Terminology

Term Words Bytes Bits

Byte ½ 1 8

Word 1 2 16

Longword 2 4 32

Quadword 4 8 64
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Technical Description 2

2.1 Overview

This section provides a brief overview of the IXP2800 Network Processor internal hardware. 
This section is intended as an overall hardware introduction to the network processor.

The major blocks are:

• Intel XScale®core— General purpose 32-bit RISC processor (ARM* Version 5 Architecture 
compliant) used to initialize and manage the network processor, and can be used for higher 
layer network processing tasks.

• Intel XScale® technology Peripherals (XPI)—Interrupt Controller, Timers, UART, General 
Purpose I/O (GPIO) and interface to low-speed off chip peripherals (such as maintenance port 
of network devices) and Flash ROM.

• Microengines (MEs) —Sixteen 32-bit programmable engines specialized for Network 
Processing. Microengines do the main data plane processing per packet.

• DRAM Controllers— Three independent controllers for Rambus* DRAM. Typically DRAM 
is used for data buffer storage.

• SRAM Controllers —Four independent controllers for QDR SRAM. Typically SRAM is used 
for control information storage.

• Scratchpad Memory—16 KBytes storage for general purpose use.

• Hash Unit—Polynomial hash accelerator. The Intel XScale® core and Microengines can use it 
to offload hash calculations.

• Control and Status Register Access Proxy— CAP. These provide special inter-processor 
communication features to allow flexible and efficient inter-Microengine and Microengine to 
Intel XScale® core communication.

• Media and Switch Fabric Interface (MSF)—Interface for network framers and/or Switch 
Fabric. Contains receive and transmit buffers.

• PCI Controller—64-bit PCI Rev 2.2 compliant I/O bus. PCI can be used to either connect to a 
Host processor, or to attach PCI compliant peripheral devices.

• Performance Monitor—Counters which can be programmed to count selected internal chip 
hardware events, which can be used to analyze and tune performance.

Figure 1 is a simple block diagram of the network processor showing the major internal hardware 
blocks. Figure 2 is a detailed diagram of the network processor units and busses.
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Figure 1. IXP2800 Network Processor Functional Block Diagram
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Figure 2. IXP2800 Network Processor Detailed Diagram
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2.2 Intel XScale® Core Microarchitecture

The Intel XScale® microarchitecture consists of a 32-bit general purpose RISC processor that 
incorporates an extensive list of architecture features that allows it to achieve high performance.

2.2.1 ARM Compatibility

The Intel XScale® microarchitecture is ARM* Version 5 (V5) Architecture compliant. It 
implements the integer instruction set of ARM* V5, but does not provide hardware support of the 
floating point instructions.

The Intel XScale® microarchitecture provides the Thumb instruction set (ARM V5T) and the 
ARM V5E DSP extensions.

Backward compatibility with the first generation of StrongARM* products is maintained for user-
mode applications. Operating systems may require modifications to match the specific hardware 
features of the Intel XScale® microarchitecture and to take advantage of the performance 
enhancements added to the Intel XScale® core.

2.2.2 Features

2.2.2.1 Multiply/Accumulate (MAC)

The MAC unit supports early termination of multiplies/accumulates in two cycles and can sustain a 
throughput of a MAC operation every cycle. Several architectural enhancements were made to the 
MAC to support audio coding algorithms, which include a 40-bit accumulator and support for
16-bit packed values.

2.2.2.2 Memory Management

The Intel XScale® microarchitecture implements the Memory Management Unit (MMU) 
Architecture specified in the ARM Architecture Reference Manual. The MMU provides access 
protection and virtual to physical address translation.

The MMU Architecture also specifies the caching policies for the instruction cache and data 
memory. These policies are specified as page attributes and include:

• identifying code as cacheable or non-cacheable

• selecting between the mini-data cache or data cache

• write-back or write-through data caching

• enabling data write allocation policy

• and enabling the write buffer to coalesce stores to external memory

2.2.2.3 Instruction Cache

The Intel XScale® microarchitecture implements a 32-Kbyte, 32-way set associative instruction 
cache with a line size of 32 bytes. All requests that “miss” the instruction cache generate a 32-byte 
read request to external memory. A mechanism to lock critical code within the cache is also 
provided.
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2.2.2.4 Branch Target Buffer

The Intel XScale® microarchitecture provides a Branch Target Buffer (BTB) to predict the 
outcome of branch type instructions. It provides storage for the target address of branch type 
instructions and predicts the next address to present to the instruction cache when the current 
instruction address is that of a branch.

The BTB holds 128 entries.

2.2.2.5 Data Cache

The Intel XScale® microarchitecture implements a 32-Kbyte, 32-way set associative data cache 
and a 2-Kbyte, 2-way set associative mini-data cache. Each cache has a line size of 32 bytes, and 
supports write-through or write-back caching.

The data/mini-data cache is controlled by page attributes defined in the MMU Architecture and by 
coprocessor 15.

The Intel XScale® microarchitecture allows applications to re-configure a portion of the data cache 
as data RAM. Software may place special tables or frequently used variables in this RAM.

2.2.2.6 Interrupt Controller

The Intel XScale® microarchitecture provides two levels of interrupt, IRQ and FIQ. They can be 
masked via coprocessor 13. Note that there is also a memory mapped interrupt controller described 
with the Intel XScale® Peripherals (see Section 3.12), which is used to mask and steer many chip-
wide interrupt sources.

2.2.2.7 Address Map

Figure 3 shows the partitioning of the Intel XScale® microarchitecture 4 GB address space.
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Figure 3. Intel XScale® 4GB (32-bit) Address Space

A9693-01

0X0000 0000

DRAM
and

Intel®
XScale™

FLASH ROM
(2 Gb)

SRAM
(1 Gb)

Other
(1/2 Gb)

PCI MEM
(1/2 Gb)

0X7FFF FFFF
0x8000 0000

0XDF00 0000
0XDE00 0000
0XDC00 0000
0XDA00 0000
0XD800 0000
0XD600 0000

0XD000 0000
0XCE00 0000
0XCC00 0000
0XCA00 0000
0XC800 0000

0XC200 0000
0XC000 0000

0XC400 0000

3.5 Gb

3.0 Gb

0XBFFF FFF
0XC000 0000

0XDFFF FFF

0XFFFF FFF

0XE000 0000 PCI Config Regs
PCI Local CSRs

PCI Spec/IACK
PCI CFG (32 Mb)

DRAM CSR (32 Mb)

SRAM Ring (32 Mb)
SRAM CSR & Queue

Scratch (32 Mb)
MSF (32 Mb)

Intel XScale™ Gasket CSR
PCI I/O (32 Mb)

RESERVED
(32 Mb x 2)

FLASH ROM
(64 Mb)

RESERVED
CAP-CSRs (32 Mb)
28 Hardware Reference Manual



Intel® IXP2800 Network Processor
Technical Description
2.3 Microengines

The Microengines do most of the programmable pre-packet processing in the IXP2800 Network 
Processor. There are 16 Microengines, connected as shown in Figure 1. The Microengines have 
access to all shared resources (SRAM, DRAM, MSF, etc.) as well as private connections between 
adjacent Microengines (referred to as “next neighbors”).

The block diagram in Figure 4 is used in the Microengine description. Note that this block diagram 
is simplified for clarity; some blocks and connectivity have been omitted to make the diagram 
more readable. Also, this block diagram does not show any pipeline stages, rather it shows the 
logical flow of information.

The Microengine provides support for software controlled multi-threaded operation. Given the 
disparity in processor cycle times vs external memory times, a single thread of execution will often 
block waiting for external memory operations to complete. Having multiple threads available 
allows for threads to interleave operation—there is often at least one thread ready to run while 
others are blocked.
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Figure 4. Microengine Block Diagram
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2.3.1 Microengine Bus Arrangement

The IXP2800 Network Processor supports a single D-Push/Pull Bus and both Microengine clusters 
interface to the same bus. the IXP2800 Network Processor supports two command buses and two 
sets of S-Push/Pull Buses and are connected as shown in Table 2. Table 2 also shows the next 
neighbor relationship between the Microengine.

2.3.2 Control Store

The Control Store is a RAM, which holds the program that the Microengine executes. It holds 8192 
instructions, each of which is 40-bits wide. It is initialized by the Intel XScale® core, which writes 
to USTORE_ADDR and USTORE_DATA Local CSRs.

The Control Store is protected by parity against soft errors. Parity checking is enabled by 
CTX_ENABLE[CONTROL STORE PARITY ENABLE]. A parity error on an instruction read 
will halt the Microengine and assert an interrupt to the Intel XScale® core.

2.3.3 Contexts

There are eight hardware Contexts available in the Microengine. To allow for efficient context 
swapping, each Context has its own register set, Program Counter, and Context specific Local 
Registers. Having a copy per Context eliminates the need to move Context specific information to/
from shared memory and Microengine registers for each Context swap. Fast context swapping 
allows a Context to do computation while other Contexts wait for I/O (typically external memory 
accesses) to complete or for a signal from another Context or hardware unit. [Note that a context 
swap is similar to a taken branch in timing.]

Table 2. IXP2800 Network Processor Microengine Bus Arrangement

Microengine 
Cluster

Microengine 
Number

Next 
Neighbor

Previous 
Neighbor

Command 
Bus

S Push and 
Pull Bus

0

0x00 0x01 NA

0 0

0x01 0x02 0x00

0x02 0x03 0x01

0x03 0x04 0x02

0x04 0x05 0x03

0x05 0x06 0x04

0x06 0x07 0x05

0x07 0x10 0x06

1

0x10 0x11 0x07

1 1

0x11 0x12 0x10

0x12 0x13 0x11

0x13 0x14 0x12

0x14 0x15 0x13

0x15 0x16 0x14

0x16 0x17 0x15

0x17 NA 0x16
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Each of the eight Contexts is in one of four states.

1. Inactive—Some applications may not require all eight contexts. A Context is in the Inactive 
state when its CTX_ENABLE CSR enable bit is a ‘0’.

2. Executing—A Context is in Executing state when its context number is in 
ACTIVE_CTX_STS CSR. The executing Context’s PC is used to fetch instructions from the 
Control Store. A Context will stay in this state until it executes an instruction that causes it to 
go to Sleep state (there is no hardware interrupt or preemption; Context swapping is 
completely under software control). At most one Context can be in Executing state at any time.

3. Ready—In this state, a Context is ready to execute, but is not because a different Context is 
executing. When the Executing Context goes to Sleep state, the Microengine’s context arbiter 
selects the next Context to go to the Executing state from among all the Contexts in the Ready 
state. The arbitration is round robin.

4. Sleep—Context is waiting for external event(s) specified in the 
INDIRECT_WAKEUP_EVENTS CSR to occur (typically, but not limited to, an I/O access). 
In this state the Context does not arbitrate to enter the Executing state.

The state diagram in Figure 5 illustrates the Context state transitions. Each of the eight Contexts 
will be in one of these states. At most one Context can be in Executing state at a time; any number 
of Contexts can be in any of the other states.

The Microengine is in Idle state whenever no Context is running (all Contexts are in either Inactive 
or Sleep states). This state is entered:

1. After reset (because CTX_ENABLE Local CSR is clear, putting all Contexts into Inactive 
states).

2. When a context swap is executed, but no context is ready to wakeup.

Figure 5. Context State Transition Diagram
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3. When a ctx_arb[bpt] instruction is executed by the Microengine (this is a special case of #2 
above, since the ctx_arb[bpt] clears CTX_ENABLE, putting all Contexts into Inactive 
states).

The Microengine provides the following functionality during Idle state:

1. The Microengine continuously checks if a Context is in Ready state. If so, a new Context 
begins to execute. If no Context is Ready, the Microengine remains in the Idle state.

2. Only the ALU instructions are supported. They are used for debug via special hardware 
defined in number 3 below.

3. A write to the USTORE_ADDR Local CSR with the USTORE_ADDR[ECS] bit set, causing 
the Microengine to repeatedly execute the instruction pointed by the address specified in the 
USTORE_ADDR CSR. Only the ALU instructions are supported in this mode. Also, the result 
of the execution is written to the ALU_OUT Local CSR rather than a destination register.

4. A write to the USTORE_ADDR Local CSR with the USTORE_ADDR[ECS] bit set, followed 
by a write to the USTORE_DATA Local CSR loads an instruction into the Control Store. After 
the Control Store is loaded, execution proceeds as described in number 3 above.

2.3.4 Datapath Registers

As shown in the block diagram in Figure 4 each Microengine contains four types of 32-bit datapath 
registers:

1. 256 General Purpose Registers

2. 512 Transfer Registers

3. 128 Next Neighbor Registers

4. 640 32-bit words of Local Memory

2.3.4.1 General-Purpose Registers (GPRs)

GPRs are used for general programming purposes. They are read and written exclusively under 
program control. GPRs, when used as a source in an instruction, supply operands to the execution 
datapath. When used as a destination in an instruction, they are written with the result of the 
execution datapath. The specific GPRs selected are encoded in the instruction.

The GPRs are physically and logically contained in two banks, GPR A, and GPR B, defined in 
Table 3.

2.3.4.2 Transfer Registers

Transfer Registers (abbreviated Xfer Registers) are used for transferring data to and from the 
Microengine and locations external to the Microengine, (for example DRAMs, SRAMs etc.). 
There are four types of transfer registers.

• S_TRANSFER_IN

• S_TRANSFER_OUT

• D_TRANSFER_IN

• D_TRANSFER_OUT
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TRANSFER_IN Registers, when used as a source in an instruction, supply operands to the 
execution datapath. The specific register selected is either encoded in the instruction, or selected 
indirectly via T_INDEX. TRANSFER_IN Registers are written by external units (A typical case is 
when the external unit returns data in response to read instructions. However, there are other 
methods to write TRANSFER_IN Registers, for example a read instruction executed by one 
Microengine may cause the data to be returned to a different Microengine. Details are covered in 
the instruction set descriptions).

TRANSFER_OUT Registers, when used as a destination in an instruction, are written with the 
result from the execution datapath. The specific register selected is encoded in the instruction, or 
selected indirectly via T_INDEX. TRANSFER_OUT Registers supply data to external units
(for example, write data for an SRAM write).

The S_TRANSFER_IN and S_TRANSFER_OUT Registers connect to the S_PUSH and S_PULL 
busses, respectively.

The D_TRANSFER_IN and D_TRANSFER_OUT Transfer Registers connect to the D_PUSH and 
D_PULL busses, respectively.

Typically, the external units access the Transfer Registers in response to instructions executed by 
the Microengines. However, it is possible for an external unit to access a given Microengine’s 
Transfer Registers either autonomously, or under control of a different Microengine, or the Intel 
XScale® core, etc. The Microengine interface signals controlling writing/reading of the 
Transfer_IN/TRANSFER_OUT registers are independent of the operation of the rest of the 
Microengine, therefore the data movement does not stall or impact other instruction processing
(it is the responsibility of software to synchronize usage of read data).

2.3.4.3 Next Neighbor Registers

Next Neighbor Registers, when used as a source in an instruction, supply operands to the execution 
datapath. They are written in two different ways:

1. by an adjacent Microengine (the “Previous Neighbor”).

2. by the same Microengine they are in, as controlled by CTX_ENABLE[NN_MODE].

The specific register is selected in one of two ways: 

1. Context-relative, the register number is encoded in the instruction.

2. As a Ring, selected via NN_GET and NN_PUT CSR Registers. 

The usage is configured in CTX_ENABLE[NN_MODE].

• When CTX_ENABLE[NN_MODE] is ‘0’ -- When Next Neighbor is used as a destination in 
an instruction, the instruction result data is sent out of the Microengine, to the Next Neighbor 
Microengine.

• When CTX_ENABLE[NN_MODE] is ‘1’ -- When Next Neighbor is used as a destination in 
an instruction, the instruction result data is written to the selected Next Neighbor Register in 
the same Microengine. Note that there is a 5 instruction latency until the newly written data 
may be read. The data is not sent out of the Microengine as it would be when 
CTX_ENABLE[NN_MODE] is ‘0’.
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2.3.4.4 Local Memory 

Local Memory is addressable storage located in the Microengine. Local Memory is read and 
written exclusively under program control. Local Memory supplies operands to the execution 
datapath as a source, and receives results as a destination. The specific Local Memory location 
selected is based on the value in one of the LM_ADDR Registers, which are written by 
local_csr_wr instructions. There are two LM_ADDR Registers per Context and a working copy of 
each. When a Context goes to Sleep state, the value of the working copies is put into the Context’s 
copy of LM_ADDR. When the Context goes to Executing state, the value in its copy of 
LM_ADDR are put into the working copies. The choice of LM_ADDR_0 or LM_ADDR_1 is 
selected in the instruction. 

It is also possible to make use of both or one LM_ADDRs as global by setting 
CTX_ENABLE[LM_ADDR_0_GLOBAL] and/or CTX_ENABLE[LM_ADDR_1_GLOBAL]. 
When used globally, all Contexts use the working copy of LM_ADDR in place of their own 
Context specific one; the Context specific ones are unused.

There is a three-instruction latency when writing a new value to the LM_ADDR, as shown in 
Example 1.

LM_ADDR can also be incremented or decremented in parallel with use as a source and/or 
destination (using the notation *l$index#++ and *l$index#--), as shown in Example 2, where three 
consecutive Local Memory locations are used in three consecutive instructions.

Table 3. Next Neighbor Write as a Function of CTX_ENABLE[NN_MODE]

NN_MODE

Where Does Write Go?

External
NN Register in 

This 
Microengine

0 Yes No

1 No Yes

Example 1. Three-Cycle Latency when Writing a New Value to LM_ADDR

;some instruction to compute the address into gpr_m

local_csr_wr[INDIRECT_LM_ADDR_0, gpr_m]; put gpr_m into lm_addr

;unrelated instruction 1

;unrelated instruction 2

;unrelated instruction 3

alu[dest_reg, *l$index0, op, src_reg]

;dest_reg can be used as a source in next instruction

Example 2. Using LM_ADDR in Consecutive Instructions

alu[dest_reg1, src_reg1, op, *l$index0++]

alu[dest_reg2, src_reg2, op, *l$index0++]

alu[dest_reg3, src_reg3, op, *l$index0++]
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Local Memory is written by selecting it as a destination. Example 3 shows copying a section of 
Local Memory to another section. Each instruction accesses the next sequential Local Memory 
location from the previous instruction.

Example 4 shows loading and using both Local Memory addresses.

As shown in Example 1 there is a latency in loading LM_ADDR. Until the new value is loaded the 
old value is still usable. Example 5 shows the maximum pipelined usage of LM_ADDR.

LM_ADDR can also be used as the base of a 16 32-bit word region of memory, with the instruction 
specifying the offset from that base, as shown in Example 6. The source and destination can use 
different offsets.

Note: Local Memory has 640 32-bit words. The local memory pointers (LM_ADDR) have an addressing 
range of up to 1K longwords. However, only 640 longwords are currently populated with RAM. 
Therefore:

0 - 639 (0x0 - 0x27F) are addressable as local memory.

640 - 1023 (0x280 - 0x3FF) are addressable, but not populated with RAM.

To the programmer, all instructions using Local Memory act as follows, including read/modify/
write instructions like immed_w0, ld_field, etc.

1. Read LM_ADDR location (if LM_ADDR is specified as source).

2. Execute logic function.

3. Write LM_ADDR location (if LM_ADDR is specified as destination).

Example 3. Copying One Section of Local Memory to Another Section

alu[*l$index1++, --, B, *l$index0++]

alu[*l$index1++, --, B, *l$index0++]

alu[*l$index1++, --, B, *l$index0++]

Example 4. Loading and Using both Local Memory Addresses

local_csr_wr[INDIRECT_LM_ADDR_0, gpr_m]

local_csr_wr[INDIRECT_LM_ADDR_1, gpr_n]

;unrelated instruction 1

;unrelated instruction 2

alu[dest_reg1, *l$index0, op, src_reg1]

alu[dest_reg2, *l$index1, op, src_reg2]

Example 5. Maximum Pipelined Usage of LM_ADDR

local_csr_wr[INDIRECT_LM_ADDR_0, gpr_m]

local_csr_wr[INDIRECT_LM_ADDR_0, gpr_n]

local_csr_wr[INDIRECT_LM_ADDR_0, gpr_o]

local_csr_wr[INDIRECT_LM_ADDR_0, gpr_p]

alu[dest_reg1, *l$index0, op, src_reg1] ; uses address from gpr_m

alu[dest_reg2, *l$index0, op, src_reg2] ; uses address from gpr_n

alu[dest_reg3, *l$index0, op, src_reg3] ; uses address from gpr_o

alu[dest_reg4, *l$index0, op, src_reg4] ; uses address from gpr_p

Example 6. LM_ADDR Used as Base of a 16 32-bit word Region of Local Memory

alu[*l$index0[3], *l$index0[4], +, 1]
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4. If specified, increment or decrement LM_ADDR.

5. Proceed to next instruction.

Example 7 is legal because lm_addr_0[2] does not post-modify LM_ADDR.

In Example 7, the programmer sees:

1. Read Local Memory memory location pointed to by LM_ADDR.

2. Invert the data.

3. Write the data into the address pointed to by LM_ADDR with the value of “2” OR’ed into the 
lower bits.

4. Increment LM_ADDR.

5. Proceed to next instruction.

In Example 8, the second instruction will access the Local Memory location one past the source/
destination of the first.

2.3.5 Addressing Modes

GPRs can be accessed in two different addressing modes: 

• Context-Relative

• Absolute

Some instructions can specify either mode, other instructions can specify only Context-Relative 
mode.

Transfer and Next Neighbor registers can be accessed in Context-Relative and Indexed modes.

Local Memory is accessed in Indexed mode.

The addressing mode in use is encoded directly into each instruction, for each source and 
destination specifier.

2.3.5.1 Context-Relative Addressing Mode

The GPRs are logically subdivided into equal regions such that each Context has relative access to 
one of the regions. The number of regions is configured in the CTX_ENABLE CSR, and can be 
either 4 or 8. Thus a Context-Relative register number is actually associated with multiple different 
physical registers. The actual register to be accessed is determined by the Context making the 
access request (the Context number is concatenated with the register number specified in the 
instruction). Context-Relative addressing is a powerful feature that enables eight (or four) different 
contexts to share the same code image, yet maintain separate data.

Example 7. LM_ADDR Use as Source and Destination

alu[*l$index0[2], --, ~B, *l$index0]

Example 8. LM_ADDR Post-increment

alu[*l$index0++, --, ~B, gpr_n]

alu[gpr_m, --, ~B, *l$index0]
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Table 4 shows how the Context number is used in selecting the register number in relative mode. 
The register number in Table 4 is the Absolute GPR address, or Transfer or Next Neighbor Index 
number to use to access the specific Context-Relative register. For example, with 8 active Contexts, 
Context-Relative Register 0 for Context 2 is Absolute Register Number 32.

2.3.5.2 Absolute Addressing Mode

With Absolute addressing, any GPR can be read or written by any one of the eight Contexts in a 
Microengine. Absolute addressing enables register data to be shared among all of the Contexts, for 
example for global variables, or for parameter passing. All 256 GPRs can be read by Absolute 
address.

2.3.5.3 Indexed Addressing Mode

With Indexed addressing, any Transfer or Next Neighbor register can be read or written by any one 
of the eight Contexts in a Microengine. Indexed addressing enables register data to be shared 
among all of the Contexts. For indexed addressing the register number comes from the T_INDEX 
register for Transfer Registers or NN_PUT and NN_GET registers (for Next Neighbor Registers).

Example 9 shows an example of using the Index Mode. Assume that the numbered bytes have been 
moved into the S_Transfer_In registers as shown.

Table 4. Registers Used By Contexts in Context-Relative Addressing Mode

Number of 
Active 

Contexts

Active
Context 
Number

GPR
Absolute Register Numbers S Transfer or 

Neighbor
Index Number

D Transfer
Index Number

A Port B Port

8

(Instruction 
always specifies 

Registers in 
range 0-15)

0 0-15 0-15 0-15 0-15

1 16-31 16-31 16-31 16-31

2 32-47 32-47 32-47 32-47

3 48-63 48-63 48-63 48-63

4 64-79 64-79 64-79 64-79

5 80-95 80-95 80-95 80-95

6 96-111 96-111 96-111 96-111

7 112-127 112-127 112-127 112-127

4

(Instruction 
always specifies 

Registers in 
range 0-31)

0 0-31 0-31 0-31 0-31

2 32-63 32-63 32-63 32-63

4 64-95 64-95 64-95 64-95

6 96-127 96-127 96-127 96-127

Example 9. Use of Indexed Addressing Mode  (Sheet 1 of 2)

Transfer 
Register #

Data

31:24 23:16 15:8 7:0

0 0x00 0x01 0x02 0x03

1 0x04 0x05 0x06 0x07

2 0x08 0x09 0x0a 0x0b
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If the software wants to access a specific byte that is know at compile-time, it will normally use 
context-relative addressing. For example to access the word in transfer register 3:

If the location of the data is found at run-time, indexed mode can be used. For example, the case 
where the start of an encapsulated header is dependent on a value in an outer header (the outer 
header byte is in a fixed location).

2.3.6 Local CSRs

Local Control and Status Registers (CSRs) are external to the Execution Datapath, and hold 
specific purpose information. They can be read and written by special instructions (local_csr_rd 
and local_csr_wr) and are typically accessed less frequently than datapath registers.

Because Local CSRs are not built in the datapath, there is a write to use delay of three instructions, 
and a read to consume penalty of two instructions.

3 0x0c 0x0d 0x0e 0x0f

4 0x10 0x11 0x12 0x013

5 0x14 0x15 0x16 0x17

6 0x18 0x19 0x1a 0x1b

7 0x1c 0x1d 0x1e 0x1f

Example 9. Use of Indexed Addressing Mode  (Sheet 2 of 2)

Transfer 
Register #

Data

31:24 23:16 15:8 7:0

alu[dest, --, B, $xfer3] ; move the data from s_transfer 3 to gpr dest

; Check byte 2 of transfer 0

; If value==5 header starts on byte 0x9, else byte 0x14

br=byte[$0, 2, 0x5, L1#], defer_[1]

local_csr_wr[t_index_byte_index, 0x09]

local_csr_wr[t_index_byte_index, 0x14]

nop ; wait for index registers to be loaded

L1#:

; Move bytes right justified into destination registers

nop ; wait for index registers to be loaded

nop ;

byte_align_be[dest1, *$index++]

byte_align_be[dest2, *$index++]

; etc

Note that the t_index and byte_index registers are loaded by the same instruction.
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2.3.7 Execution Datapath

The Execution Datapath can take one or two operands, perform an operation, and optionally write 
back a result. The sources and destinations can be GPRs, Transfer Registers, Next Neighbor 
Registers, and Local Memory. The operations are shifts, add/subtract, logicals, multiply, byte align, 
and find first one bit. 

2.3.7.1 Byte Align

The datapath provides a mechanism to move data from source register(s) to any destination 
register(s) with byte aligning. Byte aligning takes four consecutive bytes from two concatenated 
values (8 bytes), starting at any of four byte boundaries (0, 1, 2, 3), and based on the endian-type 
(which is defined in the instruction opcode), as shown in Example 4. The four bytes are taken from 
two concatenated values. Four bytes are always supplied from a temporary register that always 
holds the A or B operand from the previous cycle, and the other four bytes from the B or A operand 
of the Byte Align instruction. 

The operation is described below low using the block diagram in Figure 6. The alignment is 
controlled by the 2 LSBs of the BYTE_INDEX Local CSR.

Table 5. Align Value and Shift Amount

Align Value
(in Byte_Index[1:0])

Right Shift Amount (# of Bits)
(Decimal)

Little Endian Big Endian

0 0 32

1 8 24

2 16 16

3 24 8

Figure 6. Byte Align Block Diagram
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Example 11 shows an align sequence of instructions and the value of the various operands. Table 6 
shows the data in the registers for this example. The value in BYTE_INDEX[1:0] CSR (which 
controls the shift amount) for this example is 2.

Example 11 shows another sequence of instructions and the value of the various operands.
Table 7 shows the data in the registers for this example. 

The value in BYTE_INDEX[1:0] CSR (which controls the shift amount) for this example is 2.

Table 6. Register Contents for Example 10

Register Byte 3
[31:24]

Byte 2 
[23:16]

Byte 1
[15:8]

Byte 0
[7:0]

0 0 1 2 3

1 4 5 6 7

2 8 9 A B

3 C D E F

Example 10. Big Endian Align

Instruction Prev B A Operand B Operand Result

Byte_align_be[--, r0] -- -- 0123 --

Byte_align_be[dest1, r1] 0123 0123 4567 2345

Byte_align_be[dest2, r2] 4567 4567 89AB 6789

Byte_align_be[dest3, r3] 89AB 89AB CDEF ABCD

NOTE: A Operand comes from Prev_B register during byte_align_be instructions.

Table 7. Register Contents for Example 11

Register Byte 3
[31:24]

Byte 2 
[23:16]

Byte 1
[15:8]

Byte 0
[7:0]

0 3 2 1 0

1 7 6 5 4

2 B A 9 8

3 F E D C

Example 11. Little Endian Align

Instruction A Operand B Operand Prev A Result

Byte_align_le[--, r0] 3210 -- -- --

Byte_align_le[dest1, r1] 7654 3210 3210 5432

Byte_align_le[dest2, r2] BA98 7654 7654 9876

Byte_align_le[dest3, r3] FEDC BA98 BA98 DCBA

NOTE: B Operand comes from Prev_A register during byte_align_le instructions.
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As the examples show, byte aligning “n” words takes “n+1” cycles due to the first instruction 
needed to start the operation.

Another mode of operation is to use the T_INDEX register with post-increment, to select the 
source registers. T_INDEX operation is described later in this chapter.

2.3.7.2 CAM

The block diagram in Figure 7 is used to explain the CAM operation.

The CAM has 16 entries. Each entry stores a 32 bit value, which can be compared against a source 
operand by instruction:

CAM_Lookup[dest_reg, source_reg]

All entries are compared in parallel, and the result of the lookup is a 9 bit value which is written 
into the specified destination register in bits 11:3, with all other bits of the register zero (the choice 
of bits 11:3 is explained below). The result can also optionally be written into either of the 
LM_Addr registers (see below in this section for details).

The 9-bit result consists of 4 State bits (dest_reg[11:8]), concatenated with a 1-bit Hit/Miss 
indication (dest_reg[7]), concatenated with 4-bit entry number (dest_reg[6:3]). All other bits of 
dest_reg are written with 0. Possible results of the lookup are:

• miss (0)—lookup value is not in CAM, entry number is Least Recently Used entry (which can 
be used as a suggested entry to replace), and State bits are 0000.

• hit (1)—lookup value is in CAM, entry number is entry which has matched, State bits are the 
value from the entry which has matched.
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Note: The State bits are data associated with the entry. The use is only by software. There is no 
implication of ownership of the entry by any Context. The State bits hardware function is:

• the value is set by software (at the time the entry is loaded, or changed in an already loaded 
entry).

• its value is read out on a lookup that hits, and used as part of the status written into the 
destination register.

• its value can be read out separately (normally only used for diagnostic or debug).

The LRU (Least Recently Used) Logic maintains a time-ordered list of CAM entry usage. When an 
entry is loaded, or matches on a lookup, it is marked as MRU (Most Recently Used). Note that a 
lookup that misses does not modify the LRU list.

The CAM is loaded by instruction:
CAM_Write[entry_reg, source_reg, state_value]

The value in the register specified by source_reg is put into the Tag field of the entry specified by 
entry_reg. The value for the State bits of the entry is specified in the instruction as state_value.

Figure 7. CAM Block Diagram
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The value in the State bits for an entry can be written, without modifying the Tag, by instruction:
CAM_Write_State[entry_reg, state_value]

Note: CAM_Write_State does not modify the LRU list.

One possible way to use the result of a lookup is to dispatch to the proper code using instruction:
jump[register, label#],defer [3]

where the register holds the result of the lookup. The State bits can be used to differentiate cases 
where the data associated with the CAM entry is in flight, or is pending a change, etc. Because the 
lookup result was loaded into bits[11:3] of the destination register, the jump destinations are spaced 
8 instructions apart. This is a balance between giving enough space for many applications to 
complete their task without having to jump to another region, vs consuming too much Control 
Store. Another way to use the lookup result is to branch on just the hit miss bit, and use the entry 
number as a base pointer into a block of Local Memory.

When enabled, the CAM lookup result is loaded into Local_Addr as follows:

LM_Addr[5:0] = 0 ([1:0] are read-only bits)

LM_Addr[9:6] = lookup result [6:3] (entry number)

LM_Addr[11:10] = constant specified in instruction

This function is useful when the CAM is used as a cache, and each entry is associated with a block 
of data in Local Memory. Note that the latency from when CAM_Lookup executes until the 
LM_Addr is loaded is the same as when LM_Addr is written by a Local_CSR_Wr instruction.

The Tag and State bits for a given entry can be read by instructions:
CAM_Read_Tag[dest_reg, entry_reg]

CAM_Read_State[dest_reg, entry_reg]

The Tag value and State bits value for the specified entry is written into the destination register, 
respectively for the two instructions (the State bits are placed into bits [11:8] of dest_reg, with all 
other bits 0). Reading the tag is useful in the case where an entry needs to be evicted to make room 
for a new value—the lookup of the new value results in a miss, with the LRU entry number 
returned as a result of the miss. The CAM_Read_Tag instruction can then be used to find the value 
that was stored in that entry. An alternative would be to keep the tag value in a GPR. These two 
instructions can also be used by debug and diagnostic software. Neither of these modify the state of 
the LRU pointer.

Note: The following rules must be adhered to when using the CAM.

• CAM is not reset by Microengine reset. Software must either do a CAM_clear prior to using the 
CAM to initialize the LRU and clear the tags to zero, or explicitly write all entries with 
CAM_write.

• No two tags can be written to have same value. If this rule is violated, the result of a lookup 
that matches that value will be unpredictable, and LRU state is unpredictable.

The value 0x00000000 can be used as a valid lookup value. However, note that CAM_clear 
instruction puts 0x00000000 into all tags. So in order to not violate rule 2 after doing CAM_clear, it 
is necessary to write all entries to unique values prior to doing a lookup of 0x00000000.

An algorithm for debug software to find out the contents of the CAM is shown in Table 8.
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The CAM can be cleared with CAM_Clear instruction. This instruction writes 0x00000000 
simultaneously to all entries tag, clears all the state bits, and puts the LRU into an initial state 
(where entry 0 is LRU, ..., entry 15 is MRU).

2.3.8 CRC Unit

The CRC Unit operates in parallel with the Execution Datapath. It takes two operands, performs a 
CRC operation, and writes back a result. CRC-CCITT, CRC-32, CRC-10, CRC-5, and iSCSI 
polynomials are supported. One of the operands is the CRC_Remainder Local CSR, and the other 
is a GPR, Transfer In Register, Next Neighbor, or Local Memory, specified in the instruction and 
passed through the Execution Datapath to the CRC Unit. The instruction specifies the CRC 
operation type, whether to swap bytes and or bits, and which bytes of the operand to include in the 
operation. The result of the CRC operation is written back into CRC_Remainder. The source 
operand can also be written into a destination register (however the byte/bit swapping and masking 
do not affect the destination register; they only affect the CRC computation). This allows moving 
data, for example, from S Transfer In registers to S Transfer Out registers at the same time as 
computing the CRC.

Table 8. Algorithm for Debug Software to Find out the Contents of the CAM

; First read each of the tag entries. Note that these reads
; don’t modify the LRU list or any other CAM state.
tag[0] = CAM_Read_Tag(entry_0);
......
tag[15] = CAM_Read_Tag(entry_15);

; Now read each of the state bits
state[0] = CAM_Read_State(entry_0);
...
state[15] = CAM_Read_State(entry_15);

; Knowing what tags are in the CAM makes it possible to 
; create a value that is not in any tag, and will therefore
; miss on a lookup.

; Next loop through a sequence of 16 lookups, each of which will
; miss, to obtain the LRU values of the CAM.
for (i = 0; i < 16; i++)
  BEGIN_LOOP
   ; Do a lookup with a tag not present in the CAM. On a
   ; miss, the LRU entry will be returned. Since this lookup
   ; missed the LRU state is not modified.
   LRU[i] = CAM_Lookup(some_tag_not_in_cam);
   ; Now do a lookup using the tag of the LRU entry. This 
   ; lookup will hit, which makes that entry MRU.
   ; This is necessary to allow the next lookup miss to
   ; see the next LRU entry.
   junk = CAM_Lookup(tag[LRU[i]]);
END_LOOP

; Because all entries were hit in the same order as they were
; LRU, the LRU list is now back to where it started before the
; loop executed.
; LRU[0] through LRU[15] holds the LRU list.
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2.3.9 Event Signals

Event Signals are used to coordinate a program with completion of external events. For example, 
when a Microengine executes an instruction to an external unit to read data (which will be written 
into a TRANSFER_IN register), the program must insure that it does not try to use the data until 
the external unit has written it. This time is not deterministic due to queuing delays and other 
uncertainty in the external units (for example, DRAM refresh). There is no hardware mechanism to 
flag that a register write is pending, and then prevent the program from using it. Instead the 
coordination is under software control, with hardware support.

In the instructions that use external units (i.e., SRAM, DRAM, etc.) there are fields that direct the 
external unit to supply an indication (called an Event Signal) that the command has been 
completed. There are 15 Event Signals per Context that can be used, and Local CSRs per Context 
to track which Event Signals are pending and which have been returned. The Event Signals can be 
used to move a Context from Sleep state to Ready state, or alternatively, the program can test and 
branch on the status of Event Signals.

Event Signals can be set in nine different ways.

1. When data is written into S_TRANSFER_IN registers

2. When data is written into D_TRANSFER_IN registers

3. When data is taken from S_TRANSFER_OUT registers

4. When data is taken from D_TRANSFER_OUT registers

5. By a write to INTERTHREAD_SIGNAL register

6. By a write from Previous Neighbor Microengine to NEXT_NEIGHBOR_SIGNAL

7. By a write from Next Neighbor Microengine to PREVIOUS_NEIGHBOR_SIGNAL

8. By a write to SAME_ME_SIGNAL Local CSR

9. By Internal Timer

Any or all Event Signals can be set by any of the above sources. 

When a Context goes to Sleep state (executes a ctx_arb instruction, or an instruction with 
ctx_swap token), it specifies which Event Signal(s) it requires to be put in Ready state. ctx_arb 
instruction also specifies if the logical AND or logical OR of the Event Signal(s) is needed to put 
the Context into Ready state.

When all the Context’s Event Signals arrive, the Context goes to Ready state, and then eventually 
to Executing state. In the case where the Event Signal is linked to moving data into or out of 
Transfer registers (numbers 1 through 4 in the list above), the code can safely use the Transfer 
register as the first instruction (for example, using a Transfer_In register as a source operand will 
get the new read data). The same is true when the Event Signal is tested for branches (br_=signal or 
br_!signal instructions).

The ctx_arb instruction, CTX_SIG_EVENTS, and ACTIVE_CTX_WAKEUP_#_EVENTS Local 
CSR descriptions provide details.
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2.4 DRAM

The IXP2800 Network Processor has controllers for three Rambus* DRAM (RDRAM) channels. 
Each of the controllers independently accesses its own RDRAMs, and can operate concurrently 
with the other controllers (i.e. they are not operating as a single, wider memory). DRAM provides 
high density, high bandwidth storage and is typically used for data buffers.

RDRAM sizes of 64Mb, 128Mb, 256Mb, 512 Mb, and 1 Gb are supported, however, each of the 
channels must have the same number, size, and speed of RDRAMs populated. Refer to Section 5.2 
for supported size and loading configurations. 

Up to 2 GB of DRAM is supported. If less than 2 GB of memory is present, the upper part of the 
address space is not used. It is also possible, for system cost and area savings, to have Channels 0 
and 1 populated with Channels 2 empty, or Channel 0 populated with Channels 1and 2 empty.

Reads and writes to RDRAM are generated by Microengines, The Intel XScale® core, and PCI 
(external Bus Masters and DMA Channels). The controllers also do refresh and calibration cycles 
to the RDRAMs, transparently to software.

RDRAM Powerdown and Nap modes are not supported.

Hardware interleaving (also known as striping) of addresses is done to provide balanced access to 
all populated channels. The interleave size is 128 bytes. Interleaving helps to maintain utilization 
of available bandwidth by spreading consecutive accesses to multiple channels. The interleaving is 
done in the hardware in such a way that the three channels appear to software as a single 
contiguous memory space.

ECC (Error Correcting Code) is supported, but can be disabled. Enabling ECC requires that x18 
RDRAMs be used. If ECC is disabled x16 RDRAMs can be used. ECC can detect and correct all 
single-bit errors, and detect all double-bit errors. When ECC is enabled, partial writes (writes of 
less than 8 bytes) must be done as read-modify-writes. 

2.4.1 Size Configuration

Each channel can be populated with anywhere from one-to-four RDRAMs (Short Channel Mode). 
Refer to Section 5.2 for supported size and loading configurations. The RAM technology used will 
determine the increment size and maximum memory per channel as shown in Table 9.

Table 9. RDRAM Sizes

RDRAM Technology1 Increment Size Maximum per Channel

64/72 Mb 8 MB 256 MB

128/144 Mb 16 MB 512 MB

256/288 Mb 32 MB 1 GB2

512/576 Mb 64 MB 2 GB2

NOTES:
1. The two numbers shown for each technology indicate x16 parts and x18 parts.
2. The maximum memory that can be addressed across all channels is 2GB. This limitation is based on the 

partitioning of the 4GB address space (32-bit addresses). Therefore if all three channels are used, each 
can be populated up to a maximum of 768MB. Two channels can be populated to a maximum of 1 GB 
each. A single channel could be populated to a maximum of 2 GB.
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RDRAMs with 1 x 16 dependent banks, 2 x 16 dependent banks, and 4 independent banks are 
supported.

2.4.2 Read and Write Access

The minimum DRAM physical access length is 16 bytes. Software (and PCI) can read or write as 
little as a single byte, however the time (and bandwidth) taken at the DRAMs is the same as for an 
access of 16 bytes. Therefore, the best utilization of DRAM bandwidth will be for accesses that are 
multiples of 16 bytes.

If ECC is enabled, writes of less than 8 bytes must do read-modify-writes, which take two 16-byte 
time accesses (one for the read and one for the write).

2.5 SRAM

The IXP2800 Network Processor has four independent SRAM controllers, which each support 
pipelined QDR synchronous static RAM (SRAM) and/or a coprocessor that adheres to QDR 
signaling. Any or all controllers can be left unpopulated if the application does not need to use 
them. SRAM are accessible by the Microengines, the Intel XScale® core, and the PCI Unit 
(external bus masters and DMA).

The memory is logically four bytes (32-bits) wide; physically the data pins are two bytes wide and 
are double clocked. Byte parity is supported. Each of the four bytes has a parity bit, which is 
written when the byte is written and checked when the data is read. There are byte enables which 
select which bytes to write for writes of less than 32-bits.

Each of the 4 QDR ports are QDR and QDRII compatible. Each port implements the “_K” and 
“_C” output clocks and “_CQ” as an input and their inversions. (Note: the “_C” and “_CQ” clocks 
are optional). Extensive work has been performed providing impedance controls within the 
IXP2800 Network Processor for network processor initiated signals driving to QDR parts. 
Providing a clean signaling environment is critical to achieving 200 to 250 MHz QDRII data 
transfers. 

The configuration assumptions for the IXP2800 Network Processor I/O driver/receiver 
development includes four QDR loads and the IXP2800 Network Processor. The IXP2800 
Network Processor supports bursts of 2 SRAMs, but does not support bursts of 4 SRAMs.

The SRAM controller can also be configured to interface to an external coprocessor that adheres to 
the QDR electricals and protocol. Each SRAM controller may also interface to an external 
coprocessor through its standard QDR interface. This interface will allow for the cohabitation of 
both SRAM devices and coprocessors to operate on the same bus. The coprocessor will behave as a 
memory mapped device on the SRAM bus.
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2.5.1 QDR Clocking Scheme

The controller drives out two pairs of K clock (K and K#). It also drives out two pairs of C clock (C 
and C#). Both C/C# clocks externally return to the controller for reading data. Figure 8 shows the 
clock diagram if the clocking scheme for QDR interface driving four SRAM chips.

 

Figure 8. Echo Clock Configuration
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2.5.2 SRAM Controller Configurations

Each channel has enough address pins (24) to support up to 64 MB of SRAM. The SRAM 
controllers can directly generate multiple port enables (up to 4 pairs) to allow for depth expansion. 
Two pairs of pins are dedicated for port enables. Smaller RAMs use fewer address signals than the 
number provided to accommodate the largest RAMs, so some address pins (23:20) are 
configurable as either address or port enable based on CSR setting as shown in Table 10. Note that 
all of the SRAMs on a given channel must be the same size.

Each channel can be expanded by depth according to the number of port enables available. If 
external decoding is used, then the number of SRAMs used is not limited by the number of port 
enables generated by the SRAM controller. 

Note: Doing external decoding may require external pipeline registers to account for the decode time, 
depending on the desired frequency. 

Maximum SRAM system sizes are shown in Table 11. Shaded entries require external decoding, 
because they use more port enables than the SRAM controller can supply directly.

Table 10. SRAM Controller Configurations 

SRAM
Configuration SRAM Size Addresses Needed

to Index SRAM
Addresses Used
as Port Enables

Total Number of 
Port Select Pairs 

Available

512K x 18 1 MB 17:0 23:22, 21:20 4

1M x 18 2 MB 18:0 23:22, 21:20 4

2M x 18 4 MB 19:0 23:22, 21:20 4

4M x 18 8 MB 20:0 23:22 3

8M x 18 16 MB 21:0 23:22 3

16M x 18 32 MB 22:0 None 2

32M x 18 64 MB 23:0 None 2

Table 11. Total Memory per Channel

SRAM Size
Number of SRAMs on Channel

1 2 3 4 5 6 7 8

512K x 18 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB 7 MB 8 MB

1M x 18 2 MB 4 MB 6 MB 8 MB 10 MB 12 MB 14 MB 16 MB

2M x 18 4 MB 8 MB 12 MB 16 MB 20 MB 24 MB 28 MB 32 MB

4M x 18 8 MB 16 MB 24 MB 32 MB 64 MB NA NA NA

8M x 18 16 MB 32 MB 48 MB 64 MB NA NA NA NA

16M x 18 32 MB 64 MB NA NA NA NA NA NA

32M x 18 64 MB NA NA NA NA NA NA NA
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2.5.3 SRAM Atomic Operations

In addition to normal reads and writes, SRAM supports the following atomic operations. 
Microengines have specific instructions to do each atomic operation; Intel XScale® 
microarchitecture uses aliased address regions to do atomic operations.

• bit set

• bit clear

• increment

• decrement

• add

• swap

The SRAM does read-modify-writes for the atomic operations, the pre-modified data can also be 
returned if desired. The atomic operations operate on a single 32-bit word. 

2.5.4 Queue Data Structure Commands

The ability to enqueue and dequeue data buffers at a fast rate is key to meeting line-rate 
performance. This is a difficult problem as it involves dependent memory references that must be 
turned around very quickly. The SRAM controller includes a data structure (called the Q_array) 
and associated control logic in order to perform efficient enqueue and dequeue operations. The 
Q_array has 64 entries, each of which can be used in one of four ways.

• Linked-list queue descriptor (resident queues)

• Cache of recently used linked-list queue descriptors (the backing store for the cache is in 
SRAM)

• Ring descriptor

• Journal

The commands provided are:

For Linked-list queues or Cache of recently used linked-list queue descriptors
• Read_Q_Descriptor_Head(address, length, entry, xfer_addr)

• Read_Q_Descriptor_Tail(address, length, entry)

• Read_Q_Descriptor_Other(address, entry)

• Write_Q_Descriptor(address, entry)

• Write_Q_Descriptor_Count(address, entry)

• ENQ(buff_desc_adr, cell_count, EOP, entry)

• ENQ_tail(buff_desc_adr, entry)

• DEQ(entry, xfer_addr)

For Rings
• Get(entry, length, xfer_addr)

• Put(entry, length, xfer_addr)

For Journals
• Journal(entry, length, xfer_addr)

• Fast_journal(entry)
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Note: The Read_Q_Descriptor_Head, Read_Q_Descriptor_Tail, etc.) are used to initialize the rings and 
journals but not used to perform the ring and journal function. 

2.5.5 Reference Ordering 

This section covers the ordering between accesses to any one SRAM controller.

2.5.5.1 Reference Order Tables

Table 12 shows the architectural guarantees of order to access to the SAME SRAM address 
between a reference of any given type (shown in the column labels) and a subsequent reference of 
any given type (shown in the row labels). The definition of first and second is defined by the order 
they are received by the SRAM controller. (Note: A given IXP version may implement a superset 
of these order guarantees. However, that superset is not promised to be supported in future 
implementations. Verification is required to test only the order rules shown in Table 12 and 
Table 13).

Note: Note that a blank entry means no order is enforced.

Table 13 shows the architectural guarantees of order to access to the SAME SRAM Q_array entry 
between a reference of any given type (shown in the column labels) and a subsequent reference of 
any given type (shown in the row labels). The definition of first and second is defined by the order 
they are received by the SRAM controller. The same caveats apply as for Table 12.

Table 12. Address Reference Order

1st ref
2nd ref Memory 

Read CSR Read Memory 
Write CSR Write Memory 

RMW

Queue / 
Ring / 

Q_Descr 
Commands

Memory Read Order

CSR Read Order

Memory Write Order

CSR Write Order

Memory RMW Order

Queue / Ring / Q_ 
Descr Commands

See 
Table 13.
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2.5.5.2 Microengine Software Restrictions to Maintain Ordering

It is the Microengine programmer’s job to insure order where the program flow finds order to be 
necessary and where the architecture does not guarantee that order. The signaling mechanism can 
be used to do this. For example, say that ucode needs to update several locations in a table. A 
location in SRAM is used to “lock” access to the table. Example 12 is the code for the table update.

Other rules:

• All accesses to atomic variables should be via read-modify-write instructions.

• If the flow must know that a write is completed (actually in the SRAM itself), follow the write 
with a read to the same address. The write is guaranteed to be complete when the read data has 
been returned to the Microengine.

Table 13. Q_array Entry Reference Order

1st ref
2nd ref

Read_Q
_Descr 
head,

tail

Read_
Q_Des

cr 
other

Write_Q
_Descr Enqueue Dequeue Put Get Jounal

Read_Q_Descr
head,tail Order

Read_Q_
Descr other Order

Write_Q_
Descr

Enqueue Order Order Order

Dequeue Order Order Order

Put Order

Get Order

Jounal Order

Example 12. Table Update Code

IMMED [$xfer0, 1]

SRAM [write, $xfer0, flag_address, 0, 1], ctx_swap [SIG_DONE_2]

; At this point, the write to flag_address has passed the point of coherency. Do 
the table updates.

SRAM [write, $xfer1, table_base, offset1, 2] , sig_done [SIG_DONE_3]

SRAM [write, $xfer3, table_base, offset2, 2] , sig_done [SIG_DONE_4]

CTX_ARB [SIG_DONE_3, SIG_DONE_4]

; At this point, the table writes have passed the point of coherency. Clear the 
flag to allow access by other threads.

IMMED [$xfer0, 0]

SRAM [write, $xfer0, flag_address, 0, 1, ctx_swap [SIG_DONE_2]
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• With the exception of initialization, never do WRITE commands to the first 3 longwords of a 
queue_descriptor data structure (these are the longwords that hold head, tail, and count, etc.). 
All accesses to this data must be via the Q commands.

• To initialize the Q_array registers, perform a memory write of at least 3 longwords, followed 
by a memory read to the same address (to guarantee that the write completed). Then, for each 
entry in the Q_array, perform a read_q_descriptor_head followed by a 
read_q_descriptor_other using the address of the same 3 longwords.

2.6 Scratchpad Memory

The IXP2800 Network Processor contains a 16KB Scratchpad Memory, organized as 4K 32-bit 
words, that is accessible by Microengines and the Intel XScale® core.

The Scratchpad Memory provides the following operations:

• Normal reads and writes. From one to sixteen 32-bit words can be read/written with a single 
Microengine instruction. Note that Scratchpad is not byte-writeable (each write must write all 
four bytes).

• Atomic read-modify-write operations, bit-set, bit-clear, increment, decrement, add, subtract, 
and swap. The RMW operations can also optionally return the pre-modified data.

• Sixteen Hardware Assisted Rings for interprocess communication. [A ring is a FIFO that uses 
a head and tail pointer to store/read information in Scratchpad memory.]

Scratchpad Memory is provided as a third memory resource (in addition to SRAM and DRAM) 
that is shared by the Microengines and the Intel XScale® core. The Microengines and the Intel 
XScale® core can distribute memory accesses between these three types of memory resources to 
provide a greater number of memory accesses occurring in parallel.

2.6.1 Scratchpad Atomic Operations

In addition to normal reads and writes, the Scratchpad Memory supports the following atomic 
operations. Microengines have specific instructions to do each atomic operation; the Intel XScale® 
microarchitecture uses aliased address regions to do atomic operations.

• bit set

• bit clear

• increment

• decrement

• add

• subtract

• swap

The Scratchpad Memory does read-modify-writes for the atomic operations, the pre-modified data 
can also be returned if desired. The atomic operations operate on a single 32-bit word. 
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2.6.2 Ring Commands

The Scratchpad Memory provides sixteen Rings used for interprocess communication. The rings 
provide two operations.

• Get(ring, length) 

• Put(ring, length) 

Ring is the number of the ring (0 through 15) to get or put from, and length specifies the 
number of 32-bit words to transfer. A logical view of one of the rings is shown in Table 9.

Head, Tail, and Size are registers in the Scratchpad Unit. Head and Tail point to the actual ring data, 
which is stored in the Scratchpad RAM. The count of how many entries are on the Ring is 
determined by hardware using the Head and Tail. For each Ring in use, a region of Scratchpad 
RAM must be reserved for the ring data.

Note: The reservation is by software convention. The hardware does not prevent other accesses to the 
region of Scratchpad Memory used by the Ring. Also the regions of Scratchpad Memory allocated 
to different Rings must not overlap.

Head points to the next address to be read on a get, and Tail points to the next address to be written 
on a put. The size of each Ring is selectable from the following choices: 128, 256, 512 or 1024 32-
bit words. 

Note: The region of Scratchpad used for a Ring is naturally aligned to it size.

When the Ring is near full, it asserts an output signal, which is used as a state input to the 
Microengines. They must use that signal to test (by doing Branch on Input State) for room on the 
Ring before putting data onto it. There is a lag in time from a put instruction executing to the Full 
signal being updated to reflect that put. To guarantee that a put will not overfill the ring there is a 
bound on the number of Contexts and the number of 32-bit words per write based on the size of the 

Figure 9. Logical View of Rings
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ring, as shown in Table 14. Each Context should test the Full signal, then do the put if not Full, and 
then wait until the Context has been signaled that the data has been pulled before testing the Full 
signal again. 

An alternate usage method is to have Contexts allocate and deallocate entries from a shared count 
variable, using the atomic subtract to allocate and atomic add to deallocate. In this case the 
Full signal is not used.

Table 14. Ring Full Signal Use -- Number of Contexts and Length vs Ring Size

2.7 Media and Switch Fabric Interface

The Media and Switch Fabric (MSF) Interface is used to connect the IXP2800 Network Processor 
to a physical layer device (PHY) and/or to a Switch Fabric. the MSF consists of separate receive 
and transmit interfaces. Each of the receive and transmit interfaces can be separately configured for 
either SPI-4 Phase 2 (System Packet Interface) for PHY devices or CSIX-L1 protocol for Switch 
Fabric Interfaces.

The receive and transmit ports are unidirectional and independent of each other. Each port has 16 
data signals, a clock, a control signal, and a parity signal, all of which use LVDS (differential) 
signaling, and are sampled on both edges of the clock. There is also a flow control port consisting 
of a clock, data, and ready status bits, and used to communicate between two IXP2800 Network 
Processors, or a the IXP2800 Network Processor chip a Switch Fabric Interface. These are also 
LVDS, dual-edge data transfer. All of the high speed LVDS interfaces support dynamic deskew 
training.

The block diagram in Figure 10 shows a typical configuration.

Number of 
Contexts

Ring Size

128 256 512 1024

1 16 16 16 16

2 16 16 16 16

4 8 16 16 16

8 4 12 16 16

16 2 6 14 16

24 1 4 9 16

32 1 3 7 15

40 Illegal 2 5 12

48 Illegal 2 4 10

64 Illegal 1 3 7

128 Illegal Illegal 1 3

NOTES:
1. Number in each table entry is the largest length that should be put. 16 is the largest length that 

a single put instruction can generate.
2. Illegal -- With that number of Contexts, even a length of one could cause the Ring to overfill.
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An alternate system configuration is shown in the block diagram in Figure 11. In this case a single 
IXP2800 Network Processor is used for both Ingress and Egress. The bit rate supported would be 
less than in Figure 10. A hypothetical Bus Converter chip, external to the IXP2800 Network 
Processor is used. The block diagram in Figure 11 is only an illustrative example.

Figure 10. Example System Block Diagram
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Notes:
1. Gasket is used to convert 16-bit, dual-data Castine signals to wider single edge CWord signals 

used by Switch Fabric, if required.

2. Per the CSIX specification, the terms "egress" and ingress" are with respect to the Switch Fabric. 
So the egress processor handles traffic received from the Switch Fabric and the ingress 
processor handles traffic sent to the Switch Fabric.
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2.7.1 SPI-4

SPI-4 is an interface for packet and cell transfer between a physical layer (PHY) device and a link 
layer device (the IXP2800 Network Processor), for aggregate bandwidths of OC-192 ATM and 
Packet over SONET/SDH (POS), as well as 10 Gb/s Ethernet applications.

The Optical Internetworking Forum (OIF), www.oiforum.com, controls the SPI-4 Implementation 
Agreement document.

SPI-4 protocol transfers data in variable length bursts. Associated with each burst is information 
such as Port number (for a multi-port device such as a 10 x 1 GbE), SOP, EOP. This information is 
collected by MSF and passed to Microengines.

Figure 11. Full-Duplex Block Diagram
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Notes:
The Bus Converter chip receives and transmits both SPI-4 and CSIX protocols from/to Intel 
IXP2800 Network Processor. It steers the data, based on protocol, to either PHY device or 
Switch Fabric. PHY interface can be UTOPIA-3, IXBUS, or any other required protocol.
58 Hardware Reference Manual



Intel® IXP2800 Network Processor
Technical Description
2.7.2 CSIX

CSIX-L1 (Common Switch Interface) defines an interface between a Traffic Manager (TM) and a 
Switch Fabric (SF) for ATM, IP, MPLS, Ethernet, and similar data communications applications.

The Network Processor Forum (NPF) www.npforum.org, controls the CSIX-L1 specification.

The basic unit of information transferred between Traffic Managers and Switch Fabrics is called a 
CFrame. There are three categories of Cframes:

• Data

• Control

• Flow Control

Associated with each CFrame is information such as length, type, address. This information is 
collected by MSF and passed to Microengines.

MSF also contains a number of hardware features related to flow control.

2.7.3 Receive

Figure 12 is a simplified block diagram of the MSF receive section.

Figure 12. Simplified MSF Receive Section Block Diagram
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2.7.3.1 RBUF

RBUF is a RAM that holds received data. It stores received data in sub-blocks (referred to as 
elements), and is accessed by Microengines or the Intel XScale® core reading the received 
information. Details of how RBUF elements are allocated and filled is based on the receive data 
protocol. When data is received the associated status is put into the FULL_ELEMENT_LIST FIFO 
and subsequently sent to Microengines to process. FULL_ELEMENT_LIST insures that received 
elements are sent to Microengines in the order that the data was received.

RBUF contains a total of 8KB of data. The element size is programmable as either 64 bytes, 128 
bytes, or 256 bytes per element. In addition, RBUF can be programmed to be split into one, two, or 
three partitions depending on application. For receiving SPI-4, one partition would be used. For 
receiving CSIX, two partitions are used (Control CFrames and Data CFrames). When both 
protocols are being used, the RBUF can be split into three partitions. For both SPI-4 and CSIX, 
three partitions are used.

Microengines can read data from the RBUF to Microengine S_Transfer_In registers using the 
msf[read] instruction where they specify the starting byte number (which must be aligned to 4 
bytes), and number of 32-bit words to read. The number in the instruction can be either the number 
of 32-bit words, or number of 32-bit word pairs, using the single and double instruction modifiers, 
respectively. 

Microengines can move data from RBUF to DRAM using the dram instruction where they specify 
the starting byte number (which must be aligned to 4 bytes), the number of 32-bit words to read, 
and the address in DRAM to write the data.

For both types of RBUF read, reading an element does not modify any RBUF data, and does not 
free the element, so buffered data can be read as many times as desired. This allows, for example, a 
processing pipeline to have different Microengines handle different protocol layers, with each 
Microengine reading only the specific header information it requires.

2.7.3.1.1 SPI-4 and the RBUF

SPI-4 data is placed into RBUF with each SPI-4 burst allocating an element. If a SPI-4 burst is 
larger than the element size, another element is allocated. The status information for the element 
contains the following information:

The definitions of the fields are shown in Table 15.
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2.7.3.1.2 CSIX and RBUF

CSIX CFrames are placed into either RBUF with each CFrame allocating an element. Unlike SPI-
4, a single CFrame must not spill over into another element. Since CSIX spec specifies a maximum 
CFrame size of 256 bytes, this can be done by programming the element size to 256 bytes. 
However, if the Switch Fabric uses a smaller CFrame size, then a smaller RBUF element size can 
be used.

Flow Control CFrames are put into the FCEFIFO, to be sent to the Ingress IXP2800 Network 
Processor where a Microengine will read them to manage flow control information to the Switch 
Fabric.

Table 15. RBUF SPI-4 Status Definition

Field Definition

RPROT This bit is a 0 indicating that the Status is for SPI-4. It is derived from the RPROT input 
signal.

Null

Null receive. If this bit is set, it means that the Rx_Thread_Freelist timeout expired 
before any more data was received, and that a null Receive Status Word is being pushed 
in order to keep the receive pipeline flowing. The rest of the fields in the Receive Status 
Word must be ignored; there is no data or RBUF entry associated with a null Receive 
Status Word.

ADR The port number to which the data is directed. This field is taken from the ADR field of the 
Control Word that most recently preceded the data transfer.

Type This field is taken from the Type field of the Control Word that most recently preceded the 
data transfer.

SOP

Indicates if the element is the start of a packet. This field is taken from the SOP field of 
the Control Word that most recently preceded the data transfer for the first element 
allocated after a Control Word. For subsequent elements (i.e. if more than one element 
worth of data follow the Control Word) this value is 0.

EOP Indicates if the element is the end of a packet. This field is taken from the EOPS field of 
the Control Word that most recently succeeded the data transfer.

Byte_Count
Indicates the number of Data bytes, from 1 to 256, in the element (value 0x00 means 
256). This field is derived from the number of data transfers that fill the element, and also 
the EOPS field of the Control Word that most recently succeeded the data transfer.

Element The element number in the RBUF that holds the data. This is equal to the offset in RBUF 
of the first byte in the element, shifted right by 6 places 

Par Err Parity Error was detected in the DIP-4 parity field.

Length Err A non-EOP burst occurred that was not a multiple of 16 bytes.

Abort Err An EOP with Abort was received on bits[14:13] of the Control Word that most recently 
succeeded the data transfer.

Err Error. This is the logical OR of Par Err, Length Err, and Abort Err.

Checksum Checksum calculated over the Data Words in the element. This can be used for TCP.
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The status information for the element contains the following information:

The definitions of the fields are shown in Table 16.

2.7.3.2 Full Element List

Receive control hardware maintains the FULL_ELEMENT_LIST to hold the status of valid RBUF 
elements, in the order in which they were received. When an RBUF element is filled its status is 
added to the tail of the FULL_ELEMENT_LIST. When a Microengine is notified of element 
arrival (by having the status written to its S_Transfer register, it is removed from the head of the 
FULL_ELEMENT_LIST.
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Table 16. RBUF CSIX Status Definition

Field Definition

RPROT This bit is a 1 indicating that the Status is for CSIX-L1. It is derived from the RPROT input 
signal.

Null

Null receive. If this bit is set, it means that the RX_THREAD_FREELIST timeout expired 
before any more data was received, and that a null Receive Status Word is being pushed 
in order to keep the receive pipeline flowing. The rest of the fields in the Receive Status 
Word must be ignored; there is no data or RBUF entry associated with a null Receive 
Status Word.

Type Type Field from the CSIX Base Header

Payload Length Payload Length Field from the CSIX Base Header. A value of 0x0 indicates 256 bytes.

VP Err Vertical Parity Error was detected on the CFrame.

HP Err Horizontal Parity Error was detected on the CFrame.

Length Err

Length Error; either

amount of Payload received (before receipt of next Base Header) did not match value 
indicated in Base Header Payload Length field) or

Payload Length field was greater than size of RBUF element.

Err Error. This is the logical OR of VP Err, HP Err, and Length Err.

Element The element number in the RBUF that holds the data. This is equal to the offset in RBUF 
of the first byte in the element, shifted right by 6 places.

CR CR (CSIX Reserved) bit from the CSIX Base Header.

P P (Private) bit from the CSIX Base Header.

Extension Header The Extension Header from the CFrame. The bytes are received in big-endian order; byte 
0 is in bits 63:56, byte 1 is in bits 55:48, byte 2 is in bits 47:40, and byte 3 is in bits 39:32.
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2.7.3.3 RX_THREAD_FREELIST

RX_THREAD_FREELIST is a FIFO that indicates Microengine Contexts that are awaiting an 
RBUF element to process. This allows the Contexts to indicate their ready status prior to the 
reception of the data, as a way to eliminate latency. Each entry added to a Freelist also has an 
associated S_TRANSFER register and signal number. There are three RX_THREAD_FREELISTS 
which correspond to the RBUF partitions.

To be added as ready to receive an element, a Microengine does a msf[write] or msf[fast_write] 
to the RX_THREAD_FREELIST address; the write data is the Microengine/CONTEXT/
S_TRANSFER Register number to add to the Freelist.

When there is valid status at the head of the Full Element List it will be pushed to a Microengine. 
The receive control logic pushes the status information (which includes the element number) to the 
Microengine in the head entry of RX_THREAD_FREELIST, and sends an Event Signal to the 
Microengine. It then removes that entry from the RX_THREAD_FREELIST, and removes the 
status from Full Element List. 

Each RX_THREAD_FREELIST has an associated countdown timer. If the timer expires and no 
new receive data is available yet, the receive logic will autopush a Null Receive Status Word to the 
next thread on the RX_THREAD_FREELIST. A Null Receive Status Word has the “Null” bit set, 
and does not have any data or RBUF entry associated with it.

The RX_THREAD_FREELIST timer is useful for certain applications. Its primary purpose is to 
keep the receive processing pipeline (implemented as code running on the Microengines) moving 
even when the line has gone idle. 

It is especially useful if the pipeline is structured to handle mpackets in groups, i.e. eight mpackets 
at a time. If seven mpackets are received, then the line goes idle, then the timeout will trigger the 
autopush of a null Receive Status Word, filling the eighth slot and allowing the pipeline to advance. 
Another example is if one valid mpacket is received before the line goes idle for a long period; 
seven null Receive Status Words will be autopushed, allowing the pipeline to proceed. Typically 
the timeout interval is programmed to be slightly larger than the minimum arrival time of the 
incoming cells or packets.

The timer is controlled using the RX_THREAD_FREELIST_TIMEOUT_# CSR. The timer may 
be enabled or disabled, and the timeout value specified using this CSR.

2.7.3.4 Receive Operation Summary

During receive processing received Cframes, and SPI-4 cells and packets (which in this context are 
all called mpackets) are placed into the RBUF, and then handed off to a Microengine to process. 
Normally, by application design, some number of Microengine Contexts will be assigned to 
receive processing. Those Contexts will have their number added to the proper 
RX_THREAD_FREELIST (via msf[write]or msf[fast_write]), and then will go to sleep to wait 
for arrival of an mpacket (or alternatively poll waiting for arrival of an mpacket). 

When an mpacket arrives, MSF receive control logic will autopush 8 bytes of information for the 
element to the Microengine/CONTEXT/S_TRANSFER Registers at the head of 
RX_THREAD_FREELIST. The information pushed is (see Table 15 and Table 16 for detailed 
definitions):

• Status Word (SPI-4) or Header Status (CSIX)

• Checksum (SPI-4) or Extension Header (CSIX)
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To handle the case where the receive Contexts temporarily fall behind and 
RX_THREAD_FREELIST is empty, all received element numbers are held in the 
FULL_ELEMENT_LIST. In that case, as soon as an RX_THREAD_FREELIST entry is entered, 
the status of the head element of FULL_ELEMENT_LIST will be pushed to it.

The Microengines may read part of (or the entire) RBUF element to their S_TRANSFER registers 
(via msf[read] instruction) for header processing, etc., and may also move the element data to 
DRAM (via dram[rbuf_rd] instruction).

When a Context is done with an element it does a msf[write]or msf[fast_write]to 
RBUF_ELEMENT_DONE address; the write data is the element number. This marks the element 
as free and available to be re-used. There is no restriction on the order in which elements are freed; 
Contexts can do different amounts of processing per element based on the contents of the 
element—therefore elements can be returned in a different order than they were handed to 
Contexts.

2.7.4 Transmit

Figure 13 is a simplified Block Diagram of the MSF transmit section.

Figure 13. Simplified Transmit Section Block Diagram
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2.7.4.1 TBUF

TBUF is a RAM that holds data and status to be transmitted. The data is written into sub-blocks 
referred to as elements, by Microengines or the Intel XScale® core. 

TBUF contains a total of 8KB of data. The element size is programmable as either 64 bytes, 128 
bytes, or 256 bytes per element. In addition, TBUF can be programmed to be split into one, two, or 
three partitions depending on application. For transmitting SPI-4, one partition would be used. For 
transmitting CSIX, two partitions are used (Control CFrames and Data CFrames). For both SPI-4 
and CSIX, three partitions are used.

Microengines can write data from Microengine S_TRANSFER_OUT registers to the TBUF using 
the msf[write] instruction where they specify the starting byte number (which must be aligned to 
4 bytes), and number of 32-bit words to write. The number in the instruction can be either the 
number of 32-bit words, or number of 32-bit word pairs, using the single and double instruction 
modifiers, respectively. 

Microengines can move data from DRAM to TBUF using the dram instruction where they specify 
the starting byte number (which must be aligned to 4 bytes), the number of 32-bit words to write, 
and the address in DRAM of the data.

All elements within a TBUF partition are transmitted in the order. Control information associated 
with the element defines which bytes are valid. The data from the TBUF will be shifted and byte 
aligned as required to be transmitted. 

2.7.4.1.1 SPI-4 and TBUF

For SPI-4, data is put into the data portion of the element, and information for the SPI-4 Control 
Word that will precede the data is put into the Element Control Word.

When the Element Control Word is written the information is:

The definitions of the fields are shown in Table 17.
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2.7.4.1.2 CSIX and TBUF

For CSIX, payload information is put into the data area of the element, and Base and Extension 
Header information is put into the Element Control Word.

When the Element Control Word is written the information is:

The definitions of the fields are shown in Table 18.

Table 17. TBUF SPI-4 Control Definition

Field Definition

ADR The port number to which the data is directed. This field will be sent in the ADR field of 
the Control Word that will precede the data transfer.

SOP Indicates if the element is the start of a packet. This field will be sent in the SOPC field of 
the Control Word that will precede the data transfer.

EOP Indicates if the element is the end of a packet. This field will be sent in the EOPS field of 
the Control Word that will succeed the data transfer. Note 1.

Prepend Offset Indicates the first valid byte of Prepend, from 0 to 7

Prepend Length Indicates the number of bytes in Prepend, from 0 to 31.

Payload Offset Indicates the first valid byte of Payload, from 0 to 7.

Payload Length

Indicates the number of Payload bytes, from 1 to 256, in the element. The value of 0x00 
means 256 bytes. The sum of Prepend Length and Payload Length will be sent. That 
value will also control the EOPS field (1 or 2 bytes valid indicated) of the Control Word 
that will succeed the data transfer. Note 1.

Skip
Allows software to allocate a TBUF element and then not transmit any data from it.
0—transmit data according to other fields of Control Word.
1—free the element without transmitting any data.

NOTE:
1. Normally EOPS is sent on the next Control Word (along with ADR and SOP) to start the next element. If 

there is no valid element pending at the end of sending the data, the transmit logic will insert an Idle 
Control Word with the EOPS information.
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Table 18. TBUF CSIX Control Definition  (Sheet 1 of 2)

Field Definition

Type Type Field to put into the CSIX Base Header. Idle type is not legal here.

CR CR (CSIX Reserved) bit to put into the CSIX Base Header.

P P (Private) bit to put into the CSIX Base Header.
66 Hardware Reference Manual



Intel® IXP2800 Network Processor
Technical Description
2.7.4.2 Transmit Operation Summary

During transmit processing data to be transmitted is placed into the TBUF under Microengine 
control. The Microengine allocates an element in software; the transmit hardware processes TBUF 
elements within a partition in strict sequential order so the software can track which element to 
allocate next. 

Microengines may write directly into an element by msf[write] instruction, or have data from 
DRAM written into the element by dram[tbuf_wr] instruction. Data can be merged into the 
element by doing both.

There is a Transmit Valid bits per element, which marks the element as ready to be transmitted. 
Microengines move all data into the element, by either or both of msf[write] and dram[tbuf_wr] 
instructions to the TBUF. Microengines also write the element Transmit Control Word with 
information about the element. When all the data movement is complete the Microengine sets the 
element valid bit. 

1. Move data into TBUF by either or both of msf[write] and dram[tbuf_wr] instructions to the 
TBUF.

2. Wait for 1 to complete.

3. Write Transmit Control Word at TBUF_ELEMENT_CONTROL_# address. Using this 
address sets the Transmit Valid bit.

Extension Header
The Extension Header to be sent with the CFrame. The bytes are sent in big-endian 
order; byte 0 is in bits 63:56, byte 1 is in bits 55:48, byte 2 is in bits 47:40, and byte 3 is in 
bits 39:32.

Prepend Offset Indicates the first valid byte of Prepend, from 0 to 7.

Prepend Length Indicates the number of bytes in Prepend, from 0 to 31.

Payload Offset Indicates the first valid byte of Payload, from 0 to 7.

Payload Length

Indicates the number of Payload bytes, from 1 to 256, in the element. The value of 0x00 
means 256 bytes. The sum of Prepend Length and Payload Length will be sent, and also 
put into the CSIX Base Header Payload Length field. Note that this length does not 
include any padding which may be required. Padding is inserted by transmit hardware as 
needed.

Skip
Allows software to allocate a TBUF element and then not transmit any data from it. 
0—transmit data according to other fields of Control Word.
1—free the element without transmitting any data.

Table 18. TBUF CSIX Control Definition  (Sheet 2 of 2)

Field Definition
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2.7.5 The Flow Control Interface

The MSF provides flow control support for SPI-4 and CSIX.

2.7.5.1 SPI-4

SPI-4 uses a FIFO Status Channel to provide flow control information. MSF receives the 
information from the PHY device and stores it so that Microengines can read the information on a 
per-port basis. It can then use that information to determine when to transmit data to a given port.

The MSF also sends status to the PHY based on the amount of available space in the RBUF; that is 
done by hardware without Microengines.

2.7.5.2 CSIX

CSIX provides two types of flow control -- link level and per queue.

The link level control is handled by hardware. MSF will stop transmission is response to link level 
flow control received from the Switch Fabric. MSF will assert link level flow control based on the 
amount of available space in the RBUF.

Per queue flow control information is put into the FCIFIFO and handled by Microengine software. 
Also, if required, Microengines can send Flow Control CFrames to the Switch Fabric under 
software control.

In both cases, for a full duplex configuration, information is passed from the Switch Fabric to the 
Egress IXP2800 Network Processor, which then passes it to the Ingress IXP2800 Network 
Processor over a proprietary flow control interface.

2.8 Hash Unit

The IXP2800 Network Processor contains a Hash Unit that can take 48-bit, 64-bit, or 128-bit data 
and produces a 48-bit, a 64-bit, or a 128-bit hash index, respectively. The Hash Unit is accessible 
by the Microengines and the Intel XScale® core, and is useful in doing table searches with large 
keys, for example L2 addresses. Figure 14 is a block diagram of the Hash Unit.

Up to three hash indexes can be created using a single Microengine instruction. This helps to 
minimize command overhead. The Intel XScale® core can only do a single hash at a time.

A Microengine initiates a hash operation by writing the hash operands into a contiguous set of 
S TRANSFER OUT Registers and then executing the hash instruction. The Intel XScale® core 
initiates a hash operation by writing a set of memory-mapped HASH_OP Registers, which are built 
in the Intel XScale® core gasket, with the data to be used to generate the hash index. There are 
separate registers for 48-bit, 64-bit, and 128-bit hashes. The data is written from MSB to LSB, with 
the write to LSB triggering the Hash Operation. In both cases, the Hash Unit reads the operand into 
an input buffer, performs the hash operation, and returns the result.

The Hash Unit uses a hard-wired polynomial algorithm and a programmable hash multiplier to 
create hash indexes. Three separate multipliers are supported, one for 48-bit hash operations, one 
for 64-bit hash operations and one for 128-bit hash operations. The multiplier is programmed 
through Control registers in the Hash Unit.
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The multiplicand is shifted into the hash array sixteen bits at a time. The hash array performs a 
ones-complement multiply and polynomial divide, calculated using the multiplier and 16 bits of the 
multiplicand. The result is placed into an output buffer register and also feeds back into the array. 
This process is repeated three times for a 48-bit hash (16 bits x 3 = 48), four times for a 64-bit hash 
(16 bits x 4 = 64), and eight times for a 128-bit hash (16 x 8 = 128). After an entire multiplicand has 
been passed through the hash array, the resulting hash index is placed into a two-stage output 
buffer.

After each hash index is completed, the Hash Unit returns the hash index to the Microengines 
S Transfer In Registers, or the Intel XScale® core HASH_OP Registers. For Microengine initiated 
hash operations, the Microengine is signaled after all the hashes specified in the instruction have 
been completed.

For the Intel XScale® core initiated hash operations, the Intel XScale® core reads the results from 
the memory-mapped HASH_OP Registers. The addresses of Hash Results are the same as the 
HASH_OP Registers. Because of queuing delays at the Hash Unit, the time to complete an 
operation is not fixed. The Intel XScale® core can do one of two operations to get the hash results.

• Poll the HASH_DONE Register. This register is cleared when the HASH_OP Registers are 
written. Bit [0] of HASH_DONE Register is set when the HASH_OP Registers get the return 
result from the Hash Unit (when the last word of the result is returned). The Intel XScale® core 
software can poll on HASH_DONE, and read HASH_OP when HASH_DONE is equal to 
0x00000001.

• Read HASH_OP directly. The interface hardware will acknowledge the read only when the 
result is valid. This method will result in the Intel XScale® core stalling if the result is not 
valid when the read happens.

The number of clock cycles required to perform a single hash operation equals: two or four cycles 
through the input buffers, three, four or eight cycles through the hash array, and two or four cycles 
through the output buffers. Because of the pipeline characteristics of the Hash Unit, performance is 
improved if multiple hash operations are initiated with a single instruction rather than separate hash 
instructions for each hash operation.
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Figure 14. Hash Unit Block Diagram
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2.9 PCI Controller

The PCI Controller provides a 64-bit, 66 MHz capable PCI Local Bus Revision 2.2 interface. It is 
also compatible to 32-bit and/or 33 MHz PCI devices. The PCI controller provides the following 
functions:

• Target Access (external Bus Master access to SRAM, DRAM, and CSRs)

• Master Access (the Intel XScale® core access to PCI Target devices)

• Two DMA Channels

• Mailbox and Doorbell Registers for the Intel XScale® core to Host communication

• PCI arbiter

The IXP2800 Network Processor can be configured to act as PCI central function (for use in a 
stand-alone system), where it provides the PCI reset signal, or as an add-in device, where it uses the 
PCI reset signal as the chip reset input. The choice is made by connecting the cfg_rst_dir input pin 
low or high.

2.9.1 Target Access

There are three Base Address Registers (BARs) to allow PCI Bus Masters to access SRAM, 
DRAM, and CSRs, respectively. Examples of PCI Bus Masters include a Host Processor (for 
example a Pentium® processor), or an I/O device such as an Ethernet controller, SCSI controller, or 
encryption coprocessor.

The SRAM BAR can be programmed to sizes of 16 MB, 32 MB, 64 MB, 128 MB, 256 MB, or no 
access.

The DRAM BAR can be programmed to sizes of 128 MB, 256 MB, 512 MB, or 1 GB, or no 
access.

The CSR BAR is 8 KB.

PCI Boot Mode is supported, in which the Host downloads the Intel XScale® core boot image into 
DRAM, while holding the Intel XScale® core in reset. Once the boot image has been loaded, the 
Intel XScale® core reset is deasserted. The alternative is to provide the boot image in a Flash ROM 
attached to the Slow Port.

2.9.2 Master Access

The Intel XScale® core and Microengines can directly access the PCI bus. The Intel XScale® core 
can do loads and stores to specific address regions to generate all PCI command types. 
Microengines use PCI instruction, and also use address regions to generate different PCI 
commands.
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2.9.3 DMA Channels

There are two DMA Channels, each of which can move blocks of data from DRAM to the PCI or 
from the PCI to DRAM. The DMA channels read parameters from a list of descriptors in SRAM, 
perform the data movement to or from DRAM, and stop when the list is exhausted. The descriptors 
are loaded from predefined SRAM entries or may be set directly by CSR writes to DMA Channel 
registers. There is no restriction on byte alignment of the source address or the destination address. 
For PCI to DRAM transfers, the PCI command is Memory Read, Memory Read line, or Memory 
Read Multiple. For DRAM to PCI transfers, the PCI command is Memory Write. Memory Write 
Invalidate is not supported.

Up to two DMA channels are running at a time with three descriptors outstanding. Effectively, the 
active channels interleave bursts to or from the PCI Bus. 

Interrupts are generated at the end of DMA operation for the Intel XScale® core. However, 
Microengines do not provide an interrupt mechanism. The DMA Channel will instead use an Event 
Signal to notify the particular Microengine on completion of DMA. 

2.9.3.1 DMA Descriptor

Each descriptor occupies four 32-bit words in SRAM, aligned on a 16 byte boundary. The DMA 
channels read the descriptors from SRAM into working registers once the control register has been 
set to initiate the transaction. This control must be set explicitly. This starts the DMA transfer. The 
register names for the DMA channels are listed in Figure 15 and Table 19 lists the contents of the 
descriptor.

After a descriptor is processed, the next descriptor is loaded in the working registers. This process 
repeats until the chain of descriptors is terminated (i.e., the End of Chain bit is set).

Figure 15. DMA Descriptor Reads
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2.9.3.2 DMA Channel Operation

The DMA channel can be set up to read the first descriptor in SRAM, or with the first descriptor 
written directly to the DMA channel registers.

When descriptors and the descriptor list are in SRAM, the procedure is as follows:

1. The DMA channel owner writes the address of the first descriptor into the DMA Channel 
Descriptor Pointer register (DESC_PTR).

2. The DMA channel owner writes the DMA Channel Control register (CONTROL) with 
miscellaneous control information and also sets the channel enable bit (bit 0). The channel 
initial descriptor bit (bit 4) in the CONTROL register must also be cleared to indicate that the 
first descriptor is in SRAM.

3. Depending on the DMA channel number, the DMA channel reads the descriptor block into the 
corresponding DMA registers, BYTE_COUNT, PCI_ADDR, DRAM_ADDR, and 
DESC_PTR.

4. The DMA channel transfers the data until the byte count is exhausted, and then sets the 
channel transfer done bit in the CONTROL register.

5. If the end of chain bit (bit 31) in the BYTE_COUNT register is clear, the channel checks the 
Chain Pointer value. If the Chain Pointer value is not equal to 0. it reads the next descriptor 
and transfers the data (step 3 and 4 above). If the Chain Pointer value is equal to 0, it waits for 
the Descriptor Added bit of the Channel Control Register to be set before reading the next 
descriptor and transfers the data (step 3 and 4 above). If bit 31 is set, the channel sets the 
channel chain done bit in the CONTROL register and then stops.

6. Proceed to the Channel End Operation.

When single descriptors are written directly into the DMA channel registers, the procedure is as 
follows:

1. The DMA channel owner writes the descriptor values directly into the DMA channel registers. 
The end of chain bit (bit 31) in the BYTE_COUNT register must be set, and the value in the 
DESC_PTR register is not used.

2. The DMA channel owner writes the base address of the DMA transfer into the PCI_ADDR to 
specify the PCI starting address.

3. When the first descriptor is in the BYTE_COUNT register, the DRAM_ADDR register must 
be written with the address of the data to be moved.

4. The DMA channel owner writes the CONTROL register with miscellaneous control 
information, along with setting the channel enable bit (bit 0). The channel initial descriptor in 
register bit (bit 4) in the CONTROL register must also be set to indicate that the first descriptor 
is already in the channel descriptor registers.

Table 19. DMA Descriptor Format

Offset from Descriptor Pointer Description

0x0 Byte Count

0x4 PCI Address

0x8 DRAM Address

0xC Next Descriptor Address
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5. The DMA channel transfers the data until the byte count is exhausted, and then sets the 
channel transfer done bit (bit 2) in the CONTROL register.

6. Since the end of the chain bit (bit 31) in the BYTE_CONT register is set, the channel sets the 
channel chain done bit (bit 7) in the CONTROL register and then stops.

7. Proceed to the Channel End Operation.

2.9.3.3 DMA Channel End Operation

1. Channel owned by PCI

If not masked via the PCI Outbound Interrupt Mask register, the DMA channel interrupts the 
PCI host after the setting of the DMA done bit in the CHAN_X_CONTROL register, which is 
readable in the PCI Outbound Interrupt Status register.

2. Channel owned by the Intel XScale® core

If enabled via the Intel XScale® core Interrupt Enable registers, the DMA channel interrupts 
the Intel XScale® core by setting the DMA channel done bit in the CHAN_X_CONTROL 
register, which is readable in the Intel XScale® core Interrupt Status register.

3. Channel owned by Microengine

If enabled via the Microengine Auto-Push Enable registers, the DMA channel signals the 
Microengine after setting the DMA channel done bit in the CHAN_X_CONTROL register, 
which is readable in the Microengine Auto-Push Status register. 

2.9.3.4 Adding Descriptors to an Unterminated Chain

It is possible to add a descriptor to a chain while a channel is running. To do so the chain should be 
left unterminated, that is the last descriptor should have End of Chain clear, and the Chain Pointer 
value equal to 0. A new descriptor (or linked list of descriptors) can be added to the chain by 
overwriting the Chain Pointer value of the unterminated descriptor (in SRAM) with the Local 
Memory address of the (first) added descriptor (Note that the added descriptor must actually be 
valid in Local Memory prior to that). After updating the Chain Pointer field, the software must 
write a 1 to the Descriptor Added bit of the Channel Control Register. This is necessary for the case 
where the channel was paused in order to re-activate the channel. However, software need not 
check the state of the channel before writing that bit; there is no side-effect of writing that bit in the 
case where the channel had not yet read the unlinked descriptor.

If the channel was paused or had read an unlinked Pointer, it will re-read the last descriptor 
processed (i.e. the one that originally had the zero value for Chain Pointer) to get the address of the 
newly added descriptor.

A descriptor can not be added to a descriptor which has End of Chain set.

2.9.4 Mailbox and Message Registers

Mailbox and Doorbell registers provide hardware support for communication between the Intel 
XScale® core and a device on the PCI Bus.

Four 32-bit mailbox registers are provided so that messages can be passed between the Intel 
XScale® core and a PCI device. All four registers can be read and written with byte resolution from 
both the Intel XScale® core and PCI. How the registers are used is application dependent and the 
messages are not used internally by the PCI Unit in any way. The mailbox registers are often used 
with the Doorbell interrupts.
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Doorbell interrupts provide an efficient method of generating an interrupt as well as encoding the 
purpose of the interrupt. The PCI Unit supports a 32-bit the Intel XScale® core DOORBELL 
register that is used by a PCI device to generate an the Intel XScale® core interrupt, and a separate 
32-bit PCI DOORBELL register that is used by the Intel XScale® core to generate a PCI interrupt. 
A source generating the Doorbell interrupt can write a software defined bitmap to the register to 
indicate a specific purpose. This bitmap is translated into a single interrupt signal to the destination 
(either a PCI interrupt or an the Intel XScale® core interrupt). When an interrupt is received, the 
DOORBELL registers can be read and the bit mask can be interpreted. If a larger bit mask is 
required than that is provided by the DOORBELL register, the MAILBOX registers can be used to 
pass up to 16 bytes of data.

The doorbell interrupts are controlled through the registers shown in Table 20.

2.9.5 PCI Arbiter

The PCI unit contains a PCI bus arbiter that supports two external masters in addition to the PCI 
Unit’s initiator interface. If more than two external masters are used in the system, the aribter can 
be disabled and an external (to the IXP2800 Network Processor used. In that case, the IXP2800 
Network Processor will provide its PCI request signal to the external aribter, and use that arbiters 
grant signal.

The arbiter uses a simple round-robin priority algorithm; it asserts the grant signal corresponding to 
the next request in the round-robin during the current executing transaction on the PCI bus (this is 
also called hidden arbitration). If the arbiter detects that an initiator has failed to assert frame_l 
after 16 cycles of both grant assertion and PCI bus idle condition, the arbiter deasserts the grant. 
That master does not receive any more grants until it deasserts its request for at least one PCI clock 
cycle. Bus parking is implemented in that the last bus grant will stay asserted if no request is 
pending.

To prevent bus contention, if the PCI bus is idle, the arbiter never asserts one grant signal in the 
same PCI cycle in which it deasserts another, It deasserts one grant, and then asserts the next grant 
after one full PCI clock cycle has elapsed to provide for bus driver turnaround.

Table 20. Doorbell Interrupt Registers

Register Name Description

XSCALE DOORBELL Used to generate the Intel XScale® core Doorbell interrupts.

XSCALE DOORBELL 
SETUP Used to initialize the Intel XScale® core Doorbell register and for diagnostics.

PCI DOORBELL Used to generate the PCI Doorbell interrupts.

PCI DOORBELL SETUP Used to initialize the PCI Doorbell register and for diagnostics.
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2.10 Control and Status Register Access Proxy

The Control and Status Register Access Proxy (CAP) contains a number of chip-wide control and 
status registers. Some provide miscellaneous control and status, while others are used for inter-
Microengine or Microengine to the Intel XScale® core communication (note that rings in 
Scratchpad Memory and SRAM can also be used for interprocess communication). These include:

• INTERTHREAD SIGNAL—Each thread (or context) on a Microengine can send a signal to 
any other thread by writing to InterThread_Signal register. This allows a thread to go to sleep 
waiting completion of a task by a different thread.

• THREAD MESSAGE —Each thread has a message register where it can post a software-
specific message. Other Microengine threads, or the Intel XScale® core, can poll for 
availability of messages by reading THREAD_MESSAGE_SUMMARY register. Both the 
THREAD_MESSAGE and corresponding THREAD_MESSAGE_SUMMARY clear upon a 
read of the message; this eliminates a race condition when there are multiple message readers. 
Only one reader will get the message.

• SELF DESTRUCT —This register provides another type of communication. Microengine 
software can atomically set individual bits in the SELF DESTRUCT registers; the registers 
clear upon read. The meaning of each bit is software-specific. Clearing the register upon read 
eliminates a race condition when there are multiple readers.

• THREAD INTERRUPT—Each thread can interrupt the Intel XScale® core on two different 
interrupts; the usage is software-specific. Having two interrupts allows for flexibility, for 
example one can be assigned to normal service requests and one can be assigned to error 
conditions. If more information needs to be associated with the interrupt, mailboxes or Rings 
in Scratchpad Memory or SRAM could be used.

• REFLECTOR—CAP provides a function (called “reflector”) where any Microengine thread 
can move data between its registers and those of any other thread. In response to a single write 
or read instruction (with the address in the specific reflector range) CAP will get data from the 
source Microengine and put it into the destination Microengine. Both the sending and 
receiving threads can optionally be signalled upon completion of the data movement.

2.11 Intel XScale® Core Peripherals

2.11.1 Interrupt Controller

The Interrupt Controller provides the ability to enable or mask interrupts from a number of chip 
wide sources, for example:

• Timers (normally used by Real-Time Operating System).

• Interrupts generated by Microengine software to request services from the Intel XScale® core.

• External agents such as PCI devices.

• Error conditions, such as DRAM ECC error, or SPI-4 parity error.

Interrupt status is read as memory mapped registers; the state of an interrupt signal can be read 
even if it is masked from interrupting. Enabling and masking of interrupts is done as writes to 
memory mapped registers. 
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2.11.2 Timers

The IXP2800 Network Processor contains four programmable 32-bit timers, which can be used for 
software support. Each timer can be clocked by the internal clock, by a divided version of the 
clock, or by a signal on an external GPIO pin. Each timer can be programmed to generate a 
periodic interrupt after a programmed number of clocks. The range is from several ns to several 
minutes depending on the clock frequency.

In addition, timer 4 can be used as a watchdog timer. In this use, software must periodically reload 
the timer value; if it fails to do so and the timer counts to zero, it will reset the chip. This can be 
used to detect if software “hangs” or for some other reason fails to reload the timer.

2.11.3 General Purpose I/O

The IXP2800 Network Processor contains eight General Purpose I/O (GPIO) pins. These can be 
programmed as either input or output and can be used for slow speed I/O such as LEDs or input 
switches. They can also be used as interrupts to the Intel XScale® core, or to clock the 
programmable timers. 

2.11.4 Universal Asynchronous Receiver/Transmitter

The IXP2800 Network Processor contains a standard RS-232 compatible Universal Asynchronous 
Receiver/Transmitter (UART), which can be used for communication with a debugger or 
maintenance console. Modem controls are not supported; if they are needed, GPIO pins can be 
used for that purpose. 

The UART performs serial-to-parallel conversion on data characters received from a peripheral 
device and parallel-to-serial conversion on data characters received from the processor. The 
processor can read the complete status of the UART at any time during operation. Available status 
information includes the type and condition of the transfer operations being performed by the 
UART and any error conditions (parity, overrun, framing or break interrupt).

The serial ports can operate in either FIFO or non-FIFO mode. In FIFO mode, a 64-byte transmit 
FIFO holds data from the processor to be transmitted on the serial link and a 64-byte receive FIFO 
buffers data from the serial link until read by the processor.

The UART includes a programmable baud rate generator which is capable of dividing the internal 
clock input by divisors of 1 to 216 - 1 and produces a 16X clock to drive the internal transmitter 
logic. It also drives the receive logic. The UART can be operated in polled or in interrupt driven 
mode as selected by software.

2.11.5 Slow Port

The SlowPort is an external interface to the IXP2800 Network Processor, used for Flash ROM 
access and 8, 16, or 32-bit asynchronous device access. It allows the Intel XScale® core do read/ 
write data transfers to these slave devices.

The address bus and data bus are multiplexed to reduce the pin count. In addition, 24 bits of 
address are shifted out on three clock cycles. Therefore, an external set of buffers is needed to latch 
the address. Two chip selects are provided.
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The access is asynchronous. Insertion of delay cycles for both data setup and hold time is 
programmable via internal Control registers. The transfer can also wait for a handshake 
acknowledge signal from the external device.

2.12 I/O Latency

Table 21 shows the latencies for transferring data between the Microengine and the other sub-
system components. The latency is measured in 1.4 GHz cycles. 

2.13 Performance Monitor

The Intel® XScale™ core hardware provides two 32-bit performance counters that allow two 
unique events to be monitored simultaneously. In addition, the Intel® XScale™ core implements a 
32-bit clock counter that can be used in conjunction with the performance counters; its sole 
purpose is to count the number of core clock cycles which is useful in measuring total execution 
time.

Table 21. I/O Latency

Sub-system

DRAM
(RDR)

SRAM
(QDR) Scratch MSF

Transfer size
8 bytes - 16 bytes

(note 2)
4-bytes 4-bytes 8-bytes

average read 
latency

~295 cycles

(note 3)
100(light load)-
160(heavy load) 

~100 cycles 
(range 53-152)

range 53-120

(RBUF)

average write 
latency ~53 cycles ~53 cycles ~40 cycles

~48 cycles

(TBUF)

Note1: RDR, QDR, MSF, and Scratch values are extracted from a simulation model.

Note 2: Minimum DRAM burst size on pins is 16 bytes. Transfers less than 16bytes incur the 
same as a 16 byte transfer.

Note 3: At 1016 MHz, read latency should be ~ 240 cycles.
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Intel XScale® Core 3

This section contains information describing the Intel XScale® core, Intel XScale® core gasket, and 
Intel XScale® core Peripherals (XPI). 

For additional information about the Intel XScale® architecture refer to the Intel XScale® Core 
Developers Manual available on Intel’s Developers website (http://www.developer.intel.com).

3.1 Introduction

The Intel XScale® core is an ARM* V5TE compliant microprocessor. It has been designed for high 
performance and low-power; leading the industry in mW/MIPs. The Intel XScale® core 
incorporates an extensive list of architecture features that allows it to achieve high performance. 
Many of the architectural features added to the Intel XScale® core help hide memory latency which 
often is a serious impediment to high performance processors. 

This includes:

• the ability to continue instruction execution even while the data cache is retrieving data from 
external memory.

• a write buffer.

• write-back caching.

• various data cache allocation policies which can be configured different for each application.

• and cache locking.

All these features improve the efficiency of the memory bus external to the core. 

ARM* Version 5 (V5) Architecture added floating point instructions to ARM* Version 4. The Intel 
XScale® core implements the integer instruction set architecture of ARM* V5, but does not 
provide hardware support of the floating point instructions.

The Intel XScale® core provides the Thumb instruction set (ARM* V5T) and the ARM* V5E DSP 
extensions.
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3.2 Features

Figure 16 shows the major functional blocks of the Intel XScale® core. The following sections give 
a brief, high-level overview of these blocks.

3.2.1 Multiply/ACcumulate (MAC)

The MAC unit supports early termination of multiplies/accumulates in two cycles and can sustain a 
throughput of a MAC operation every cycle. Several architectural enhancements were made to the 
MAC to support audio coding algorithms, which include a 40-bit accumulator and support for 16-
bit packed data. 

3.2.2 Memory Management

The Intel XScale® core implements the Memory Management Unit (MMU) Architecture specified 
in the ARM* Architecture Reference Manual. The MMU provides access protection and virtual to 
physical address translation. 

The MMU Architecture also specifies the caching policies for the instruction cache and data 
memory. These policies are specified as page attributes and include:

• identifying code as cacheable or non-cacheable

• selecting between the mini-data cache or data cache

• write-back or write-through data caching

Figure 16. Intel XScale® Core Architecture Features
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• enabling data write allocation policy

• and enabling the write buffer to coalesce stores to external memory

3.2.3 Instruction Cache

The Intel XScale® core implements a 32-Kbyte, 32-way set associative instruction cache with a 
line size of 32 bytes. All requests that “miss” the instruction cache generate a 32-byte read request 
to external memory. A mechanism to lock critical code within the cache is also provided. 

3.2.4 Branch Target Buffer

The Intel XScale® core provides a Branch Target Buffer (BTB) to predict the outcome of branch 
type instructions. It provides storage for the target address of branch type instructions and predicts 
the next address to present to the instruction cache when the current instruction address is that of a 
branch.

The BTB holds 128 entries.

3.2.5 Data Cache

The Intel XScale® core implements a 32-Kbyte, a 32-way set associative data cache and a 2-Kbyte, 
2-way set associative mini-data cache. Each cache has a line size of 32 bytes, and supports write-
through or write-back caching. 

The data/mini-data cache is controlled by page attributes defined in the MMU Architecture and by 
coprocessor 15. 

The Intel XScale® core allows applications to re-configure a portion of the data cache as data 
RAM. Software may place special tables or frequently used variables in this RAM.

3.2.6 Performance Monitoring

Two performance monitoring counters have been added to the Intel XScale® core that can be 
configured to monitor various events. These events allow a software developer to measure cache 
efficiency, detect system bottlenecks, and reduce the overall latency of programs. 

3.2.7 Power Management

The Intel XScale® core incorporates a power and clock management unit that can assist in 
controlling clocking and managing power.

3.2.8 Debug

The Intel XScale® core supports software debugging through two instruction address breakpoint 
registers, one data-address breakpoint register, one data-address/mask breakpoint register, and a 
trace buffer. 
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3.2.9 JTAG

Testability is supported on the Intel XScale® core through the Test Access Port (TAP) Controller 
implementation, which is based on IEEE 1149.1 (JTAG) Standard Test Access Port and Boundary-
Scan Architecture. The purpose of the TAP controller is to support test logic internal and external 
to the Intel XScale® core such as built-in self-test, boundary-scan, and scan. 

3.3 Memory Management

The Intel XScale® core implements the Memory Management Unit (MMU) Architecture specified 
in the ARM Architecture Reference Manual. To accelerate virtual to physical address translation, 
the Intel XScale® core uses both an instruction Translation Look-aside Buffer (TLB) and a data 
TLB to cache the latest translations. Each TLB holds 32 entries and is fully-associative. Not only 
do the TLBs contain the translated addresses, but also the access rights for memory references.

If an instruction or data TLB miss occurs, a hardware translation-table-walking mechanism is 
invoked to translate the virtual address to a physical address. Once translated, the physical address 
is placed in the TLB along with the access rights and attributes of the page or section. These 
translations can also be locked down in either TLB to guarantee the performance of critical 
routines. 

The Intel XScale® core allows system software to associate various attributes with regions of 
memory:

• cacheable

• bufferable

• line allocate policy

• write policy

• I/O 

• mini Data Cache

• Coalescing

• P bit 

Note: The virtual address with which the TLBs are accessed may be remapped by the PID register.
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3.3.1 Architecture Model

3.3.1.1 Version 4 vs. Version 5

ARM* MMU Version 5 Architecture introduces the support of tiny pages, which are 1 KByte in 
size. The reserved field in the first-level descriptor (encoding 0b11) is used as the fine page table 
base address.

3.3.1.2 Memory Attributes

The attributes associated with a particular region of memory are configured in the memory 
management page table and control the behavior of accesses to the instruction cache, data cache, 
mini-data cache and the write buffer. These attributes are ignored when the MMU is disabled.

To allow compatibility with older system software, the new Intel XScale® core attributes take 
advantage of encoding space in the descriptors that was formerly reserved.

3.3.1.2.1 Page (P) Attribute Bit

The P bit assigns a page attribute to a memory region. Refer to the Intel® IXP2400IXP2800 
Network Processor Programmer’s Reference Manual for details about the P bit.

3.3.1.2.2 Instruction Cache

When examining these bits in a descriptor, the Instruction Cache only utilizes the C bit. If the C bit 
is clear, the Instruction Cache considers a code fetch from that memory to be non-cacheable, and 
will not fill a cache entry. If the C bit is set, then fetches from the associated memory region will be 
cached.

3.3.1.2.3 Data Cache and Write Buffer

All of these descriptor bits affect the behavior of the Data Cache and the Write Buffer.

If the X bit for a descriptor is zero (see Table 22), the C and B bits operate as mandated by the 
ARM* architecture. If the X bit for a descriptor is one, the C and B bits’ meaning is extended, as 
detailed in Table 23.

Table 22. Data Cache and Buffer Behavior when X = 0

C B Cacheable? Bufferable? Write Policy
Line 

Allocation 
Policy

Notes

0 0 N N - - Stall until complete1

1. Normally, the processor will continue executing after a data access if no dependency on that access is encountered. With
this setting, the processor will stall execution until the data access completes. This guarantees to software that the data ac-
cess has taken effect by the time execution of the data access instruction completes. External data aborts from such access-
es will be imprecise.

0 1 N Y - -

1 0 Y Y Write Through Read Allocate

1 1 Y Y Write Back Read Allocate
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3.3.1.2.4 Details on Data Cache and Write Buffer Behavior

If the MMU is disabled all data accesses will be non-cacheable and non-bufferable. This is the 
same behavior as when the MMU is enabled, and a data access uses a descriptor with X, C, and B 
all set to 0.

The X, C, and B bits determine when the processor should place new data into the Data Cache. The 
cache places data into the cache in lines (also called blocks). Thus, the basis for making a decision 
about placing new data into the cache is a called a “Line Allocation Policy.”

If the Line Allocation Policy is read-allocate, all load operations that miss the cache request a 32-
byte cache line from external memory and allocate it into either the data cache or mini-data cache 
(this is assuming the cache is enabled). Store operations that miss the cache will not cause a line to 
be allocated.

If read/write-allocate is in effect, load or store operations that miss the cache will request a 32-byte 
cache line from external memory if the cache is enabled.

The other policy determined by the X, C, and B bits is the Write Policy. A write-through policy 
instructs the Data Cache to keep external memory coherent by performing stores to both external 
memory and the cache. A write-back policy only updates external memory when a line in the cache 
is cleaned or needs to be replaced with a new line. Generally, write-back provides higher 
performance because it generates less data traffic to external memory.

3.3.1.2.5 Memory Operation Ordering

A fence memory operation (memop) is one that guarantees all memops issued prior to the fence 
will execute before any memop issued after the fence. Thus software may issue a fence to impose a 
partial ordering on memory accesses.

Table 24 shows the circumstances in which memops act as fences.

Any swap (SWP or SWPB) to a page that would create a fence on a load or store is a fence.

Table 23. Data Cache and Buffer Behavior when X = 1

C B Cacheable? Bufferable? Write Policy
Line 

Allocation 
Policy

Notes

0 0 - - - - Unpredictable -- do not use

0 1 N Y - - Writes will not coalesce into 
buffers1

1. Normally, bufferable writes can coalesce with previously buffered data in the same address range

1 0 (Mini Data 
Cache) - - -

Cache policy is determined 
by MD field of Auxiliary 
Control register

1 1 Y Y Write Back Read/Write 
Allocate
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3.3.2 Exceptions

The MMU may generate prefetch aborts for instruction accesses and data aborts for data memory 
accesses. 

Data address alignment checking is enabled by setting bit 1 of the Control Register (CP15, 
register 1). Alignment faults are still reported even if the MMU is disabled. All other MMU 
exceptions are disabled when the MMU is disabled. 

3.3.3 Interaction of the MMU, Instruction Cache, and Data Cache

The MMU, instruction cache, and data/mini-data cache may be enabled/disabled independently. 
The instruction cache can be enabled with the MMU enabled or disabled. However, the data cache 
can only be enabled when the MMU is enabled. Therefore only three of the four combinations of 
the MMU and data/mini-data cache enables are valid (see Table 25). The invalid combination will 
cause undefined results.

3.3.4 Control

3.3.4.1 Invalidate (Flush) Operation

The entire instruction and data TLB can be invalidated at the same time with one command or they 
can be invalidated separately. An individual entry in the data or instruction TLB can also be 
invalidated.

Globally invalidating a TLB will not affect locked TLB entries. However, the invalidate-entry 
operations can invalidate individual locked entries. In this case, the locked remains in the TLB, but 
will never “hit” on an address translation. Effectively, a hole is in the TLB. This situation may be 
rectified by unlocking the TLB.

Table 24. Memory Operations that Impose a Fence

operation X C B

load - 0 -

store 1 0 1

load or store 0 0 0

Table 25. Valid MMU & Data/mini-data Cache Combinations

MMU Data/mini-data Cache

Off Off

On Off

On On
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3.3.4.2 Enabling/Disabling

The MMU is enabled by setting bit 0 in coprocessor 15, register 1 (Control Register). 

When the MMU is disabled, accesses to the instruction cache default to cacheable and all accesses 
to data memory are made non-cacheable. 

A recommended code sequence for enabling the MMU is shown in Example 13.

3.3.4.3 Locking Entries

Individual entries can be locked into the instruction and data TLBs. If a lock operation finds the 
virtual address translation already resident in the TLB, the results are unpredictable. An invalidate 
by entry command before the lock command will ensure proper operation. Software can also 
accomplish this by invalidating all entries, as shown in Example 14. 

Locking entries into either the instruction TLB or data TLB reduces the available number of entries 
(by the number that was locked down) for hardware to cache other virtual to physical address 
translations. 

A procedure for locking entries into the instruction TLB is shown in Example 14.

If a MMU abort is generated during an instruction or data TLB lock operation, the Fault Status 
Register is updated to indicate a Lock Abort, and the exception is reported as a data abort. 

Example 13. Enabling the MMU

; This routine provides software with a predictable way of enabling the MMU.

; After the CPWAIT, the MMU is guaranteed to be enabled. Be aware

; that the MMU will be enabled sometime after MCR and before the instruction

; that executes after the CPWAIT.

; Programming Note: This code sequence requires a one-to-one virtual to 

; physical address mapping on this code since 

; the MMU may be enabled part way through. This would allow the instructions 

; after MCR to execute properly regardless the state of the MMU.

MRC P15,0,R0,C1,C0,0; Read CP15, register 1 

ORR R0, R0, #0x1; Turn on the MMU

MCR P15,0,R0,C1,C0,0; Write to CP15, register 1

; The MMU is guaranteed to be enabled at this point; the next instruction or 

; data address will be translated.
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Note: If exceptions are allowed to occur in the middle of this routine, the TLB may end up caching a 
translation that is about to be locked. For example, if R1 is the virtual address of an interrupt 
service routine and that interrupt occurs immediately after the TLB has been invalidated, the lock 
operation will be ignored when the interrupt service routine returns back to this code sequence. 
Software should disable interrupts (FIQ or IRQ) in this case. 

As a general rule, software should avoid locking in all other exception types. 

The proper procedure for locking entries into the data TLB is shown in Example 15.

Note: Care must be exercised here when allowing exceptions to occur during this routine whose handlers 
may have data that lies in a page that is trying to be locked into the TLB. 

Example 14. Locking Entries into the Instruction TLB

; R1, R2 and R3 contain the virtual addresses to translate and lock into 

; the instruction TLB.

; The value in R0 is ignored in the following instruction. 

; Hardware guarantees that accesses to CP15 occur in program order

MCR P15,0,R0,C8,C5,0 ; Invalidate the entire instruction TLB

MCR P15,0,R1,C10,C4,0 ; Translate virtual address (R1) and lock into

; instruction TLB

MCR P15,0,R2,C10,C4,0 ; Translate

; virtual address (R2) and lock into instruction TLB

MCR P15,0,R3,C10,C4,0 ; Translate virtual address (R3) and lock into

; instruction TLB

CPWAIT

; The MMU is guaranteed to be updated at this point; the next instruction will 

; see the locked instruction TLB entries.

Example 15. Locking Entries into the Data TLB

; R1, and R2 contain the virtual addresses to translate and lock into the data TLB

MCR  P15,0,R1,C8,C6,1 ; Invalidate the data TLB entry specified by the

; virtual address in R1

MCR  P15,0,R1,C10,C8,0 ; Translate virtual address (R1) and lock into 

; data TLB

; Repeat sequence for virtual address in R2

MCR  P15,0,R2,C8,C6,1 ; Invalidate the data TLB entry specified by the

; virtual address in R2

MCR  P15,0,R2,C10,C8,0 ; Translate virtual address (R2) and lock into 

; data TLB

CPWAIT ; wait for locks to complete

; The MMU is guaranteed to be updated at this point; the next instruction will 

; see the locked data TLB entries.
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3.3.4.4 Round-Robin Replacement Algorithm

The line replacement algorithm for the TLBs is round-robin; there is a round-robin pointer that 
keeps track of the next entry to replace. The next entry to replace is the one sequentially after the 
last entry that was written. For example, if the last virtual to physical address translation was 
written into entry 5, the next entry to replace is entry 6. 

At reset, the round-robin pointer is set to entry 31. Once a translation is written into entry 31, the 
round-robin pointer gets set to the next available entry, beginning with entry 0 if no entries have 
been locked down. Subsequent translations move the round-robin pointer to the next sequential 
entry until entry 31 is reached, where it will wrap back to entry 0 upon the next translation. 

A lock pointer is used for locking entries into the TLB and is set to entry 0 at reset. A TLB lock 
operation places the specified translation at the entry designated by the lock pointer, moves the 
lock pointer to the next sequential entry, and resets the round-robin pointer to entry 31. Locking 
entries into either TLB effectively reduces the available entries for updating. For example, if the 
first three entries were locked down, the round-robin pointer would be entry 3 after it rolled over 
from entry 31. 

Only entries 0 through 30 can be locked in either TLB; entry 31can never be locked. If the lock 
pointer is at entry 31, a lock operation will update the TLB entry with the translation and ignore the 
lock. In this case, the round-robin pointer will stay at entry 31. 

Figure 17. Example of Locked Entries in TLB
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3.4 Instruction Cache

The Intel XScale® core instruction cache enhances performance by reducing the number of 
instruction fetches from external memory. The cache provides fast execution of cached code. Code 
can also be locked down when guaranteed or fast access time is required. 

Figure 18 shows the cache organization and how the instruction address is used to access the cache. 

The instruction cache is a 32-Kbyte, 32-way set associative cache; this means there are 32 sets with 
each set containing 32 ways. Each way of a set contains eight 32-bit words and one valid bit, which 
is referred to as a line. The replacement policy is a round-robin algorithm and the cache also 
supports the ability to lock code in at a line granularity. 

The instruction cache is virtually addressed and virtually tagged.

Note: The virtual address presented to the instruction cache may be remapped by the PID register. 

Figure 18. Instruction Cache Organization

A9685-01

8 Words (cache line)

DataCAM

Tag

Instruction Address (Virtual)

Note:  CAM = Content Addressable Memory

Set Index

Word Select

Instruction Word
(4 bytes)

Word

way 0
Set 31

Set 1

way 1

31 5 4 2 1 010 9

8 Words (cache line)

DataCAM

way 0
way 1Set 0

8 Words (cache line)

DataCAM

way 0
way 1

way 31

Tag

This example
shows Set 0 being

selected by the
Set Index

Set Index
Hardware Reference Manual 89



Intel® IXP2800 Network Processor
Intel XScale® Core
3.4.1 Instruction Cache Operation

3.4.1.1 Operation When Instruction Cache is Enabled

When the cache is enabled, it compares every instruction request address against the addresses of 
instructions that it is currently holding. If the cache contains the requested instruction, the access 
“hits” the cache, and the cache returns the requested instruction. If the cache does not contain the 
requested instruction, the access “misses” the cache, and the cache requests a fetch from external 
memory of the 8-word line (32 bytes) that contains the requested instruction using the fetch policy. 
As the fetch returns instructions to the cache, they are placed in one of two fetch buffers and the 
requested instruction is delivered to the instruction decoder.

A fetched line will be written into the cache if it is cacheable. Code is designated as cacheable 
when the Memory Management Unit (MMU) is disabled or when the MMU is enable and the 
cacheable (C) bit is set to 1 in its corresponding page. 

Note that an instruction fetch may “miss” the cache but “hit” one of the fetch buffers. When this 
happens, the requested instruction will be delivered to the instruction decoder in the same manner 
as a cache “hit.”

3.4.1.2 Operation When The Instruction Cache Is Disabled

Disabling the cache prevents any lines from being written into the instruction cache. Although the 
cache is disabled, it is still accessed and may generate a “hit” if the data is already in the cache. 

Disabling the instruction cache does not disable instruction buffering that may occur within the 
instruction fetch buffers. Two 8-word instruction fetch buffers will always be enabled in the cache 
disabled mode. So long as instruction fetches continue to “hit” within either buffer (even in the 
presence of forward and backward branches), no external fetches for instructions are generated. A 
miss causes one or the other buffer to be filled from external memory using the fill policy. 

3.4.1.3 Fetch Policy

An instruction-cache “miss” occurs when the requested instruction is not found in the instruction 
fetch buffers or instruction cache; a fetch request is then made to external memory. The instruction 
cache can handle up to two “misses.” Each external fetch request uses a fetch buffer that holds 32-
bytes and eight valid bits, one for each word. A miss causes the following:

1. A fetch buffer is allocated.

2. The instruction cache sends a fetch request to the external bus. This request is for a 32-byte line.

3. Instructions words are returned back from the external bus, at a maximum rate of 1 word per 
core cycle. As each word returns, the corresponding valid bit is set for the word in the fetch 
buffer. 

4. As soon as the fetch buffer receives the requested instruction, it forwards the instruction to the 
instruction decoder for execution.

5. When all words have returned, the fetched line will be written into the instruction cache if it’s 
cacheable and if the instruction cache is enabled. The line chosen for update in the cache is 
controlled by the round-robin replacement algorithm. This update may evict a valid line at that 
location.

6. Once the cache is updated, the eight valid bits of the fetch buffer are invalidated. 
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3.4.1.4 Round-Robin Replacement Algorithm

The line replacement algorithm for the instruction cache is round-robin. Each set in the instruction 
cache has a round-robin pointer that keeps track of the next line (in that set) to replace. The next 
line to replace in a set is the one after the last line that was written. For example, if the line for the 
last external instruction fetch was written into way 5-set 2, the next line to replace for that set 
would be way 6. None of the other round-robin pointers for the other sets are affected in this case. 

After reset, way 31 is pointed to by the round-robin pointer for all the sets. Once a line is written 
into way 31, the round-robin pointer points to the first available way of a set, beginning with way0 
if no lines have been locked into that particular set. Locking lines into the instruction cache 
effectively reduces the available lines for cache updating. For example, if the first three lines of a 
set were locked down, the round-robin pointer would point to the line at way 3 after it rolled over 
from way 31.

3.4.1.5 Parity Protection

The instruction cache is protected by parity to ensure data integrity. Each instruction cache word 
has 1 parity bit. (The instruction cache tag is NOT parity protected.) When a parity error is detected 
on an instruction cache access, a prefetch abort exception occurs if the Intel XScale® core attempts 
to execute the instruction. Before servicing the exception, hardware place a notification of the error 
in the Fault Status Register (Coprocessor 15, register 5). 

A software exception handler can recover from an instruction cache parity error. This can be 
accomplished by invalidating the instruction cache and the branch target buffer and then returning 
to the instruction that caused the prefetch abort exception. A simplified code example is shown in 
Example 16. A more complex handler might choose to invalidate the specific line that caused the 
exception and then invalidate the BTB.

If a parity error occurs on an instruction that is locked in the cache, the software exception handler 
needs to unlock the instruction cache, invalidate the cache and then re-lock the code in before it 
returns to the faulting instruction. 

Example 16. Recovering from an Instruction Cache Parity Error

; Prefetch abort handler 

MCR P15,0,R0,C7,C5,0 ; Invalidate the instruction cache and branch target 

; buffer

CPWAIT ; wait for effect 

;

SUBS PC,R14,#4 ; Returns to the instruction that generated the 

; parity error

; The Instruction Cache is guaranteed to be invalidated at this point
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3.4.1.6 Instruction Cache Coherency

The instruction cache does not detect modification to program memory by loads, stores or actions 
of other bus masters. Several situations may require program memory modification, such as 
uploading code from disk. 

The application program is responsible for synchronizing code modification and invalidating the 
cache. In general, software must ensure that modified code space is not accessed until modification 
and invalidating are completed.

To achieve cache coherence, instruction cache contents can be invalidated after code modification 
in external memory is complete.

If the instruction cache is not enabled, or code is being written to a non-cacheable region, software 
must still invalidate the instruction cache before using the newly-written code. This precaution 
ensures that state associated with the new code is not buffered elsewhere in the processor, such as 
the fetch buffers or the BTB.

Naturally, when writing code as data, care must be taken to force it completely out of the processor 
into external memory before attempting to execute it. If writing into a non-cacheable region, 
flushing the write buffers is sufficient precaution. If writing to a cacheable region, then the data 
cache should be submitted to a Clean/Invalidate operation to ensure coherency.

3.4.2 Instruction Cache Control

3.4.2.1 Instruction Cache State at Reset

After reset, the instruction cache is always disabled, unlocked, and invalidated (flushed). 

3.4.2.2 Enabling/Disabling

The instruction cache is enabled by setting bit 12 in coprocessor 15, register 1 (Control Register). 
This process is illustrated in Example 17.

Example 17. Enabling the Instruction Cache

; Enable the ICache

MRC P15, 0, R0, C1, C0, 0 ; Get the control register

ORR R0, R0, #0x1000 ; set bit 12 -- the I bit

MCR P15, 0, R0, C1, C0, 0 ; Set the control register

CPWAIT
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3.4.2.3 Invalidating the Instruction Cache

The entire instruction cache along with the fetch buffers are invalidated by writing to 
coprocessor 15, register 7. This command does not unlock any lines that were locked in the 
instruction cache nor does it invalidate those locked lines. To invalidate the entire cache including 
locked lines, the unlock instruction cache command needs to be executed before the invalidate 
command.

There is an inherent delay from the execution of the instruction cache invalidate command to 
where the next instruction will see the result of the invalidate. The routine in Example 18 can be 
used to guarantee proper synchronization.

The Intel XScale® core also supports invalidating an individual line from the instruction cache. 

3.4.2.4 Locking Instructions in the Instruction Cache

Software has the ability to lock performance critical routines into the instruction cache. Up to 
28 lines in each set can be locked; hardware will ignore the lock command if software is trying to 
lock all the lines in a particular set (i.e., ways 28-31can never be locked). When this happens, the 
line will still be allocated into the cache but the lock will be ignored. The round-robin pointer will 
stay at way 31 for that set. 

Lines can be locked into the instruction cache by initiating a write to coprocessor 15. Register Rd 
contains the virtual address of the line to be locked into the cache. 

There are several requirements for locking down code:

1. the routine used to lock lines down in the cache must be placed in non-cacheable memory, 
which means the MMU is enabled. As a corollary: no fetches of cacheable code should occur 
while locking instructions into the cache.

2. the code being locked into the cache must be cacheable

3. the instruction cache must be enabled and invalidated prior to locking down lines

Failure to follow these requirements will produce unpredictable results when accessing the 
instruction cache.

System programmers should ensure that the code to lock instructions into the cache does not reside 
closer than 128 bytes to a non-cacheable/cacheable page boundary. If the processor fetches ahead 
into a cacheable page, then the first requirement noted above could be violated.

Lines are locked into a set starting at way 0 and may progress up to way 27; which set a line gets 
locked into depends on the set index of the virtual address. Figure 19 is an example of where lines 
of code may be locked into the cache along with how the round-robin pointer is affected. 

Example 18. Invalidating the Instruction Cache

MCR P15,0,R1,C7,C5,0 ; Invalidate the instruction cache and branch

; target buffer

CPWAIT

; The instruction cache is guaranteed to be invalidated at this point; the next

; instruction sees the result of the invalidate command.
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Software can lock down several different routines located at different memory locations. This may 
cause some sets to have more locked lines than others as shown in Figure 19. 

Example 19 shows how a routine, called “lockMe” in this example, might be locked into the 
instruction cache. Note that it is possible to receive an exception while locking code.

Figure 19. Locked Line Effect on Round Robin Replacement
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Example 19. Locking Code into the Cache

lockMe: ; This is the code that will be locked into the cache

mov r0, #5

add r5, r1, r2

. . .

lockMeEnd:

. . .

codeLock: ; here is the code to lock the “lockMe” routine

ldr r0, =(lockMe AND NOT 31); r0 gets a pointer to the first line we 

should lock

ldr r1, =(lockMeEnd AND NOT 31); r1 contains a pointer to the last line we 

should lock

lockLoop:

mcr p15, 0, r0, c9, c1, 0; lock next line of code into ICache

cmp r0, r1 ; are we done yet?

add r0, r0, #32 ; advance pointer to next line

bne lockLoop ; if not done, do the next line
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3.4.2.5 Unlocking Instructions in the Instruction Cache

The Intel XScale® core provides a global unlock command for the instruction cache. Writing to 
coprocessor 15, register 9 unlocks all the locked lines in the instruction cache and leaves them 
valid. These lines then become available for the round-robin replacement algorithm.

3.5 Branch Target Buffer

The Intel XScale® core uses dynamic branch prediction to reduce the penalties associated with 
changing the flow of program execution. The Intel XScale® core features a branch target buffer 
that provides the instruction cache with the target address of branch type instructions. The branch 
target buffer is implemented as a 128-entry, direct mapped cache.

3.5.1 Branch Target Buffer (BTB) Operation

The BTB stores the history of branches that have executed along with their targets. Figure 20 
shows an entry in the BTB, where the tag is the instruction address of a previously executed branch 
and the data contains the target address of the previously executed branch along with two bits of 
history information. 

The BTB takes the current instruction address and checks to see if this address is a branch that was 
previously seen. It uses bits [8:2] of the current address to read out the tag and then compares this 
tag to bits [31:9,1] of the current instruction address. If the current instruction address matches the 
tag in the cache and the history bits indicate that this branch is usually taken in the past, the BTB 
uses the data (target address) as the next instruction address to send to the instruction cache. 

Bit[1] of the instruction address is included in the tag comparison in order to support Thumb 
execution. This organization means that two consecutive Thumb branch (B) instructions, with 
instruction address bits[8:2] the same, will contend for the same BTB entry. Thumb also requires 
31 bits for the branch target address. In ARM* mode, bit[1] is zero. 

The history bits represent four possible prediction states for a branch entry in the BTB. Figure 21 
shows these states along with the possible transitions. The initial state for branches stored in the 
BTB is Weakly-Taken (WT). Every time a branch that exists in the BTB is executed, the history 
bits are updated to reflect the latest outcome of the branch, either taken or not-taken. 

The BTB does not have to be managed explicitly by software; it is disabled by default after reset 
and is invalidated when the instruction cache is invalidated. 

Figure 20. BTB Entry
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3.5.1.1 Reset

After Processor Reset, the BTB is disabled and all entries are invalidated. 

3.5.2 Update Policy

A new entry is stored into the BTB when the following conditions are met:

• the branch instruction has executed

• the branch was taken

• the branch is not currently in the BTB

The entry is then marked valid and the history bits are set to WT. If another valid branch exists at 
the same entry in the BTB, it will be evicted by the new branch. 

Once a branch is stored in the BTB, the history bits are updated upon every execution of the branch 
as shown in Figure 21. 

3.5.3 BTB Control

3.5.3.1 Disabling/Enabling

The BTB is always disabled with Reset. Software can enable the BTB through a bit in a 
coprocessor register.

Before enabling or disabling the BTB, software must invalidate it (described in the following 
section). This action will ensure correct operation in case stale data is in the BTB. Software should 
not place any branch instruction between the code that invalidates the BTB and the code that 
enables/disables it.

Figure 21. Branch History
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3.5.3.2 Invalidation

There are four ways the contents of the BTB can be invalidated.

1. Reset.

2. Software can directly invalidate the BTB via a CP15, register 7 function.

3. The BTB is invalidated when the Process ID Register is written. 

4. The BTB is invalidated when the instruction cache is invalidated via CP15, register 7 
functions.

3.6 Data Cache

The Intel XScale® core data cache enhances performance by reducing the number of data accesses 
to and from external memory. There are two data cache structures in the Intel XScale® core, a 
32 Kbyte data cache and a 2 Kbyte mini-data cache. An eight entry write buffer and a four entry fill 
buffer are also implemented to decouple the Intel XScale® core instruction execution from external 
memory accesses, which increases overall system performance. 

3.6.1 Overviews

3.6.1.1 Data Cache Overview

The data cache is a 32-Kbyte, 32-way set associative cache; this means there are 32 sets with each 
set containing 32 ways. Each way of a set contains 32 bytes (one cache line) and one valid bit. 
There also exist two dirty bits for every line, one for the lower 16 bytes and the other one for the 
upper 16 bytes. When a store hits the cache the dirty bit associated with it is set. The replacement 
policy is a round-robin algorithm and the cache also supports the ability to reconfigure each line as 
data RAM.

Figure 22 shows the cache organization and how the data address is used to access the cache. 

Cache policies may be adjusted for particular regions of memory by altering page attribute bits in 
the MMU descriptor that controls that memory. 

The data cache is virtually addressed and virtually tagged. It supports write-back and write-through 
caching policies. The data cache always allocates a line in the cache when a cacheable read miss 
occurs and will allocate a line into the cache on a cacheable write miss when write allocate is 
specified by its page attribute. Page attribute bits determine whether a line gets allocated into the 
data cache or mini-data cache.
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3.6.1.2 Mini-Data Cache Overview

The mini-data cache is a 2-Kbyte, 2-way set associative cache; this means there are 32 sets with 
each set containing 2 ways. Each way of a set contains 32 bytes (one cache line) and one valid bit. 
There also exist 2 dirty bits for every line, one for the lower 16 bytes and the other one for the 
upper 16 bytes. When a store hits the cache the dirty bit associated with it is set. The replacement 
policy is a round-robin algorithm. 

Figure 23 shows the cache organization and how the data address is used to access the cache. 

The mini-data cache is virtually addressed and virtually tagged and supports the same caching 
policies as the data cache. However, lines can’t be locked into the mini-data cache. 

Figure 22. Data Cache Organization
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3.6.1.3 Write Buffer and Fill Buffer Overview

The Intel XScale® core employs an eight entry write buffer, each entry containing 16 bytes. Stores 
to external memory are first placed in the write buffer and subsequently taken out when the bus is 
available. 

The write buffer supports the coalescing of multiple store requests to external memory. An 
incoming store may coalesce with any of the eight entries. 

The fill buffer holds the external memory request information for a data cache or mini-data cache 
fill or non-cacheable read request. Up to four 32-byte read request operations can be outstanding in 
the fill buffer before the Intel XScale® core needs to stall. 

The fill buffer has been augmented with a four entry pend buffer that captures data memory 
requests to outstanding fill operations. Each entry in the pend buffer contains enough data storage 
to hold one 32-bit word, specifically for store operations. Cacheable load or store operations that 
hit an entry in the fill buffer get placed in the pend buffer and are completed when the associated 
fill completes. Any entry in the pend buffer can be pended against any of the entries in the fill 
buffer; multiple entries in the pend buffer can be pended against a single entry in the fill buffer. 

Pended operations complete in program order.

Figure 23. Mini-Data Cache Organization

A9692-01

32 bytes (cache line)

Tag

Data Address (Virtual)

Note:  CAM = Content Addressable Memory

Set Index

Word Select

Byte Alignment
Sign Extension

Data Word
(4 bytes to Destination Register)

Word Byte

way 0
Set 31

Set 1

way 1

31 5 4 2 1 010 9

Set 0

Byte Select

Tag

This example
shows Set 0 being

selected by the
Set Index

32 bytes (cache line)way 0
way 1

32 bytes (cache line)way 0
way 1
Hardware Reference Manual 99



Intel® IXP2800 Network Processor
Intel XScale® Core
3.6.2 Data Cache and Mini-Data Cache Operation

The following discussions refer to the data cache and mini-data cache as one cache (data/mini-
data) since their behavior is the same when accessed. 

3.6.2.1 Operation When Caching is Enabled

When the data/mini-data cache is enabled for an access, the data/mini-data cache compares the 
address of the request against the addresses of data that it is currently holding. If the line containing 
the address of the request is resident in the cache, the access “hits’ the cache. For a load operation 
the cache returns the requested data to the destination register and for a store operation the data is 
stored into the cache. The data associated with the store may also be written to external memory if 
write-through caching is specified for that area of memory. If the cache does not contain the 
requested data, the access ‘misses’ the cache, and the sequence of events that follows depends on 
the configuration of the cache, the configuration of the MMU and the page attributes. 

3.6.2.2 Operation When Data Caching is Disabled

The data/mini-data cache is still accessed even though it is disabled. If a load hits the cache it will 
return the requested data to the destination register. If a store hits the cache, the data is written into 
the cache. Any access that misses the cache will not allocate a line in the cache when it’s disabled, 
even if the MMU is enabled and the memory region’s cacheability attribute is set. 

3.6.2.3 Cache Policies

3.6.2.3.1 Cacheability

Data at a specified address is cacheable given the following:

• the MMU is enabled

• the cacheable attribute is set in the descriptor for the accessed address 

• and the data/mini-data cache is enabled

3.6.2.3.2 Read Miss Policy

The following sequence of events occurs when a cacheable load operation misses the cache:

1. The fill buffer is checked to see if an outstanding fill request already exists for that line. 

If so, the current request is placed in the pending buffer and waits until the previously 
requested fill completes, after which it accesses the cache again, to obtain the request data and 
returns it to the destination register. 

If there is no outstanding fill request for that line, the current load request is placed in the fill 
buffer and a 32-byte external memory read request is made. If the pending buffer or fill buffer 
is full, the Intel XScale® core will stall until an entry is available.

2. A line is allocated in the cache to receive the 32-bytes of fill data. The line selected is 
determined by the round-robin pointer (see Section 3.6.2.4). The line chosen may contain a 
valid line previously allocated in the cache. In this case both dirty bits are examined and if set, 
the four words associated with a dirty bit that’s asserted will be written back to external 
memory as a four word burst operation. 
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3. When the data requested by the load is returned from external memory, it is immediately sent 
to the destination register specified by the load. A system that returns the requested data back 
first, with respect to the other bytes of the line, will obtain the best performance. 

4. As data returns from external memory it is written into the cache in the previously allocated 
line.

A load operation that misses the cache and is NOT cacheable makes a request from external 
memory for the exact data size of the original load request. For example, LDRH requests exactly 
two bytes from external memory, LDR requests 4 bytes from external memory, etc. This request is 
placed in the fill buffer until, the data is returned from external memory, which is then forwarded 
back to the destination register(s).

3.6.2.3.3 Write Miss Policy

A write operation that misses the cache will request a 32-byte cache line from external memory if 
the access is cacheable and write allocation is specified in the page. In this case the following 
sequence of events occur:

1. The fill buffer is checked to see if an outstanding fill request already exists for that line. 

If so, the current request is placed in the pending buffer and waits until the previously 
requested fill completes, after which it writes its data into the recently allocated cache line.

If there is no outstanding fill request for that line, the current store request is placed in the fill 
buffer and a 32-byte external memory read request is made. If the pending buffer or fill buffer 
is full, the Intel XScale® core will stall until an entry is available.

2. The 32-bytes of data can be returned back to the Intel XScale® core in any word order, i.e, the 
eight words in the line can be returned in any order. Note that it does not matter, for 
performance reasons, which order the data is returned to the Intel XScale® core since the store 
operation has to wait until the entire line is written into the cache before it can complete. 

3. When the entire 32-byte line has returned from external memory, a line is allocated in the 
cache, selected by the round-robin pointer (see Section 3.6.2.4). The line to be written into the 
cache may replace a valid line previously allocated in the cache. In this case both dirty bits are 
examined and if any are set, the four words associated with a dirty bit that’s asserted will be 
written back to external memory as a 4 word burst operation. This write operation will be 
placed in the write buffer. 

4. The line is written into the cache along with the data associated with the store operation. 

If the above condition for requesting a 32-byte cache line is not met, a write miss will cause a write 
request to external memory for the exact data size specified by the store operation, assuming the 
write request doesn’t coalesce with another write operation in the write buffer. 

3.6.2.3.4 Write-Back Versus Write-Through

The Intel XScale® core supports write-back caching or write-through caching, controlled through 
the MMU page attributes. When write-through caching is specified, all store operations are written 
to external memory even if the access hits the cache. This feature keeps the external memory 
coherent with the cache, i.e., no dirty bits are set for this region of memory in the data/mini-data 
cache. This however does not guarantee that the data/mini-data cache is coherent with external 
memory, which is dependent on the system level configuration, specifically if the external memory 
is shared by another master. 

When write-back caching is specified, a store operation that hits the cache will not generate a write 
to external memory, thus reducing external memory traffic.
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3.6.2.4 Round-Robin Replacement Algorithm

The line replacement algorithm for the data cache is round-robin. Each set in the data cache has a 
round-robin pointer that keeps track of the next line (in that set) to replace. The next line to replace 
in a set is the next sequential line after the last one that was just filled. For example, if the line for 
the last fill was written into way 5-set 2, the next line to replace for that set would be way 6. None 
of the other round-robin pointers for the other sets are affected in this case. 

After reset, way 31 is pointed to by the round-robin pointer for all the sets. Once a line is written 
into way 31, the round-robin pointer points to the first available way of a set, beginning with way 0 
if no lines have been re-configured as data RAM in that particular set. Re-configuring lines as data 
RAM effectively reduces the available lines for cache updating. For example, if the first three lines 
of a set were re-configured, the round-robin pointer would point to the line at way 3 after it rolled 
over from way 31. Refer to Section 3.6.4 for more details on data RAM.

The mini-data cache follows the same round-robin replacement algorithm as the data cache except 
that there are only two lines the round-robin pointer can point to such that the round-robin pointer 
always points to the least recently filled line. A least recently used replacement algorithm is not 
supported because the purpose of the mini-data cache is to cache data that exhibits low temporal 
locality, i.e., data that is placed into the mini-data cache is typically modified once and then written 
back out to external memory. 

3.6.2.5 Parity Protection

The data cache and mini-data cache are protected by parity to ensure data integrity; there is one 
parity bit per byte of data. (The tags are NOT parity protected.) When a parity error is detected on a 
data/mini-data cache access, a data abort exception occurs. Before servicing the exception, 
hardware will set bit 10 of the Fault Status Register register. 

A data/mini-data cache parity error is an imprecise data abort, meaning R14_ABORT (+8) may not 
point to the instruction that caused the parity error. If the parity error occurred during a load, the 
targeted register may be updated with incorrect data.

A data abort due to a data/mini-data cache parity error may not be recoverable if the data address 
that caused the abort occurred on a line in the cache that has a write-back caching policy. Prior 
updates to this line may be lost; in this case the software exception handler should perform a “clean 
and clear” operation on the data cache, ignoring subsequent parity errors, and restart the offending 
process. This operation is shown in Section 3.6.3.3.1.

3.6.2.6 Atomic Accesses

The SWP and SWPB instructions generate an atomic load and store operation allowing a memory 
semaphore to be loaded and altered without interruption. These accesses may hit or miss the data/
mini-data cache depending on configuration of the cache, configuration of the MMU, and the page 
attributes. Refer to Section 3.11.4 for more information.
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3.6.3 Data Cache and Mini-Data Cache Control

3.6.3.1 Data Memory State After Reset

After processor reset, both the data cache and mini-data cache are disabled, all valid bits are set to 
zero (invalid), and the round-robin bit points to way 31. Any lines in the data cache that were 
configured as data RAM before reset are changed back to cacheable lines after reset, i.e., there are 
32 KBytes of data cache and zero bytes of data RAM.

3.6.3.2 Enabling/Disabling

The data cache and mini-data cache are enabled by setting bit 2 in coprocessor 15, register 1 
(Control Register).

Example 20 shows code that enables the data and mini-data caches. Note that the MMU must be 
enabled to use the data cache.

3.6.3.3 Invalidate and Clean Operations

Individual entries can be invalidated and cleaned in the data cache and mini-data cache via 
coprocessor 15, register 7. Note that a line locked into the data cache remains locked even after it 
has been subjected to an invalidate-entry operation. This will leave an unusable line in the cache 
until a global unlock has occurred. For this reason, do not use these commands on locked lines.

This same register also provides the command to invalidate the entire data cache and mini-data 
cache. These global invalidate commands have no effect on lines locked in the data cache. Locked 
lines must be unlocked before they can be invalidated. This is accomplished by the Unlock Data 
Cache command.

3.6.3.3.1 Global Clean and Invalidate Operation

A simple software routine is used to globally clean the data cache. It takes advantage of the line-
allocate data cache operation, which allocates a line into the data cache. This allocation evicts any 
cache dirty data back to external memory. Example 21 shows how data cache can be cleaned.

Example 20. Enabling the Data Cache

enableDCache:

MCR p15, 0, r0, c7, c10, 4; Drain pending data operations...

; 

MRC p15, 0, r0, c1, c0, 0; Get current control register

ORR r0, r0, #4 ; Enable DCache by setting ‘C’ (bit 2)

MCR p15, 0, r0, c1, c0, 0; And update the Control register
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The line-allocate operation does not require physical memory to exist at the virtual address 
specified by the instruction, since it does not generate a load/fill request to external memory. Also, 
the line-allocate operation does not set the 32 bytes of data associated with the line to any known 
value. Reading this data will produce unpredictable results.

The line-allocate command will not operate on the mini Data Cache, so system software must clean 
this cache by reading 2KByte of contiguous unused data into it. This data must be unused and 
reserved for this purpose so that it will not already be in the cache. It must reside in a page that is 
marked as mini Data Cache cacheable.

The time it takes to execute a global clean operation depends on the number of dirty lines in cache.

Example 21. Global Clean Operation

; Global Clean/Invalidate THE DATA CACHE
; R1 contains the virtual address of a region of cacheable memory reserved for
; this clean operation
; R0 is the loop count; Iterate 1024 times which is the number of lines in the 
; data cache

;; Macro ALLOCATE performs the line-allocation cache operation on the
;; address specified in register Rx.
;;

MACRO ALLOCATE Rx

MCR P15, 0, Rx, C7, C2, 5

ENDM

MOV  R0, #1024

LOOP1:

ALLOCATE R1 ; Allocate a line at the virtual address 

; specified by R1.

ADD R1, R1, #32 ; Increment the address in R1 to the next cache line

SUBS R0, R0, #1 ; Decrement loop count

BNE LOOP1

;

;Clean the Mini-data Cache

; Can’t use line-allocate command, so cycle 2KB of unused data through.

; R2 contains the virtual address of a region of cacheable memory reserved for
; cleaning the Mini-data Cache

; R0 is the loop count; Iterate 64 times which is the number of lines in the
; Mini-data Cache.

MOV  R0, #64

LOOP2:

LDR R3,[R2],#32 ; Load and increment to next cache line

SUBS R0, R0, #1 ; Decrement loop count

BNE LOOP2

;

; Invalidate the data cache and mini-data cache 

MCR P15, 0, R0, C7, C6, 0 

;
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3.6.4 Re-configuring the Data Cache as Data RAM

Software has the ability to lock tags associated with 32-byte lines in the data cache, thus creating 
the appearance of data RAM. Any subsequent access to this line will always hit the cache unless it 
is invalidated. Once a line is locked into the data cache it is no longer available for cache allocation 
on a line fill. Up to 28 lines in each set can be reconfigured as data RAM, such that the maximum 
data RAM size is 28 Kbytes. 

Hardware does not support locking lines into the mini-data cache; any attempt to do this will 
produce unpredictable results.

There are two methods for locking tags into the data cache; the method of choice depends on the 
application. One method is used to lock data that resides in external memory into the data cache 
and the other method is used to re-configure lines in the data cache as data RAM. Locking data 
from external memory into the data cache is useful for lookup tables, constants, and any other data 
that is frequently accessed. Re-configuring a portion of the data cache as data RAM is useful when 
an application needs scratch memory (bigger than the register file can provide) for frequently used 
variables. These variables may be strewn across memory, making it advantageous for software to 
pack them into data RAM memory.

Refer to the Intel XScale® Core Developers Manual for code examples.

Tags can be locked into the data cache by enabling the data cache lock mode bit located in 
coprocessor 15, register 9. Once enabled, any new lines allocated into the data cache will be locked 
down.

Note that the PLD instruction will not affect the cache contents if it encounters an error while 
executing. For this reason, system software should ensure the memory address used in the PLD is 
correct. If this cannot be ascertained, replace the PLD with a LDR instruction that targets a scratch 
register.

Lines are locked into a set starting at way 0 and may progress up to way 27; which set a line gets 
locked into depends on the set index of the virtual address of the request. Figure 19 is an example 
of where lines of code may be locked into the cache along with how the round-robin pointer is 
affected. 

Software can lock down data located at different memory locations. This may cause some sets to 
have more locked lines than others as shown in Figure 19.

Lines are unlocked in the data cache by performing an unlock operation.

Before locking, the programmer must ensure that no part of the target data range is already resident 
in the cache. The Intel XScale® core will not refetch such data, which will result in it not being 
locked into the cache. If there is any doubt as to the location of the targeted memory data, the cache 
should be cleaned and invalidated to prevent this scenario. If the cache contains a locked region 
which the programmer wishes to lock again, then the cache must be unlocked before being cleaned 
and invalidated.
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3.6.5 Write Buffer/Fill Buffer Operation and Control

The write buffer is always enabled which means stores to external memory will be buffered. The K 
bit in the Auxiliary Control Register (CP15, register 1) is a global enable/disable for allowing 
coalescing in the write buffer. When this bit disables coalescing, no coalescing will occur 
regardless the value of the page attributes. If this bit enables coalescing, the page attributes X, C, 
and B are examined to see if coalescing is enabled for each region of memory.

All reads and writes to external memory occur in program order when coalescing is disabled in the 
write buffer. If coalescing is enabled in the write buffer, writes may occur out of program order to 
external memory. Program correctness is maintained in this case by comparing all store requests 
with all the valid entries in the fill buffer. 

The write buffer and fill buffer support a drain operation, such that before the next instruction 
executes, all the Intel XScale® core data requests to external memory have completed. 

Writes to a region marked non-cacheable/non-bufferable (page attributes C, B, and X all 0) will 
cause execution to stall until the write completes.

If software is running in a privileged mode, it can explicitly drain all buffered writes.

3.7 Configuration

The System Control Coprocessor (CP15) configures the MMU, caches, buffers and other system 
attributes. Where possible, the definition of CP15 follows the definition of the StrongARM* 
products. Coprocessor 14 (CP14) contains the performance monitor registers and the trace buffer 
registers.

CP15 is accessed through MRC and MCR coprocessor instructions and allowed only in privileged 
mode. Any access to CP15 in user mode or with LDC or STC coprocessor instructions will cause 
an undefined instruction exception. 

CP14 registers can be accessed through MRC, MCR, LDC, and STC coprocessor instructions and 
allowed only in privileged mode. Any access to CP14 in user mode will cause an undefined 
instruction exception.

The Intel XScale® core Coprocessors, CP15 and CP14, do not support access via CDP, MRRC, or 
MCRR instructions. An attempt to access these coprocessors with these instructions will result in 
an Undefined Instruction exception.

Many of the MCR commands available in CP15 modify hardware state sometime after execution. 
A software sequence is available for those wishing to determine when this update occurs.

Like certain other ARM* architecture products, the Intel XScale® core includes an extra level of 
virtual address translation in the form of a PID (Process ID) register and associated logic. 
Privileged code needs to be aware of this facility because, when interacting with CP15, some 
addresses are modified by the PID and others are not.

An address that has yet to be modified by the PID (“PIDified”) is known as a virtual address (VA). 
An address that has been through the PID logic, but not translated into a physical address, is a 
modified virtual address (MVA). Non-privileged code always deals with VAs, while privileged 
code that programs CP15 occasionally needs to use MVAs. For details refer to the Intel XScale® 
Core Developers Manual.
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3.8 Performance Monitoring

The Intel XScale® core hardware provides two 32-bit performance counters that allow two unique 
events to be monitored simultaneously. In addition, the Intel XScale® core implements a 32-bit 
clock counter that can be used in conjunction with the performance counters; its sole purpose is to 
count the number of core clock cycles which is useful in measuring total execution time. 

The Intel XScale® core can monitor either occurrence events or duration events. When counting 
occurrence events, a counter is incremented each time a specified event takes place and when 
measuring duration, a counter counts the number of processor clocks that occur while a specified 
condition is true. If any of the 3 counters overflow, an IRQ or FIQ will be generated if it’s enabled. 
Each counter has its own interrupt enable. The counters continue to monitor events even after an 
overflow occurs, until disabled by software. Refer to the Intel® IXP2400/IXP2800 Network 
Processor Programmer’s Reference Manual for more detail.

Each of these counters can be programmed to monitor any one of various events.

To further augment performance monitoring, the Intel XScale® core clock counter can be used to 
measure the executing time of an application. This information combined with a duration event can 
feedback a percentage of time the event occurred with respect to overall execution time.

Each of the three counters and the performance monitoring control register are accessible through 
Coprocessor 14 (CP14), registers 0-3. Access is allowed in privileged mode only. 

The following are a few notes about controlling the performance monitoring mechanism:

• An interrupt will be reported when a counter’s overflow flag is set and its associated interrupt 
enable bit is set in the PMNC register. The interrupt will remain asserted until software clears 
the overflow flag by writing a one to the flag that is set. Note: the product specific interrupt 
unit and the CPSR must have enabled the interrupt in order for software to receive it.

• The counters continue to record events even after they overflow. 

3.8.1 Performance Monitoring Events

Table 26 lists events that may be monitored by the PMU. Each of the Performance Monitor Count 
Registers (PMN0 and PMN1) can count any listed event. Software selects which event is counted 
by each PMNx register by programming the evtCountx fields of the PMNC register.

Table 26. Performance Monitoring Events (Sheet 1 of 2)

Event Number 
(evtCount0 or 

evtCount1)
Event Definition

0x0 Instruction cache miss requires fetch from external memory.

0x1 Instruction cache cannot deliver an instruction. This could indicate an ICache miss or an 
ITLB miss. This event will occur every cycle in which the condition is present.

0x2 Stall due to a data dependency. This event will occur every cycle in which the condition is 
present.

0x3 Instruction TLB miss.

0x4 Data TLB miss.

0x5 Branch instruction executed, branch may or may not have changed program flow.

0x6 Branch mispredicted. (B and BL instructions only.)
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Some typical combination of counted events are listed in this section and summarized in Table 27. 
In this section, we call such an event combination a mode.

3.8.1.1 Instruction Cache Efficiency Mode

PMN0 totals the number of instructions that were executed, which does not include instructions 
fetched from the instruction cache that were never executed. This can happen if a branch 
instruction changes the program flow; the instruction cache may retrieve the next sequential 
instructions after the branch, before it receives the target address of the branch. 

PMN1 counts the number of instruction fetch requests to external memory. Each of these requests 
loads 32 bytes at a time. 

Statistics derived from these two events:

• Instruction cache miss-rate. This is derived by dividing PMN1 by PMN0. 

• The average number of cycles it took to execute an instruction or commonly referred to as 
cycles-per-instruction (CPI). CPI can be derived by dividing CCNT by PMN0, where CCNT 
was used to measure total execution time.

0x7 Instruction executed.

0x8 Stall because the data cache buffers are full. This event will occur every cycle in which the 
condition is present.

0x9 Stall because the data cache buffers are full. This event will occur once for each contiguous 
sequence of this type of stall.

0xA Data cache access, not including Cache Operations

0xB Data cache miss, not including Cache Operations

0xC  Data cache write-back. This event occurs once for each 1/2 line (four words) that are 
written back from the cache.

0xD

Software changed the PC. This event occurs any time the PC is changed by software and 
there is not a mode change. For example, a mov instruction with PC as the destination will 
trigger this event. Executing a swi from User mode will not trigger this event, because it will 
incur a mode change.

0x10 through 
0x17

Refer to the Intel® IXP2400/IXP2800 Network Processor Programmer’s Reference Manual 
for more details.

all others Reserved, unpredictable results

Table 26. Performance Monitoring Events (Sheet 2 of 2)

Event Number 
(evtCount0 or 

evtCount1)
Event Definition

Table 27. Some Common Uses of the PMU

Mode PMNC.evtCount0 PMNC.evtCount1

Instruction Cache Efficiency 0x7 (instruction count) 0x0 (ICache miss)

Data Cache Efficiency 0xA (Dcache access) 0xB (DCache miss)

Instruction Fetch Latency 0x1 (ICache cannot deliver) 0x0 (ICache miss)

Data/Bus Request Buffer Full 0x8 (DBuffer stall duration) 0x9 (DBuffer stall)

Stall/Writeback Statistics 0x2 (data stall) 0xC (DCache writeback)

Instruction TLB Efficiency 0x7 (instruction count) 0x3 (ITLB miss)

Data TLB Efficiency 0xA (Dcache access) 0x4 (DTLB miss)
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3.8.1.2 Data Cache Efficiency Mode

PMN0 totals the number of data cache accesses, which includes cacheable and non-cacheable 
accesses, mini-data cache access and accesses made to locations configured as data RAM. 

Note that STM and LDM will each count as several accesses to the data cache depending on the 
number of registers specified in the register list. LDRD will register two accesses. 

PMN1 counts the number of data cache and mini-data cache misses. Cache operations do not 
contribute to this count. 

The statistic derived from these two events is:

• Data cache miss-rate. This is derived by dividing PMN1 by PMN0. 

3.8.1.3 Instruction Fetch Latency Mode

PMN0 accumulates the number of cycles when the instruction-cache is not able to deliver an 
instruction to the Intel XScale® core due to an instruction-cache miss or instruction-TLB miss. 
This event means that the processor core is stalled.

PMN1 counts the number of instruction fetch requests to external memory. Each of these requests 
loads 32 bytes at a time. This is the same event as measured in instruction cache efficiency mode 
and is included in this mode for convenience so that only one performance monitoring run is need.

Statistics derived from these two events:

• The average number of cycles the processor stalled waiting for an instruction fetch from 
external memory to return. This is calculated by dividing PMN0 by PMN1. If the average is 
high then the Intel XScale® core may be starved of the bus external to the Intel XScale® core.

• The percentage of total execution cycles the processor stalled waiting on an instruction fetch 
from external memory to return. This is calculated by dividing PMN0 by CCNT, which was 
used to measure total execution time. 

3.8.1.4 Data/Bus Request Buffer Full Mode

The Data Cache has buffers available to service cache misses or uncacheable accesses. For every 
memory request that the Data Cache receives from the processor core a buffer is speculatively 
allocated in case an external memory request is required or temporary storage is needed for an 
unaligned access. If no buffers are available, the Data Cache will stall the processor core. How 
often the Data Cache stalls depends on the performance of the bus external to the Intel XScale® 
core and what the memory access latency is for Data Cache miss requests to external memory. If 
the Intel XScale® core memory access latency is high, possibly due to starvation, these Data Cache 
buffers will become full. This performance monitoring mode is provided to see if the Intel XScale® 
core is being starved of the bus external to the Intel XScale® core, which will effect the 
performance of the application running on the Intel XScale® core. 

PMN0 accumulates the number of clock cycles the processor is being stalled due to this condition 
and PMN1 monitors the number of times this condition occurs. 

Statistics derived from these two events:

• The average number of cycles the processor stalled on a data-cache access that may overflow 
the data-cache buffers. This is calculated by dividing PMN0 by PMN1. This statistic lets you 
know if the duration event cycles are due to many requests or are attributed to just a few 
requests. If the average is high then the Intel XScale® core may be starved of the bus external 
to the Intel XScale® core. 
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• The percentage of total execution cycles the processor stalled because a Data Cache request 
buffer was not available. This is calculated by dividing PMN0 by CCNT, which was used to 
measure total execution time. 

3.8.1.5 Stall/Writeback Statistics

When an instruction requires the result of a previous instruction and that result is not yet available, 
the Intel XScale® core stalls in order to preserve the correct data dependencies. PMN0 counts the 
number of stall cycles due to data-dependencies. Not all data-dependencies cause a stall; only the 
following dependencies cause such a stall penalty:

• Load-use penalty: attempting to use the result of a load before the load completes. To avoid the 
penalty, software should delay using the result of a load until it’s available. This penalty shows 
the latency effect of data-cache access.

• Multiply/Accumulate-use penalty: attempting to use the result of a multiply or multiply-
accumulate operation before the operation completes. Again, to avoid the penalty, software 
should delay using the result until it’s available.

• ALU use penalty: there are a few isolated cases where back to back ALU operations may 
result in one cycle delay in the execution. 

PMN1 counts the number of writeback operations emitted by the data cache. These writebacks 
occur when the data cache evicts a dirty line of data to make room for a newly requested line or as 
the result of clean operation (CP15, register 7). 

Statistics derived from these two events:

• The percentage of total execution cycles the processor stalled because of a data dependency. 
This is calculated by dividing PMN0 by CCNT, which was used to measure total execution 
time. Often a compiler can reschedule code to avoid these penalties when given the right 
optimization switches.

• Total number of data writeback requests to external memory can be derived solely with PMN1. 

3.8.1.6 Instruction TLB Efficiency Mode

PMN0 totals the number of instructions that were executed, which does not include instructions 
that were translated by the instruction TLB and never executed. This can happen if a branch 
instruction changes the program flow; the instruction TLB may translate the next sequential 
instructions after the branch, before it receives the target address of the branch. 

PMN1 counts the number of instruction TLB table-walks, which occurs when there is a TLB miss. 
If the instruction TLB is disabled PMN1 will not increment. 

Statistics derived from these two events:

• Instruction TLB miss-rate. This is derived by dividing PMN1 by PMN0. 

• The average number of cycles it took to execute an instruction or commonly referred to as 
cycles-per-instruction (CPI). CPI can be derived by dividing CCNT by PMN0, where CCNT 
was used to measure total execution time.
110 Hardware Reference Manual



Intel® IXP2800 Network Processor
Intel XScale® Core
3.8.1.7 Data TLB Efficiency Mode

PMN0 totals the number of data cache accesses, which includes cacheable and non-cacheable 
accesses, mini-data cache access and accesses made to locations configured as data RAM. 

Note that STM and LDM will each count as several accesses to the data TLB depending on the 
number of registers specified in the register list. LDRD will register two accesses. 

PMN1 counts the number of data TLB table-walks, which occurs when there is a TLB miss. If the 
data TLB is disabled PMN1 will not increment. 

The statistic derived from these two events is:

• Data TLB miss-rate. This is derived by dividing PMN1 by PMN0. 

3.8.2 Multiple Performance Monitoring Run Statistics

Even though only two events can be monitored at any given time, multiple performance monitoring 
runs can be done, capturing different events from different modes. For example, the first run could 
monitor the number of writeback operations (PMN1 of mode, Stall/Writeback) and the second run 
could monitor the total number of data cache accesses (PMN0 of mode, Data Cache Efficiency). 
From the results, a percentage of writeback operations to the total number of data accesses can be 
derived. 

3.9 Performance Considerations

This section describes relevant performance considerations that compiler writers, application 
programmers and system designers need to be aware of to efficiently use the Intel XScale® core. 
Performance numbers discussed here include interrupt latency, branch prediction, and instruction 
latencies. 

3.9.1 Interrupt Latency

Minimum Interrupt Latency is defined as the minimum number of cycles from the assertion of any 
interrupt signal (IRQ or FIQ) to the execution of the instruction at the vector for that interrupt. The 
point at which the assertion begins is TBD. This number assumes best case conditions exist when 
the interrupt is asserted, e.g., the system isn’t waiting on the completion of some other operation. 

A sometimes more useful number to work with is the Maximum Interrupt Latency. This is typically 
a complex calculation that depends on what else is going on in the system at the time the interrupt 
is asserted. Some examples that can adversely affect interrupt latency are: 

• the instruction currently executing could be a 16-register LDM,

• the processor could fault just when the interrupt arrives,

• the processor could be waiting for data from a load, doing a page table walk, etc., and

• high core to system (bus) clock ratios.

Maximum Interrupt Latency can be reduced by:

• ensuring that the interrupt vector and interrupt service routine are resident in the instruction 
cache. This can be accomplished by locking them down into the cache. 
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• removing or reducing the occurrences of hardware page table walks. This also can be 
accomplished by locking down the application’s page table entries into the TLBs, along with 
the page table entry for the interrupt service routine. 

3.9.2 Branch Prediction

The Intel XScale® core implements dynamic branch prediction for the ARM* instructions B and 
BL and for the Thumb instruction B. Any instruction that specifies the PC as the destination is 
predicted as not taken. For example, an LDR or a MOV that loads or moves directly to the PC will 
be predicted not taken and incur a branch latency penalty. 

These instructions -- ARM B, ARM BL and Thumb B -- enter into the branch target buffer when 
they are “taken” for the first time. (A “taken” branch refers to when they are evaluated to be true.) 
Once in the branch target buffer, the Intel XScale® core dynamically predicts the outcome of these 
instructions based on previous outcomes. Table 28 shows the branch latency penalty when these 
instructions are correctly predicted and when they are not. A penalty of zero for correct prediction 
means that the Intel XScale® core can execute the next instruction in the program flow in the cycle 
following the branch.

3.9.3 Addressing Modes

All load and store addressing modes implemented in the Intel XScale® core do not add to the 
instruction latencies numbers.

3.9.4 Instruction Latencies

The latencies for all the instructions are shown in the following sections with respect to their 
functional groups: branch, data processing, multiply, status register access, load/store, semaphore, 
and coprocessor.

The following section explains how to read these tables. 

Table 28. Branch Latency Penalty

Core Clock Cycles
Description

ARM* Thumb

+0 + 0 Predicted Correctly. The instruction is in the branch target cache and is 
correctly predicted.

+4 + 5

Mispredicted. There are three occurrences of branch misprediction, all of 
which incur a 4-cycle branch delay penalty. 
1. The instruction is in the branch target buffer and is predicted not-taken, but 

is actually taken. 
2. The instruction is not in the branch target buffer and is a taken branch.
3. The instruction is in the branch target buffer and is predicted taken, but is 

actually not-taken
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3.9.4.1 Performance Terms

• Issue Clock (cycle 0)

The first cycle when an instruction is decoded and allowed to proceed to further stages in the 
execution pipeline (i.e., when the instruction is actually issued).

• Cycle Distance from A to B

The cycle distance from cycle A to cycle B is (B-A) -- that is, the number of cycles from the 
start of cycle A to the start of cycle B. Example: the cycle distance from cycle 3 to cycle 4 is 
one cycle.

• Issue Latency

The cycle distance from the first issue clock of the current instruction to the issue clock of the 
next instruction. The actual number of cycles can be influenced by cache-misses, resource-
dependency stalls, and resource availability conflicts.

• Result Latency

The cycle distance from the first issue clock of the current instruction to the issue clock of the 
first instruction that can use the result without incurring a resource dependency stall. The 
actual number of cycles can be influenced by cache-misses, resource-dependency stalls, and 
resource availability conflicts

• Minimum Issue Latency (without Branch Misprediction)

The minimum cycle distance from the issue clock of the current instruction to the first possible 
issue clock of the next instruction assuming best case conditions (i.e., that the issuing of the 
next instruction is not stalled due to a resource dependency stall; the next instruction is 
immediately available from the cache or memory interface; the current instruction does not 
incur resource dependency stalls during execution that can not be detected at issue time; and if 
the instruction uses dynamic branch prediction, correct prediction is assumed).

• Minimum Result Latency

The required minimum cycle distance from the issue clock of the current instruction to the 
issue clock of the first instruction that can use the result without incurring a resource 
dependency stall assuming best case conditions (i.e., that the issuing of the next instruction is 
not stalled due to a resource dependency stall; the next instruction is immediately available 
from the cache or memory interface; and the current instruction does not incur resource 
dependency stalls during execution that can not be detected at issue time).

• Minimum Issue Latency (with Branch Misprediction)

The minimum cycle distance from the issue clock of the current branching instruction to the 
first possible issue clock of the next instruction. This definition is identical to Minimum Issue 
Latency except that the branching instruction has been mispredicted. It is calculated by adding 
Minimum Issue Latency (without Branch Misprediction) to the minimum branch latency 
penalty number from Table 28, which is four cycles.

• Minimum Resource Latency

The minimum cycle distance from the issue clock of the current multiply instruction to the 
issue clock of the next multiply instruction assuming the second multiply does not incur a data 
dependency and is immediately available from the instruction cache or memory interface. 

Example 22 contains a code fragment and an example of computing latencies.
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Table 29 shows how to calculate Issue Latency and Result Latency for each instruction. Looking at 
the issue column, the UMLAL instruction starts to issue on cycle 0 and the next instruction, ADD, 
issues on cycle 2, so the Issue Latency for UMLAL is two. From the code fragment, there is a 
result dependency between the UMLAL instruction and the SUB instruction. In Table 29, 
UMLAL starts to issue at cycle 0 and the SUB issues at cycle 5. thus the Result Latency is five. 

3.9.4.2 Branch Instruction Timings

 (

Example 22. Computing Latencies

UMLALr6,r8,r0,r1

ADD r9,r10,r11

SUB r2,r8,r9

MOV r0,r1

Table 29. Latency Example

Cycle Issue Executing

0 umlal (1st cycle) --

1 umlal (2nd cycle) umlal

2 add umlal

3 sub (stalled) umlal & add

4 sub (stalled) umlal

5 sub umlal

6 mov sub

7 -- mov

Table 30. Branch Instruction Timings (Those predicted by the BTB)

Mnemonic Minimum Issue Latency when Correctly 
Predicted by the BTB

Minimum Issue Latency with Branch 
Misprediction

B 1 5

BL 1 5

Table 31. Branch Instruction Timings (Those not predicted by the BTB)

Mnemonic Minimum Issue Latency when 
the branch is not taken

Minimum Issue Latency when 
the branch is taken

BLX(1) N/A 5

BLX(2) 1 5

BX 1 5

Data Processing Instruction with 
PC as the destination Same as Table 32 4 + numbers in Table 32

LDR PC,<> 2 8

LDM with PC in register list 3 + numreg1

1. numreg is the number of registers in the register list including the PC.

10 + max (0, numreg-3)
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3.9.4.3 Data Processing Instruction Timings

3.9.4.4 Multiply Instruction Timings

Table 32. Data Processing Instruction Timings

Mnemonic

<shifter operand> is NOT a Shift/Rotate 
by Register

<shifter operand> is a Shift/Rotate by 
Register OR

<shifter operand> is RRX

Minimum Issue 
Latency

Minimum Result 
Latency1

1. If the next instruction needs to use the result of the data processing for a shift by immediate or as Rn in a QDADD or QDSUB,
one extra cycle of result latency is added to the number listed.

Minimum Issue 
Latency

Minimum Result 
Latency1

ADC 1 1 2 2

ADD 1 1 2 2

AND 1 1 2 2

BIC 1 1 2 2

CMN 1 1 2 2

CMP 1 1 2 2

EOR 1 1 2 2

MOV 1 1 2 2

MVN 1 1 2 2

ORR 1 1 2 2

RSB 1 1 2 2

RSC 1 1 2 2

SBC 1 1 2 2

SUB 1 1 2 2

TEQ 1 1 2 2

TST 1 1 2 2

Table 33. Multiply Instruction Timings (Sheet 1 of 2)

Mnemonic Rs Value
(Early Termination)

S-Bit
Value

Minimum 
Issue Latency

Minimum Result 
Latency1

Minimum Resource 
Latency (Throughput)

MLA

Rs[31:15] = 0x00000
or

Rs[31:15] = 0x1FFFF

0 1 2 1

1 2 2 2

Rs[31:27] = 0x00
or

Rs[31:27] = 0x1F

0 1 3 2

1 3 3 3

all others
0 1 4 3

1 4 4 4

MUL

Rs[31:15] = 0x00000
or

Rs[31:15] = 0x1FFFF

0 1 2 1

1 2 2 2

Rs[31:27] = 0x00
or

Rs[31:27] = 0x1F

0 1 3 2

1 3 3 3

all others
0 1 4 3

1 4 4 4
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SMLAL

Rs[31:15] = 0x00000
or

Rs[31:15] = 0x1FFFF

0 2 RdLo = 2; RdHi = 3 2

1 3 3 3

Rs[31:27] = 0x00
or

Rs[31:27] = 0x1F

0 2 RdLo = 3; RdHi = 4 3

1 4 4 4

all others
0 2 RdLo = 4; RdHi = 5 4

1 5 5 5

SMLALxy N/A N/A 2 RdLo = 2; RdHi = 3 2

SMLAWy N/A N/A 1 3 2

SMLAxy N/A N/A 1 2 1

SMULL

Rs[31:15] = 0x00000
or

Rs[31:15] = 0x1FFFF

0 1 RdLo = 2; RdHi = 3 2

1 3 3 3

Rs[31:27] = 0x00
or

Rs[31:27] = 0x1F

0 1 RdLo = 3; RdHi = 4 3

1 4 4 4

all others
0 1 RdLo = 4; RdHi = 5 4

1 5 5 5

SMULWy N/A N/A 1 3 2

SMULxy N/A N/A 1 2 1

UMLAL

Rs[31:15] = 0x00000
0 2 RdLo = 2; RdHi = 3 2

1 3 3 3

Rs[31:27] = 0x00
0 2 RdLo = 3; RdHi = 4 3

1 4 4 4

all others
0 2 RdLo = 4; RdHi = 5 4

1 5 5 5

UMULL

Rs[31:15] = 0x00000
0 1 RdLo = 2; RdHi = 3 2

1 3 3 3

Rs[31:27] = 0x00
0 1 RdLo = 3; RdHi = 4 3

1 4 4 4

all others
0 1 RdLo = 4; RdHi = 5 4

1 5 5 5

1. If the next instruction needs to use the result of the multiply for a shift by immediate or as Rn in a QDADD or QDSUB, one
extra cycle of result latency is added to the number listed.

Table 33. Multiply Instruction Timings (Sheet 2 of 2)

Mnemonic Rs Value
(Early Termination)

S-Bit
Value

Minimum 
Issue Latency

Minimum Result 
Latency1

Minimum Resource 
Latency (Throughput)
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3.9.4.5 Saturated Arithmetic Instructions
h

3.9.4.6 Status Register Access Instructions

Table 34. Multiply Implicit Accumulate Instruction Timings

Mnemonic Rs Value (Early 
Termination)

Minimum Issue 
Latency

Minimum Result 
Latency

Minimum Resource 
Latency 

(Throughput)

MIA

Rs[31:16] = 0x0000
or

Rs[31:16] = 0xFFFF
1 1 1

Rs[31:28] = 0x0
or

Rs[31:28] = 0xF
1 2 2

all others 1 3 3

MIAxy N/A 1 1 1

MIAPH N/A 1 2 2

Table 35. Implicit Accumulator Access Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency Minimum Resource Latency 
(Throughput)

MAR 2 2 2

MRA 1 (RdLo = 2; RdHi = 3)1

1. If the next instruction needs to use the result of the MRA for a shift by immediate or as Rn in a QDADD or QDSUB, one extra
cycle of result latency is added to the number listed.

2

Table 36. Saturated Data Processing Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

QADD 1 2

QSUB 1 2

QDADD 1 2

QDSUB 1 2

Table 37. Status Register Access Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

MRS 1 2

MSR 2 (6 if updating mode bits) 1
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3.9.4.7 Load/Store Instructions

3.9.4.8 Semaphore Instructions

3.9.4.9 Coprocessor Instructions

Table 38. Load and Store Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

LDR 1 3 for load data; 1 for writeback of base

LDRB 1 3 for load data; 1 for writeback of base

LDRBT 1 3 for load data; 1 for writeback of base

LDRD 1 (+1 if Rd is R12) 3 for Rd; 4 for Rd+1; 2 for writeback of base

LDRH 1 3 for load data; 1 for writeback of base

LDRSB 1 3 for load data; 1 for writeback of base

LDRSH 1 3 for load data; 1 for writeback of base

LDRT 1 3 for load data; 1 for writeback of base

PLD 1 N/A

STR 1 1 for writeback of base

STRB 1 1 for writeback of base

STRBT 1 1 for writeback of base

STRD 2 1 for writeback of base

STRH 1 1 for writeback of base

STRT 1 1 for writeback of base

Table 39. Load and Store Multiple Instruction Timings

Mnemonic Minimum Issue Latency1

1. LDM issue latency is 7 + N if R15 is in the register list and 2 + N if it is not. STM issue latency is calculated as 2 + N. N is
the number of registers to load or store.

Minimum Result Latency

LDM 3 - 23 1-3 for load data; 1 for writeback of base

STM 3 - 18 1 for writeback of base

Table 40. Semaphore Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

SWP 5 5

SWPB 5 5

Table 41. CP15 Register Access Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

MRC 4 4

MCR 2 N/A
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3.9.4.10 Miscellaneous Instruction Timing

3.9.4.11 Thumb Instructions

The timing of Thumb instructions are the same as their equivalent ARM* instructions. This 
mapping can be found in the ARM* Architecture Reference Manual. The only exception is the 
Thumb BL instruction when H = 0; the timing in this case would be the same as an ARM* data 
processing instruction. 

3.10 Test Features

This section gives a brief overview of the Intel XScale® core JTAG features. The Intel XScale® 
core provides test features compatible with the IEEE Standard Test Access Port and Boundary Scan 
Architecture (IEEE Std. 1149.1). These features include a TAP controller, a 5-bit instruction 
register, and test data registers to support software debug. The Intel XScale® core also provides 
support for a boundary-scan register, device ID register, and other data test register.
A full description of these features can be found in the Intel® IXP2400/IXP2800 Network 
Processor Programmer’s Reference Manual.

3.10.1 IXP2800 Network Processor Endianness

Endianness defines the way bytes are addressed within a word. A little endian system is one in 
which byte zero is the least significant byte (LSB) in the word and byte three is the most significant 
byte. A big endian system is one in which byte zero is the most significant byte (MSB) and byte 3 
is the LSB. For example the value of 0x12345678 at address 0x0 in a 32 bit little endian system 
looks like this:

Table 42. CP14 Register Access Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

MRC 7 7

MCR 7 N/A

LDC 10 N/A

STC 7 N/A

Table 43. SWI Instruction Timings

Mnemonic Minimum latency to first instruction of SWI exception handler

SWI 6

Table 44. Count Leading Zeros Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

CLZ 1 1
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The same value is stored in Big Endian system looks like this:

Bits within a byte are always in Little Endian order. The least significant bit resides at bit location 0 
and the most significant bit resides at bit location 7 (7:0).

The following conventions are used in this document:

Endianness for the IXP2800 processor can be divided into three major categories:

• Read and write transactions initiated by the Intel XScale® core:

— Reads initiated by Intel XScale® core

— Writes initiated by Intel XScale® core 

• SRAM and DRAM access:

— 64-bit Data transfer between DRAM and the Intel XScale® core

— Byte, word or long-word transfer between SRAM/DRAM and Intel XScale® core

— Data transfer between SRAM/DRAM and PCI

— Microengine initiated access to SRAM and DRAM

• PCI Accesses

— the Intel XScale® core generated reads/writes to PCI in memory space

— the Intel XScale® core generated read/write of external/internal PCI config registers

Table 45. Little Endian Encoding

Address/Byte 
Lane 0x0/ByteLane 3 0x0/ByteLane 2 0x0/ByteLane 1 0x0/ByteLane 0

Byte Value 0x12 0x34 0x56 0x78

Table 46. Big Endian Encoding

Address/Byte 
Lane 0x0/ByteLane 3 0x0/ByteLane 2 0x0/ByteLane 1 0x0/ByteLane 0

Byte Value 0x78 0x56 0x34 0x12

1 Byte: 8-bit data

1 Word: 16-bit data

1 Long-word: 32-bit data

Long Word Little Endian
Format (LWLE)

32-bit data (0x12345678) arranged as {12 34 56 78}
64-bit data 0x12345678 9ABCDE56 arranged as {12 34 56 78 9A BC DE 56}

Long Word-Big Endian format
(LWBE):

32-bit data (0x12345678) arranged as {78 56 34 12}
64-bit data 0x12345678 9ABCDE56 arranged as {78 56 34 12, 56 DE BC 9A}
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3.10.1.1 Read and Write Transactions Initiated by the Intel XScale® Core

The Intel XScale® core may be used in either a little endian or big endian configuration. The 
configuration affects the entire system in which the Intel XScale® microarchitecture exists. 
Software and hardware must agree on the byte ordering to be used. In software, a system’s byte 
order is configured with CP15 register 1, the control register. Bit 7 of this register, the B bit, 
informs the processor of the byte order in use by the system. Note that this bit takes effect even if 
the MMU is not otherwise in use or enabled.

Though it is the responsibility of system hardware to assign correct byte lanes to each byte field in 
the data bus, in the IXP2800 it is left to the software to interpret byte lanes in accordance with the 
endianness of the system. As shown in Figure 24, system byte lanes 0–3 are connected directly to 
the Intel XScale® core byte lanes 0–3. What this means is that byte lane 0 (M[7:0]) of the system is 
connected to byte lane 0 (X[7:0]) of the Intel XScale® core, byte lane 1 (M[15:8]) of the system is 
connected to byte lane 1 (X[15:8]) of the Intel XScale® core and so on.

Interface operation of the Intel XScale® core and the rest of the IXP2800 can be divided into two 
parts:

• Intel XScale® core reading from the IXP2800

• Intel XScale® core writing to the IXP2800

3.10.1.1.1 Reads Initiated by the Intel XScale® Core

Intel XScale® core reads can be one of the following three types:

• Byte read

• 16-bits (word) read

• 32-bits (Long Word) read

Byte Read

When reading a byte, the Intel XScale® core generates the byte_enable that corresponds to the 
proper byte lane as defined by the endianness setting. Table 47 summarizes byte enable generation 
for this mode.

The 4-to-1 mux steers the byte read into byte lane 0 location of the read register inside the Intel 
XScale® core. Select signals for the mux are generated based on endian setting and ByteEnable 
generated by the Intel XScale® core as defined in Figure 24.

Table 47. Byte Enable Generation by the Intel XScale® Core for Byte Transfers in Little and
Big Endian Systems

Byte# to 
be read

Byte Enables When System is Little Endian Byte Enables When System is Big Endian

X_BE[0] X_BE[1] X_BE[2] X_BE[3] X_BE[0] X_BE[1] X_BE[2] X_BE[3]

Byte0 1 0 0 0 0 0 0 1

Byte1 0 1 0 0 0 0 1 0

Byte2 0 0 1 0 0 1 0 0

Byte3 0 0 0 1 1 0 0 0
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16-bit (Word) Read

When reading a word, the Intel XScale® core generates the byte_enable that corresponds to the 
proper byte lane as defined by the endianness setting. Figure 25 summarizes byte enable generation 
for this mode.

The 4-to-1 mux steers Byte lane 0 or Byte lane 2 into Byte0 location of the read register inside the 
Intel XScale® core. The 2-to-1 mux steers Byte lane 1 or Byte lane 3 into Byte1 location of the read 
register inside the Intel XScale® core. The Intel XScale® core does not allow word access to an odd 
byte address. Select signals for the mux are generated based on endian setting and ByteEnable 
generated by the Intel XScale® core as defined in Figure 24. Table 48 summarizes byte enable 
generation for this mode.

Figure 24. Byte Steering for Read and Byte Enable Generation by the Intel XScale® Core
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32-bits (Long Word) Read

32-bits (long Word) reads are independent of endianness setting and byte lane 0 from the Intel 
XScale® core’s data bus gets into Byte 0 location of the read register inside Intel XScale® core, 
byte lane 1 from Intel XScale® core’s data bus gets into Byte1 location of the read register inside 
Intel XScale® core and so on. It is up to the software to deal with byte location properly based on 
the endian setting.

3.10.1.1.2 The Intel XScale® Core Writing to the IXP2800

Similar to reads, writes by Intel XScale® core can also be divided in following three categories:

• Byte Write

• Word Write (16-bits)

• Long Word write (32-bits)

Byte Write

When Intel XScale® core writes single byte to external memory, it puts the byte in the byte lane 
where it intends to write it along with the byte enable for that byte turned ON based on endian 
setting of the system. Intel XScale® core register bits [7:0] always contain the byte to be written 
regardless of the B-bit setting. For example if the Intel XScale® core wants to write to byte 0 in 
little endian system, it puts the byte in byte lane0 and turns X_BE[0] ON. If the system is big 
endian, in that case the Intel XScale® core puts byte0 in byte lane 3 and turns X_BE[3] ON. Other 
possible combinations of byte lanes and byte enables are shown in the Table 49. Other byte lanes 
besides the one currently driven by the Intel XScale® core contain undefined data.

Table 48. Byte Enable Generation by the Intel XScale® Core for 16-bit Data Transfers in Little
and Big Endian Systems

Word to 
be read

Byte Enables When System is Little Endian Byte Enables When System is Big Endian

X_BE[0] X_BE[1] X_BE[2] X_BE[3] X_BE[0] X_BE[1] X_BE[2] X_BE[3]

Byte0 & 
Byte1 1 1 0 0 0 0 1 1

Byte2 & 
Byte3 0 0 1 1 1 1 0 0

Table 49. Byte Enable Generation by the Intel XScale® Core for Byte Writes in Little and 
Big Endian Systems

Byte#
to be 

written

Byte Enables when system is Little Endian Byte Enables when system is Big Endian

X_BE[0] X_BE[1] X_BE[2] X_BE[3] X_BE[0] X_BE[1] X_BE[2] X_BE[3]

Byte0 1 0 0 0 0 0 0 1

Byte1 0 1 0 0 0 0 1 0

Byte2 0 0 1 0 0 1 0 0

Byte3 0 0 0 1 1 0 0 0
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Word Write (16-bits Write)

When the Intel XScale® core writes a 16-bit word to external memory, it puts the bytes in the byte 
lanes where it intends to write them along with the byte enables for those bytes turned ON based on 
the endian setting of the system. The Intel XScale® core does not allow a word write on an odd 
byte address. The Intel XScale® core register bits [15:0] always contain the word to be written 
regardless of the B-bit setting. For example if the Intel XScale® core wants to write one word to a 
little endian system at address 0x0002, it will copy byte0 to byte lane 2 and byte1 to byte lane 3 
along with X_BE[2] and X_BE[3] turned ON. If the Intel XScale® core wants to write one word to 
a big endian system at address 0x0002, it will copy byte0 to byte lane 0 and byte1 to byte lane 1 
along with X_BE[0] and X_BE[1] turned ON. Other possible combinations of byte lanes and byte 
enables are shown in Table 50. Other byte lanes besides the ones currently driven by the Intel 
XScale® core contain undefined data.

Long Word (32-bits) Write

The long word to be written is put on the Intel XScale® core’s data bus with byte0 on X[7:0], byte1 
on X[15:8], byte2 on X[23:16] and byte4 on X[31:24] (see Figure 25). All the byte enables are 
turned ON. A 32-bit long word write (0x12345678) by the Intel XScale® core to address 0x0000 
irrespective of the endianness of the system causes byte0 (0x78) to be written to address 0x0000, 
byte1 (0x56) to address 0x0001, byte2 (0x34) to address 0x0002 and byte3 (0x12) to address 
0x0003.

Table 50. Byte Enable Generation by the Intel XScale® Core for Word Writes in Little and
Big-Endian Systems

Word
to be 

written

Byte Enables When System is Little Endian Byte Enables When System is Big Endian

X_BE[0] X_BE[1] X_BE[2] X_BE[3] X_BE[0] X_BE[1] X_BE[2] X_BE[3]

Byte0 & 
Byte1 1 1 0 0 0 0 1 1

Byte2 & 
Byte3 0 0 1 1 1 1 0 0

Figure 25. Intel XScale® Core Initiated Write to the IXP2800 Network Processor
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Figure 26. Intel XScale® Core Initiated Write to the IXP2800 Network Processor (Continued)
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3.11 Intel XScale® Gasket Unit

3.11.1 Overview

The Intel XScale® core uses the Core Memory Bus (CMB) to communicate with the functional 
blocks. The rest of the IXP2800 Network Processor functional blocks use the Command Push Pull 
(CPP) as the global bus to pass data. Therefore the gasket is needed to translate Core Memory Bus 
commands to Command Push Pull commands. 

This gasket has a set of local CSRs, including interrupt registers. These registers can be accessed 
by the Intel XScale® core via the gasket internal bus.The CSR Access Proxy (CAP) is allowed to 
only do a set on these interrupt registers.

The Intel XScale® core coprocessor bus is not used in the IXP2800 Network Processors, all 
accesses are only through the Command Memory Bus. 

Figure 27 shows the block diagram of the global bus connections to the gasket.

The gasket unit has the following features:

• Interrupts are sent to the Intel XScale® core via the gasket, with the interrupt controller 
registers used for masking the interrupts.

• The gasket converts CMB reads and writes to CPP format.

• All the atomic operations are applied on SRAM and SCRATCH only, not DRAM.

• There is a stepping-stone sitting between the Intel XScale® core and the gasket. The Intel 
XScale® core runs at 600MHz to 700MHz. The gasket currently supports a 1:1 (IXP2800 
Network Processor and 2:1 (IXP2400 Network Processor) clock ratio. For a 2:1 ratio, the 
Command Push Pull bus will be running at half of the frequency of the Intel XScale® core.

• In IXP2800 memory controllers, read after write ordering is enforced. There is no write after 
read enforcement for the Intel XScale® core. The gasket will perform enforcement by 
employing Content Addressable Memory (CAM) to detect a write to an address with read 
pending. This only applies for writes to SRAM.

• The gasket CPP interface contains one command bus, one D_Push bus, one D_Pull bus, one 
S_Push bus, one S_Pull bus, each with a 32-bit data width. 

A maximum four outstanding reads and four outstanding writes from the Intel XScale® core are 
allowed.
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3.11.2 Intel XScale® Gasket Functional Description

3.11.2.1 Command Memory Bus to Command Push/Pull Conversion

The primary function of the Intel XScale® gasket unit is to translate commands initiated from the 
Intel XScale® core in the Intel XScale® command bus format, into the IXP2800 internal command 
format (Command Push/Pull format).

Table 51 shows how many CPP commands are generated by the gasket from each CMB command. 
Write data is guaranteed to be 32 bit (long word) aligned. Table 51 shows only the Store command. 
In the Load case, the gasket simply converts it to the CPP format. No command splitting is 
required. A Load can only be a byte (8 bits), a word (16 bits), long word (32 bits), or eight long 
words (8x32).

Figure 27. Global Buses Connection to the Intel XScale® Gasket 
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3.11.3 CAM Operation

In the SRAM controller, access ordering is guaranteed only for a read coming after a write. The 
gasket enforces order rules in the following two cases.

1. Write coming after a read.

2. Read-Modify-Write coming after read.

The address CAMing is on 8 word boundaries. The SRAM effective address is 28-bits. Deduct
5 bits (2 bits for the word address and 3 bits for 8 words), and the tag width for the CAM is 23-bits 
wide. The CAM only operates on SRAM accesses. 

3.11.4 Atomic Operations

The Intel XScale® core has Swap (SWP) and Swap Byte (SWPB) instructions that generate an 
atomic read-write pair to a single address. These instructions are supported for the SRAM and 
Scratch space, and also to any other address space if it is done by a Read command followed by 
Write command. 

cbiIO is asserted when a data cache request is initiated to a memory region with cacheable and 
bufferable bits in the translation table first-level descriptor set to zero. Also, if cbiIO is asserted 
during the CMB read portion of the SWP, then it also does a Read Command followed by Write 
Command, regardless of address. In those cases the SWP/SWPB is atomic with respect to 
processes running on the Intel XScale® core, but not with respect to the Microengines. 

Table 51. CMB Write Command to CPP Command Conversion 

Store Length CPP SRAM 
Cmd Count

CPP DRAM 
Cmd Count Remark

Byte, word, long 
word 1 1 SRAM uses 4-bit mask, DRAM uses an 8-bit mask.

2 long word 1 or 2 1 or 2

SRAM: If there is any mask bit detected as ‘0’,two 
commands will be generated.

DRAM: If it starts with odd word address, two commands 
will be generated.

3 long word 1 or 3 2
SRAM: If there is a mask bit of ‘0’ detected, 3 SRAM 
commands will be generated.

DRAM: always 2 DRAM commands.

4 long word 1 or 4 1 or 2

SRAM: If there is a mask bit of ‘0’ detected, four 
commands will be generated.

DRAM: If there is a mask bit of ‘0’ detected, two 
commands will be generated.

8 long word Not allowed in a write.
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The following summarizes the Atomic operation.

When the Intel XScale® core presents the read command portion of the SWP it will assert the 
cbiLock signal. The gasket will ack the read and save the BufID in the push_ff. It will not arbitrate 
for the command bus at that time; rather it will wait for the corresponding write of the SWP (which 
will also have cbiLock asserted). At that time the gasket will arbitrate for the command bus to send 
a command with the atomic operation in the command field [the command is based on the address 
space chosen for the SRAM/Scratch, which has multiple aliased address ranges]. 

The SRAM or Scratch controller will pull the data, do the atomic read-modify-write, and then push 
the read data back. The gasket will use the saved BufID when returning the data to CMB. 

Note: Unrelated reads, such as instruction and Page Table fetches, can come in the interval between the 
read-lock and write-unlock, and will be handled by the gasket. No other data reads or writes will 
come in that interval. Also, the Intel XScale® core will not wait for the SWP read data before 
presenting the write data.

The gasket uses address aliases to generate the following atomic operations.

• Bit Set

• Bit Clear

• Add

• Subtract

• Swap

For the alias address type of atomic operation, the Intel XScale® core will issue a SWP command 
with an alias address if it needs data return. The Intel XScale® core will use the write command 
with an alias address if it doesn’t need data return.

Xscale_IF will not check the second address, as long as it detects one write after one read, both 
with cbiLock enabled. It will take the write address and put it in the command.

The summary of the rules for Atomic command in I/O space are.

• SWP to SRAM/Scratch and Not cbiIO, Xscale_IF generates an Atomic operation command.

• SWP to all other Addresses that are not SRAM/Scratch, will be treated as separate read and 
write commands. No Atomic command is generated.

• SWP to SRAM/Scratch and cbiIO, will be treated as separate read and write commands. No 
Atomic command is generated.

Address Space cbiIO Operation

SRAM/Scratch 0 RMW Command

Not SRAM/Scratch x Read Command followed by 
Write Command

Any 1 Read Command followed by 
Write Command
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3.11.4.1 Intel XScale® Core Access to SRAM Q-Array

The Intel XScale® core can access the SRAM controllers queue function to do buffer allocation 
and freeing. Allocation does a SRAM dequeue (deq) operation, and freeing does a SRAM enqueue 
(enq) operation. Alias addresses are used as shown in Table 52 to access the freelist. Each SRAM 
channel supports up to 64 lists, so there are 64 addresses per channel.

Address 7:2 selects which Queue_Array entry within the SRAM channel is used.

Doing a load to an address in the table will do a deq, the SRAM controller returns the dequeued 
information (i.e. the buffer pointer) as the load data.

Doing a store to an address in the table will do an enq. The data to be enqueued is taken from the 
Intel XScale® core store data.

The gasket will generate command fields as follows, based on address and cbiLd:

Target_ID = SRAM (00 0010)
Command = deq (1011) if cbiLd, enq (1100) if ~cbiLd
Token[1:0] = 0x0
Byte_Mask = 0xFF
Length = 0x1
Address = {XScale_Address[23:22], XScale_Address[7:2], XScale_Write_Data[25:2]}

(Note: On command bus -- address[31:30] selects the SRAM channel, address[29:24] is Q_Array 
number; and address[23:0] is the SRAM longword address. For Dequeue, SRAM controller 
ignores address[23:0].) 

3.11.5 I/O Transaction

Intel XScale® core can request an I/O transaction by asserting xsoCBI_IO concurrently with 
xsoCBI_Req. The value of xsoCBI_IO is undefined when xsoCBI_Req is not asserted. When the 
gasket sees an I/O request with xsoCBI_IO asserted, it will raise xsiCBR_Ack but will not 
acknowledge future requests until the IO transaction is complete. The gasket will check if all the 
command FIFOs and write data FIFOs are empty or not. It will also check if the command counters 
(SRAM and DRAM) are equal to zero. All these checks are to guarantee that:

• Writes are issued to the target, and targets have pulled the data.

• Pending reads have their data all back to the gasket.

When the gasket sees that all the conditions are satisfied, it will assert xsiCBR_SynchDone to the 
Intel XScale® core. XsiCBR_SynchDone is one cycle long and does not need to coincide with 
xsiCBR_DataValid.

Table 52. IXP2800 Network Processor SRAM Q-Array Access Alias Addresses

Channel Address Range

0 0xCC00 0100 – 0xCC00 01FC

1 0xCC40 0100 – 0xCC40 01FC

2 0xCC80 0100 – 0xCC80 01FC

3 0xCCC0 0100 – 0xCCC0 01FC
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3.11.6 Hash Access

Hash accesses are accomplished by the gasket Local_CSR accesses from the Intel XScale® core. 
There are two sets of registers in the gasket that are involved in Hash accesses.

• Four 32 bit XG_GCSR_Hash[3:0] registers for holding the data to be hashed and index 
returned as well. 

• A XG_GCSR_CTR0(valid) register to hold the status of the Hash Access.

The procedure for the Intel XScale® core to setup a Hash access is as follows.

1. The Intel XScale® core writes data to XG_GCSR_Hash by Local_CSR access using address 
[X:yy:zz]. X selects Hash register set. yy selects hash_48, hash_64 or hash_128 mode. zz selects 
one of four Hash_Data registers.

2. Data write order is 3-2-1-0(for hash_128), 1-0(for hash_48 or hash_64). When the data write to 
Hash_Data[0] is performed, it triggers the Hash request to go out on the CPP bus. At the same time, 
XG_GCSR_Hash(valid) will be cleared by hardware. 

3. The Intel XScale® core starts to poll Hash_Result_Valid periodically by Local_CSR read.

4. After some period of time, the Hash_Result is returned to XG_GCSR_Hash, and 
XG_GCSR_CTR0(valid) is set to indicate that Hash_Result is ready to be retrieved.

5. The Intel XScale® core issues a Local_CSR read to read back the Hash_Result.

Note, each Hash command requests only one index returned.

The Hash CSR is in the gasket local CSR space.

3.11.7 Gasket Local CSR

There are two sets of Control and Status registers residing in the gasket Local CSR space. ICSR 
refers to the Interrupt CSR. The ICSR address range is 0xd600_0000 - 0xd6ff_ffff. The Gasket 
CSR (GCSR) refers to the Hash CSRs and debug CSR. It has a range of 0xd700_0000 - 
0xd7ff_ffff. GCSR is shown in Table 53.

Note: The Gasket registers are defined in the IXP2400/IXP2800 Network Processor Programmers 
Reference Manual.
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Table 53. GCSR Address Map( 0xd700 0000 )

3.11.8 Interrupt

The Intel XScale® core CSR controller contains local CSR(s) and interrupts inputs from multiple 
sources. The diagram in Figure 28 shows the flow through the controller.

Within the Interrupt/CSR Register block there are raw status registers, enable registers, and local 
CSR(s). The raw status registers are the un-masked interrupt status. These interrupt status are 
masked or steered to theIntel XScale® core’s IRQ or FIQ inputs by multiple levels of enable 
registers. 

Refer to Figure 29.

• {IRQ,FIQ}Status = (RawStatus & {IRQ,FIQ}Enable)

• {IRQ,FIQ}ErrorStatus = (ErrorRawStatus & {IRQ,FIQ}ErrorEnable)

• {IRQ,FIQ}ThreadStatus_$_# = ({IRQ,FIQ}ThreadRawStatus_$_# & 
{IRQ,FIQ}ThreadEnable_$_#)

Bits Name R/W Description Address Offset 

[31:0] XG_GCSR_HASH0 R/W

Hash word 0

Write from Intel XScale® 
core.

Rd/Wr from CPP.

0x00 : for 48bit Hash

0x10 : for 64bit Hash

0x20 : for 128bit Hash

[31:0] XG_GCSR_HASH1 R/W

Hash word 1

Write from Intel XScale® 
core.

Rd/Wr from CPP.

0x04 : for 48bit Hash

0x14 : for 64bit Hash

0x24 : for 128bit Hash

[31:0] XG_GCSR_HASH2 R/W

Hash word 2

Write from Intel XScale® 
core.

Rd/Wr from CPP.

0x28 : for 128bit Hash

[31:0] XG_GCSR_HASH3 R/W

Hash word 3

Write from Intel XScale® 
core.

Rd/Wr from CPP.

0x2c : for 128bit Hash

[31:0] XG_GCSR_CTR0 R

[31:1] reserved. 

[0] hash valid flag.

Read from Intel XScale® 
core.

Set by LCSR control.

0x30

[31:0] XG_GCSR_CTR1 R/W

[31:1] reserved. 

[0] Break_Function

When set to 1, the debug 
break signal is used to 
stop the clocks. 

When set to 0, the debug 
break signal is used to 
cause an Intel XScale® 
core debug breakpoint

0x3c
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Each interrupt input is visible in the RawStatusRegister and is masked or steered by two level of 
interrupt enable registers. The error and thread status are masked by one level of enable registers. 
Their combination along with other interrupt sources contributes to the RawStatusReg. The 
RawStatus is masked via IRQEnable/FIQEnable to trigger the IRQ and FIQ interrupt to the Intel 
XScale® core.

The enable register’s bits are set and cleared through EnableSet and EnabeClear registers. The 
Status, RawStatus, and Enable Registers are read-only, and EnableSet and EnableClear are write-
only. Also, Enable and EnableSet share the same address for reads and writes respectively.

Note that software needs to take into account the delay between the clearing of an interrupt 
condition and having its status updated in the RawStatus registers. Also in the case of simultaneous 
writes to the same registers, the value of the last write is recorded.

Figure 28. Flow Through the Intel XScale® Core Interrupt Controller
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Figure 29. Interrupt Mask Block Diagram
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3.12 Intel XScale® Core Peripheral Interface

This section describes the Intel XScale® core Peripheral Interface unit (XPI). The XPI is the block 
that connects to all the slow and serial interfaces that communicate with the Intel XScale® core 
through the APB bus. These can also be accessed by the Microengines and PCI unit. 

This section does not describe the Intel XScale® core interface protocol, only how to interface with 
the peripheral devices connected to the core. The I/O units described are:

• UART

• Watchdog timers

• GPIO

• SlowPort 

All the peripheral units are memory mapped from the Intel XScale® core point of view.

3.12.1 XPI Overview

Figure 30 shows the XPI location in the IXP2800 Network Processor. The XPI receives read and 
write commands from the Command Push Pull bus to addresses the memory has mapped to I/O 
devices. 

The SHaC (Scratchpad, Hash Unit, and CSRs) acts like a bridge to control the access from the Intel 
XScale® core or other host (like the PCI Unit). The extended APB bus is used to communicate 
between the XPI and the SHaC. The extended APB has only one signal, APB_RDY, added. This 
signal is used to tell the SHaC when the transaction should be terminated. 

The XPI is responsible for passing the data between the extended APB bus and the internal fubs, 
like the UART, GPIO, Timer, and SlowPort, which will in turn pass these data to an external 
peripheral device with a corresponding bus format.

The XPI is always a master on the SlowPort bus and all the SlowPort devices act like slaves. On the 
other side, the SHaC is always the master and the XPI is the slave with respect to the APB. 
Hardware Reference Manual 135



Intel® IXP2800 Network Processor
Intel XScale® Core
3.12.1.1 Data Transfers

The current rate for data transfers is four bytes, except for the SlowPort. The 8-bit and 16-bit 
accesses are only available in the SlowPort bus. The devices connected to the SlowPort dictate this 
data width. The user has to configure the data width register resident in the SlowPort in order to run 
a different type of data transaction. There is no burst to SlowPort.

3.12.1.2 Data Alignment

For all the CSR accesses, a 32-bit data bus is assumed. Therefore, the lower two bits of the address 
bus are ignored.

However, for the SlowPort accesses, 8-bit, 16-bit, or 32-bit data access is dictated by the external 
device connected to the SlowPort. The APB Bus should be able to match the data width according 
to which devices it is talking to. 

SeeTable 54 for additional details on data alignment.

Figure 30. XPI Interfaces (B0) for 2400/2800
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3.12.1.3 Address Spaces for XPI Internal Devices

Table 55 shows the address space assignment for XPI devices.

Table 54. Data Transaction Alignment

Interface Units APB Bus Read Write

GRegs 32 bits 32 bits 32 bits

UART 32 bits 32 bits 32 bits

GPIO 32 bits 32 bits 32 bits

Timer 32 bits 32 bits 32 bits

SlowPort

Microprocessor Access

8 bits 8 bits 8 bits

16 bits 16 bits 16 bits

32 bits 32 bits 32 bits

SlowPort

Flash Memory Access1

1. The flash memory interface only supports 8-bit wide flash devices. APB write transactions are assumed to be 8-bits wide,
and correspond to one write cycle at the flash interface. APB read transactions are assumed to be 32-bits wide, and corre-
spond to four flash read cycles for the 32-bit read mode set in the SP_FRM register. However, for the flash register read
mode (8-bit read mode), it only needs one flash read cycle of 8-bit data and passes it back to APB directly. By default, the
32-bit read mode is set. It is advisable to stay in this mode most of the time and not change them dynamically during ac-
cesses.

32 bits for 32-bit read mode, 8 
bits for register read mode;

8 bits for write;

Assemble 8 bits into 32-bit data for 
32-bit read mode; 8 bits for register 
read mode (8-bit read mode).

8 bits

CSR Access 32 bits 32 bits 32 bits

Table 55. Address spaces for XPI Internal Devices

Units Starting Address Ending Address

GPIO 0xC0010000 0xC0010040

TIMER 0xC0020000 0xC0020040

UART 0xC0030000 0xC003001C

PMU 0xC0050000 0xC0050E00

SlowPort CSR 0xC0080000 0xC0080028

SlowPort Device 0xC4000000 0xC7FFFFFF
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3.12.2 UART Overview

The UART performs serial-to-parallel conversion on data characters received from a peripheral 
device and parallel-to-serial conversion on data characters received from the network processor. 
The processor can read the complete status of UART at any time during the functional operation. 
Available status information includes the type and condition of the transfer operations being 
performed by the UART and any error conditions (parity, overrun, framing or break interrupt).

The serial ports can operate in either FIFO or non-FIFO mode. In FIFO mode, a 64-byte transmit 
FIFO holds data from the processor to be transmitted on the serial link and a 64-byte receive FIFO 
buffers data from the serial link until read by the processor.

The UART includes a programmable baud rate generator which is capable of dividing the clock 
input by divisors of 1 to 216 - 1 and produces a 16X clock to drive the internal transmitter logic. It 
also drives the receive logic. UART has a processor interrupt system. The UART can be operated 
in polled or in interrupt driven mode as selected by software.

The UART has the following features

• Functionally compatible with National Semiconductor’s PC16550D for basic receive and 
transmit.

• Adds or deletes standard asynchronous communications bits (start, stop, and parity) to or from 
the serial data

• Independently controlled transmit, receive, line status

• Programmable baud rate generator allows division of clock by 1 to (216 - 1) and generates an 
internal 16X clock

• 5, 6, 7 or 8-bit characters

• Even, odd, or no parity detection

• 1, 1-1/2, or 2 stop bit generation

• Baud rate generation

• False start bit detection

• 64-byte Transmit FIFO

• 64-byte Receive FIFO

• Complete status reporting capability

• Internal diagnostic capabilities include:

— Break

— Parity

— Overrun

— Framing error simulation

• Fully prioritized interrupt system controls
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3.12.3 UART Operation

The format of a UART data frame is shown in Figure 31.

Figure 31. Example UART Data Frame

Each data frame is between 7 bits and 12 bits long depending on the size of data programmed, if 
parity is enabled and if two stop bits is selected. The frame begins with a start bit that is represented 
by a high to low transition. Next, either 5 to 8 bits of data are transmitted, beginning with the least 
significant bit. An optional parity bit follows, which is set if even parity is enabled and an odd 
number of ones exist within the data byte, or if odd parity is enabled and the data byte contains an 
even number of ones. The data frame ends with one, one and a half or two stop bits as programmed 
by the user, which is represented by one or two successive bit periods of a logic one.

3.12.3.1 UART FIFO OPERATION

The UART has one transmit FIFO and one receive FIFO. The transmit FIFO is 64-bytes deep and 
8-bits wide. The receive FIFO is 64-bytes deep and 11-bits wide.

3.12.3.1.1 UART FIFO Interrupt Mode Operation - Receiver Interrupt

When the Receive FIFO and receiver interrupts are enabled (UART_FCR[0]=1 and 
UART_IER[0]=1), receiver interrupts occur as follows:

• The receive data available interrupt is invoked when the FIFO has reached its programmed 
trigger level. The interrupt is cleared when the FIFO drops below the programmed trigger 
level.

• The UART_IIR receive data available indication also occurs when the FIFO trigger level is 
reached, and like the interrupt, the bits are cleared when the FIFO drops below the trigger 
level.

• The receiver line status interrupt (UART_IIR = C6H), as before, has the highest priority. The 
receiver data available interrupt (UART_IIR=C4H) is lower. The line status interrupt occurs 
only when the character at the top of the FIFO has errors.

• The data ready bit (DR in UART_LSR register) is set to 1 as soon as a character is transferred 
from the shift register to the Receive FIFO. This bit is reset to 0 when the FIFO is empty.
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Character Time-out Interrupt

When the receiver FIFO and receiver time out interrupt are enabled, a character time-out interrupt 
occurs when all of the following conditions exist:

• At least one character is in the FIFO.

• The last received character was longer than four continuous character times ago (if two stop 
bits are programmed the second one is included in this time delay).

• The most recent processor read of the FIFO was longer than four continuous character times 
ago.

The maximum time between a received character and a time-out interrupt is 160 ms at 300 baud 
with a 12-bit receive character (i.e., 1 start, 8 data, 1 parity, and 2 stop bits).

When a time out interrupt occurs, it is cleared and the timer is reset when the processor reads one 
character from the receiver FIFO. If a time-out interrupt has not occurred, the time-out timer is 
reset after a new character is received or after the processor reads the receiver FIFO.

Transmit Interrupt

When the transmitter FIFO and transmitter interrupt are enabled (UART_FCR[0]=1, 
UART_IER[1]=1), transmit interrupts occur as follows:

• The Transmit Data Request interrupt occurs when the transmit FIFO is half empty or more 
than half empty. The interrupt is cleared as soon as the Transmit Holding Register is written 
(1 to 64 characters may be written to the transmit FIFO while servicing the interrupt) or the IIR 
is read.

3.12.3.1.2 FIFO Polled Mode Operation

With the FIFOs enabled (TRFIFOE bit of UART_FCR set to 1), setting UART_IER[4:0] to all 
zeros puts the serial port in the FIFO polled mode of operation. Since the receiver and the 
transmitter are controlled separately, either one or both can be in the polled mode of operation. In 
this mode, software checks receiver and transmitter status via the UART_LSR. As stated in the 
register description:

• UART_LSR[0] is set as long as there is one byte in the receiver FIFO.

• UART_LSR[1] through UART_LSR[4] specify which error(s) has occurred for the character 
at the top of the FIFO. Character error status is handled the same way as interrupt mode. The 
UART_IIR is not affected since UART_IER[2] = 0.

• UART_LSR[5] indicates when the transmitter FIFO needs data.

• UART_LSR[6] indicates that both the transmitter FIFO and shift register are empty.

• UART_LSR[7] indicates whether there are any errors in the receiver FIFO.
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3.12.4 Baud Rate Generator

The baud rate generator is a programmable block and generates a clock used in the transmit block. 
The output frequency of the baud rate generator is 16X the baud rate; baud rate is calculated as:

BaudRate = APB Clock / (16 X Divisor)

The Divisor ranges from 1 to 216 - 1. For example, for a APB clock of 1MHZ and baud rate of 
300bps the divisor is 209.

3.12.5 General Purpose I/O (GPIO)

The IXP2800 Network Processor has eight General Purpose Input/Output (GPIO) port pins for use 
in generating and capturing application-specific input and output signals. Each pin is 
programmable as an input or output or as an interrupt signal sourcing from an external device. The 
GPIO can be used with appropriate software in I2C application.

Each GPIO pin can be configured as a input or an output by programming the corresponding GPIO 
pin direction register. When programmed as an input, the current state of the GPIO can be read 
through the corresponding GPIO pin level register. The register can be read at any time and can be 
used to confirm the state of the pin when it is configured as an output. In addition, each GPIO pin 
can be programmed to detect a rising or a falling edge by setting the corresponding GPIO rising/
falling edge detect registers. 

When configured as an output, the pin can be controlled by writing to the GPIO set register to write 
a 1 and by writing to the GPIO clear register to write a 0. These registers can be written regardless 
of whether the pin is configured as an input or a output.

Each of the GPIO pins is designed the same and instantiated to the number of GPIO port pins. 
Figure 32 shows a GPIO functional diagram. The GPIO pin as seen can be programmed based on 
the configuration registers.

Figure 32. GPIO Functional Diagram
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3.12.6 Timers

The IXP2800 Network Processor supports four timers. These timers are clocked by the Advanced 
Peripheral/Bus Clock (APB-CLK), which runs at 50 MHz. to produce the PLPL_APB_CLK, 
PLPL_APB_CLK/16 or PLPL_APB_CLK/256 signals. The counters are loaded with an initial 
value, count down to zero, and raise an interrupt (if interrupts are not masked). 

In addition, timer 4 can be used as a watchdog timer when the watchdog enable bits are configured 
to one. When used as a watchdog timer, and when a count of zero is encountered, it will initiate the 
reset sequence.

Figure 33 shows the timer control unit interfacing with other functional blocks.

3.12.6.1 Timer Operation

Each timer consists of a 32-bit counter.

By default, the timer counter load register (TCLD) is set to 0xFFFFFFFF. The timer will count 
down from 0xFFFFFFFF to zero, then wrap back to 0xFFFFFFFF and continue to decrement if the 
TCLD is not programmed to any value. If a different value is programmed in the TCLD, then the 
counter will load this value every time it counts down to zero.

An interrupt is issued to the Intel XScale® core whenever the counter reaches zero. The interrupt 
signals can be enabled or disabled by the IRQEnable/FIQEnable registers. The interrupt remains 
asserted until it is cleared by writing a 1 to the corresponding timer clear register (TCLR).

Figure 33. Timer Control Unit Interfacing Diagram
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The counter can be advanced by the clock, clock divided by 16, clock divided by 256, and the 
GPIO signals. The clock rate is controlled by the TCTL value programmed into the TCTL 
registers. There are four gpio signals, GPIO[3:0] which correspond to Timer 1, 2, 3, and 4, 
respectively. These signal are synchronized within the timer-clock domain before driving the 
counter.

Figure 34 shows the Timer Internal logic.

Figure 34. Timer Internal Logic Diagram

A9703-01

WRITE_DATA

ADDRESS

APB_WR

ENABLE

CLK

GP_TM[3:0]

READ_DATA

Watchdog

Reset

Interrupts

TCTL

Divided
by 16

Divided
by 16

Timer
Control
Logic

Decoder
& Control

Logic

Watchdog
Logic

Counter Logic

Timer Registers
Block

TCLD

TCLR

APB_SEL

TWDE

TCSR
Hardware Reference Manual 143



Intel® IXP2800 Network Processor
Intel XScale® Core
3.12.7 SlowPort Unit

The IXP2800 Network Processor SlowPort Unit supports basic PROM access and 8, 16, and 32-bit 
microprocessor device access. It allows a master, (Intel XScale® core or Microengine), to do a 
read/ write data transfer to these slave devices.

The address bus and data bus are multiplexed to reduce the pin count. In addition, the address bus 
is also compressed from A[25:0] down to A[7:0] and shifted out with three clock cycles. Therefore, 
an external set of buffers is needed for address storage and latch.

The access can be asynchronous. Insertion of delay cycles is possible for both setup and hold data. 
A programmable timing control mechanism is provided for this purpose.

There are two types of interfaces supported in the SlowPort Unit:

• Flash memory interface

• µP interface. 

The Flash memory interface is used for the PROM device. The µP interface can be used for 
SONET/SDH Framer µP access. 

There are two ports in the SlowPort unit. The first is dedicated to the flash memory device while 
the second to the µP device.

3.12.7.1 PROM Device Support

For all the Flash Memory access, only 8-bit devices are supported. APB write transactions are 
assumed to be 8-bits wide, and correspond to one write cycle at the flash interface. The extended 
APB read transactions are assumed to be 32-bits wide, and correspond to four read cycles at the 
flash memory interface for all the flash memory data read. However, for the flash register read 
inside the flash memory, like the flash status register, the returned data are one byte and placed in 
the lower order byte location. In this case, only one external transaction cycle is involved.

To accomplish this, a register (SP_FRM) is installed to allow to configure between 8-bit read mode 
and 32-bit read mode. By default, it goes to 32-bit read mode. For the 8-bit read mode, one read 
cycle is involved. No packing process is needed. The data will be directly placed onto the lower 
order byte, [7:0] and passed to APB bus. For the 32-bit read mode, it needs four read cycles. All 4 
bytes are packed into a 32-bit data and passed to the APB bus. 16-bit mode is not supported for 
read.

Write always accesses the flash with one 8-bit cycle. Therefore, no unpacking process is needed.

The PROM device supported are listed in Figure 56:

Table 56. 8-bit Flash Memory Device Density

Vendor Part Number Size

Intel 28F128J3A 16MB

Intel 28F640J3A 8MB

Intel 28F320J3A 4MB
144 Hardware Reference Manual



Intel® IXP2800 Network Processor
Intel XScale® Core
3.12.7.2 µP interface support for the Framer

The SlowPort Unit also supports a microprocessor interface with Framer components. Some 
supported devices are listed in Table 57:

Table 57. SONET/SDH Devices

Vendor Part Number µP Interface SP_PCR register 
Setting

DW Setting in 
SP_ADC register

PMC-Sierra PM3386 16 bits 0x3 0x1

PMC-Sierra PM5345 8 bits 0x2 0x0

PMC-Sierra PM5346 8 bits 0x2 0x0

PMC-Sierra PM5347 8 bits 0x2 0x0

PMC-Sierra PM5348 8 bits 0x2 0x0

PMC-Sierra PM5349 8 bits 0x2 0x0

PMC-Sierra PM5350 8 bits 0x2 0x0

PMC-Sierra PM5351 8 bits 0x2 0x0

PMC-Sierra PM5352 8 bits 0x2 0x0

PMC-Sierra PM5355 8 bits 0x2 0x0

PMC-Sierra PM5356 8 bits 0x2 0x0

PMC-Sierra PM5357 8 bits 0x2 0x0

PMC-Sierra PM5358 16 bits 0x2 0x1

PMC-Sierra PM5381 16 bits 0x2 0x1

PMC-Sierra PM5382 8 bits 0x2 0x0

PMC-Sierra PM5386 16 bits 0x2 0x1

AMCC S4801 (AMAZON) 8 bits 0x0 0x0

AMCC S4803 (YUKON) 8 bits 0x0 0x0

AMCC S4804 (RHINE) 8/16 bits 0x0/0x3 0x0/0x1

Intel IXF6012 (Volga) 16 bits 0x3/0x41

1. Usually there are two different protocols, Intel or Motorola, of µP interface in the Intel framer; the setting in the PCR should
match with protocols activated in the framer.

0x1

Intel IXF6048 (Amazon-A) 16 bits 0x3/0x4a 0x1

Intel Centaur 0x3/0x4a

Intel IXF6501 0x3/0x4a

Intel Ben Nevis 32 bits 0x3/0x4a 0x2

Lucent TDAT042G5 16 bits 0x1/ 0x1

Lucent TDAT04622 16 bits 0x1 0x1

Lucent TDAT021G2 16 bits 0x1 0x1
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3.12.7.3 SlowPort Unit Interfaces

Figure 35 shows the SlowPort Unit interface diagram.

3.12.7.4 Address Space

The total address space is defined as 64 MB, which is further divided into two segments of 32 MB 
each. Two devices can be connect to this bus. If these peripheral devices have a density of 256 Mbit 
(32 MB) each, all the address space is going to be filled like a contiguous address space. However, 
if a small capacity device is used (like a 4 MB, 8 MB, 16 MB), there will be a memory hole left in 
between these two devices. Figure 36 is a 4 MB memory example. Trying to read the space in 
between, you will get the repeating value for each 4 MB location

Figure 35. SlowPort Unit Interface Diagram
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3.12.7.5 SlowPort Interfacing Topology

Figure 37 demonstrates one of the topologies used to connect to an 8-bit device. From the diagram, 
we can observe that address is shifted out 8 bits at a time and buffered into three 74F377 or 
equivalent tri-state buffer devices in three consecutive clock cycles. These buffers also output 
separately to form a 25-bit wide address bus to address the 8-bit devices. The data are expected to 
be driven out after the address has been placed into the buffers.

There are two devices shown in Figure 37. The top one is the fix-timed device, while the lower 
one, self-timing device. For the self-timing device, the access latency depends on the SP_ACK_L 
responded back from this device.

Three extra signals, SP_CP, SP_OE_L and SP_DIR, are added to pack and unpack the data when a 
16-bit or 32-bit device is hooked up to SlowPort. They are used for special application only as 
described below.

Figure 37. SlowPort Example Application Topology
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3.12.7.6 SlowPort 8-bit Device Bus Protocols

The write/read transfer protocols are discussed in the following sections. The burst transfers are 
going to be broken down into single mode transfer. For each single write/read transaction, it can be 
either fixed-timed transaction or self-timing transaction. The fixed-timed transaction has the 
response fixed in a certain period, which can be controlled by the timing control registers. 

For the self-timing transaction, the response timing is dictated by the peripheral device. Hence, 
wait states can be inserted during the transaction. All the back-to-back transactions are intervened 
with one clock cycle. The SlowPort clock, SP_CLK, shown in the following waveform diagrams, 
is generated by dividing the PLPL_APB_CLK. The divisor used is specified in the clock control 
register, SP_CCR.

3.12.7.6.1 Mode 0 Single Write Transfer for Fixed-Timed Device

Figure 38, shows the single write transfer for a fixed-timed device with the CSR programmed to a 
value of setup=4, pulse width=0, and hold=1, followed by another read transfer.

The transaction is initiated with SP_ALE_L asserted. It latches the address from the SP_AD[7:0] 
bus into the external buffer, using three clock cycles. After that, it should deassert the SP_ALE_L 
to disable latching the address into the buffers.

The SP_A[1:0] signals span the whole transaction cycle.

For the write, it drives the data onto the SP_AD[7:0]. Meanwhile, it asserts the SP_CS_L[1:0] 
signals. Depending on the timing control setup parameter, for this case, the SP_WR_L is not 
asserted until four clock cycles have elapsed. The SP_CS_L[1:0] signals are deasserted two clocks 
after the SP_WR_L is deasserted.

Figure 38. Mode 0 Single Write Transfer for a Fixed-Timed Device
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3.12.7.6.2 Mode 0 Single Write Transfer for a Self-timing Device

Figure 39 depicts the single write transfer for a self-timing device with the CSR programmed to 
setup=4, pulse width=0, and hold=4. Similarly, a read transaction is attached behind.

Similar to the single write for fixed-timed device, the ALE_L, CS_L[1:0], AD[7:0], and A[1:0] 
follow the same pattern, and the timing is controlled by the timing control register. Except for the 
WR_L which is terminated depending on the SP_ACK_L returned from the self-timing device.

The time-out counter will be set to 255. If no SP_ACK_L responds back when the time-out counter 
reaches zero, the transaction is terminated with a time-out. An interrupt signal is issued to the bus 
master simultaneously with the time-out register update.

Figure 39. Mode 0 Single Write Transfer for a Self-timing Device
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3.12.7.6.3 Mode 0 Single Read Transfer for Fixed-timed Device

Figure 40 demonstrates the single read transfer issued to a fixed-timed PROM device followed by 
another write transaction. The CSR is assumed to be configured to the value setup=2, pulse 
width=10, and hold=1.

The address is loaded onto the external buffer in three clock cycles with the ALE_L asserted. Then, 
a clock cycle is inserted to tri-state all the AD[7:0] signals. The CS_L[1:0] signals come asserted 
on the fourth clock cycle. Now, the values stored in the timing control registers take effect. The 
RD_L becomes asserted after two clock cycles. It keeps asserted for ten clock cycles. The 
CS_L[1:0] should be de-asserted one clock cycle after RD_L is de-asserted. The data will be valid 
at clock cycle 16 as shown in the diagram. Since the hold delay has 2 cycles, transaction is 
terminated at clock cycle 16.

Figure 40. Mode 0 Single Read Transfer for a Fixed-timed Device
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3.12.7.6.4 Single Read Transfer for a Self-timing Device

Figure 41 demonstrates the single read transfer issued to a self-timing PROM device followed by 
another write transaction. The CSR assumed to be programmed to the value of setup=4, pulse 
width=0, and hold=2.

The only difference for self-timed mode is in the SP_ACK_L signal. It has a dominant effect on the 
length of the transaction cycle or it overrides the value in the timing control register. A time-out 
counter is set to 256. The SP_ACK_L should arrive before the time-out counter counts down to 
zero. Similarly to the single write for self-timing device, an interrupt is launched for the time-out 
event and the time-out register is updated. In this case, the data will be sampled at clock cycle 12.

3.12.7.7 SONET/SDH Microprocessor Access Support

In order to support the SONET/SDH Microprocessor Interface, extra logic is added into this unit. 
Here we consider three SONET/SDH available components, including the Lucent TDAT042G5, 
PMC-Sierra PM5351, Intel, and AMCC SONET/SDH devices.

However, because these microprocessor interfaces are not standardized, we treat them separately 
and a configuration register is installed to activate the bus to work with different interface protocol 
at a time. Extra pins are also added to accomplish this task.

A microprocessor interface type register is used to provide these kinds of solutions. The user is 
allowed to configure the interface to the following four different modes. The pin functionality and 
the interface protocol will be changed accordingly. By default, it activates the mode 0 with 8-bit 
generic PROM device support as mentioned above.

Figure 41. Mode 0 Single Read Transfer for a Self-timing Device
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3.12.7.7.1 Mode 1: 16-bit Microprocessor Interface Support with
16-bit Address Lines

The address size control register is programmed to 16-bit address space for this case. This mode is 
designated for the devices with the similar protocol with the Lucent TDAT042G5 SONET/SDH 
device.

16-bit Microprocessor Interfacing Topology with 16-bit address lines

Figure 42 shows a solution for the 16-bit microprocessor interface. This solution bridges the 
Lucent TDAT042G5 SONET/SDH 16-bit interface. From Figure 42, we observe that the control 
pins SP_RD_L and SP_WR_L are converted to R/W and ADS. The CS and DT are still 
compactible with SP_CS_L[1] and SP_ACK_L protocol.

Extra pins are added to accomplish the task of multiplexing and demultiplexing the data bus. The 
total pin count is 18.

During the write cycle, 8-bit data are stacked into 16-bit data. They are first shifted into two tri-
state buffers, 74F646 or equivalent by SP_CP, using two consecutive clock cycle. Then the 
SP_CS_L is used for output the 16-bit data, which is shared with the CS.

During the read cycle, the 16-bit data are unpacked into 8-bit data by SP_CP. Two 74F646 or 
equivalent tri-state buffers are used. First, the 16-bit data are stored into these buffers. Then they 
are shifted out by SP_DIR, using two consecutive clock cycle.
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Figure 42. An Interface Topology with Lucent TDAT042G5 SONET/SDH
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16-bit Microprocessor Write Interface Protocol
Figure 43 uses the Lucent TDAT042G5 device. In this case, the user should program the P_PCR 
register to mode 1 and also program the write timing control register to setup=7, pulse width=5, 
and hold=1, which represent 7 clock cycles for CS, 5clock cycle for DT delay, and 1 clock cycle for 
ADS. They are intervened with two idle cycles.

From Figure 43, we observe that there are a total of twelve clock cycles used for write access, (i.e., 
240 ns), not including an intervened turnaround cycle after the write transaction. The throughput is 
8.3 MB per second

Figure 43. Mode 1 Single Write Transfer for Lucent TDAT042G5 Device (B0)
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16-bit Microprocessor Read Interface Protocol

Figure 44, likewise depicts a single read transaction launched from the IXP2800 Network 
Processor to the Lucent TDAT042G5 device followed by a single read transaction. However, in 
this case the read timing control register has to be programmed to setup=0, pulse width=7, and 
hold =0.

In Figure 44, we can count twelve clock cycles used for the read transaction in total, (i.e., 240 ns) 
for a clock cycle of 10 ns, excluding a turnaround cycle after that. It has the throughput of 7.7 MB 
per second.

Figure 44. Mode 1 Single Read Transfer for Lucent TDAT042G5 Device (B0)
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3.12.7.7.2 Mode 2: Interface With 8 Data Bits and 11 Address Bits

This application is designed for the PMC-Sierra PM5351 S/UNI-TETRA Device. For the PMC-
Sierra PM5351, the address space is programmed to 11-bits; otherwise, other address space should 
be specified.

8-bit PMC-Sierra PM5351 S/UNI-TETRA Interfacing Topology

Figure 45 displays one of the topologies used to connect to the SlowPort with the PMC-Sierra 
PM5351 S/UNI-TETRA device.

From Figure 45, because the protocols are very close to the generic SlowPort protocol, the pin 
counts and the functionality is quite compatible. We don’t need to use any more pins in this case. 
The only difference is in the INTB signal, which will be connected to the SP_ACK_L. Therefore 
the SP_ACK_L needs to be converted to an interrupt signal.

Also because the address contains only 11bits, two 74F377 or equivalent buffers are needed.

The AS field in the SP_ADC register should be programmed to a 16-bit addressing space with the 
upper 5 address bits unconnected.

The timing controls are similar to the generic case.

Figure 45. An Interface Topology with PMC-Sierra PM5351 S/UNI-TETRA
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PMC-Sierra PM5351 S/UNI-TETRA Write Interface Protocol

Figure 46 depicts a single write transaction launched from the IXP2800 to the PMC-Sierra 
PM5351 device followed by single read transaction.

The write transaction for the PMC-Sierra component has 6 clock cycle or 120ns access time for a 
50MHz SlowPort clock. In this case, no intervening cycle is added after the transaction. The I/O 
throughput is 8.3MB per second. The SP_PCR should be programmed to mode 2 and the fields of 
SU, PW, and HD in the SP_WTC2 should be set to 1, 2, 1 respectively. Here SU, PW, and HD rep-
resent the SP_CS_L[1] pulse width, SP_WR_L pulse width, and SP_CP pulse width respectively.

PMC-Sierra PM5351 S/UNI-TETRA Read Interface Protocol

Figure 46. Mode 2 Single Write Transfer for PMC-Sierra PM5351 Device (B0)
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Figure 47, depicts a single read transaction launched from the IXP2800 Network Processor to the 
PMC-Sierra PM5351 device followed by a single write transaction.

In this case, there are ten clock cycles of access time, or 200 ns in total, with three turnaround 
cycles attached at the back. The I/O throughput is 11.2 MB per second.

3.12.7.7.3 Mode 3: Support for the Intel and AMCC 2488 Mbps
SONET/SDH Microprocessor Interface

The user has to configure the address bus to 10 bits.

Mode 3 Interfacing Topology

Figure 48 demonstrates one of the topologies used to connect the SlowPort to the Intel and AMCC 
2488Mbps SONET/SDH device. Similar to the Lucent TDAT042G5 interface, the address and the 
data need demultiplexing. Totally, it requires four buffers to accomplish this task.

The SP_RD_L, SP_WR_L, and SP_CS_L[1] entirely match the RDB, WRB, and CSB pins in the 
Intel and AMCC component. However, the INT has to be connected to the SP_ACK_L as the 
PMC-Sierra Interface does. The ALE pin shares the SP_CP signal. If the timing doesn’t meet 
specification, ALE can be tied high as shown in Figure 49. It employs the same method as Lucent’s 
TDAT042G5’s topology to pack and unpack the data between the IXP2800 SlowPort interface and 
the Intel and AMCC microprocessor interface.

Figure 47. Mode 2 Single Read Transfer for PMC-Sierra PM5351 Device (B0)
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For a write, SP_CP loads the data onto the 74F646 or equivalent tri-state buffers, using two clock 
cycles. In order to reduce the pin count, the 16-bit data are latched with the same pin 
(SP_CS_L[1]), assuming that a turnaround cycle is inserted between the transaction cycles.

For a read, data are shifted out of two 74F646 or equivalent tri-state buffers by SP_CP, using two 
consecutive clock cycles.

Figure 48. An Interface Topology with Intel / AMCC SONET/SDH Device
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Figure 49. Mode 3 Second Interface Topology with Intel / AMCC SONET/SDH Device
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Mode 3 Write Interface Protocol

Figure 50 depicts a single write transaction launched from the IXP2800 Network Processor to the 
Intel and AMCC SONET/SDH device followed by two consecutive reads.

Compared with the Lucent TDAT042G5, this device has a shorter access time, about 8 clock cycles 
(i.e., 160 ns). In this case, an intervening cycle may not be needed for the write transactions. 
Therefore, the throughput is about 12.5 MB per second.

Figure 50. Mode 3 Single Write Transfer Followed by Read (B0)
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Mode 3 Read Interface Protocol

Figure 51 depicts a single read transaction launched from the IXP2800 to the Intel and AMCC 
SONET/SDH device followed by two consecutive writes.

Similarly, the access time is much better than the Lucent TDAT042G5. The access time is 8 clock 
cycles or 160ns for a 50 MHz SlowPort clock. Here, there are three intervening cycles between 
transactions. Therefore, the throughput is 11.1 MB per second.

Mode 4 Interfacing Topology

Figure 52 demonstrates one of the topologies used to connect SlowPort to the Intel and AMCC 
SONET/SDH device.

Similar to the Lucent TDAT042G5 interface, the address and the data need demultiplexing. It 
requires a total of six buffers.

The RD_L, WR_L, and CS_L[1] entirely match the E, RWB, and CSB pins respectively in the 
Intel framer configured to Motorola mode. However, the INT has to be connected to the 
SP_ACK_L as the PMC-Sierra Interface does. The ALE pin can share the SP_CP. However, if it 
doesn’t meet the timing, ALE pin can be tied high as shown in Figure 53.

Figure 51. Mode 3 Single Read Transfer Followed by Write (B0)
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It employs the same way to pack and unpack the data between the IXP2800 Network Processor 
SlowPort interface and the Intel and AMCC microprocessor interface.

For a write, W2B loads the data onto the 74F646 or equivalent tri-state buffers, using two clock 
cycles. In order to reduce the pin count, the 16-bit data are latched with the same pin (CS_L[1]), 
assuming that a turnaround cycle is inserted between the transaction cycles.

For a read, data are pipelined out of two 74F646 or equivalent tri-state buffers by B2S, using two 
consecutive clock cycles.

Figure 52. An Interface Topology with Intel / AMCC SONET/SDH Device in Motorola Mode
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Figure 53. Second Interface Topology with Intel / AMCC SONET/SDH Device
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Mode 4 Write Interface Protocol

Figure 54 depicts a single write transaction launched from the IXP2800 Network Processor to the 
Intel and AMCC SONET/SDH device, followed by two consecutive reads.

Compared with the Lucent TDAT042G5, this device has a shorter access time, about 8 clock cycles 
(i.e., 120 ns). In this case, an intervened cycle may not be needed, therefore, the throughput is about 
12.5 MB per second.

Figure 54. Mode 4 Single Write Transfer (B0)
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Mode 4 Read Interface Protocol

Figure 55, depicts a single read transaction launched from the IXP2800 Network Processor to the 
Intel and AMCC SONET/SDH device, followed by two consecutive writes.

Similarly, the access time is much better the Lucent TDAT042G5, the access time is about 8 clock 
cycles or 160ns. Here, we need an intervened cycle at the back. Therefore, the throughput is 
11.2 MB per second.

Figure 55. Mode 4 Single Read Transfer (B0)
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Microengines 4

This section defines the Network Processor Microengine (ME). This is the second version of the 
Microengine, and is often referred to as the MEv2 (Microengine Version 2). 

4.1 Overview

The following sections describe the programmer’s view of the Microengine. The block diagram in 
Figure 56 is used in the description. Note that this block diagram is simplified for clarity, not all 
interface signals are shown, and some blocks and connectivity have been omitted to make the 
diagram more readable. This block diagram does not show any pipeline stages, rather it shows the 
logical flow of information.

The Microengine provides support for software controlled multi-threaded operation. Given the 
disparity in processor cycle times versus external memory times, a single thread of execution will 
often block waiting for external memory operations to complete. Having multiple threads available 
allows for threads to interleave operation—there is often at least one thread ready to run while 
others are blocked.
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Figure 56. Microengine Block Diagram
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4.1.1 Control Store

The Control Store is a static RAM, which holds the program that the Microengine executes. It 
holds 8192 instructions, each of which is 40-bits wide. It is initialized by an external device which 
writes to Ustore_Addr and Ustore_Data Local CSRs.

The Control Store can optionally be protected by parity against soft errors. The parity protection is 
optional, so that it can be disabled for implementations that don’t need or want to pay the cost for 
it. Parity checking is enabled by CTX_Enable[Control Store Parity Enable]. A parity error on an 
instruction read will halt the Microengine and assert an output signal that can be used as an 
interrupt.

4.1.2 Contexts

There are eight hardware Contexts available in the Microengine. To allow for efficient context 
swapping, each Context has its own register set, Program Counter, and Context specific Local 
Registers. Having a separate copy per Context eliminates the need to move Context specific 
information to/from shared memory and Microengine registers for each Context swap. Fast context 
swapping allows a Context to do computation while other Contexts wait for IO (typically external 
memory accesses) to complete or for a signal from another Context or hardware unit. Note: a 
context swap is similar to a taken branch in timing.

Each of the eight Contexts is always in one of four states.

1. Inactive — Some applications may not require all eight contexts. A Context is in the Inactive 
state when its CTX_Enable CSR enable bit is a ‘0’.

2. Executing — A Context is in Executing state when its context number is in 
Active_CTX_Status CSR. The executing Context’s PC is used to fetch instructions from the 
Control Store. A Context will stay in this state until it executes an instruction that causes it to 
go to Sleep state (there is no hardware interrupt or preemption; Context swapping is 
completely under software control). At most one Context can be in Executing state at any time.

3. Ready — In this state, a Context is ready to execute, but is not because a different Context is 
executing. When the Executing Context goes to Sleep state, the Microengine’s context arbiter 
selects the next Context to go to the Executing state from among all the Contexts in the Ready 
state. The arbitration is round robin.

4. Sleep — Context is waiting for external event(s) specified in the CTX_#_Wakeup_Events 
CSR to occur (typically, but not limited to, an IO access). In this state the Context does not 
arbitrate to enter the Executing state.

The state diagram in Figure 57 illustrates the Context state transitions. Each of the eight Contexts 
will be in one of these states. At most one Context can be in Executing state at a time; any number 
of Contexts can be in any of the other states.
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The Microengine is in Idle state whenever no Context is running (all Contexts are in either Inactive 
or Sleep states). This state is entered:

1. After reset (because CTX_Enable Local CSR is clear, putting all Contexts into Inactive states).

2. When a context swap is executed, but no context is ready to wakeup.

3. When a ctx_arb[bpt] instruction is executed by the Microengine (this is a special case of #2 
above, since the ctx_arb[bpt] clears CTX_Enable, putting all Contexts into Inactive states).

The Microengine provides the following functionality during Idle state:

1. The Microengine continuously checks if a Context is in Ready state. If so, a new Context 
begins to execute. If no Context is Ready, the Microengine remains in the Idle state.

2. Only the ALU instructions are supported. They are used for debug via special hardware 
defined in number 3 below.

3. A write to the Ustore_Addr Local CSR with the Ustore_Addr[ECS] bit set, causing the 
Microengine to repeatedly execute the instruction pointed by the address specified in the 
Ustore_Addr CSR. Only the ALU instructions are supported in this mode. Also, the result of 
the execution is written to the ALU_Out Local CSR rather than a destination register.

4. A write to the Ustore_Addr Local CSR with the Ustore_Addr[ECS] bit set, followed by a 
write to the Ustore_Data Local CSR loads an instruction into the Control Store. After the 
Control Store is loaded, execution proceeds as described in number 3 above. Note that the 
write to Ustore_Data causes Ustore_Addr to increment, so it must be written back to the 
address of the desired instruction.

Figure 57. Context State Transition Diagram
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4.1.3 Datapath Registers

As shown in the block diagram in Figure 56, each Microengine contains four types of 32-bit 
datapath registers:

• 256 General Purpose Registers

• 512 Transfer Registers

• 128 Next Neighbor Registers

• 640 32-bit words of Local Memory

4.1.3.1 General-Purpose Registers (GPRs)

GPRs are used for general programming purposes. They are read and written exclusively under 
program control. GPRs, when used as a source in an instruction, supply operands to the execution 
datapath. When used as a destination in an instruction, they are written with the result of the 
execution datapath. The specific GPRs selected are encoded in the instruction.

The GPRs are physically and logically contained in two banks, GPR A, and GPR B, defined in 
Table 59.

Note: The Microengine registers are defined in the IXP2400/IXP2800 Network Processor Programmers 
Reference Manual.

4.1.3.2 Transfer Registers

Transfer registers (abbreviated Xfer registers) are used for transferring data to and from the 
Microengine and locations external to the Microengine, (for example DRAMs, SRAMs etc.). 
There are four types of transfer registers.

• S_Transfer_In

• S_Transfer_Out

• D_Transfer_In

• D_Transfer_Out

Transfer_In registers, when used as a source in an instruction, supply operands to the execution 
datapath. The specific register selected is either encoded in the instruction, or selected indirectly 
using T_Index. Transfer_In registers are written by external units based on the Push_ID input to 
the Microengine.

Transfer_Out registers, when used as a destination in an instruction, are written with the result from 
the execution datapath. The specific register selected is encoded in the instruction, or selected 
indirectly via T_Index. Transfer_Out registers supply data to external units based on the Pull_ID 
input to the Microengine.

As shown in Figure 56, the S_Transfer_In and D_Transfer_In registers connect to both the S_Push 
and D_Push busses via a multiplexor internal to the Microengine. Additionally, the 
S_Transfer_Out and D_Transfer_Out Transfer registers connect to both the S_Pull and D_Pull 
busses. This feature enables a programmer to use the either type of transfer register regardless of 
the source or destination of the transfer.
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Typically, the external units access the Transfer registers in response to commands sent by the 
MEs; the commands are sent in response to instructions executed by the Microengine (for example, 
the command instructs a SRAM controller to read from external SRAM, and place the data into a 
S_Transfer_In register). However, it is possible for an external unit to access a given Microengine’s 
Transfer registers either autonomously, or under control of a different Microengine, or the Intel 
Xscale® core, etc. The Microengine interface signals controlling writing/reading of the 
Transfer_In/Transfer_Out registers are independent of the operation of the rest of the Microengine.

4.1.3.3 Next Neighbor Registers

A new feature added for the Microengine Version 2 are 128 Next Neighbor registers that provide a 
dedicated datapath for transferring data from the previous/next neighbor Microengine.

Next Neighbor registers, when used as a source in an instruction, supply operands to the execution 
datapath. They are written in two different ways 1) by an external entity, typically, but not limited 
to, another, adjacent Microengine, or 2) by the same Microengine they are in, as controlled by 
CTX_Enable[NN_Mode].

The specific register is selected in one of two ways: (1) Context-relative, the register number is 
encoded in the instruction, or (2) as a Ring, selected via NN_Get and NN_Put CSR registers.

When CTX_Enable[NN_Mode] is ‘0’ -- When Next Neighbor is used as a destination in an 
instruction, the instruction result data is sent out of the Microengine, typically to another, adjacent 
Microengine.

When CTX_Enable[NN_Mode] is ‘1’ -- When Next Neighbor is used as a destination in an 
instruction, the instruction result data is written to the selected Next Neighbor register in the 
Microengine. Note that there is a 5 instruction latency until the newly written data may be read. 
The data is not sent out of the Microengine as it would be when CTX_Enable[NN_Mode] is ‘0’.

4.1.3.4 Local Memory

Local Memory is addressable storage located in the Microengine, organized as 640 32-bit words. 
Local Memory is read and written exclusively under program control. Local Memory supplies 
operands to the execution datapath as a source, and receives results as a destination. The specific 
Local Memory location selected is based on the value in one of the Local Memory_Addr registers, 
which are written by local_CSR_wr instructions. There are two LM_Addr registers per Context 
and a working copy of each. When a Context goes to Sleep state, the value of the working copies is 
put into the Context’s copy of LM_Addr. When the Context goes to Executing state, the value in its 
copy of LM_Addr is put into the working copies. The choice of LM_Addr_0 or LM_Addr_1 is 
selected in the instruction. 

Table 58. Next Neighbor Write as a Function of CTX_Enable[NN_Mode]

NN_Mode

Where Does Write Go?

External NN Register in 
This ME

0 Yes No

1 No Yes
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It is also possible to make use of both or one LM_Addrs as global by setting 
CTX_Enable[LM_Addr_0_Global] and/or CTX_Enable[LM_Addr_1_Global]. When used 
globally, all Contexts use the working copy of LM_Addr in place of their own Context specific 
one; the Context specific ones are unused.

4.1.4 Addressing Modes

GPRs can be accessed in two different addressing modes: Context-Relative and Absolute. Some 
instructions can specify either mode, other instructions can specify only Context-Relative mode.

• Transfer and Next Neighbor registers can be accessed in Context-Relative and Indexed modes.

• Local Memory is accessed in Indexed mode.

• The addressing mode in use is encoded directly into each instruction, for each source and 
destination specifier.

4.1.4.1 Context-Relative Addressing Mode

The GPRs are logically subdivided into equal regions such that each Context has exclusive access 
to one of the regions. The number of regions is configured in the CTX_Enable CSR, and can be 
either 4 or 8. Thus a Context-Relative register name is actually associated with multiple different 
physical registers. The actual register to be accessed is determined by the Context making the 
access request (the Context number is concatenated with the register number specified in the 
instruction—see Table 59). Context-Relative addressing is a powerful feature that enables eight 
different contexts to share the same microcode, yet maintain separate data.

Table 59 shows how the Context number is used in selecting the register number in relative mode. 
The register number in Table 59 is the Absolute GPR address, or Transfer or Next Neighbor Index 
number to use to access the specific Context-Relative register. For example, with 8 active Contexts, 
Context-Relative Register 0 for Context 2 is Absolute Register Number 32.

Table 59. Registers Used By Contexts in Context-Relative Addressing Mode

Number of 
Active 

Contexts

Active
Context 
Number

GPR
Absolute Register Numbers S Transfer or 

Neighbor
Index Number

D Transfer
Index Number

A Port B Port

8

0 0-15 0-15 0-15 0-15

1 16-31 16-31 16-31 16-31

2 32-47 32-47 32-47 32-47

3 48-63 48-63 48-63 48-63

4 64-79 64-79 64-79 64-79

5 80-95 80-95 80-95 80-95

6 96-111 96-111 96-111 96-111

7 112-127 112-127 112-127 112-127

4

0 0-31 0-31 0-31 0-31

2 32-63 32-63 32-63 32-63

4 64-95 64-95 64-95 64-95

6 96-127 96-127 96-127 96-127
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4.1.4.2 Absolute Addressing Mode

With Absolute addressing, any GPR can be read or written by any one of the eight Contexts in an 
Microengine. Absolute addressing enables register data to be shared among all of the Contexts, for 
example for global variables, or for parameter passing. All 256 GPRs can be read by Absolute 
address.

4.1.4.3 Indexed Addressing Mode

With Indexed addressing, any Transfer or Next Neighbor register can be read or written by any one 
of the eight Contexts in an Microengine. Indexed addressing enables register data to be shared 
among all of the Contexts. For indexed addressing the register number comes from the T_Index 
register for Transfer Registers or NN_Put and NN_Get registers (for Next Neighbor Registers).

4.2 Local CSRs

Local Control and Status registers (CSRs) are external to the Execution Datapath, and hold specific 
purpose information. They can be read and written by special instructions (local_csr_rd and 
local_csr_wr) and are typically accessed less frequently than datapath registers. Because Local 
CSRs are not built in the datapath, there is a write to use delay of either three or four cycles, and a 
read to consume penalty of one cycle.

4.3 Execution Datapath

The Execution Datapath can take one or two operands, perform an operation, and optionally write 
back a result. The sources and destinations can be GPRs, Transfer registers, Next Neighbor 
registers, and Local Memory. The operations are shifts, add/subtract, logicals, multiply, byte align, 
and find first bit set.

4.3.1 Byte Align

The datapath provides a mechanism to move data from source register(s) to any destination 
register(s) with byte aligning. Byte aligning takes four consecutive bytes from two concatenated 
values (8 bytes), starting at any of four byte boundaries (0, 1, 2, 3), and based on the endian-type 
(which is defined in the instruction opcode), as shown in Table 60. The four bytes are taken from 
two concatenated values. Four bytes are always supplied from a temporary register that always 
holds the A or B operand from the previous cycle, and the other four bytes from the B or A operand 
of the Byte Align instruction. The operation is described below using the block diagram Figure 58. 
The alignment is controlled by the 2 lsbs of the Byte_Index Local CSR.
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Example 23 shows an align sequence of instructions and the value of the various operands. 
Table 61 shows the data in the registers for this example. The value in Byte_Index[1:0] CSR 
(which controls the shift amount) for this example is 2.

Table 60. Align Value and Shift Amount

Align Value
(in Byte_Index[1:0])

Right Shift Amount (# of Bits)
(Decimal)

Little Endian Big Endian

0 0 32

1 8 24

2 16 16

3 24 8

Figure 58. Byte Align Block Diagram
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Table 61. Register Contents for Example 23

Register Byte 3
[31:24]

Byte 2 
[23:16]

Byte 1
[15:8]

Byte 0
[7:0]

0 0 1 2 3

1 4 5 6 7

2 8 9 A B

3 C D E F
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Example 24 shows another sequence of instructions and the value of the various operands. 
Table 62, shows the data in the registers for this example.

The value in Byte_Index[1:0] CSR (which controls the shift amount) for this example is 2.

As the examples show, byte aligning “n” words takes “n+1” cycles due to the first instruction 
needed to start the operation.

Another mode of operation is to use the T_Index register with post-increment, to select the source 
registers. T_Index operation is described later in this chapter.

Example 23. Big Endian Align

Instruction Prev B A Operand B Operand Result

Byte_align_be[--, r0] -- -- 0123 --

Byte_align_be[dest1, r1] 0123 0123 4567 2345

Byte_align_be[dest2, r2] 4567 4567 89AB 6789

Byte_align_be[dest3, r3] 89AB 89AB CDEF ABCD

NOTE: A Operand comes from Prev_B register during byte_align_be instructions.

Table 62. Register Contents for Example 24

Register Byte 3
[31:24]

Byte 2 
[23:16]

Byte 1
[15:8]

Byte 0
[7:0]

0 3 2 1 0

1 7 6 5 4

2 B A 9 8

3 F E D C

Example 24. Little Endian Align

Instruction A Operand B Operand Prev A Result

Byte_align_le[--, r0] 3210 -- -- --

Byte_align_le[dest1, r1] 7654 3210 3210 5432

Byte_align_le[dest2, r2] BA98 7654 7654 9876

Byte_align_le[dest3, r3] FEDC BA98 BA98 DCBA

NOTE: B Operand comes from Prev_A register during byte_align_le instructions.
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4.3.2 CAM

The block diagram in Figure 59 is used to explain the CAM operation.

The CAM has 16 entries. Each entry stores a 32-bit value, which can be compared against a source 
operand by instruction:

CAM_Lookup[dest_reg, source_reg]

All entries are compared in parallel, and the result of the lookup is a 9-bit value which is written 
into the specified destination register in bits 11:3, with all other bits of the register zero (the choice 
of bits 11:3 is explained below). The result can also optionally be written into either of the 
LM_Addr registers (see below in this section for details).

The 9-bit result consists of four State bits (dest_reg[11:8]), concatenated with a 1-bit Hit/Miss 
indication (dest_reg[7]), concatenated with 4-bit entry number (dest_reg[6:3]). All other bits of 
dest_reg are written with 0. Possible results of the lookup are:

• miss (0) — lookup value is not in CAM, entry number is Least Recently Used entry (which 
can be used as a suggested entry to replace), and State bits are 0000.

• hit (1) — lookup value is in CAM, entry number is entry which has matched; State bits are the 
value from the entry which has matched.

Note: The State bits are data associated with the entry. State bits are only used by software. There is no 
implication of ownership of the entry by any Context. The State bits hardware function is:

• the value is set by software (at the time the entry is loaded, or changed in an already loaded 
entry).

• its value is read out on a lookup that hits, and used as part of the status written into the 
destination register.

• its value can be read out separately (normally only used for diagnostic or debug).

The LRU (Least Recently Used) Logic maintains a time-ordered list of CAM entry usage. When an 
entry is loaded, or matches on a lookup, it is marked as MRU (Most Recently Used). Note that a 
lookup that misses does not modify the LRU list.

The CAM is loaded by instruction:
CAM_Write[entry_reg, source_reg, state_value]

The value in the register specified by source_reg is put into the Tag field of the entry specified by 
entry_reg. The value for the State bits of the entry is specified in the instruction as state_value.

The value in the State bits for an entry can be written, without modifying the Tag, by instruction:
CAM_Write_State[entry_reg, state_value]

Note: CAM_Write_State does not modify the LRU list.
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One possible way to use the result of a lookup is to dispatch to the proper code using instruction:
jump[register, label#],defer [3]

where the register holds the result of the lookup. The State bits can be used to differentiate cases 
where the data associated with the CAM entry is in flight, or is pending a change, etc. Because the 
lookup result was loaded into bits[11:3] of the destination register, the jump destinations are spaced 
8 instructions apart. This is a balance between giving enough space for many applications to 
complete their task without having to jump to another region, vs consuming too much Control 
Store. Another way to use the lookup result is to branch on just the hit miss bit, and use the entry 
number as a base pointer into a block of Local Memory.

When enabled, the CAM lookup result is loaded into Local_Addr as follows:

LM_Addr[5:0] = 0 ([1:0] are read-only bits)

LM_Addr[9:6] = lookup result [6:3] (entry number)

LM_Addr[11:10] = constant specified in instruction

This function is useful when the CAM is used as a cache, and each entry is associated with a block 
of data in Local Memory. Note that the latency from when CAM_Lookup executes until the 
LM_Addr is loaded is the same as when LM_Addr is written by a Local_CSR_Wr instruction.

Figure 59. CAM Block Diagram
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The Tag and State bits for a given entry can be read by instructions:
CAM_Read_Tag[dest_reg, entry_reg]

CAM_Read_State[dest_reg, entry_reg]

The Tag value and State bits value for the specified entry is written into the destination register, 
respectively for the two instructions (the State bits are placed into bits [11:8] of dest_reg, with all 
other bits 0). Reading the tag is useful in the case where an entry needs to be evicted to make room 
for a new value—the lookup of the new value results in a miss, with the LRU entry number 
returned as a result of the miss. The CAM_Read_Tag instruction can then be used to find the value 
that was stored in that entry. An alternative would be to keep the tag value in a GPR. These two 
instructions can also be used by debug and diagnostic software. Neither of these modify the state of 
the LRU pointer.

Note: The following rules must be adhered to when using the CAM.

• CAM is not reset by Microengine reset. Software must either do a CAM_clear prior to using the 
CAM to initialize the LRU and clear the tags to zero, or explicitly write all entries with 
CAM_write.

• No two tags can be written to have same value. If this rule is violated, the result of a lookup 
that matches that value will be unpredictable, and LRU state is unpredictable. 

The value 0x00000000 can be used as a valid lookup value. However, note that CAM_clear 
instruction puts 0x00000000 into all tags. So in order to not violate rule 2 after doing CAM_clear, it 
is necessary to write all entries to unique values prior to doing a lookup of 0x00000000. An 
algorithm for debug software to find out the contents of the CAM is shown in Example 25.

 

Example 25. Algorithm for Debug Software to Find out the Contents of the CAM

; First read each of the tag entries. Note that these reads
; don’t modify the LRU list or any other CAM state.
tag[0] = CAM_Read_Tag(entry_0);
......
tag[15] = CAM_Read_Tag(entry_15);

; Now read each of the state bits
state[0] = CAM_Read_State(entry_0);
...
state[15] = CAM_Read_State(entry_15);

; Knowing what tags are in the CAM makes it possible to 
; create a value that is not in any tag, and will therefore
; miss on a lookup.

; Next loop through a sequence of 16 lookups, each of which will
; miss, to obtain the LRU values of the CAM.
for (i = 0; i < 16; i++)
  BEGIN_LOOP
   ; Do a lookup with a tag not present in the CAM. On a
   ; miss, the LRU entry will be returned. Since this lookup
   ; missed the LRU state is not modified.
   LRU[i] = CAM_Lookup(some_tag_not_in_cam);
   ; Now do a lookup using the tag of the LRU entry. This 
   ; lookup will hit, which makes that entry MRU.
   ; This is necessary to allow the next lookup miss to
   ; see the next LRU entry.
   junk = CAM_Lookup(tag[LRU[i]]);
END_LOOP

; Because all entries were hit in the same order as they were
; LRU, the LRU list is now back to where it started before the
; loop executed.
; LRU[0] through LRU[15] holds the LRU list.
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The CAM can be cleared with CAM_Clear instruction. This instruction writes 0x00000000 
simultaneously to all entries tag, clears all the state bits, and puts the LRU into an intial state 
(where entry 0 is LRU, ..., entry 15 is MRU).

4.4 CRC Unit

The CRC Unit operates in parallel with the Execution Datapath. It takes two operands, performs a 
CRC operation, and writes back a result. CRC-CCITT, CRC-32, CRC-10, CRC-5, and iSCSI 
polynomials are supported. One of the operands is the CRC_Remainder Local CSR, and the other 
is a GPR, Transfer In Register, Next Neighbor, or Local Memory, specified in the instruction and 
passed through the Execution Datapath to the CRC Unit. The instruction specifies the CRC 
operation type, whether to swap bytes and or bits, and which bytes of the operand to include in the 
operation. The result of the CRC operation is written back into CRC_Remainder. The source 
operand can also be written into a destination register (however the byte/bit swapping and masking 
do not affect the destination register; they only affect the CRC computation). This allows moving 
data, for example, from S Transfer In registers to S Transfer Out registers at the same time as 
computing the CRC.

4.5 Event Signals

Event Signals are used to coordinate a program with completion of external events. For example, 
when a Microengine issues a command to an external unit to read data (which will be written into a 
Transfer_In register), the program must insure that it does not try to use the data until the external 
unit has written it. There is no hardware mechanism to flag that a register write is pending, and then 
prevent the program from using it. Instead the coordination is under software control, with 
hardware support.

When the program issues the command to the external event, it can request that the external unit 
supply an indication (called an Event Signal) that the command has been completed. There are 15 
Event Signals per Context that can be used, and Local CSRs per Context to track which Event 
Signals are pending and which have been returned. The Event Signals can be used to move a 
Context from Sleep state to Ready state, or alternatively, the program can test and branch on the 
status of Event Signals.

Event Signals can be set in nine different ways.

1. When data is written into S_Transfer_In Registers (part of S_Push_ID input)

2. When data is written into D_Transfer_In Registers (part of D_Push_ID input)

3. When data is taken from S_Transfer_Out Registers (part of S_Pull_ID input)

4. When data is taken from D_Transfer_Out Registers (part of D_Pull_ID input)

5. On InterThread_Sig_In input

6. On NN_Sig_In input

7. On Prev_Sig_In input

8. On write to Same_ME_Signal Local CSR

9. By Internal Timer

Any or all Event Signals can be set by any of the above sources. 
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When a Context goes to Sleep state (executes a ctx_arb instruction, or a Command instruction with 
ctx_swap token), it specifies which Event Signal(s) it requires to be put in Ready state. Ctx_arb 
instruction also specifies if the logical AND or logical OR of the Event Signal(s) is needed to put 
the Context into Ready state.

When a Context Event Signals arrive, it goes to Ready state, and then to Executing state. In the 
case where the Event Signal is linked to moving data into or out of Transfer registers (numbers 1 
through 4 in the list above), the code can safely use the Transfer register as the first instruction (for 
example, using a Transfer_In register as a source operand will get the new read data). The same is 
true when the Event Signal is tested for branches (br_=signal or br_!signal instructions).

The ctx_arb instruction, CTX_Sig_Events, and CTX_Wakeup_#_Events Local CSR descriptions 
provide details.

4.5.1 Microengine “Endianness”

Microengine operation from an “endian” point of view can be divided into following categories:

• Read from RBUF (64-bits)

• Write to TBUF (64-bits)

• Read/write from/to SRAM

• Read/write from/to DRAM

• Read/write from/to SHAC and other CSRs

• Write to Hash

4.5.1.1 Read from RBUF (64-bits)

Data in RBUF is arranged in LWBE order. Whenever Microengine reads from RBUF, the low 
order long word (LDW0) is transferred into Microengine transfer register 0 (treg0), the high order 
long word (LDW1) is transferred into treg1, and so on. This is explained in Figure 60.

Figure 60. Read from RBUF (64-bits)
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4.5.1.2 Write to TBUF

Data in TBUF is arranged in LWBE order. When writing from Microengine transfer registers to 
TBUF, treg0 goes into LDW0, treg1 goes into LDW1, and so on. See Figure 61.

4.5.1.3 Read/Write from/to SRAM

Data inside SRAM is in big-endian order. While transferring data from SRAM to a Microengine, 
no endianness is involved and first-read data goes into the first transfer register specified, the next 
read data into the second and so on.

4.5.1.4 Read/Write from/to DRAM

Data inside DRAM is in LWBE order. When a Microengine reads from DRAM, LDW0 goes into 
the first transfer register specified in the instruction, LDW1 goes into the next, and so on. While 
writing to DRAM, treg0 goes first followed by treg1 and both are combined in the DRAM 
controller as {LDW1, LDW0} and written as a 64-bit quantity into DRAM.

4.5.1.5 Read/Write from/to SHAC and Other CSRs

Read and write from SHAC and other CSRs happen as 32-bits operation only and are endian 
independent. Low byte goes into the low byte of transfer register and high byte goes into high byte 
of transfer register.

Figure 61. Write to TBUF (64-bits)
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4.5.1.6 Write to Hash Unit

Figure 62 explains 48-bit, 64-bit, and 128-bit hash operations. When the Microengine transfers a 
48-bit hash operand to the hash unit, the operand resides in two transfer registers and is transferred, 
as shown in Figure 62. In the second long word transfer, only the lower half is valid. Hash unit 
concatenates the two long words as shown in Figure 62. Similarly, 64-bit and 128-bit hash operand 
transfers from the Microengine to the hash unit happen as shown in Figure 62.

4.5.2 Media Access

Media operation can be divided in two parts:

• Read from RBUF (Section 4.5.2.1)

• Write to TBUF (Section 4.5.2.2)

Figure 62. 48-bit, 64-bit, and 128-bit Hash Operand Transfers
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4.5.2.1 Read from RBUF

To analyze the endianness on the media receive interface and how bytes are arranged inside RBUF, 
a brief introduction of how bytes are generated from the serial interface is provided here. Pipe A 
denote the serial stream of data received at the serial interface (SERDES). Bit 0 of byte0 comes 
first followed by bit1 and so on. Pipe B converts this bit stream into byte stream byte0...byte7 and 
so on. So byte 0 currently is the least significant byte received. In PipeC before being transmitted to 
the SPI-4 interface, these bytes are organized in 16-bit words in big-endian order where byte0 is at 
B[15:8] and byte1 is at B[7:0].

When the SPI-4 interface inside the IXP2800 received these 16-bit words, they are put into RBUF 
in LWBE order where long words inside one RBUF entry are organized in little-endian order as 
shown in one RBUF element in Figure 63. In the least-significant-longword, byte0 is at higher 
address than byte3 (therefore big endian). Similarly in the most-significant-longword byte4 is at 
higher address than byte7 (therefore big endian). While transferring from RBUF to Microengine 
the least significant longword from one RBUF element is transferred first followed by the most 
significant longword into the Microengine transfer registers.

.

Figure 63. Bit, Byte and Long-Word Organization in One RBUF Element
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4.5.2.2 Write to TBUF

For writing to TBUF, the header comes from the Microengine and data comes from RBUF or 
DRAM. Since the Microengine to TBUF header transfer happened in 8-byte chunks, it is possible 
that the first long word that is inside tr0 may not contain any data if the valid header begins in 
transfer register tr1. Since data in tr0 goes to LW1 location at offset 0 and data in tr2 will go to 
LW0 location at offset 0, there will be some white spaces or invalid bytes at the beginning of the 
header at offset 0. These invalid bytes are removed by the aligner on the way out of TBUF based on 
the control word for this TBUF element. The data from tr2, tr3...tr6 is placed in TBUF as shown in 
Figure 64 in big-endian order.

Figure 64. Write to TBUF
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Since data in RBUF or DRAM is arranged in LWBE order, it is swapped on the way into the TBUF 
to make it truly big endian as shown in Figure 64. Again the white space at the beginning of 
payload that starts at offset 3 and at the end of header at offset 2 will be removed by the aligner on 
the way out of TBUF by the aligner.

4.5.2.3 TBUF to SPI-4 Transfer

Figure 65 shows how the MSF interface removes invalid bytes from TBUF data and transfers them 
onto the SPI-4 interface in 16-bit (2-byte) chunks.

Figure 65. MSF Interface
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DRAM 5

This section describes Rambus* DRAM operation.

5.1 Overview

The IXP2800 Network Processor has controllers for three Rambus DRAM (RDRAM) channels. 
Either one, two, or three channels can be enabled. When more than one channel is enabled, the 
channels are interleaved (also known as striping) on 128-byte boundaries to provide balanced 
access to all populated channels. Interleaving is performed in hardware and is transparent to the 
programmer. The programmer views the DRAM memory space as a contiguous block of memory.

The total address space of 2 GB is supported by the DRAM interface regardless of the number of 
channels that are enabled. The controllers support 64 Mb, 128 Mb, 256 Mb, 512 Mb, and 1 Gb 
devices, however because of the interleaving, each of the channels must have the same number, 
size, and speed RDRAMs populated. Each channel can be populated with up to 32 RDRAMs 
devices. While each channel must have the same size and speed RDRAMs, it is possible for each 
individual channel to have different size and speed RDRAMs, as long as the total amount of 
memory is the same for all the channels.

ECC (Error Correcting Code) is supported. Enabling ECC requires that x18 RDRAMs be used. If 
ECC is disabled x16 RDRAMs can be used. 

The Microengines, Intel XScale® technology, and PCI (external Bus Masters and DMA Channels) 
have access to the DRAM memory space. 

The controllers also automatically perform refresh as well as IO driver calibration to account for 
variations in operating conditions due to process, temperature, voltage and board layout. 

RDRAM Powerdown and nap modes are not supported.
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5.2 Size Configuration

Each channel can be populated with anywhere from one-to-four RDRAMs (Short Channel Mode). 
For supported loading configurations refer to Table 63. The RAM technology used will determine 
the increment size and maximum memory per channel as shown in Table 64.

Note: One or two channels can be left unpopulated if desired.

RDRAMs with 1 x 16 dependent banks, 2 x 16 dependent banks, and 4 independent banks are 
supported.

Table 63. RDRAM Loading

Bus Interface Max # of Loads Trace Length (inches)

Short Channel:

400 and 533 MHz
Four devices per channel.  201

1. For termination, the DRAM’s should be located as close as possible to the IXP2800 Network Processor.

Long Channel: 

400 MHz 
2 RIMMs per channel, a maximum of 32 
devices in both RIMMs.  201

Long Channel: 

533 MHz 
1 RIMM and 1 C-RIMM per channel, a 
maximum of 16 devices.  201

Table 64. RDRAM Sizes

RDRAM Technology1 Increment Size Maximum per Channel

64/72 Mb 8 MB 256 MB

128/144 Mb 16 MB 512 MB

256/288 Mb 32 MB 1 GB2

512/576 Mb 64 MB 2 GB2

NOTES:
1. The two numbers shown for each technology indicate x16 parts and x18 parts.
2. The maximum memory that can be addressed across all channels is 2GB. This limitation is based on the 

partitioning of the 4GB address space (32-bit addresses). Therefore if all three channels are used, each 
can be populated up to a maximum of 768MB. Two channels can be populated to a maximum of 1 GB 
each. A single channel could be populated to a maximum of 1GB
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5.3 DRAM Clocking

Figure 66 shows the clock generation for one channel (this description is just for reference, for 
more details refer to Rambus design literature). The other channels use the same configuration.

Note: Refer to Section 10 for additional information on clocking.

The RDRAM Controller receives two clocks, both generated internal to the IXP2800 Network 
Processor.

The internal clock, is used to control all logic associated with communication with other on-chip 
Units. This clock is ½ of the Microengine frequency, and is in the range of 500 MHz to 700 MHz.

The other clock called, RMC clock is internally divided by two and brought out on the 
CLK_PHASE_REF pin, which is then used as the reference clock for the DRCG (see Figure 67 
and Figure 68). The reason for this is our internal RMC clock is derived from the Microengine 
clock (supported programmable divide range is from 8 to 15 for A stepping, 6 - 15 for B stepping) 
at a Microengine frequency of 1.4 GHz (the available RMC clock frequencies are 100, and 127 
MHz). In the RMC implementation we have a fixed 1:1 clock relationship between the RMC clock 
and the SYNCLK (SYNCLK = Clock-to-Master(CTM)/4) therefore, in order to maintain this 
relationship we provide the clock to the DRCG. CTM is received by the DRAM controller which it 
drives back out as Clock-from-Master (CFM). Additionally the controller creates PCLKM and 
SYNCLKN which are also driven to the DRCG.

Figure 66. Clock Configuration
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5.4 Bank Policy

The RDRAM Controller uses a closed bank policy. Banks are activated long enough to do an 
access and then closed and precharged. They are not left open in anticipation of another access to 
the same page. This is unlike many CPU applications, where there is a high degree of locality. 
Since that locality does not exist in the typical applications that the IXP2800 Network Processor 
uses RDRAM, the bank closed policy is used.

Figure 67. IXP2800 Clocking for RDRAM at 400 MHz
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Figure 68. IXP2800 Clocking for RDRAM at 508 MHz
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5.5 Interleaving

The RDRAM channels are interleaved on 128 byte boundaries in hardware to improve concurrency 
and bandwidth utilization. Contiguous addresses are directed to different channels by rearranging 
the physical address bits in a programmable manner described in Section 5.5.1 through 
Section 5.5.3 and then remapped as described in Section 5.5.4. Figure 69 shows a block diagram of 
the flow.

Note that the mapping of addresses to channels is completely transparent to software. Software 
deals with physical addresses in RDRAM space; the mapping is done completely by hardware. 
Note that accessing an address above the amount of RDRAM populated will cause unpredictable 
results.

5.5.1 Three Channels Active (3-Way Interleave)

When all three channels are active, the interleave scheme selects the channel for each block using 
modulo-3 reduction (address bits [31:7] are summed as modulo-3, and the remainder is the selected 
channel number). The algorithm ensures that adjacent blocks are mapped to different channels.

For Rev A, the address within the DRAM is then selected by rearranging the received address, as 
shown in Table 65. In this case the number of DRAMs on a channel must be either 1, 2, 4, 8, 16, or 
32.

For Rev B, the address within the DRAM is selected by adding the received address to the contents 
of one of the CSRs K0 through K11, or zero, as shown in Table 66. The values to load into K0 
through K11 are a function of the amount of memory on the channel, and are specified in the 
Programmer’s Reference Manual. Note that for memory size 32 MB, 64 MB, 128 MB, etc. the 
specified constants give the same remapping as was done in Rev A.

Figure 69. Address Mapping Flow

In-Channel Address
Channel 
Selection

Bank 0
CMD FIFO

Bank 1
CMD FIFO

Bank 2
CMD FIFO

Bank 3
CMD FIFO

Address 
RemappingME, Intel XScale® 

core, PCI initiated 
address

RDRAM_CONTROL[NO_CHAN] RDRAM_CONTROL[BANK_REMAP]
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Table 65. Address Rearrangement for 3-Way Interleave

When 
these 
bits of 

address 
are all 

“1”s…1

Shift 
30:7 
right 
by 

this 
many 
bits

Add this amount to shifted 30:7 (based on amount of memory on the channel)
Address within channel is {30:7+table_value), 6:0}

8MB3 16MB 32MB3 64MB 128MB3 256MB 512MB3 1GB

30:7 26 N/A N/A N/A N/A N/A N/A N/A 8388607

28:7 24 N/A N/A N/A N/A N/A 2097151 4194303 8388606

26:7 22 N/A N/A N/A 524287 1048575 2097150 4194300 8388600

24:7 20 N/A 131071 262143 524286 1048572 2097144 4194288 8388576

22:7 18 65535 131070 262140 524280 1048560 2097120 4194240 8388480

20:7 16 65532 131064 262128 524256 1048512 2097024 4194048 8388096

18:7 14 65520 131040 262080 524160 1048320 2096640 4193280 8386560

16:7 12 65472 130944 261888 523776 1047552 2095104 4190208 8380416

14:7 10 65280 130560 261120 522240 1044480 2088960 4177920 8355840

12:7 8 64512 129024 258048 516096 1032192 2064384 4128768 8257536

10:7 6 61440 122880 245760 491520 983040 1966080 3932160 7864320

8:7 4 49152 98304 196608 393216 786432 1572864 3145728 6291456

None 2 0 0 0 0 0 0 0 0

NOTES:
1. This is a priority encoder; when multiple lines satisfy the condition, the line with the largest number of ones 

is used.
2. N/A means not applicable.
3. For these cases, the top 3 blocks (each block is 128 bytes) of the logical address space is not accessible. 

For example if each channel has 8 MB, only (24MB - 384) total bytes are usable. This is an artifact of the 
remapping method.

4. The numbers in the table are derived as follows.
For the first pair of ones (8:7) value is 3/4 the number of blocks. For each subsequent pair of ones, the 
value is the previous value, plus another 3/4 the remaining blocks.
• [8:7]==11 - 3/4 * blocks
• [10:7]==1111 - (3/4 + 3/16) * blocks
• [12:7]==111111 - (3/4 + 3/16 + 3/64) * blocks
• etc.
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Table 66. Address Rearrangement for 3-Way Interleave (Continued)(Rev B)

5.5.2 Two Channels Active (2-Way Interleave)

It is possible to have only two channels populated for system cost and area savings. If only two 
channels are desired, than channels 0 and 1 should be populated and channel 2 should be left 
empty. In the Two Channel Mode, the address interleaving is designed with the goal of spreading 
adjacent accesses across the 2 channels.

When two channels are active, address bit 7 is used as the channel select. Addresses that have 
address 7 equal to 0 are mapped to channel 0 while those with address 7 equal to 1 are mapped to 
channel 1. The address within the channel is {[31:8], [6:0]}.

5.5.3 One Channel Active (No Interleave)

When only one channel is active, all accesses go to that channel. In this case it is possible for an 
access to split across two DRAM banks (which could be in different RDRAMs).

When these bits of address are all 
“1”s…1

Add the value in this CSR to 
the address

30:7 K11

28:7 K10

26:7 K9

24:7 K8

22:7 K7

20:7 K6

18:7 K5

16:7 K4

14:7 K3

12:7 K2

10:7 K1

8:7 K0

None Value 0 added.

NOTES:
1. This is a priority encoder; when multiple lines satisfy the condition, 

the line with the largest number of ones is used.
2. N/A means not applicable.
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5.5.4 Interleaving Across RDRAMs and Banks

In addition to interleaving across the different RDRAM channels, addresses are also interleaved 
across RDRAM chips and internal banks. This improves utilization since certain operations to 
different banks can be performed concurrently. The interleaving is done based on rearranging the 
remapped address derived from Section 5.5.1, Section 5.5.2, and Section 5.5.3 as a function of the 
memory size as shown in Table 67. The two MSBs of the rearranged address are used to select 
which Bank Command FIFO the command is place in. The rearranged address is also partitioned to 
choose RDRAM chip, bank within RDRAM, and page within bank.

5.6 Parity and ECC

DRAM can be optionally protected by byte parity or by an 8-bit error detecting and correcting code 
(ECC). RDRAMn_Control[ECC] for each channel selects whether or not that channel should use 
Parity, ECC, or no protection. When parity or ECC is enabled x18 RDRAMs must be used with the 
extra bits connected to the dqa[8] and dqb[8] signals. Eight bits of ECC code cover eight bytes of 
data (aligned to an 8-byte boundary).

5.6.1 Parity and ECC Disabled

• On reads, the data is delivered to the originator of the read; no error is possible.

• Partial writes (writes of less than eight bytes) are done as masked writes.

Table 67. Address Bank Interleaving

Memory Size on 
Channel (MB)3

Remapped Address
Based on RDRAM_Control[Bank_Remap]

00 01 10 11

8 7:14, 22:15 9:14, 7:8, 22:15 11:14, 7:10, 22:15 13:14, 7:12, 22:15

16 7:14, 23:15 9:14, 7:8, 23:15 11:14, 7:10, 23:15 13:14, 7:12, 23:15

32 7:14, 24:15 9:14, 7:8, 24:15 11:14, 7:10, 24:15 13:14, 7:12, 24:15

64 7:14, 25:15 9:14, 7:8, 25:15 11:14, 7:10, 25:15 13:14, 7:12, 25:15

128 7:14, 26:15 9:14, 7:8, 26:15 11:14, 7:10, 2615 13:14, 7:12, 26:15

256 7:14, 27:15 9:14, 7:8, 27:15 11:14, 7:10, 27:15 13:14, 7:12, 27:15

512 7:14, 28:15 9:14, 7:8, 28:15 11:14, 7:10, 28:15 13:14, 7:12, 28:15

1024 7:14, 29:15 9:14, 7:8, 29:15 11:14, 7:10, 29:15 13:14, 7:12, 29:15

Bits used to select 
Bank Command 

FIFO
7:8 9:10 11:12 13:14

NOTES:
1. Table shows device/bank sorting of the channel remapped block address, which is in address 31:7. LSBs of 

the address are always 6:0 (byte within the block), which are not remapped
2. Unused MSBs of address have value of 0.
3. Size is programmed in RDRAM_Control[Size].
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5.6.2 Parity Enabled

On writes, odd byte parity is computed for each byte and written into the corresponding parity bit. 
Partial writes (writes of less than eight bytes) are done as masked writes.

On reads, odd byte parity is computed on each byte of data and compared to the corresponding 
parity bit. If there is an error RDRAMn_Error_Status_1[Uncorr_Err] bit is set, which can interrupt 
the Intel XScale® core if enabled. The Data Error signal will be asserted when the read data is 
delivered on D_Push_Data.

The address of the error, along with other information, is logged in 
RDRAMn_Error_Status_1[ADDR] and RDRAMn_Error_Status_2. Once the error bit is set those 
registers are locked. That is, the information relating to subsequent errors will not be loaded until 
the error status bit is cleared by the Intel XScale® core write.

5.6.3 ECC Enabled

On writes, eight ECC check bits are computed based on 64 bits of data, and are written into the 
check bits. Partial writes (writes of less than eight bytes) will cause the channel controller to do a 
read-modify-write. Any single bit error detected during the read portion will be corrected prior to 
merging with the write data. An uncorrectable error detected during the read will not modify the 
data. Either type of error will set the appropriate error status bit as described during the read case 
(next paragraph).

On reads, the correct value for the check bits is computed from the data and is compared to the 
ECC check bits. If there is no error, data is delivered to the originator of the read as it came from 
the RDRAMs. If there is a single bit error it is corrected before being delivered (the correction is 
done automatically, the reader is given the correct data). The error is also logged by setting the 
RDRAMn_Error_Status_1[Corr_Err] bit, which can interrupt the Intel XScale® core if enabled.

If there is an uncorrectable error the RDRAMn_Error_Status_1[Uncorr_Err] bit is set, which can 
interrupt the Intel XScale® core if enabled. The Data Error signal will be asserted when the read 
data is delivered on D Push Data, unless the token Ignore Data Error was asserted in the command. 
In that case the RDRAM controller will not assert Data Error and will not assert a Signal (it will 
use 0xF, which is a null signal, in place of the requested signal number).

In both correctable and uncorrectable cases, the address of the error, along with other information, 
is logged in RDRAMn_Error_Status_1[ADDR] and RDRAMn_Error_Status_2. Once either of the 
error bits is set those registers are locked. That is, the information relating to subsequent errors will 
not be loaded until both error status bits are clear. That does not prevent the correction of single bit 
errors, only the logging.

Note: When a single bit error is corrected, the corrected data is not written back into memory (scrubbed) 
by hardware; this can be done by software if desired since all of the information pertaining to the 
error is logged.
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To avoid the detection of false ECC errors, the RDRAM ECC mode must be initialized using the 
procedure described below:

• Ensure that parity/ECC is not enabled: program DRAM_CTRL[15:14] = 00

• Write all zeros to all the memory locations. By default this will initialize the memory with odd 
parity and in this case (data all 0), it coincides with ECC and this does not require any read 
modify writes because ECC is not enabled.

• Ensure that all of the writes are completed prior to enabling ECC. This is done by performing 
a read operation to 1000 locations.

• Enable ECC mode: program DRAM_CTRL[15:14] accordingly.

5.6.4 ECC Calculation and Syndrome

The ECC check bits are calculated by forming parity checks on groups of data bits. The check bits 
are stored in memory during writes via the dqa[8] and dqb[8] signals. Note that memory 
initialization code must put good ECC into all of memory by writing each location before it can be 
read. Writing any arbitrary data into memory, for example 0, will accomplish this. This will take 
several ms per MB of memory.

On reads, the expected code is calculated from the data, and then compared to (XORed) the ECC 
which was read. The result of the comparison is called the syndrome. If the syndrome is equal to 
zero, then there was no error. There are eight syndromes that are calculated based on the read data 
and its corresponding ECC bit. When ECC is enabled, upon detecting a single bit error, the 
syndrome is used to determine which bit needs to be flipped to correct the error.

5.7 Timing Configuration

Table 68 shows the example timing settings for RDRAMs of various speeds. The parameters are 
programmed in the RDRAM_Config CSRs (refer to the PRM for register descriptions).

Table 68. RDRAM Timing Parameter Settings

Parameter 
Name

-40-
800

-45-
800

-50-
800

-45-
711

-50-
711

-45-
600

-53-
600

CfgTrcd 7 9 11 7 9 5 7

CfgTrasSyn 5 5 6 5 5 4 5

CfgTrp 8 8 10 8 8 6 8

CfgToffpSyn 4 4 4 4 4 4 4 

CfgTrasrefSyn 5 5 6 5 5 4 5

CfgTprefSyn 2 2 2 2 2 2 2
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5.8 Microengine Signals

Upon completion of a read or write, the RDRAM controller can signal a Microengine context, 
when enabled. It does so using the sig_done token; see Example 26.

Because the RDRAM address space is interleaved, consecutive accesses can go to different 
RDRAM channels. There is no ordering guaranteed among different channels, so, a separate signal 
is needed for each.

In addition, because accesses start at any address, and can specify up to 16 64-bit words (128 
bytes), they can also split across two channels (refer to Section 5.5). The ctx_arb instruction must 
set two Wakeup_Events (an odd/even pair) per access. The RDRAM controllers coordinate as 
follows:

• If the access split across two channels, the channel handling the low part of the split delivers 
the even numbered Event Signal, and the channel handling the upper part of the split delivers 
the odd numbered Event Signal.

• If the access does not split, the channel delivers both Event Signals (by coordinating with the 
D Push or D Pull arbiter for read and writes respectively).

• In all cases the channel delivers the Event Signal with the last data Push or Pull of a burst.

Using the above rules, the Microengine will be put into the Ready State (ready to resume 
executing) only when all accesses have completed.

5.9 Serial Port

The RDRAM chips are configured through a serial port, which consists of signals D_SIO, 
D_CMD, D_SCK. Access to the serial port is via the RDRAM_Serial_Command and 
RDRAM_Serial_Data CSRs (refer to the IXP2400/IXP2800 Network Processor Programmer’s 
Reference Manual for the register descriptions). 

All serial commands are initiated by a write to RDRAM_Serial_Command. Because the serial port 
is slow, RDRAM_Serial_Command has a Busy bit, which indicates that a serial port command is 
in progress. Software must test this bit before initiating a command. This insures that software will 
not lose a command, while eliminating the need for a hardware FIFO for serial commands.

Serial writes are done by the following steps:

1. Read RDRAM_Serial_Command; test Busy bit until its a 0.

2. Write RDRAM_Serial_Data.

3. Write RDRAM_Serial_Command to start the write.

Example 26. RDRAM Controller Signaling a Microengine Context

dram [read,$xfer6,addr_a,0,1], sig_done_4

dram [read,$xfer7,addr_b,0,1], sig_done_6

ctx_arb[4, 5, 6, 7]
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Serial reads are done by the following steps:

1. Read RDRAM_Serial_Command; test Busy bit until its a 0.

2. Write RDRAM_Serial_Command to start the read.

3. Read RDRAM_Serial_Command; test Busy bit until its a 0.

4. Read RDRAM_Serial_Data to collect the serial read data.

5.10 RDRAM Controller Block Diagram

The RDRAM controller consists of three pieces. Figure 70 is a simplified block diagram.

Pre_RMC—has the queues for commands, data (both in and out) and interface to internal busses. It 
checks incoming commands and addresses to determine if they are targeted to the channel, and if 
so enqueues them [note that if a command splits across two channels, the channel must enqueue the 
portion of the command that it owns]. It sorts the enqueued commands to RDRAM banks, selects 
which command to execute based on policy to get good bank utilization, and then hands off that 
command to RMC. It also arbitrates for refresh and calibration, which it requests RMC to perform. 
Pre_RMC also contains the ECC logic, and the CSRs that set size, timing, ECC, etc.

RMC—controller that handles the pin protocol. It controls all timing dependencies, pin turnaround, 
RAS-CAS, RAS-RAS, etc., including bank interactions. RMC handles all commands in the order 
that it receives them. RMC is based on the Rambus RMC.

RAC—high speed parallel to serial and parallel to serial interface. This is a hard macro which 
contains the I/O pads and drivers, DLL, and associated pin interface logic.

Following is a brief explanation of command operation.

Pre_RMC enqueues commands and sends them to RMC. It is responsible for initiating Pull 
operations to get Microengine/RBUF/Intel XScale® core/PCI data into the Pull_Data FIFO. A 
write is not eligible to go to RMC until Pre_RMC has all the data in the Pull Data FIFO.

Pre_RMC provides the Full signal to the Command Arbiter to inform it stop allowing RDRAM 
commands.

Figure 70. RDRAM Controller Block Diagram

A9729-01

CMD Bus RQ

DQD_Push Bus

D_Pull Bus

Pre_RMC RMC RAC

Intel®
IXP2800
Network

Processor
Chassis

RDRAMs
198 Hardware Reference Manual



Intel® IXP2800 Network Processor
DRAM
5.10.1 Commands

When a valid command is placed on the command bus, the control logic checks to see if the 
address matches the channel’s address range, based on interleaving as described in Section 5.5. The 
command, address, length, etc. are enqueued into the command Inlet FIFO.

If the command Inlet FIFO becomes full, the channel sends a signal to the command arbiter which 
will prevent it from sending further DRAM commands. The full signal must be asserted while there 
is still enough room in the FIFOs to hold the worst case number of in-flight commands.

5.10.2 DRAM Write

When a write (or RBUF_RD, which does a DRAM write) command is at the head of the Command 
Inlet FIFO, it is moved to the proper Bank CMD FIFO, and the Pull_ID is sent to the Pull arbiter. 
This can only be done if there is room for the command in the Bank’s CMD FIFO and for the pull 
data in the Bank’s Pull Data FIFO (which must take into account all pull data in flight). If there is 
not room in the Bank’s CMD FIFO, or the Bank’s Pull Data FIFO, the write command will wait at 
the head of the Command Inlet FIFO. When the Pull_ID is sent to the Pull Arbiter, the Bank 
number is put into the PP (Pull in Progress) FIFO; this allows the channel to sort the Pull Data into 
the proper Bank Pull Data FIFO when it arrives.

The source of the Pull Data can be either RBUF, PCI, Microengine, or the Intel XScale® core, and 
is specified in the Pull_ID. When the source is RBUF or PCI, data will be supplied to the Pull Data 
FIFO 64 bits per cycle. When the source is Microengine or the Intel XScale® core, data will be 
supplied 32 bits per cycle, justified to the low 32 bits of Pull Data. It is up Pull Arbiter to merge and 
pack data as required. In addition, the data must be aligned according to the start address, which 
has longword resolution; this is done in Pre_RMC.

The Length field of the command at the head of the Bank CMD FIFO is compared to the number of 
64-bit words in the Bank Pull_Data FIFO. When the number of 64-bit words in Pull_Data FIFO is 
greater or equal to the length, the write arbitrates for the RMC. When it wins arbitration it sends the 
address and command to RMC. RMC will request the write data from Pull_Data FIFO at the proper 
time to send it to the RDRAMs.

Note: The Microengine is signaled when the last data is pulled.

5.10.2.1 Masked Write

Masked writes (write of less than 8-bytes) are done as either Read-Modify-Writes when ECC is 
enabled, or as Rambus masked writes (using COLM packets), when ECC is not enabled. In both 
cases the masked write will modify 7 or fewer bytes; this is because the command bus limits a 
masked write to a ref_count of one.

If a RMW is used, no commands from that Bank’s CMD FIFO will be started in between the read 
and the write; other Bank commands can be done during that time.
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5.10.3 DRAM Read

When a read (or TBUF_WR, which does a DRAM read) command is at the head of the Command 
Inlet FIFO, it is moved to the proper Bank CMD FIFO if there is room. If there is not room in the 
Bank’s CMD FIFO, the read command will wait at the head of the Command Inlet FIFO.

When a read command is at the head of the Bank CMD FIFO, and there is room for the read data in 
the Push Data FIFO (including all reads in flight at the RDRAM), it will arbitrate for RMC. When 
it wins arbitration it sends the address and command to RMC. The Push_ID is put into the RP FIFO 
(Read in Progress), to coordinate it with read data from RMC.

When read data is returned from RMC it is placed into the Push_Data FIFO. Each Push_Data is 
sent to the Push Arbiter with a Push_ID; the RDRAM controller increments the Push_ID for each 
data phase. If Push Arbiter asserts the full signal, Push Data is stopped and held in the Push Data 
skid FIFO. The Push Data is sent to the read destination under control of the Push Arbiter.

The destination of the Push Data can be either Intel XScale® core, PCI, TBUF or Microengine, and 
is specified in the Push_ID. When the destination is TBUF or PCI, data will be taken 64 bits per 
cycle. When the destination is Microengine or the Intel XScale® core, data will be taken 32 bits per 
cycle. The Push Arbiter justifies the data to the low 32 bits of Push Data. Note that the Microengine 
is signaled when the last data is pushed.

5.10.4 CSR Write

When a CSR write command is at the head of the Command Inlet FIFO, it is moved to the CSR 
CMD Register, and the Pull_ID is sent to the Pull arbiter. This can only be done if the CSR CMD 
Register is not currently occupied. If it is, the CSR write command will wait at the head of the 
Command Inlet FIFO. When the Pull_ID is sent to the Pull Arbiter, a tag put into the PP FIFO (Pull 
in Progress); this allows the channel to identify the Pull Data as CSR data when it arrives.

When the CSR pull data arrives it is put into the addressed CSR, and the CSR CMD Register is 
marked as empty.

5.10.5 CSR Read

When a CSR read command is at the head of the Command Inlet FIFO, it is moved to the CSR 
CMD Register. This can only be done if the CSR CMD Register is not currently occupied. If it is, 
the CSR read command will wait at the head of the Command Inlet FIFO.

On the first available cycle in which RDRAM data from RMC is not being put into the Push Data 
FIFO, the CSR data will be put into the Push Data FIFO. If it’s convenient to guarantee a slot by 
putting a bubble on the RMC input, that’s OK.
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5.10.6 Arbitration

The channel needs to arbitrate among several different operations at RMC. Arbitration rules are 
given here for those cases. From highest to lowest priority:

• Refresh RDRAM

• Current calibrate RDRAM

• Bank operations. When there are multiple bank operations ready the rules are: (1) round robin 
among banks to avoid bank collisions, (2) skip a bank to avoid DQ bus turnarounds. No bank 
can be skipped more than twice.

Commands are given to RMC in the order in which they will be executed.

5.10.7 Reference Ordering

Table 69 lists the ordering of reads and writes to the same address for DRAM. The definition of 
first and second is defined by the time the command is valid on the command bus.

5.11 DRAM Push/Pull Arbiter

The DRAM Push/Pull Arbiter contains the push and pull arbiters for the D-Cluster (DRAM 
Cluster). Both the PUSH and PULL data buses have multiple masters and multiple targets. The 
DRAM Push/Pull Arbiter determines which master gets to drive the data bus for a given 
transaction and to make sure the data is delivered correctly.

This unit has the following features:

• Up to three DX Unit (DRAM Unit) masters.

• 64-bit wide push and pull data buses.

• Round-robin arbitration scheme.

• Peak delivery of 64-bits per cycle.

• Supports third-party data transfers the Microengine’s can command data movements between 
the MSF (Media) and either the DX Units or the CR Units.

Table 69. Ordering of Reads and Writes to the Same Address for DRAM

First 
Access

Second 
Access Ordering Rules

Read Read None. If there are no side effects on reads both readers will get the same data. 

Read Write
Reader must get the pre-modified data. This is not enforced in hardware. The write 
instruction must not be executed until after the ME receives the signal of read 
completion (i.e. program must use sig_done on the read).

Write Read

Reader must get the post-modified data. This is not enforced in hardware. The read 
instruction must not be executed until after the ME receives the signal of write 
completion (i.e. program must use sig_done token on the write instruction and wait for 
the signal before executing the read instruction).

Write Write The hardware guarantees the writes will complete in the order they are issued.
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• Supports chaining for burst DRAM push operations to tell the arbiter to grant consecutive push 
requests.

• Supports data error bit handling and delivery.

Figure 71 shows the functional blocks for the DRAM Push/Pull Arbiter.

5.11.1 Arbiter Push/Pull Operation

Within the arbiter there are two functional units: the push arbiter and the pull arbiter. Push and pull 
always refer to the way data is flowing from the bus master, i.e., a Microengine makes a read 
request, the DRAM channel does the read, and then “pushes” the data back to the Microengine. 

For a push transaction, a push master will drive command and data to the DRAM push arbiter 
(DPSA) and into a dedicated request FIFO. When that command is at the head of the FIFO and it is 
either the requesting unit’s turn to go based on the round-robin arbitration policy, or there are no 
other requesters, the arbiter will “grant” the request. This grant means that the arbiter will deliver 
the push data to the correct target with all the correct handshakes and retire the request. (Note that a 
data transaction is always eight bytes.)

The DRAM pull arbiter (DPLA) is slightly different because it functions on bursts of data 
transactions instead of single transactions. For a pull transaction, a pull master will drive a 
command to the pull arbiter and into a dedicated request FIFO. When the command gets to the 
head of the FIFO, it will be evaluated as was done for the push arbiter. The difference is that each 
command may reference bursts of data movements (always in multiples of 8 bytes). The arbiter 
will grant the command, and keep it granted until it increments through all of the data movements 
required by the command. As the data is read from it’s source, the command is modified to address 
the next data address, and a handshake to the requesting unit is driven when the data is valid.

Figure 71. DRAM Push/Pull Arbiter Functional Blocks
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5.11.2 DRAM Push Arbiter Description

The general data flow for a push operation is as shown in Table 70. Figure 72 shows the DRAM 
Push Arbiter functional blocks.

The push arbiter takes push requests from any requestors. Each requestor has a dedicated request 
FIFO. A request comes in the form of a PUSH_ID, and is accompanied by the data to be pushed, a 
data error bit, and a chain bit. All of this information is enqueued in the correct FIFO for each 
request, that is, for each eight bytes of data. The push arbiter must drive a full signal to the 
requestor if the FIFO reaches a predefined “full” level to apply back pressure and stop requests 
from coming. The FIFO is 64 entries deep and goes full at 40 entries. The long skid allows for burst 
reads in flight to finish before stalling the DRAM controller. If the FIFO is not full, the push arbiter 
can enqueued a new request from each requestor on every cycle.

The push arbiter monitors the heads of each FIFO, and does a round robin arbitration between any 
available requestors. If the chain bit is asserted, it indicates that once the head request of a queue is 
granted, the arbiter should continue to grant that queue until the chain bit de-asserts. It is expected 
that the requestor will assert the chain bit for no longer than a full burst length. The push arbiter 
must also take special notice of requests destined for the receive buffer in the MSF (Media Switch 
Fabric). Finally, the push arbiter must manage the delivery of data at different rates depending on 
how wide the bus is going into a given target. The Microengines, PCI, and the Intel XScale® core 
all have 32-bit data buses. For these targets, the push arbiter takes 2 clock cycles to deliver 64-bits 
of data by first delivering bits 31:0 in the first cycle, and then putting bits 63:32 onto the low 32-
bits of the PUSH_DATA in the second cycle.

Table 70. DRAM Push Arbiter Operation

Push Bus Master/Requestor Data Source Data Destination

IXP2800 Network Processor

D0 Unit

D1 Unit

D2 Unit
Current Master

TC0 Cluster (ME0–7)

TC1 Cluster (ME10–17)
Intel XScale® core

PCI Unit

MS Unit
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The DRM Push Arbiter boundary conditions are:

• Make sure each of the push_request queues assert the full signal and back pressure the 
requesting unit. 

• Maintain 100% bus utilization, i.e., no holes.

5.12 DRAM Pull Arbiter Description

The general data flow for a push operation is as shown in Table 71. Figure 73 shows the DRAM 
Pull Arbiter functional blocks.

The pull arbiter is very similar to the push arbiter, except that it gathers the data from a data source 
ID and delivers it to the requesting unit where it is written to DRAM memory. 

Figure 72. DRAM Push Arbiter Functional Blocks
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Table 71. DPLA Description

Pull Bus Master/Requestor Data Source Data Destination

IXP2800 Network Processor

D0 Unit

D1 Unit

D2 Unit

TC0 Cluster (ME0–7)

TC1 Cluster (ME8–15)
Intel XScale® core

PCI Unit

MS Unit

Current Master 
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When a requestor gets a pull command on the CMD_BUS, the requestor sends the command to the 
pull arbiter. This is enqueued into a requestor-dedicated FIFO. The pull request FIFOs are much 
smaller than the push request FIFOs because pull requests can request up to 128 bytes of data. It is 
eight entries deep and asserts full when it has six entries to account for in-flight requests.

The pull arbiter monitors the heads of each of the three FIFOs. A round robin arbitration scheme is 
applied to all valid requests. When a request is granted, the request is completed no matter how 
many data transfers are required. Therefore, one request can take as many as 16–32 DRAMcycles. 
The push data bus can only use 32-bits when delivering data to the Microengine’s, PCI, and the 
Intel XScale® core. For these data sources, it takes two cycles to pull every eight bytes requested; 
otherwise, it takes only one cycle per eight bytes. Note that on four byte cycles, data is delivered as 
pulled. 

Figure 73. DRAM Pull Arbiter Functional Blocks
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SRAM Interface 6

6.1 Overview

The IXP2800 Network Processor contains four independent SRAM controllers. SRAM controllers 
support pipelined QDR* synchronous static RAM (SRAM) and a coprocessor that adheres to QDR 
signaling. Any or all controllers can be left unpopulated if the application does not need to use 
them.

Reads and writes to SRAM are generated by MicroEngines (ME), the Intel XScale® core, and PCI 
Bus masters. They are connected to the controllers through Command Buses and Push and Pull 
Buses. Each of the SRAM controllers takes commands from the command bus and enqueues them. 
The commands are de-queued, according to priority, and successive access to the SRAMs are 
performed. 

Each SRAM controller receives commands using two Command Buses, one of which may be tied 
off inactive, depending on the chip implementation. The SRAM Controller can enqueue a 
command from each Command Bus in each cycle. Data movement between the SRAM controllers 
and the MEs is through the S-Push bus and S-Pull bus.

The overall structure of the SRAM controllers is shown in Figure 74.
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6.2 SRAM Interface Configurations

Memory is logically four bytes (one longword) wide while physically the data pins are two bytes 
wide and double-clocked. Byte parity is supported. Each of the four bytes has a parity bit, which is 
written when the byte is written and checked when the longword is read. There are byte enables 
that select which bytes to write for lengths of less than a longword. 

The QDR controller implements a big-endian ordering scheme at the interface pins. For write 
operations bytes 0/1, (data bits [31:16]), and associated parity and byte enables are written on the 
rising edge of K clock while bytes 2/3, (data bits [15:0]), and associated parity and byte enables are 
written on the rising edge of K_n clock. For read operations bytes 0/1, (data bits [31:16]), and 
associated parity and byte enables are captured on the rising edge of CIN0 clock while bytes 2/3, 
(data bits [15:0]), and associated parity and byte enables are captured on the rising edge of CIN0_n 
clock.

Figure 74. SRAM Controller/Chassis Block Diagram
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In general, QDR and QDR II burst of two SRAMs is supported at speeds up to 250 MHz. As other 
(larger) QDR SRAMs are introduced, they will also be supported.

The SRAM controller can also be configured to interface to an external coprocessor that adheres to 
the QDR or QDR II electrical and functional specification.

6.3 SRAM Interface Configurations

This section describes SRAM interface information.

6.3.1 Internal Interface

Each SRAM channel receives commands through the command bus mechanism and transfers data 
to and from the MEs, the Intel XScale® core, and PCI using SRAM push and SRAM pull buses.

6.3.2 Number of Channels

The IXP2800 supports four channels.

6.3.3 Coprocessor and/or SRAMs Attached to a Channel

Each channel will support the attachment of QDR SRAMs, a co-processor, or both depending on 
the module level signal integrity and loading.

6.4 SRAM Controller Configurations

There are enough address pins (24) to support up to 64 MB of SRAM. The SRAM controllers can 
directly generate multiple port enables (up to five pairs) to allow for depth expansion. Two pairs of 
pins are dedicated for port enables. Smaller RAMs use fewer address signals than the number 
provided to accommodate the largest RAMs, so some address pins (23:18) are configurable as 
either address or port enable based on CSR SRAM_Control[Port_Control] as shown in Table 72.

Note: All of the SRAMs on a given channel must be the same size.

Note: Table 72 shows the capability of the logic—1, 2, or 4 loads will be supported, and the table reflects 
that information, but is subject to change.

Table 72. SRAM Controller Configurations

SRAM
Configuration SRAM Size Addresses Needed

to Index SRAM
Addresses Used
as Port Enables

Total Number of Port
Select Pairs Available

512K x 18 1 MB 17:0 23:22, 21:20 4

1M x 18 2 MB 18:0 23:22, 21:20 4

2M x 18 4 MB 19:0 23:22, 21:20 4

4M x 18 8 MB 20:0 23:22 3
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Each channel can be expanded in depth according to the number of port enables available. If 
external decoding is used, then the number of SRAMs is not limited by the number of port enables 
generated by the SRAM controller.

Note: External decoding may require external pipeline registers to account for the decode time, 
depending on the desired frequency.

Maximum SRAM system sizes are shown in Table 73. Shaded entries require external decoding, 
because they use more port enables than the SRAM controller can directly supply.

Figure 75 shows how the SRAM clocks on a channel are connected. For receiving data from the 
SRAMs, clock path and data path are matched to meet hold time requirements.

8M x 18 16 MB 21:0 23:22 3

16M x 18 32 MB 22:0 None 2

32M x 18 64 MB 23:0 None 1

Table 72. SRAM Controller Configurations (Continued)

SRAM
Configuration SRAM Size Addresses Needed

to Index SRAM
Addresses Used
as Port Enables

Total Number of Port
Select Pairs Available

Table 73. Total Memory per Channel

SRAM Size
Number of SRAMs on Channel

1 2 3 4 5 6 7 8

512K x 18 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB 7 MB 8 MB

1M x 18 2 MB 4 MB 6 MB 8 MB 10 MB 12 MB 14 MB 16 MB

2M x 18 4 MB 8 MB 12 MB 16 MB 20 MB 24 MB 28 MB 32 MB

4M x 18 8 MB 16 MB 24 MB 32 MB 64 MB NA NA NA

8M x 18 16 MB 32 MB 48 MB 64 MB NA NA NA NA

16M x 18 32 MB 64 MB NA NA NA NA NA NA

32M x 18 64 MB NA NA NA NA NA NA NA

Figure 75. SRAM Clock Connection on a Channel
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It is also possible to pipeline the SRAM signals with external registers. This is useful for the case 
when there is considerable loading on the address and data signals, which would slow down the 
cycle time. The pipeline stages make it possible to keep the cycle time fast by fanning out the 
address, byte write, and data signals. The RAM read data may also be put through a pipeline 
register, depending on configuration. External decoding of port selects can also be done to expand 
the number of SRAMs supported. Figure 76 is a block diagram that shows the concept of external 
pipelining.

A side effect of the pipeline registers is to add latency to reads, and the SRAM controller must 
account for that delay by waiting extra cycles (relative to no external pipeline registers) before it 
registers the read data. The number of extra pipeline delays is programmed in 
SRAM_Control[Pipeline].

6.5 Command Overview

This section will give an overview of the SRAM commands and their operation. The details will be 
given later in the document. Memory reference ordering will be specified along with the detailed 
command operation.

6.5.1 Basic Read/Write Commands

The basic read and write commands will transfer from 1 to 16 longwords of data to/from the QDR 
SRAM external to the IXP2000 series processor.

For a read command, the SRAM is read and the data placed on the Push bus one longword at a 
time. The command source (for example, the Microengine) is signaled that the command is 
complete during the last data phase of the push bus transfer.

For a write command, the data is first pulled from the source, then written to the SRAM in 
consecutive SRAM cycles. The command source is signaled that the command is complete during 
the last data phase of the pull bus transfer.

Figure 76. External Pipeline Registers Block Diagram
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If a read operation stalls due to the pull-data FIFO filling, any concurrent write operation that is in 
progress to the same address will be temporarily stopped. This technique results in atomic data 
reads.

6.5.2 Atomic Operations

The SRAM Controller does read-modify-writes for the atomic operations, the pre-modified data 
can also be returned if desired. Other (non-atomic) readers and writers can access the addressed 
location in between the read and write portion of the read-modify-write. Table 74 describes the 
atomic operations supported by the SRAM Controller.

Up to two Microengine signals will be assigned to each read-modify-write reference. Microcode 
should always tag the read-modify-write reference with an even numbered signal. If the operation 
requires a pull, then the requested signal will be sent on the pull. If the pre-modified data is to be 
returned to the Microengine, then the Microengine will be sent (requested signal OR 1) when that 
data is pushed.

In Example 27, the version of Test_and_Set requires both a pull and a push:

Table 74. Atomic Operations

Instruction Pull Operand Value Written to SRAM

Set_bits Optional1

1. There are two versions of the Set, Clear, Add, and Swap instructions. One version pulls operand data from the Microengine
transfer registers, while the second version passes the operand data to the SRAM Unit as part of the command.

SRAM_Read_Data OR Pull_Data

Clear_bits Optional SRAM_Read_Data AND NOT Pull_Data

Increment No SRAM_Read_Data + 0x00000001

Decrement No SRAM_Read_Data - 0x00000001

Add Optional SRAM_Read_Data + Pull_Data 

Swap Optional Pull_Data

Example 27. SRAM Test_and_Set with Pull Data

immed [$xfer0, 0x1]

SRAM[test_and_set, $xfer0, test_address, 0, 1], sig_done_2

// SIGNAL_2 is set when $xfer0 is pulled from this ME. SIGNAL_3 is
// set when $xfer0 is written with the test value. Sleep until both
// SIGNALS have arrived.

CTX_ARB[signal_2, signal_3]
212 Hardware Reference Manual



Intel® IXP2800 Network Processor
SRAM Interface
In Example 28 the version of Test_and_Set does not require a pull, but does issue a push. A signal 
is generated when the push is complete:

In Example 29, an Increment operation does not require a pull:

6.5.3 Queue Data Structure Commands

The ability to enqueue and dequeue data buffers at a fast rate is key to meeting chip performance 
goals. This is a difficult problem as it involves dependent memory references that must be turned 
around very quickly. The SRAM controller includes a data structure (called the Q_array) and 
associated control logic in order to perform efficient enqueue and dequeue operations. Optionally, 
this hardware or a portion of this hardware can be used to implement rings and journals.

A queue is an ordered list of data buffers stored at non-contiguous addresses. The first buffer added 
to the queue will be the first buffer removed from the queue. Queue entries are joined together by 
creating links from one data buffer to the next. This hardware implementation supports only a 
forward link. A queue is described by a pointer to its first entry (called the head) and a pointer to its 
last entry (the tail). In addition, there is a count of the number of items currently on the queue. This 
triplet (head, tail, and count) is referred to as the queue descriptor. In the IXP 2400 and IXP2800 
chips, the queue descriptor is stored in that order—head first, then tail, then count. The longword 
alignment of the head addresses for all queue descriptors must be a power of two. For example, 
when there are no extra parameters on the queue descriptor, there will be one unused longword per 
queue descriptor.

Example 28. SRAM Test_and_Set with Optional No-Pull Data

#define no_pull_mode_bit 24
#define byte_mask_override_bit 20
#define no_pull_data_bit 12
#define upper_part_bit 21

// This constant can be created once at init time
ALU[no_pull_constant, --, b, 0x3, <<no_pull_mode_bit]
ALU[no_pull_constant, no_pull_constant, or, 1, <<byte_mask_override_bit]

// Here is a no_pull test_and_add
ALU[temp, no_pull_constant, or, 0xfe, <<no_pull_data_bit] 
ALU[temp, temp, or, 0x5, <<upper_part_bit] 
SRAM[test_and_add, $x0, addra, 0], indirect_ref, sig_done[sig2]

CTX_ARB[sig2]

Example 29. SRAM Increment without Pull Data

SRAM [incr, $xfer0, incr_address, 0, 1], signal_2

// SIGNAL_2 is set when $xfer0 is written with the pre-increment value.

CTX_ARB[signal_2]
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Figure 77 shows a queue descriptor and queue links for a queue containing four entries.

There are two different versions of the enqueue command, ENQ_tail_and_link and ENQ_tail. 
ENQ_tail_and_link is used to enqueue one buffer at a time. In Figure 77, issuing an 
ENQ_tail_and_link to buffer link address Z will result in the queue shown in Figure 78.

ENQ_tail_and_link followed by ENQ_tail are used to enqueue a previously linked string of 
buffers. The string of buffers is used in the case where one packet is too large to fit in one buffer. 
Instead, it is divided among multiple buffers. Figure 79 is an example of a string of buffers.

Figure 77. Queue Descriptor with Four Links
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Figure 78. Enqueueing One Buffer at a Time
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Figure 79. Previously Linked String of Buffers

A9738-01

U

T: Start of Packet

V

U:

W

V:

No Link

W: End of Packet
214 Hardware Reference Manual



Intel® IXP2800 Network Processor
SRAM Interface
To enqueue the string of buffers in Figure 79 to the example queue in Figure 77, first issue 
ENQ_tail_and_link to address T. Figure 80 is the result.

The second step is to issue and ENQ_tail to address W. This will fix the Tail to point to the last 
buffer of the string.

Note: Q_count is not changed by ENQ_tail because the string of buffers represents one packet.

Figure 81 is the final queue state.

There are two different modes for the dequeue command. One mode removes an entire buffer from 
the queue. The second mode removes a piece of the buffer (referred to as a cell). The mode (cell 
dequeue or buffer dequeue) is selectable on a buffer-by-buffer basis by setting the cell_count bits 
(<30:24>) in the link longword.

A ring is an ordered list of data words stored in a fixed block of contiguous addresses. A ring is 
described by a head pointer and a tail pointer. Data is written, using the put command, to a ring at 
the address contained in the tail pointer and the tail pointer is incremented. Data is read, using the 
get command, from a ring at the address contained in the head pointer and the head pointer is 
incremented. Whenever either pointer reaches the end of the ring, the pointer is wrapped back to 
the address of the start of the ring.

Figure 80. First Step to Enqueue a String of Buffers to a Queue (ENQ_Tail_and_Link)
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Figure 81. Second Step to Enqueue a String of Buffers to a Queue (ENQ_Tail)
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A journal is similar to a ring. It is generally used for debugging. Journal commands only write to 
the data structure. New data overwrites the oldest data. Microcode can choose to tag the journal 
data with the Microengine number and CTX number of the journal writer.

The Q_array to support queuing, rings and journals contains 64 registers per SRAM channel. For a 
design with a large number of queues, the queue descriptors cannot all be stored on chip, and thus a 
subset of the queue descriptors (16) is cached in the Q_array. To implement the cache, 16 
contiguous Q_array registers must be allocated. The cache tag (the mapping of queue number to 
Q_array registers) for the Q_array is maintained by microcode in the CAM of a Microengine. The 
writeback and load of the cached registers in the Q_array is under the control of that microcode.

Note: The size of the Q_array does not set a limit on the number of queues supported.

For other queues (free buffer pools, for example), rings, and journals, the information does not 
need to be subsetted and thus can be loaded into the Q_array at initialization time and left there to 
be updated solely by the SRAM controller.

The sum total of the cached queue descriptors plus the number of rings, journals and static queues 
must be less than or equal to 64 for a given SRAM channel.

The fields and sizes of the Q_array registers are shown in Table 75 and Table 76. All addresses are 
of type longword, and are 32 bits in length.

Note: For a Ring or Journal, Head and Tail must be initialized to the same address.

Table 75. Queue Format

Name Longword # Bit #1

1. Bits 31:24 of longword number 2 are available for use by ucode.

Definition

EOP 0 31 End of Packet—decrement Q_count on dequeue

SOP 0 30 Start of Packet—used by the programmer

Cell Count 0 29:24 Number of cells in the buffer

Head 0 23:0 Head pointer

Tail 1 23:0 Tail pointer

Q_count 2 23:0 Number of packets on the queue or number of buffers on 
the queue

SW_Private 2 31:24 Ignored by hardware, returned to Microengine

Head Valid N/A Cached head pointer valid—maintained by hardware

Tail Valid N/A Cached tail pointer valid—maintained by hardware

Table 76. Ring/Journal Format

Name Longword # Bit # Definition

Ring Size 0 31:29 See Table 77 for size encoding.

Head 0 23:0 Get pointer

Tail 1 23:0 Put pointer

Ring Count 2 23:0 Number of longwords on the ring
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Journals/Rings can be configured to be one of eight sizes, as shown in Table 77.

The following sections contain pseudo-code to describe the operation of the various queue and ring 
instructions.

Note: For these examples, NIL is the value 0.

6.5.3.1 Read_Q_Descriptor Commands

These commands are used to bring the queue descriptor data from QDR SRAM memory into the 
Q_array. Only portions of the Q_descriptor are read with each variant of the command in order 
minimize QDR SRAM bandwidth utilization. It is assumed that microcode has previously evicted 
the Q_descriptor data for the entry prior to overwriting the entry data with the new Q_descriptor 
data. Refer to the IXP2400/IXP2800 Programmer’s Reference Manual, Section 3.2.47, “SRAM 
(Read Queue Descriptor)” for more information.

.

6.5.3.2 Write_Q_Descriptor Commands

The write_Q_descriptor commands are used to evict an entry in the Q_array and return it’s 
contents to QDR SRAM memory. Only the valid fields of the Q_descriptor are written in order 
minimize QDR SRAM bandwidth utilization. Refer to the IXP2400/IXP2800 Programmer’s 
Reference Manual, Section 3.2.48, “SRAM (Write Queue Descriptor)” for more information.

6.5.3.3 ENQ and DEQ Commands

These commands add or remove elements from the queue structure while updating the Q_array 
registers. Refer to the IXP2400/IXP2800 Programmer’s Reference Manual, Section 3.2.49, 
“SRAM (Enqueue)”and Section 3.2.5, “SRAM (Dequeue)” for more information.

6.5.4 Ring Data Structure Commands

The ring structure commands use the Q_array registers to hold the head tail and count data for a 
ring data structure, which is a fixed size array of data with insert and remove pointers. Refer to the 
IXP2400/IXP2800 Programmer’s Reference Manual, Section 3.2.53, “SRAM (Ring Operations)” 
for more information.

Table 77. Ring Size Encoding

Ring Size Encoding Size of Journal/Ring Area Head/Tail Field Base Head and Tail Field Increment

000 512 Longwords 23:9 8:0

001 1K 23:10 9:0

010 2K 23:11 10:0

011 4K 23:12 11:0

100 8K 23:13 12:0

101 16K 23:14 13:0

110 32K 23:15 14:0

111 64K 23:16 15:0
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6.5.5 Journaling Commands

Journaling commands use the Q_array registers to index into an array of memory in the QDR 
SRAM that will be periodically written with information to help debug applications running on the 
IXP 2400 and IXP2800 processors. Once the array has been completely written once, subsequent 
journal writes will overwrite the previously written data—only the most recent data will be present 
in the data structure. Refer to the IXP2400/IXP2800 Programmer’s Reference Manual, Section 
3.2.52, “SRAM (Journal Operations)” for more information.

6.5.6 CSR Accesses

CSR accesses will write or read CSRs within each controller. The upper address bits will determine 
which channel will respond, while the CSR address within a channel are given in the lower address 
bits.

6.6 Parity

SRAM can be optionally protected by byte parity. Even parity is used—the combination of eight 
data bits and the corresponding parity bit will have an even number of ‘1’s. The SRAM controller 
generates parity on all SRAM writes. When parity is enabled (SRAM_Control[Par_Enable]) the 
SRAM controller checks for correct parity on all reads. Upon detection of a parity error on a read 
or the read portion of an atomic read-modify-write, the SRAM controller will record the address of 
the location with bad parity in SRAM_Parity[Address] and set the appropriate 
SRAM_Parity[Error] bit(s). Those bit(s) will interrupt the Intel XScale® core when enabled in 
IRQ_Enable[SRAM_Parity] or FIQ_Enable[SRAM_Parity]. The Data Error signal in the Push_CMD 
will be asserted when the data to be read is delivered (unless the token Ignore Data Error was 
asserted in the command; in that case the SRAM controller will not assert Data Error). When Data 
Error is asserted, the Push Arbiter will suppress the Microengine signal if the read was originated 
by a Microengine (it will use 0x0, which is a null signal, in place of the requested signal number).

Note: If incorrect parity is detected on the read portion of an atomic read-modify-write, the incorrect 
parity will be preserved after the write (that is, the byte(s) with bad parity during the read will have 
incorrect parity written during the write).

When parity is used, Intel XScale® core software must initialize the SRAMs by:

1. Enable parity (write a 1 to SRAM_Control[Par_Enable]).

2. Writing to every SRAM address.

SRAM should not be read prior to doing the above initialization, otherwise parity errors are likely 
to be recorded.
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6.7 Address Map

Each SRAM channel occupies a 1GB region of addresses. Channel 0 starts at 0, Channel 1 at 1GB, 
etc. Each SRAM controller receives commands from the command buses. It compares the target ID 
to the SRAM target ID, and address bits 31:30 to the channel number. If they both match, then the 
controller processes the command. See Table 78.

Note: If an access addresses a non-existent address within an SRAM controller’s address space the results 
are unpredictable.For example the result of accessing address 0x0100 0000 when there is only
1 MB of SRAM populated on the channel will produce unpredictable results.

For SRAM (memory or CSR) references from the Intel XScale® core, the channel select is in 
address bits 29:28. The Gasket shifts those bits to 31:30 to match addresses generated by the MEs. 
Thus, the SRAM channel select logic is the same whether the command source is a Microengine or 
the Intel XScale® core.

The same channel start and end addresses are used both for SRAM memory and CSR references. 
CSR references are distinguished from memory references through the CSR encoding in the 
command field.

Note: Reads and writes to undefined CSR addresses will yield unpredictable results.

The IXP 2400 and IXP2800 addresses are byte addresses. As the fundamental unit of operation of 
the SRAM controller is a longword access, the SRAM controller will ignore the 2 low order 
address bits in all cases and utilize the byte mask field on memory address space writes to 
determine the bytes to write into the SRAM. Any combination of the four bytes can be masked. 
The operation of byte writes with a length other than 1 are unpredictable. That is, microcode should 
not use a ref_count greater than 1 longword when a byte_mask is active. CSRs are not byte 
writable.

Table 78. Address Map

Start Address End Address Responder

0x0000 0000 0x3FFF FFFF Channel 0

0x4000 0000 0x7FFF FFFF Channel 1

0x8000 0000 0xBFFF FFFF Channel 2

0xc000 0000 0xFFFF FFFF Channel 3
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6.8 Reference Ordering

This section discusses the ordering between accesses to any one SRAM controller. Various 
mechanisms are used to guarantee order—for example, references that always go to the same 
FIFOs remain in order. There is a CAM associated with write addresses that is used to order reads 
behind writes. Lastly, several counter pairs are used to implement “fences”. The input counter is 
tagged to a command and the command is not permitted to execute until the output counter 
matches the fence tag. All of this will be discussed in more detail in this section.

6.8.1 Reference Order Tables

Table 79 shows the architectural guarantees of order of accesses to the same SRAM address 
between a reference of any given type (shown in the column labels) and a subsequent reference of 
any given type (shown in the row labels). The definition of first and second is defined by the time 
the command is valid on the command bus. Verification requires testing only the order rules shown 
in Table 79 and Table 80. Note that a blank entry means no order is enforced.

Table 80 shows the architectural guarantees of order to access to the same SRAM Q_array entry 
between a reference of any given type (shown in the column labels) and a subsequent reference of 
any given type (shown in the row labels). The terms first and second are defined with reference to 
the time the command is valid on the command bus. The same caveats that apply to Table 79 apply 
to Table 80.

Table 79. Address Reference Order

1st ref
2nd ref Memory 

Read CSR Read Memory 
Write CSR Write Atomics

Queue / 
Ring / 

Q_Descr 
Commands

Memory Read Order Order

CSR Read Order

Memory Write Order Order

CSR Write Order

Atomics Order Order

Queue / Ring /
Q_ Descr 
Commands

See 
Table 80.
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6.8.2 Microcode Restrictions to Maintain Ordering

It is the microcode programmer’s job to ensure order where the program flow requires order and 
where the architecture does not guarantee that order. 

One mechanism that can be used to do this is signaling. For example, say that microcode needs to 
update several locations in a table. A location in SRAM is used to lock access to the table. 
Example 30 is the microcode for this table update.

Table 80. Q_array Entry Reference Order

1st ref
2nd ref

Read_Q
_Descr 
head,

tail

Read_
Q_Des

cr 
other

Write_Q
_Descr Enqueue Dequeue Put Get Journal

Read_Q_Descr
head,tail Order1

1. The order of Read_Q_Descr_head/tail after Write_Q_Descr to the same element will be guaranteed only if it is to a different
descriptor SRAM address. The order of Read_Q_Descr_head/tail after Write_Q_Descr to the same element with the same
descriptor SRAM address is not guaranteed and should be handled by the Microengine code.

Read_Q_
Descr other Order

Write_Q_
Descr2

2. Write_Q_Descr reference order is not guaranteed after any of the other references. The Queue array hardware assumes
that the Microengine managing the cached entries will flush an element ONLY when it becomes the LRU in the Microengine
CAM. Using this scheme, the time between the last use of this element and the write reference is sufficient to guarantee the
order.

Enqueue Order Order Order Order3

3. Order between Enqueue references and Dequeue references are guaranteed only when the Queue is empty or near empty.

Dequeue Order Order Order3 Order

Put Order

Get Order

Journal Order

Example 30. Table Update Microcode

IMMED [$xfer0, 1]

SRAM [write, $xfer0, flag_address, 0, 1, ctx_swap [SIG_DONE_2]

; At this point, the write to flag_address has passed the point of coherency. Do 
the table updates.

SRAM [write, $xfer1, table_base, offset1, 2] , sig_done [SIG_DONE_3]

SRAM [write, $xfer3, table_base, offset2, 2] , sig_done [SIG_DONE_4]

CTX_ARB [SIG_DONE_3, SIG_DONE_4]

; At this point, the table writes have passed the point of coherency. Clear the 
flag to allow access by other threads.

IMMED [$xfer0, 0]

SRAM [write, $xfer0, flag_address, 0, 1, ctx_swap [SIG_DONE_2]
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Other microcode rules:

• All access to atomic variables should be through read-modify-write instructions.

• If the flow must know that a write is completed (actually in the SRAM itself), follow the write 
with a read to the same address. The write is guaranteed to be complete when the read data has 
been returned to the Microengine.

• With the exception of initialization, never do write commands to the first 3 longwords of a 
queue_descriptor data structure (these are the longwords that hold head, tail, and count). All 
accesses to this data must be through the Q commands.

• To initialize the Q_array registers, perform a memory write of at least 3 longwords, followed 
by a memory read to the same address (to guarantee that the write completed). Then, for each 
entry in the Q_array, perform a read_q_descriptor_head followed by a 
read_q_descriptor_other using the address of the same 3 longwords.

6.9 Coprocessor Mode

Each SRAM controller may interface to an external coprocessor through it’s standard QDR 
interface. This interface will allow for the cohabitation of both SRAM devices and coprocessors 
operating on the same bus. The coprocessor will behave as a memory mapped device on the SRAM 
bus. Figure 82 is a simplified block diagram of the SRAM controller. Figure 82 shows the 
connection to a coprocessor through a standard QDR interface.

Note: Most coprocessors will not need a large number of address bits—connect as many bits of An as 
required by the coprocessor.

Figure 82. Connection to a Coprocessor Though Standard QDR Interface
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The external coprocessor interface is based on FIFO communication.

A thread can send parameters to the coprocessor by doing a normal SRAM write instruction:
sram[write, $sram_xfer_reg, src1, src2, ref_count], optional_token

The number of parameters (longwords) passed is specified by ref_count. The address can be used 
to support multiple coprocessor FIFO ports. The coprocessor will perform some operation using 
the parameters, and then, sometime later it will pass back some number of results values (the 
number of parameters and results will be known by the coprocessor designers). The time between 
the input parameter and return values is not fixed; it is determined by the amount of time the 
coprocessor requires to do its processing and can be variable. When the coprocessor is ready to 
return the results it signals back to the SRAM controller through a mailbox valid bit that the data in 
the read FIFO is valid. A thread can get the return values by doing a normal SRAM read 
instruction:
sram[read, $sram_xfer_reg, src1, src2, ref_count], optional_token

Figure 83 shows the coprocessor with 1 to n memory-mapped FIFO ports.

If the read instruction executes before the return values are ready, the coprocessor will signal data 
invalid through the mailbox register on the read data bus (Qn[17:0]). Signaling a thread upon 
pushing its read data works exactly as in a normal SRAM read.

Figure 83. Coprocessor with Memory Mapped FIFO Ports
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There can be multiple operations in-progress in the coprocessor. The SRAM controller will send 
parameters to the coprocessor in response to each SRAM write instruction without waiting for 
return results of previous writes. If the coprocessor is capable of re-ordering operations—that is, 
returning the results for a given operation before returning the results of an earlier arriving 
operation—Microengine code must manage matching results to operations. Tagging the operation 
by putting a sequence value into the parameters, and having the coprocessor copy that value into 
the results is one way to accomplish this requirement.

Flow control will be under the Network Processor's Microengine control. An Microengine thread 
accessing a coprocessor port will maintain a count of the number of entries in that coprocessor 's 
write FIFO port. Each time an entry is written to that coprocessor port the count will be 
incremented. When a valid entry is read from that coprocessor read port the count will be 
decrement by the thread.
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SHaC—Unit Expansion 7

This section covers the operation of the Scratchpad, Hash Unit and CSRs (SHaC). 

7.1 Overview

The SHaC unit is a multifunction block containing Scratchpad memory and logic blocks to perform 
hashing operations and interface with Intel XScale® core peripherals and chip CSRs through the 
APB and CSR buses, respectively. The SHaC also houses the global registers, as well as chip Reset 
logic.

The SHaC unit has the following features:

• Communication to Intel XScale® core peripherals, such as GPIOs and timers, through the 
APB bus.

• Creation of hash indices of 48, 64, or 128-bit widths.

• Communication ring used by MicroEngines (MEs) for interprocess communication.

• Third-option memory storage usable by Intel XScale® core and MEs.

• CSR bus interface to permit fast writes to CSRs, as well as standard read and writes.

• Push/Pull Reflector to transfer data from the Pull bus to the Push bus.

The CSR and ΑRM Advanced Peripheral Bus (APB) bus interfaces are controlled by the 
Scratchpad state machine and will be addressed in the Scratchpad design detail section. (See 
Section 7.1.2.)

Note: Detailed information about CSRs is contained in the Intel® IXP2400/IXP2800 Network Processor 
Programmer’s Reference Manual.

7.1.1 SHaC Unit Block Diagram

The SHaC unit contains two functional units: the Scratchpad and Hash Unit. Each will be described 
in greater detail in the following sections. The CAP and APB bus interfaces will be addressed as 
part of the Scratchpad description.
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Figure 84. SHaC Top Level Diagram

A9751-01

Scratch
RAM

(4 K x 32)

Scratch/CAP
Control
Logic

Intel®
XScale™

Architecture

SH_APB_CTL

SH_APB_WR_DATA

XP_RD_DATA

TAXX_CMD_BUS_B

SH_CMDQ_FULL

SH_PULL_CMD

SP0_PULL_DATA

SP1_PULL_DATA

SP0_PULLQ_FULL

SP1_PULLQ_FULL

SP0_TAKE_DATA

SH_PUSH_DATA

SP1_TAKE_DATA

XP_RDY

CSRs

SH_CSR_CTL

SH_CSR_WR_DATA

CSR_RD_DATA

CSR_RDY

Command
Arbiters

SP0_PUSHQ_FULL

SP1_PUSHQ_FULL

SH_PUSH_ID

SH_PUSH_DE

SCR_HASH_TAKE_PULL1_DATA

SCR_HASH_TAKE_PULL0_DATA

SCR_SEND_HASH_DATA

SCR_HASH_CMD

Push
Arbiters

Hash
Control
Logic

Pull
Arbiters

HASH_PUSH_DATA_REQ

HASH_PUSH_DATA

HASH_PUSH_CMD
226 Hardware Reference Manual



Intel® IXP2800 Network Processor
SHaC—Unit Expansion
7.1.2 Scratchpad

7.1.2.1 Scratchpad Description

The SHaC Unit contains a 16 Kbyte Scratchpad memory, organized as 4K 32-bit words, that is 
accessible by the Intel XScale® core and MicroEngines (MEs). The Scratchpad connects to the 
internal Command, S_Push/S_Pull, CSR, and APB buses, as shown in Figure 85.

The Scratchpad memory provides the following operations:

• Normal reads and writes. From one to 16 longwords (32 bits) can be read/written with a single 
command. Note that Scratchpad is not byte-writable. Each write must write all four bytes.

• Atomic read-modify-write operations, bit-set, bit-clear, increment, decrement, add, subtract, 
and swap. The Read-Modify-Write (RMW) operations can also optionally return the 
premodified data.

• Sixteen Hardware Assisted Rings for interprocess communication.1

• Standard support of APB peripherals such as UART, Timers, and GPIOs through the ARM 
Advanced Peripheral Bus (APB).

• Fast write and standard read and write operations to CSRs through the CSR Bus. A fast write 
is where the write data is supplied with the command, rather than pulling the data from the 
source.

• Push/Pull Reflector Mode that supports reading from a device on the pull bus and writing the 
data to a device on the push bus (reflecting the data from one bus to the other). A typical 
implementation of this mode is to allow a Microengine to read or write the transfer registers or 
CSRs in another Microengine. Note that the Push/Pull Reflector Mode only connects to a 
single Push/Pull bus. If a chassis implements more than one Push/Pull bus, it can only connect 
one specific bus to the CAP.

Scratchpad memory is provided as a third memory resource (in addition to SRAM and DRAM) 
that is shared by the MEs and Intel XScale® core. The MEs and Intel XScale® core can distribute 
memory accesses between these three types of memory resources to provide a greater number of 
memory accesses occurring in parallel.

1. A ring is a FIFO that uses a head and tail pointer to store/read information in Scratchpad memory.
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Figure 85. Scratchpad Block Diagram
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7.1.2.2 Scratchpad Interface

Note: The Scratchpad command and S_Push and S_Pull bus interfaces actually are shared with the Hash 
Unit. Only one command, to either of those units, can be accepted per cycle.

The CSR and APB buses will be described in detail in following sections.

7.1.2.2.1 Command Interface

The Scratchpad accepts commands from the Command Bus and can accept one command every 
cycle.

For Push/Pull reflector write and read commands, the command bus is rearranged before being sent 
to the Scratchpad state machine in order to allow a single state (REFLECT_PP) to be used to 
handle both commands. 

7.1.2.2.2 Push/Pull Interface

The Scratchpad has the capability to interface to either one or two pairs of push/pull (PP) bus pairs. 
The interface from the Scratchpad to the PP bus pair is through the Push/Pull Arbiters. Each PP bus 
has a separate Push and Pull arbiter through which access to the Push bus and Pull bus, 
respectively, is regulated. Refer to the SRAM Push Arbiter and SRAM Pull Arbiter chapters for 
more information. When the Scratchpad is used in a chip that only utilizes one pair of PP buses, the 
other interface is unused.

7.1.2.2.3 CSR Bus Interface

The CSR Bus provides fast write and standard read and write operations from the Scratchpad to the 
CSRs in the CSR block.

7.1.2.2.4 Advanced Peripherals Bus Interface (APB)

The Advanced Peripheral Bus (APB) is part of the Advanced Microcontroller Bus Architecture 
(AMBA) hierarchy of buses that is optimized for minimal power consumption and reduced design 
complexity.

Note: The SHaC Unit uses a modified APB interface in which the APB peripheral is required to generate 
an acknowledge signal (APB_RDY_H) during read operations. This is done to indicate that valid 
data is on the bus. The addition of the acknowledge signal is an enhancement added specifically for 
the IXP Chassis. (For more details refer to the ARM AMBA Specification 1.6.1.3.)

7.1.2.3 Scratchpad Block Level Diagram

Scratchpad Command Overview

This section will detail the operations performed for each Scratchpad command. Command order is 
preserved because all commands go through a single command inlet FIFO.

When a valid command is placed on the command bus, the control logic checks the instruction 
field for the Scratchpad or CAP ID. The command, address, length, etc. are enqueued into the 
Command Inlet FIFO. If the command requires pull data, signals are generated and immediately 
sent to the Pull Arbiter. The command is pushed from the Inlet FIFO to the command pipe where it 
will be serviced according to the command type.
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If the Command Inlet FIFO becomes full, the Scratchpad controller will send a full signal to the 
command arbiter which will prevent it from sending further Scratchpad commands.

7.1.2.3.1 Scratchpad Commands

The basic read and write commands will transfer from 1 to 16 longwords of data to/from the 
Scratchpad.

Reads 

When a read command is at the head of the Command queue, the Push Arbiter is checked to see if 
it has enough room for the data. If so, the Scratchpad RAM is read, and the data is sent to the Push 
Arbiter one 32-bit word at a time (the Push_ID is updated for each word pushed). The Push Data is 
sent to the specified destination.

The read data is placed on the S_Push bus one 32-bit word at a time. If the master is a Microengine, 
it is signaled that the command is complete during the last phase of the push bus transfer. Other 
masters (Intel XScale® core and PCI) must count the number of data pushes to know when the 
transfer is complete.

Writes

When a write command is at the head of the Command Inlet FIFO, signals are sent to the Pull 
Arbiter. If there is room in the queue, the command is sent to the Command pipe.

When a write command is at the head of the Command pipe, the command waits for a signal from 
the Pull Data FIFO, indicating the data to be written is valid. Once the first longword is received, 
the data is written on consecutive cycles to the Scratchpad RAM until the burst (up to 16 
longwords) is completed.

If the master is a Microengine, it is signaled that the command is complete during the last pull bus 
transfer. Other masters (Intel XScale® core and PCI) must count the number of data pulls to know 
when the transfer is complete.

Atomic Operations

The Scratchpad supports the following atomic operations.

• bit set

• bit clear

• increment

• decrement

• add

• subtract

• swap

The Scratchpad does read-modify-writes for the atomic operations, the pre-modified data also can 
be returned, if desired. The atomic operations operate on a single longword. There is one cycle 
between the read and write while the modification is done. In that cycle no operation is done, so an 
access cycle is lost.

When a read-modify-write command requiring pull data from a source is at the head of the 
Command Inlet FIFO, a signal is generated and sent to the Pull Arbiter (if there is room).
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When the RMW command reaches the head of the Command pipe, the Scratchpad reads the 
memory location in the RAM. If the source requests the pre-modified data (Token[0] set), it is sent 
to the Push Arbiter at the time of the read. If the RMW requires pull data, the command waits for 
the data to be placed into the Pull Data FIFO before performing the operation; otherwise the 
operation is performed immediately. Once the operation has been performed, the modified data is 
written back to the Scratchpad RAM.

Up to two Microengine signals will be assigned to each read-modify-write reference. Microcode 
should always tag the read-modify-write reference with an even numbered signal. If the operation 
requires a pull, then the requested signal will be sent on the pull. If the read data is to be returned to 
the Microengine, then the Microengine will be sent (requested signal OR 1) when that data is 
pushed.

For all atomic operations, whether or not the read data is returned is determined by Command bus 
Token[0].

Note: Intel XScale® core can do atomic commands using aliased addresses in Scratchpad. An Intel 
XScale® core Store instruction to an atomic command address will do the RMW without returning 
the read data, an Intel XScale® core Swap instruction (SWP) to an atomic command address will 
do the RMW and return the read data to Intel XScale® core.

7.1.2.3.2 Ring Commands

The Scratchpad provides 16 Rings used for interprocess communication. The rings provide two 
operations.

• Get(ring, length)

• Put(ring, length)

Ring is the number of the ring (0 through 15) to get from or put to, and length specifies the number 
of longwords to transfer. A logical view of one of the rings is shown in Figure 86.

Figure 86. Ring Communication Logic Diagram
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Head, Tail, Base, and Size are registers in the Scratchpad Unit. Head and Tail point to the actual 
ring data, which is stored in the Scratchpad RAM. For each ring in use, a region of Scratchpad 
RAM must be reserved for the ring data. The reservation is by software convention. The hardware 
does not prevent other accesses to the region of Scratchpad used by the ring. Also, the regions of 
Scratchpad memory allocated to different rings must not overlap.

Head points to the next address to be read on a get, and Tail points to the next address to be written 
on a put. The size of each ring is selectable from the following choices: 128, 256, 512, or 1,024 32-
bit words. The size is specified in the Ring_Base register. 

Note: The above rule stating that rings must not overlap implies that many configurations are not legal. 
For example, programming five rings to size of 1024 words would exceed the total size of 
Scratchpad memory, and therefore is not legal.

Note: Note that the region of Scratchpad used for a ring is naturally aligned to it size.

Each ring asserts an output signal which is used as a state input to the MEs. The software 
configures whether the Scratchpad asserts the signal if a ring becomes empty or if the ring is near 
full.

If configured to assert status when the rings are near full, MEs must test the input state (by doing 
Branch on Input Signal) before putting data onto a ring. There is a lag in time from a put instruction 
executing to the Full signal being updated to reflect that put. To be guaranteed that a put will no 
overfill the ring there is a bound on the number of Contexts and the number of 32-bit words per 
write based on the size of the ring, shown in Table 81. Each Context should test the Full signal, 
then do the put if not Full, and then wait until the Context has been signaled that the data has been 
pulled before testing the Full signal again.

Table 81. Ring Full Signal Use -- Number of Contexts and Length Versus Ring Size 

Number of 
Contexts Ring Size

128 256 512 1024

1 16 16 16 16

2 16 16 16 16

4 8 16 16 16

8 4 12 16 16

16 2 6 14 16

24 1 4 9 16

32 1 3 7 15

40 Illegal 2 5 12

48 Illegal 2 4 10

64 Illegal 1 3 7

128 Illegal Illegal 1 3

NOTE:
1. Number in each table entry is the largest length that should be put. 16 is the largest length that a 

single put instruction can generate.
2. Illegal - With that number of Contexts, even a length of 1 could cause ring to overfill.
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The ring commands operate as outlined in the pseudo code in Example 31. The operations are 
atomic meaning that multi-word gets and puts do all the reads and writes with no other intervening 
Scratchpad accesses.

Prior to using the Scratchpad rings, software must initialize the Ring Registers (by CSR writes). 
The Base address of the ring must be written, and also the size field which determines the number 
of 32-bit words for the Ring. 

Note: Detailed information about CSRs is contained in the Intel® IXP2400/IXP2800 Network Processor 
Programmer’s Reference Manual.

Writes

For an APB or CAP CSR write, the Scratchpad arbitrates for the S_Pull_Bus, pulls the write data 
from the source identified in the instruction (either a Microengine transfer register or Intel XScale® 
core write buffer), and puts it into one of the Pull Data FIFOs. It then drives the address and writes 
data on to the appropriate bus. CAP CSRs locally decode the address to match their own. The 
Scratchpad generates a separate APB device select signal for each peripheral device (up to 15 
devices). If the write is to an APB CSR, the control logic maintains valid signaling until the 
APB_RDY_H signal is returned (The APB RDY signal is an extension to the APB bus 
specification specifically added for the IXP Chassis). Upon receiving the APB_RDY_H signal, the 
APB select signal will be deasserted and the state machine returns to the idle state between 
commands. The CAP CSR bus does not support a similar acknowledge signal on writes since the 
Fast Write functionality requires that a write operation be retired each cycle.

Example 31. Ring Command Pseudo Code

GET Command
Get(ring, length) 

If count[ring] >= length //enough data in the ring?

ME <-- Scratchpad[head[ring]] // each data phase

head[ring]+= length % ringSize

count[ring] -= length

else ME <--nil // 1 data phase signals read off empty list
NOTE: The Microengine signal is delivered with last data. In the case of nil, the signal is delivered with the 1 

data phase.
PUT Command

Before issuing a PUT command, it is the responsibility of the Microengine thread issuing the command to make 
sure the Ring has enough room.
Put(ring, length)

SRAM[tail[ring]] <-- ME pull data // each data phase

tail[ring]+= length % ringSize

Count[ring] += length

Table 82. Head/Tail, Base and Full by Ring Size

Size (# of 32-bit 
words) Base Address Head/Tail Offset Full Threshold 

(Entries

128 13:9 8:2 32

256 13:10 9:2 64

512 13:11 10:2 128

1024 13:12 11:2 256

NOTE: Note that bits [1:0] of the address are assumed to be 00.
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For writes using the Reflector mode, Scratchpad arbitrates for the S_Pull_Bus, pulls the write data 
from the source identified in the instruction (either a Microengine transfer register or Intel XScale® 
core write buffer), and puts it into one of the Pull Data FIFOs (same as for APB and CAP CSR 
writes). The data is then removed from the Pull Data FIFO and sent to the Push Arbiter.

For CSR Fast Writes, the command bypasses the Inlet Command FIFO and is acted on at first 
opportunity. The CSR control logic has an arbiter that gives highest priority to fast writes. If an 
APB write is in progress when a fast write arrives, both write operations will complete 
simultaneously. For a CSR fast write, the Scratchpad extracts the write data from the command 
rather than pulling the data from a source over the Pull bus. It then drives the address and writes 
data to all CSRs on the CAP CSR bus, using the same method used for the CAP CSR write. 

The Scratchpad unit supports CAP write operations with burst counts greater than 1, except for fast 
writes which only support a burst count of one. Burst support is required primarily for Reflector 
mode and software must ensure that burst is performed to a non-contiguous set of registers. CAP 
looks at the length field on the command bus and breaks each count into a separate APB write 
cycle, incrementing the CSR number for each bus access. 

Reads

For an APB read, the Scratchpad drives the address, write, select, and enable signals, and then 
waits for the acknowledge signal (APB_RDY_H) from APB device. For a CAP CSR read, the 
address is driven, which controls a tree of multiplexors to select the appropriate CSR. CAP then 
waits for the acknowledge signal (CAP_CSR_RD_RDY). (Note that the CSR bus can support an 
acknowledge signal since the read operations occur on a separate read bus and will not interfere 
with Fast Write operations). In both cases, when the data is returned, the data is sent to the Push 
Arbiter and the Push Arbiter pushes the data to the destination. 

For reads using the Reflector mode, the write data is pulled from the source identified in 
ADDRESS (either a Microengine transfer register or Intel XScale® core write buffer), and put into 
one of the Scratchpad Pull Data FIFOs. The data is then sent to the Push Arbiter. The arbiter then 
moves the data to the destination specified in the command. Note that this is the same as a 
Reflector mode write, except the source and destination are identified using opposite fields.

The Scratchpad performs one read operation at a time. In other words CAP will not begin a APB 
read until a CSR read has completed or vice versa. This simplifies the design by ensuring that, 
when lengths are greater than 1, the data is sent to the Push Arbiter in a contiguous order and not 
interleaved with data from a read on the other bus. 

Signal Done 

CAP can provide a signal to a Microengine upon completion of a command. For APB and CAP 
CSR operations, CAP signals the Microengine using the same method as any other target. For 
Reflector mode reads and writes, CAP uses the TOKEN field of the Command to determine 
whether to signal the command initiator, the Microengine that is the target of the reflection, both, or 
neither
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7.1.2.3.3 Clocks and Reset

Clock generation and distribution is handled outside of CAP and is dependent on the specific chip 
implementation. Separate clock rates are required for CAP CSRs/Push/Pull Buses and ARB since 
APB devices tend to run slower. CAP provides reset signals for the CAP CSR block and APB 
devices. These resets are based on the system reset signal and synchronized to the appropriate bus 
clock.

Table 83 shows the Intel XScale® core and Microengine instructions used to access devices on 
these buses and it shows which buses are used during the operation. For example, to read an APB 
peripheral such as a UART CSR, a Microengine would execute a csr[read] instruction and Intel 
XScale® core would execute a Load (ld) instruction. Data is then moved between the CSR and the 
Intel XScale® core/Microengine by first reading the CSR via the APB bus and then writing the 
result to the Intel XScale® core/Microengine via the Push Bus.

7.1.2.3.4 Reset Registers

The reset registers reside in the SHaC. For more information on chip reset, refer Section 10, 
“Clocks, Reset, and Initialization”. Strapping pins will be used to select the reset count 
(currently140 cycles after deassert). Options for reset count will be 64 (default), 128, 512, and 
2048.

Table 83. Intel XScale® Core and Microengine Instructions

Accessing Read Operation Write Operation

APB Peripheral

Access Method: 

Microengine: csr[read]

Intel XScale® core: ld

Access Method: 

Microengine: csr[write]

Intel XScale® core: st

Bus Usages: 

Read source: APB bus

Write dest: Push bus

Bus Usages: 

Read source: Pull Bus

Write dest: APB bus

CAP CSR

Access Method: 

Microengine: csr[read]

Intel XScale® core: ld

Access Method: 

Microengine: csr[write], fast_wr

Intel XScale® core: st

Bus Usages: 

Read source: CSR bus

Write dest: Push bus

Bus Usages: 

csr[write] and st

Read source: Pull Bus

Write dest: CSR bus

fast_wr

Write dest: CSR bus

Microengine CSR or Xfer 
Register

(Reflector Mode)

Access Method: 

Microengine: csr[read]

Intel XScale® core: ld

Access Method: 

Microengine: csr[write]

Intel XScale® core: st

Bus Usages: 

Read source: Pull bus (Address)

Write dest: Push bus(PP_ID)

Bus Usages: 

Reads: Pull Bus (PP_ID)

Write dest: Push bus (Address)
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7.1.3 Hash Unit

The SHaC unit contains a Hash Unit that can take 48-bit, 64-bit, or 128-bit data and produces a 
48-bit, 64-bit, or a 128-bit hash index, respectively. The Hash Unit is accessible by the MEs and 
Intel XScale® core. Figure 87 shows a block diagram of the Hash Unit. 

.

Figure 87. Hash Unit Block Diagram
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7.1.3.1 Hashing Operation

Up to three hash indexes can be created using a single Microengine instruction. The Microengine 
hash instructions are shown in Example 32.

A Microengine initiates a hash operation by writing a contiguous set of SRAM Transfer Registers 
and then executing the hash instruction. The SRAM Transfer Registers can be specified as either 
Context-Relative, or Indirect; Indirect will allow for any of the SRAM Transfer Register to be 
used. Two SRAM Transfer Registers are required to create hash indexes for 48-bit and 64-bit and 
four SRAM Transfer Registers to create 128-bit hash indexes, as shown in Table 84. In the case of 
the 48-bit hash, the Hash Unit ignores the upper two bytes of the second Transfer Register.

Example 32. Microengine Hash Instructions

hash1_48[$xfer], optional_token

hash2_48[$xfer], optional_token

hash3_48[$xfer], optional_token

hash1_64[$xfer], optional_token

hash2_64[$xfer], optional_token

hash3_64[$xfer], optional_token

hash1_128[$xfer], optional_token

hash2_128[$xfer], optional_token

hash3_128[$xfer], optional_token

Where:

$xfer The beginning of a contiguous set of registers that supply the data used 
to create the hash input and receive the hash index upon completion of 
the hash operation.

optional_token sig_done, ctx_swap, defer [1]

Table 84. S Transfer Registers Hash Operands

Register Address

48-Bit Hash Operations

Don’t care hash 3[47:32] $xfer n+5

hash 3 [31:0] $xfer n+4

Don’t care hash 2[47:32] $xfer n+3

hash 2 [31:0] $xfer n+2

Don’t care hash 1[47:32] $xfer n+1

hash 1 [31:0] $xfer n

64-Bit Hash Operations

hash 3 [63:32] $xfer n+5

hash 3 [31:0] $xfer n+4

hash 2 [63:32] $xfer n+3

hash 2 [31:0] $xfer n+2

hash 1 [63:32] $xfer n+1
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Intel XScale® core initiates a hash operation by writing a set of memory-mapped Hash Operand 
Registers, which are built in the Intel XScale® core gasket, with the data to be used to generate the 
hash index. There are separate registers for 48-bit, 64-bit, and 128-bit hashes. Only one hash 
operation of each type can be done at a time. Writing to the last register in each group informs the 
gasket logic that it has all the operands for that operation, and it will then arbitrate for Command 
bus to send the command to the Hash Unit.

Note: Detailed information about CSRs is contained in the Intel® IXP2400/IXP2800 Network Processor 
Programmer’s Reference Manual.

For both Microengine generated commands and Intel XScale® core generated commands, the 
command enters the Command Inlet FIFO. As with the Scratchpad write and RMW operations, 
signals are generated and sent to the Pull Arbiter. The Hash unit Pull Data FIFO allows the data for 
up to three hash operations to be read into the Hash Unit in a single burst. When the command is 
serviced, the first data to be hashed enters the hash array while the next two wait in the FIFO.

The Hash Unit uses a hard-wired polynomial algorithm and a programmable hash multiplier to 
create hash indexes. Three separate multipliers are supported, one for 48-bit hash operations, one 
for 64-bit hash operations and one for 128-bit hash operations. The multiplier is programmed 
through registers (HASH_MULTIPLIER_64_1, HASH_MULTIPLIER_64_2, 
HASH_MULTIPLIER_48_1, HASH_MULTIPLIER_48_2, HASH_MULTIPLIER_128_1, 
HASH_MULTIPLIER_128_2, HASH_MULTIPLIER_128_3, HASH_MULTIPLIER_128_4).

The multiplicand is shifted into the hash array sixteen bits at a time. The hash array performs a ones 
complement multiply and polynomial divide, calculated using the multiplier and 16 bits of the 
multiplicand. The result is placed into an output register and also feeds back into the array. This 
process is repeated 3 times for a 48-bit hash (16 bits x 3 = 48), 4 times for a 64-bit hash (16 bits x 4 
= 64) and 8 times for a 128-bit hash (16 x 8 = 128). After an entire multiplicand has been passed 
through the hash array, the resulting hash index is placed into a two-stage output pipeline and the 
next hash is immediately started.

hash 1 [31:0] $xfer n

128-Bit Hash Operations

hash 3 [127:96] $xfer n+11

hash 3 [95:64] $xfer n+10

hash 3 [63:32] $xfer n+9

hash 3 [31:0] $xfer n+8

hash 2 [127:96] $xfer n+7

hash 2 [95:64] $xfer n+6

hash 2 [63:32] $xfer n+5

hash 2 [31:0] $xfer n+4

hash 1 [127:96] $xfer n+3

hash 1 [64:95] $xfer n+2

hash 1 [63:32] $xfer n+1

hash 1 [31:0] $xfer n

Table 84. S Transfer Registers Hash Operands (Continued)

Register Address
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The Hash Unit shares the Scratchpad’s Push Data FIFO. After each hash index is completed, the 
index is placed into a three-stage output pipe and the Hash Unit sends a PUSH_DATA_REQ to the 
Scratchpad to indicate that it has a valid hash index to put into the Push Data FIFO for transfer. The 
Scratchpad will issue a SEND_HASH_DATA signal, transfers the hash index to the Push Data 
FIFO, and sends the data to the Arbiter.

For Intel XScale® core initiated hash operations, Intel XScale® core reads the results from its 
memory-mapped Hash Result Registers. The addresses of Hash Results are the same as the Hash 
Operand Registers. Because of queuing delays at the Hash Unit, the time to complete an operation 
is not fixed. Intel XScale® core can do one of two operations to get the hash results.

• Poll the Hash Done Register. This register is cleared when the Hash Operand Registers are 
written. Bit [0] of Hash Done Register is set when the Hash Result Registers get the return 
result from the Hash Unit (when the last word of the result is returned). Intel XScale® core 
software can poll on Hash Done, and read Hash Result when Hash Done is equal to 
0x00000001.

• Read Hash Result directly. The gasket logic will acknowledge the read only when the result is 
valid. This method will result in Intel XScale® core stalling if the result is not valid when the 
read happens.

The number of clock cycles required to perform a single hash operation equals: two or four cycles 
through the input buffers, three, four, or eight cycles through the hash array, and two or four cycles 
through the output buffers. With the pipeline characteristics of the Hash Unit, performance is 
improved if multiple hash operations are initiated with a single instruction rather than separate hash 
instructions for each hash operation.

7.1.3.2 Hash Algorithm

The hashing algorithm used by allows flexibility and uniqueness since it can be programmed to 
provide different results for a given input. The algorithm uses binary polynomial multiplication and 
division under modulo-2 addition. The input to the algorithm is a 48-bit, 64-bit, or 128-bit value.

The data used to generate the hash index is considered to represent the coefficients of an order-47, 
order-63 or order-127 polynomial in x. The input polynomial (designated as A(x)) has the form:

Equation 1.  (48-bit hash operation)

Equation 2.  (64-bit hash operation)

Equation 3.  (128-bit hash operation)

This polynomial is multiplied by a programmable hash multiplier using a modulo-2 addition. The 
hash multiplier, M(x) is stored in Hash Unit CSRs and represents the polynomial

Equation 4.  (48-bit hash operation)

Equation 5.  (64-bit hash operation)

Equation 6.  (128-bit hash operation)

Since multiplication is performed using modulo-2 addition, the result is an order-94 polynomial, an 
order-126 polynomial or an order-254 polynomial with coefficients that are also 1 or 0. This 
product is divided by a fixed generator polynomial given by:

A48 x( ) a0 a1x a2x
2 … a46x

46
a47x

47
+ + + + +=

A64 x( ) a0 a1x a2x
2 … a62x

62
a63x

63
+ + + + +=

A128 x( ) a0 a1x a2x
2 … a126x

126
a127x

127
+ + + + +=

M48 x( ) m0 m1x m2x
2 … m46x

46
m47x

47
+ + + + +=

M64 x( ) m0 m1x m2x
2 … m62x

62
m63x

63
+ + + + +=

M128 x( ) m0 m1x m2x
2 … m126x

126
m127x

127
+ + + + +=
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Equation 7.  (48-bit hash operation)

Equation 8.  (64-bit hash operation)

Equation 9.  (128-bit hash operation)

The division results in a quotient Q(x), a polynomial of order-46, order-62 or order-126, and a 
remainder R(x), a polynomial of order-47, order-63 or order-127. The operands are related by the 
equation:

Equation 10. 

The generator polynomial has the property of irreducibility. As a result, for a fixed multiplier M(x), 
there is a unique remainder R(x) for every input A(x). The quotient Q(x), can then be then 
discarded, since input A(x) can be derived from its corresponding remainder R(x). A given 
bounded set of input values A(x) (for example, 8K or 16K table entries), with bit weights of an 
arbitrary density function can be mapped one-to-one into a set of remainders R(x) such that the bit 
weights of the resulting Hashed Arguments (a subset of all values of R(x) polynomials) are all 
about equal.

In other words, there is a high likelihood that the low order set of bits from the Hash Arguments are 
unique, so they can be used to build an index into the table. If the hash algorithm does not provide 
a uniform hash distribution for a given set of data, the programmable hash multiplier (M(x)) may 
be modified to provide better results.

G48 x( ) 1 x
10

x
25

x
36

x
48

+ + + +=

G64 x( ) 1 x
17

x
35

x
54

x
64

+ + + +=

G128 x( ) 1 x
33

x
69

x
98

x
128

+ + + +=

A x( )M x( ) Q x( )G x( ) R x( )+=
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Media and Switch Fabric Interface 8

8.1 Overview

The Media and Switch Fabric (MSF) Interface connects the IXP2800 Network Processor to a 
physical layer device (PHY) and/or to a Switch Fabric. MSF consists of separate receive and 
transmit interfaces. Each of the receive and transmit interfaces can be separately configured for 
either SPI-4 Phase 2 (System Packet Interface) for PHY devices or CSIX-L1 protocol for Switch 
Fabric Interfaces.

The receive and transmit ports are unidirectional and independent of each other. Each port has 16 
data signals, a clock, a control signal, and a parity signal, all of which use LVDS (differential) 
signaling, and are sampled on both edges of the clock. There is also a flow control port consisting 
of a clock, data, and ready status bits, and used to communicate between two IXP2800 Network 
Processors, or a IXP2800 Network Processor and a Switch Fabric Interface. These are also LVDS, 
dual-edge data transfer.

The usage of the signals, as well as the receive and transmit functions, are shown in the block 
diagram in Figure 88, and described below.

Note: Detailed information about CSRs is contained in the Intel® IXP2400/IXP2800 Network Processor 
Programmer’s Reference Manual.
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The use of some of the receive and transmit pins is based on protocol, SPI-4 or CSIX. For the 
LVDS pins, only the active high name is given (for LVDS there are two pins per signal). The 
definitions of the pins can be found in the SPI-4 and CSIX specs, referenced below.

An alternate system configuration is shown in the block diagram in Figure 89. In this case a single 
IXP2800 Network Processor is used for both Ingress and Egress. The bit rate supported would be 
less than in Figure 88. A hypothetical Bus Converter chip, external to the IXP2800 Network 
Processor is used. The block diagram in Figure 89 is only an illustrative example.

Figure 88. Example System Block Diagram
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Notes:
1. Gasket is used to convert 16-bit, dual-data Intel IXP2800 Network Processor signals to wider 

single edge CWord signals used by Switch Fabric, if required.

2. Per the CSIX specification, the terms "egress" and ingress" are with respect to the Switch Fabric. 
So the egress processor handles traffic received from the Switch Fabric and the ingress 
processor handles traffic sent to the Switch Fabric.
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8.1.1 SPI-4

SPI-4 is an interface for packet and cell transfer between a physical layer (PHY) device and a link 
layer device (the IXP2800 Network Processor), for aggregate bandwidths of OC-192 ATM and 
Packet over SONET/SDH (POS), as well as 10 Gb/s Ethernet applications.

The Optical Internetworking Forum (OIF), www.oiforum.com, controls the SPI-4 Implementation 
Agreement document.

SPI-4 has two types of transfers—Data when the RCTL signal is deasserted; Control when the 
RCTL signal is asserted. The Control Word format is shown in Table 85 (this information is from 
SPI-4 specification, shown here for convenience).

Figure 89. Full-Duplex Block Diagram
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The Bus Converter chip receives and transmits both SPI-4 and CSIX protocols from/to Intel 
IXP2800 Network Processor. It steers the data, based on protocol, to either PHY device or 
Switch Fabric. PHY interface can be UTOPIA-3, IXBUS, or any other required protocol.
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Control words are inserted only between burst transfers; once a transfer has begun, data words are 
sent uninterrupted until either End of Packet or a multiple of 16 bytes is reached.

The order of bytes within the SPI-4 data burst is shown in Table 86. The most significant bits of the 
bytes correspond to bits 15 and 7. On data transfers that do not end on an even byte boundary, the 
unused byte on bits [7:0] is set to all zeros.

Table 85. SPI-4 Control Word Format

Bit
Position Label Description

15 Type

Control Word Type.

• 1: payload control word (payload transfer will immediately follow the control word).

• 0: idle or training control word.

14:13 EOPS

End-of-Packet (EOP) Status.

Set to the following values below according to the status of the immediately preceding 
payload transfer.

• 00: Not an EOP.

• 01: EOP Abort (application-specific error condition).

• 10: EOP Normal termination, 2 bytes valid.

• 11: EOP Normal termination, 1 byte valid.

EOPS is valid in the first Control Word following a burst transfer. It is ignored and set to 
“00” otherwise.

12 SOP

Start-of-Packet.

Set to 1 if the payload transfer immediately following the Control Word corresponds to the 
start of a packet. Set to 0 otherwise.

Set to 0 in all idle and training control words.

11:4 ADR

Port Address.

8-bit port address of the payload data transfer immediately following the Control Word. 
None of the addresses are reserved (all are available for payload transfer).

Set to all zeroes in all idle Control Words.

Set to all ones in all training Control Words.

3:0 DIP-4
4-bit Diagonal Interleaved Parity.

4-bit odd parity computed over the current Control Word and the immediately preceding 
data words (if any) following the last Control Word.
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Table 86 shows the order of bytes on SPI-4; this example shows a 43 byte packet.

Figure 90 shows two ways in which the SPI-4 clocking can be done. Note that it is also possible to 
use an internally supplied clock and leave TCLK_REF unused.

Table 86. Order of Bytes within the SPI-4 Data Burst

Bit 15 Bit 8 Bit 7 Bit 0

Data Word 1 Byte 1 Byte 2

Data Word 2 Byte 3 Byte 4

Data Word 3 Byte 5 Byte 5

Data Word 4 Byte 7 Byte 6

… … …

… … …

… … …

Data Word 21 Byte 41 Byte 42

Data Word 22 Byte 43 00

Figure 90. Receive and Transmit Clock Generation
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8.1.2 CSIX

CSIX_L1 (Common Switch Interface) defines an interface between a Traffic Manager (TM) and a 
Switch Fabric (SF) for ATM, IP, MPLS, Ethernet, and similar data communications applications.

The Network Processor Forum (NPF) www.npforum.org, controls the CSIX_L1 specification.

The basic unit of information transferred between TMs and SFs is called a CFrame. There are a 
number of CFrame types defined as shown in Table 87.

For transmission from the IXP2800 Network Processor, CFrames are constructed for transmit 
under Microengine software control, and written into the Transmit Buffer (TBUF).

On receive to the IXP2800 Network Processor CFrames are either discarded, placed into Receive 
Buffer (RBUF), or placed into Flow Control Egress FIFO (FCEFIFO), according to mapping 
defined in CSIX_Type_Map CSR. CFrames put into RBUF are passed to a Microengine to be 
parsed by software. CFrames put into FCEFIFO are sent to the Ingress IXP2800 Network 
Processor over the Flow Control bus. Link-level Flow Control information (CSIX Ready field) in 
the Base Header of all CFrames (including Idle) is handled by hardware.

8.1.3 CSIX/SPI-4 Interleave Mode

SPI4 packets and CSIX cframes are interleaved when the RBUF and TBUF are configured in 3-
partition mode. When the protocol signal RPROT or TPROT is high, the data bus is transferring 
CSIX CFRAMES or IDLE cycles. When protocol is low, the data bus is transferring SPI-4 packets 
or idle cycles. When operating in interleave mode, RPROT must be driven high (logic 1) for the 
entire CSIX CFRAME or low (logic 0) for the entire SPI4 burst. When in 3-partition mode, the 
SPI-4 interval should be padded using SPI-4 idle cycles so that it ends on a 32 bit boundary or a 
complete RCLK or TCLK clock cycle. The actual SPI-4 data length can be any size. However, the 
SPI-4 interval which includes the SPI-4 control words and payload data must end on a 32-bit 
boundary.

Table 87. CFrame Types

Type Encoding CFrame Type

0 Idle

1 Unicast

2 Multicast Mask

3 Multicast ID

4 Multicast Binary Copy

5 Broadcast

6 Flow Control

7 Command and Status

8-F CSIX Reserved
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8.2 Receive

The receive section consists of:

• Receive Pins (Section 8.2.1)

• Checksum (Section 8.2.2)

• Receive Buffer (RBUF) (Section 8.2.2)

• Full Element List (Section 8.2.3)

• Rx_Thread_Freelist (Section 8.2.4)

• Flow Control Status (Section 8.2.7)

Figure 91 is a simplified block diagram of the receive section.

Figure 91. Simplified Receive Section Block Diagram
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8.2.1 Receive Pins

The use of the receive pins is a function of RPROT input, as shown in Table 88.

In general, hardware does framing, parity checking, and flow control message handling. 
Interpretation of frame header and payload data is done by Microengine software.

The internal clock used is taken from RCLK pin. RCLK_Ref output is a buffered version of the 
clock. It can be used to supply TCLK_Ref of the Egress IXP2800 Network Processor if desired.

The receive pins RDAT[15:0], RCTL, RPAR are sampled relative to RCLK. In order to work at 
high frequencies, each of those pins has de-skewing logic as described in Section 8.6.

8.2.2 RBUF

RBUF is a RAM that holds received data. It stores received data in sub-blocks (referred to as 
elements), and is accessed by Microengine or the Intel XScale® core reading the received 
information. Details of how RBUF elements are allocated and filled is based on the receive data 
protocol, and is described in Section 8.2.2.1–Section 8.2.2.2. When data is received the associated 
status is put into the Full_Element_List FIFO and subsequently sent to Microengine to process. 
Full_Element_List insures that received elements are sent to Microengine in the order that the 
data was received.

RBUF contains a total of 8 Kbyte of data. Table 89 shows the order in which received data is stored 
in RBUF. Each number represents a byte, in order of arrival from the receiver interface.

The mapping of elements to address offset in RBUF is based on the RBUF partition and element 
size, as programmed in MSF_Rx_Control CSR. RBUF can be partitioned into one, two, or three 
partitions based on MSF_Rx_Control[RBUF_Partition]. The mapping of received data to 
partitions is shown in Table 90.

Table 88. Receive Pins Usage by Protocol

Name Direction SPI-4 Use CSIX Use

RCLK Input RDCLK TxClk

RDAT[15:0] Input RDAT[15:0] TxData[15:0]

RCTL Input RCTL TxSOF

RPAR Input Not Used TxPar

RSCLK Output RSCLK Not Used

RSTAT[1:0] Output RSTAT[1:0] Not Used

Table 89. Order in Which Received Data Is Stored in RBUF

Data/Payload Address Offset (Hex)

4 5 6 7 0 1 2 3 0

C D E F 8 9 A B 8

14 15 16 17 10 11 12 13 10
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The data in each partition is further broken up into elements, based on 
MSF_Rx_Control[RBUF_Element_Size_#] (n = 0,1,2). There are three choices of element size, 
64, 128, or 256 bytes.

Table 91 shows the RBUF partition options. Note that the choice of element size is independent for 
each partition.

Microengine can read data from the RBUF to Microengine S_Transfer_In registers using the 
msf[read] instruction, where they specify the starting byte number (which must be aligned to
4-byte units), and number of 32-bit words to read. The number in the instruction can be either the 
number of 32-bit words, or number of 32-bit word pairs, using the single and double instruction 
modifiers, respectively. The data is pushed to the Microengine on the S Push Bus by RBUF control 
logic.
msf[read, $s_xfer_reg, src_op_1, src_op_2, ref_cnt], optional_token

Table 90. Mapping of Received Data to RBUF Partitions

Number of 
Partitions in 

Use

Receive Data 
Protocol

Data Use by Partition, Fraction of RBUF Used, Start Byte Offset (Hex)

Partition Number

0 1 2

1 SPI-4 only

SPI-4

All

Byte 0

n/a n/a

2 CSIX only

CSIX Data

¾ of RBUF

Byte 0

CSIX Control

¼ of RBUF

Byte 0x1800

n/a

3 Both SPI-4 and 
CSIX

CSIX Data

½ of RBUF

Byte 0

SPI-4

3/8 of RBUF

Byte 0x1000

CSIX Control

1/8 of RBUF

Byte 0x1C00

Table 91. Number of Elements per RBUF Partition

RBUF_Partition Field RBUF_Element_Size_# Field
Partition Number

0 1 2

00 (1 partition)

00 (64 byte) 128 

Unused Unused01 (128 byte) 64

10 (256 byte) 32

01 (2 partitions)

00 (64 byte) 96 32

Unused01 (128 byte) 48 16

10 (256 byte) 24 8

10 (3 partitions)

00 (64 byte) 64 48 16

01 (128 byte) 32 24 8

10 (256 byte) 16 12 4
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The src_op_1 and src_op_2 operands are added together to form the address in RBUF (note that 
the base address of the RBUF is 0x2000). ref_cnt is the number of 32-bit words or word pairs, 
which are pushed into two sequential S_Transfer_In registers, starting with $s_xfer_reg.

Using the data in RBUF in Table 89 above, reading 8 bytes from offset 0 into transfer registers 0 
and 1 would yield the result in Example 33.

Microengine can move data from RBUF to DRAM using the instruction:
dram[rbuf_rd, --, src_op1, src_op2, ref_cnt], indirect_ref

The src_op_1 and src_op_2 operands are added together to form the address in DRAM, so the 
dram instruction must use indirect_ref modifier to specify the RBUF address (refer to the 
IXP2800 Network Processor Chassis chapter for details). ref_cnt is number of 64-bit words which 
are read from RBUF.

Using the data in RBUF in Table 89 above, reading 16 bytes from offset 0 in RBUF into DRAM 
would yield the result in Example 34 in DRAM. [Note that DRAM addresses must be aligned to 
8-byte units. The data from lower offset RBUF offsets goes into lower addresses in DRAM.]

For both types of RBUF read, reading an element does not modify any RBUF data, and does not 
free the element, so buffered data can be read as many times as desired.

8.2.2.1 SPI-4

SPI-4 data is placed into RBUF as follows:

At chip reset all elements are marked invalid (available).

When a SPI-4 Control Word is received (i.e., when RCTL is asserted) it is placed in a temporary 
holding register. The Checksum accumulator is cleared. The subsequent action is based on the Type 
field.

If Type is Idle or Training the Control Word is discarded.

If Type is not Idle or Training:

An available RBUF element is allocated by receive control logic. [If there is not an available 
element the data is discarded and MSF_Interrupt_Status[RBUF_Overflow] is set. Note that 
this normally should not happen because when number of RBUF elements falls below a 
programmed high water mark, flow control status is sent back to the PHY device. Refer to 

Example 33. Data from RBUF Moved to Microengine Transfer Registers

Transfer 
Register 
Number

Bit Number within Transfer Register

31 24 23 16 15 8 7 0

0 0 1 2 3

1 4 5 6 7

Example 34. Data from RBUF Moved to DRAM

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

4 5 6 7 0 1 2 3

C D E F 8 9 A B
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Section 8.2.7.1.] The SPI-4 Control Word Type, EOPS, SOP, and ADR fields are placed into a 
temporary status register. The Byte_Count field of the element status is set to 0x0. As each 
Data Word is received the data is written into the element, starting at offset 0x0 in the element 
and Byte_Count is updated. Subsequent Data transfers are placed at higher offsets (i.e., 0x2, 
0x4, etc.). The 16-bit Checksum Accumulator is also updated with the ones complement 
addition of each byte pair. [Note if the data transfer has an odd number of bytes, a byte of 
zeroes is appended as the more significant byte before the checksum addition is done.]

If a Control Word is received before the element is full — the element is marked valid. EOP for the 
element is taken from the value of the EOPS field (see Table 85) from the just received Control 
Word. If the EOPS field from the just received Control Word indicates that EOP is asserted, 
Byte_Count for the element is decremented by 0 or 1 according to the EOPS field (i.e., decrement 
by 0 if 2 bytes valid, by 1 if 1 byte valid). If the EOPS field indicates Abort, Byte_Count is rounded 
up to the next multiple of 4. The temporary status register value is put into Full_Element_List.

If the element becomes full before receipt of another Control Word — the element is marked as 
pre-valid. The eventual status is based on the next SPI-4 transfer(s).

If the next transfer is a Data Word — the previous element is changed from pre-valid to valid. The 
EOP for the element is 0. The temporary status register value is put into Full_Element_List. 
Another available RBUF element is allocated, and the new data is written into it. The temporary 
status for the new element gets the same ADR field of the previous element, and SOP is set to 0. 
Status word Byte_Count field is set to 0x2, and will count up as more Data Words arrive. 
Checksum Accumulator is cleared.

If the next transfer is a Control Word — the previous element is changed from pre-valid to valid. 
EOP for the element is taken from the value of the EOPS field from the just received Control Word. 
If the EOPS field from the just received Control Word indicates that EOP is asserted, Byte_Count 
for the element is decremented by 0 or 1 according to the EOPS field (i.e., decrement by 0 if 2 
bytes valid, by 1 if 1 byte valid). The temporary status register value is put into Full_Element_List.

Data received from the bus is placed into the element lowest offset first in big-endian order (that is, 
with the first byte received in the most significant byte of the 32-bit word, etc.).

The status contains the following information:

The definitions of the fields are shown in Table 92.
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8.2.2.2 CSIX

CSIX CFrames are placed into either RBUF or FCEFIFO as follows:

At chip reset all RBUF elements are marked invalid (available) and FCEFIFO is empty.

When a Base Header is sent (i.e., when RxSof is asserted) it is placed in a temporary holding 
register. The Ready Field is extracted and held to be put into FC_Egress_Status CSR when (and 
if) the entire CFrame is received without error. The Type field is extracted and used to index into 
CSIX_Type_Map CSR to determine one of four actions.

• Discard (except for the Ready Field as described in Section 8.2.7.2.1).

• Place into RBUF Control CFrame partition.

• Place into RBUF Data CFrame partition.

• Place into FCEFIFO.

Table 92.  RBUF SPIF-4 Status Definition

Field Definition

RPROT This bit is a 0 indicating that the Status is for SPI-4. It is derived from the RPROT input 
signal.

Null

Null receive. If this bit is set, it means that the Rx_Thread_Freelist timeout expired 
before any more data was received, and that a null Receive Status Word is being pushed 
in order to keep the receive pipeline flowing. The rest of the fields in the Receive Status 
Word must be ignored; there is no data or RBUF entry associated with a null Receive 
Status Word.

ADR The port number to which the data is directed. This field is taken from the ADR field of the 
Control Word that most recently preceded the data transfer.

Type This field is taken from the Type field of the Control Word that most recently preceded the 
data transfer.

SOP

Indicates if the element is the start of a packet. This field is taken from the SOP field of 
the Control Word that most recently preceded the data transfer for the first element 
allocated after a Control Word. For subsequent elements (i.e., if more than one element 
worth of data follow the Control Word) this value is 0.

EOP Indicates if the element is the end of a packet. This field is taken from the EOPS field of 
the Control Word that most recently succeeded the data transfer.

Byte_Count
Indicates the number of Data bytes, from 1 to 256, in the element (value 0x00 means 
256). This field is derived from the number of data transfers that fill the element, and also 
the EOPS field of the Control Word that most recently succeeded the data transfer.

Element The element number in the RBUF that holds the data. This is equal to the offset in RBUF 
of the first byte in the element, shifted right by six places 

Par Err Parity Error was detected in the DIP-4 parity field. See description in Section 8.2.8.1.

Length Err A non-EOP burst occurred that was not a multiple of 16 bytes.

Abort Err An EOP with Abort was received on bits[14:13] of the Control Word that most recently 
succeeded the data transfer.

Err Error. This is the logical OR of Par Err, Length Err, and Abort Err.

Checksum Checksum calculated over the Data Words in the element. This can be used for TCP.
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Note: Normally Idle CFrames (Type 0x0) will be discarded, Command and Status CFrames (Type 0x7) 
will be placed into Control Partition, Flow Control CFrames (Type 0x6) will be placed into 
FCEFIFO, and all others will be placed into Data Partition (see Table 89). The remapping done 
through CSIX_Type_Map CSR allows for more flexibility in usage if desired.

If the action is Discard the CFrame is discarded (except for the Ready Field as described in 
Section 8.2.7.2.1). The Base Header, as well as Extension Header and Payload (if any) are 
discarded.

If the destination is FCEFIFO:

The Payload is placed into the FCEFIFO, to be sent to the Ingress IXP2800 Network Processor 
over the TXCDAT pins. If there is not enough room in FCEFIFO for the entire CFrame, based on 
the Payload Size in the Base Header, the entire CFrame is discarded and 
MSF_Interrupt_Status[FCEFIFO_Overflow] is set.

If the destination is RBUF (either Control or Data):

An available RBUF element of the corresponding type is allocated by receive control logic. 
If there is not an available element the CFrame is discarded and 
MSF_Interrupt_Status[RBUF_Overflow] is set. Note that this normally should not happen 
because when number of RBUF elements falls below a programmed high water mark, back 
pressure is sent to the Switch Fabric. Refer to Section 8.2.7.2.] The Type, Payload Length, CR 
(CSIX Reserved) and P (Private) bits, and (subsequently arriving) Extension Header are placed 
into a temporary status register. As the Payload (including padding if any) is received, it is placed 
into the allocated RBUF element, starting at offset 0x0. [Note—it is more exact to state that the 
first four bytes after the Base Header are placed into the status register as Extension Header. For 
Flow Control CFrames, there is no Extension Header; the first four bytes are part of the Payload. 
They would be found in the Extension Header field of the Status—no bytes are lost.]

When all of the Payload data (including padding if any), as indicated by the Payload Length field, 
and Vertical Parity has been received, the element is marked valid. If another RxSof is received 
prior to receiving the entire Payload, the element is also marked valid, and the Length Error status 
bit is set. If the Payload Length field of the Base Header is greater than the element size (as 
configured in MSF_Rx_Control[RBUF_Element_Size], then the Length Error bit in the status 
will be set, and all payload bytes above the element size will be discarded.] The temporary status 
register value is put into Full_Element_List.

Note: In CSIX protocol, an RBUF element is allocated only on RxSof assertion. Therefore the element 
size must be programmed based on the Switch Fabric usage. For example, if the switch never sends 
a payload greater than 128 bytes, 128-byte elements can be selected. Otherwise, 256-byte elements 
must be selected.
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Data received from the bus is placed into the element lowest offset first in big-endian order
(that is, with the first byte received in the most significant byte of the 32-bit word, etc.).

The status contains the following information:

The definitions of the fields are shown in Table 93.
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Table 93. RBUF CSIX Status Definition

Field Definition

RPROT This bit is a 1 indicating that the Status is for CSIX-L1. It is derived from the RPROT input 
signal.

Null

Null receive. If this bit is set, it means that the Rx_Thread_Freelist timeout expired 
before any more data was received, and that a null Receive Status Word is being pushed 
in order to keep the receive pipeline flowing. The rest of the fields in the Receive Status 
Word must be ignored; there is no data or RBUF entry associated with a null Receive 
Status Word.

Type Type Field from the CSIX Base Header

Payload Length Payload Length Field from the CSIX Base Header. A value of 0x0 indicates 256 bytes.

VP Err Vertical Parity Error was detected on the CFrame. See description in Section 8.2.8.2.2.

HP Err Horizontal Parity Error was detected on the CFrame. See description in Section 8.2.8.2.1.

Length Err

Length Error; either

amount of Payload received (before receipt of next Base Header) did not match value 
indicated in Base Header Payload Length field) or

Payload Length field was greater than size of RBUF element.

Err Error. This is the logical OR of VP Err, HP Err, and Length Err.

Element The element number in the RBUF that holds the data. This is equal to the offset in RBUF 
of the first byte in the element, shifted right by 6 places.

CR CR (CSIX Reserved) bit from the CSIX Base Header.

P P (Private) bit from the CSIX Base Header.

Extension Header The Extension Header from the CFrame. The bytes are received in big-endian order; byte 
0 is in bits 63:56, byte 1 is in bits 55:48, byte 2 is in bits 47:40, and byte 3 is in bits 39:32.
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8.2.3 Full Element List

Receive control hardware maintains the Full Element List to hold the status of valid RBUF 
elements, in the order in which they were received. When an element is marked valid (as described 
in Section 8.2.2.1 for SPI-4 and Section 8.2.2.2 for CSIX), its status is added to the tail of the Full 
Element List. When a Microengine is notified of element arrival (by having the status written to its 
S_Transfer register; see Section 8.2.4), it is removed from the head of the Full Element List.

8.2.4 Rx_Thread_Freelist_#

Each Rx_Thread_Freelist_# is a FIFO that indicates Microengine Contexts that are awaiting an 
RBUF element to process. This allows the Contexts to indicate their ready status prior to the 
reception of the data, as a way to eliminate latency. Each entry added to a Freelist also has an 
associated S_Transfer register and signal number. The receive logic maintains either one, two, or 
three separate lists based on MSF_Rx_Control[RBUF_Partition], 
MSF_Rx_Control[CSIX_Freelist], and Rx_Port_Map as shown in Table 94.

To be added as ready to receive an element, an Microengine does a msf[write] or 
msf[fast_write] to the Rx_Thread_Freelist_# address; the write data is the Microengine/
Context/S_Transfer Register number to add to the Freelist. Note that using the data (rather than the 
command bus ID) permits a Context to add either itself or other Contexts as ready.

When there is valid status at the head of the Full Element List it will be pushed to a Microengine. 
The receive control logic pushes the status information (which includes the element number) to the 
Microengine in the head entry of Rx_Thread_Freelist_#, and sends an Event Signal to the 
Microengine. It then removes that entry from the Rx_Thread_Freelist_#, and removes the status 
from Full Element List. [Note that this implies the restriction—a Context waiting on status must 
not read the S_Transfer register until it has been signaled.] See Section 8.2.6 for more detail. In the 
event that Rx_Thread_Freelist_# is empty, valid status will be held in Full Element List until an 
entry is put into Rx_Thread_Freelist_#.

Table 94. Rx_Thread_Freelist Use

Number of 
Partitions1 Use CSIX_Freelist2

Rx_Thread_Freelist_# Used

0 1 2

1 SPI-4 only n/a
SPI-4 Ports equal 

to or below 
Rx_Port_Map

SPI-4 Ports 
above 

Rx_Port_Map
Not Used

2 CSIX only

0 CSIX Data CSIX Control Not Used

1 CSIX Data and 
CSIX Control Not Used Not Used

3 Both SPI-4 
and CSIX

0 CSIX Data SPI-4 CSIX Control

1 CSIX Data and 
CSIX Control SPI-4 Not Used

1. Programmed in MSF_Rx_Control[RBUF_Partition].
2. Programmed in MSF_Rx_Control[CSIX_Freelist].
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8.2.5 Rx_Thread_Freelist_Timeout_#

Each Rx_Thread_Freelist_# has an associated countdown timer. If the timer expires and no new 
receive data is available yet, the receive logic will autopush a Null Receive Status Word to the next 
thread on the Rx_Thread_Freelist_#. A Null Receive Status Word has the “Null” bit set, and does 
not have any data or RBUF entry associated with it.

The Rx_Thread_Freelist_# timer is useful for certain applications. Its primary purpose is to keep 
the receive processing pipeline (implemented as microcode running on the Microengine) moving 
even when the line has gone idle. It is especially useful if the pipeline is structured to handle 
mpackets in groups, i.e., eight mpackets at a time. If seven mpackets are received, then the line 
goes idle, then the timeout will trigger the autopush of a null Receive Status Word, filling the 
eighth slot and allowing the pipeline to advance. Another example is if one valid mpacket is 
received before the line goes idle for a long period; seven null Receive Status Words will be 
autopushed, allowing the pipeline to proceed. Typically the timeout interval is programmed to be 
slightly larger than the minimum arrival time of the incoming cells or packets.

The timer is controlled using the Rx_Thread_Freelist_Timeout_# CSR. The timer may be 
enabled or disabled, and the timeout value specified using this CSR.

The following rules define the operation of the Rx_Thread_Freelist timer.

1. Writing a non-zero value to the Rx_Thread_Freelist_Timeout_# CSR both resets the timer 
and enables it. Writing a zero value to this CSR resets the timer and disables it.

2. If the timer is disabled, then only valid (non-null) Receive Status Words are autopushed to the 
receive threads; null Receive Status Words are never pushed.

3. If the timer expires and the Rx_Thread_Freelist_# is non-empty, but there is no mpacket 
available, this will trigger the autopush of a null Receive Status Word.

4. If the timer expires and the Rx_Thread_Freelist_# is empty, the timer stays in the EXPIRED 
state and is not restarted. A null Receive Status Word cannot be autopushed, since the logic has 
no destination to push anything to.

5. An expired timer is reset and restarted if and only if an autopush, null or non-null, is 
performed.

6. Whenever there is a choice, autopush of a non-null Receive Status Word takes precedence over 
a null Receive Status Word.

8.2.6 Receive Operation Summary

During receive processing received Cframes, cells and packets (which in this context are all called 
mpackets) are placed into the RBUF, and then, when marked valid, are immediately handed off to a 
Microengine to process. Normally, by application design, some number of Microengine Contexts 
will be assigned to receive processing. Those Contexts will have their number added to the proper 
Rx_Thread_Freelist_# (via msf[write]or msf[fast_write]), and then will go to sleep to wait for 
arrival of an mpacket (or alternatively poll waiting for arrival of an mpacket). 
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When an mpacket becomes valid as described in Section 8.2.2.1 for SPI-4 and Section 8.2.2.2 for 
CSIX, receive control logic will autopush 8 bytes of information for the element to the 
Microengine/Context/S_Transfer Registers at the head of Rx_Thread_Freelist_#. The 
information pushed is (see Table 92 and Table 93 for detailed definitions):

• Status Word (SPI-4) or Header Status (CSIX) to Transfer Register n (n is the Transfer Register 
programmed to the Rx_Thread _Freelist_#)

• Checksum (SPI-4) or Extension Header (CSIX) to Transfer Register n+1

To handle the case where the receive Contexts temporarily fall behind and Rx_Thread_Freelist_# 
is empty, all received element numbers are held in the Full Element List. In that case, as soon as an 
Rx_Thread_Freelist_# entry is entered, the status of the head element of Full Element List will be 
pushed to it.

The Microengine may read part of (or the entire) RBUF element to their S_Transfer registers (via 
msf[read] instruction) for header processing, etc., and may also move the element data to DRAM 
(via dram[rbuf_rd] instruction).

When a Context is done with an element it does a msf[write]or msf[fast_write] to 
RBUF_Element_Done address; the write data is the element number. This marks the element as 
free and available to be re-used. There is no restriction on the order in which elements are freed; 
Contexts can do different amounts of processing per element based on the contents of the 
element—therefore elements can be returned in a different order than they were handed to 
Contexts.

The states that an RBUF element goes through are shown in Figure 92.

Table 95 summarizes the differences in RBUF operation between SPI-4 protocol and CSIX 
protocol.

Figure 92. RBUF Element State Diagram
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8.2.7 Receive Flow Control Status

Flow control is handled in hardware. There are specific functions for SPI-4 and CSIX.

8.2.7.1 SPI-4

SPI-4, FIFO status information is sent periodically over the RSTAT signals from the Link Layer 
device (which is the IXP2800 Network Processor) to the PHY device. [Note that TXCDAT pins 
can act as RSTAT based on MSF_Rx_Control[RSTAT_Select] bit.] The information to be sent is 
based on the number of RBUF elements available to receive SPI-4.

The FIFO status of each port is encoded in a 2-bit data structure—code 0x3 is used for framing the 
data, and the other three codes are valid status values.

The FIFO status words are sent according to a repeating calendar sequence. Each sequence begins 
with the framing code to indicate the start of a sequence, followed by the status codes, followed by 
a parity code covering the preceding frame. The length of the calendar is defined in 
Rx_Calendar_Length, which is a CSR field that is initialized with the length of the calendar, 
since in many cases fewer than 256 ports are in use.

When MSF_Rx_Control[RSTAT_En] is disabled, RSTAT is held at 0x3.

The IXP2800 Network Processor transmits FIFO status only if MSF_Rx_Control[RSTAT_En] is 
set. The logic sends “Satisfied,” Hungry,” or “Starving” based on either the high water mark of the 
RBUF, a global override value set in MSF_Rx_Control[RSTAT_OV_VALUE], or a port-specific 
override value set in RX_PORT_CALENDAR_STATUS_#. The choice is controlled by 
MSF_RX_CONTROL[RX_Calendar_Mode]. 

Table 95. Summary of SPI-4 and CSIX RBUF Operations

Operation SPI-4 CSIX

When is RBUF 
Element Allocated

Upon receipt of Payload Control Word or when 
Element data section fills and more Data Words 
arrive. The Payload Control Word allocates an 
element for data that will be received subsequent to 
it.

Start of Frame and Base 
Header Type is mapped to 
RBUF (in CSIX_Type_Map 
CSR).

How Much Data is Put 
into Element

All Data Words received between two Payload 
Control Words, or number of bytes in the element, 
whichever is less.

Number of bytes specified in 
Payload Length field of Base 
Header.

How is RBUF Element 
Set Valid

Upon receipt of Payload Control Word or when 
Element data section fills. The Payload Control 
Word validates the element holding data received 
prior to it.

All Payload is received (or if 
premature SOF, which will set 
an error bit in Element Status).

How is RBUF Element 
Handed to 
Microengine

Element Status is pushed to Microengine at the head of the appropriate 
Rx_Thread_Freelist_# (based on the protocol). Status is pushed to two consecutive 
Transfer Registers; bits[31:0] of Element Status to the first Transfer Register and 
bits[63:32] to the next higher numbered Transfer Register.

How is RBUF Element 
returned to free list CSR write to RBUF_Element_Done.
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When set to Conservative_Value, the status value sent for each port is the most conservative of:

• The RBUF high water mark

• MSF_RX_CONTROL[RSTAT_OV_VALUE]

• RX_PORT_CALENDAR_STATUS_#

“Satisfied” is more conservative than “Hungry,” which is more conservative than “Starving.” 

When MSF_RX_CONTROL[RX_Calendar_Mode] is set to Force_Override, the value of 
RX_PORT_CALENDAR_STATUS_# is used. to determine which status value is sent. If 
RX_PORT_CALENDAR_# is set to 0x3, then the global status value set in 
MSF_RX_CONTROL[RSTAT_OV_VALUE] is sent, otherwise the port-specific status value set 
in RX_PORT_CALENDAR_# is sent.

The RBUF high water mark is based on the MSF_Rx_Control Register and is defined in Table 91. 
The high water mark is programmed in HWM_Control[RBUF_S_HWM]. Note that either RBUF 
partition 0 or partition 1 will be used for SPI-4 (Table 90).

8.2.7.2 CSIX

There are two types of CSIX flow control:

• Link-level

• Virtual Output Queue (VOQ)

Information received from the Switch Fabric by the Egress IXP2800 Network Processor, must be 
communicated to the Ingress IXP2800 Network Processor, which is sending data to the Switch 
Fabric.

8.2.7.2.1 Link-level

Link-level flow control can be used to stop all transmission. Separate Link-level flow control is 
provided for Data CFrames and Control CFrames. CSIX protocol provides link-level flow control 
as follows. Every CFrame Base Header contains a Ready Field, which contains two bits; one for 
Control traffic (bit 6 of byte 1) and one for Data traffic (bit 7 of byte 1). The CSIX requirement for 
response is:

From the tick that the Ready Field leaves a component the maximum response time for a pause 
operation is defined as: n*T, n=C+L where:

• T is the clock period of the interface

• n is the maximum number of ticks for the response

• C is a constant for propagating the field within the "other" component (or chipset as the case 
may be) to the interface logic controlthe reverse direction data flow. C is defined to be 32 
ticks.

• L is the maximum number of ticks to transport the maximum fabric CFrame size.

As each CFrame is received, the value of these bits is copied (by receive hardware) into the 
FC_Egress_Status[SF_CReady] and FC_Egress_Status[SF_DReady] respectively. The value of 
these two bits is sent from the Egress to the Ingress IXP2800 Network Processor on TXCSRB 
signal, and can be used to stop transmission to the Switch Fabric, as described in Section 8.3.4.2. 
TXCSRB signal is described in Section 8.5.1.
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8.2.7.2.2 Virtual Output Queue

CSIX protocol provides Virtual Output Queue Flow Control via Flow Control CFrames.

CFrames that were mapped to FCEFIFO (via CSIX_Type_Map CSR) are parsed by the receive 
control logic and placed into FCEFIFO, which provides buffering while they are sent from the 
Egress the IXP2800 Network Processor to the Ingress IXP2800 Network Processor over the 
TXCDAT signals (normally Flow Control CFrames would be mapped to FCEFIFO).

The entire CFrame is sent over TXCDAT, including the Base Header and Vertical Parity field. The 
32-bit CWord is sent four bits at a time, most significant bits first. The CFrames are forwarded in a 
“cut-through” manner, meaning the Egress IXP2800 Network Processor does not wait for the entire 
CFrame to be received before forwarding (each CWord can be forwarded as it is received).

If FCEFIFO gets full, as defined by HWM_Control[FCEFIFO_HWM], then the 
FC_Egress_Status[TM_CReady] bit will be deasserted (to inform the Ingress IXP2800 Network 
Processor to deassert Control Ready in CFrames sent to the Switch Fabric).

The usage of the Flow Control information in the Ingress IXP2800 Network Processor is described 
in Section 8.3.4.2.

8.2.8 Parity

8.2.8.1 SPI-4

The receive logic computes 4-bit Diagonal Interleaved Parity (DIP-4) as specified in the SPI-4 
specification. The DIP-4 field received in a control word contains odd parity computed over the 
current Control Word and the immediately preceding data words (if any) following the last Control 
Word. Figure 93 shows the extent of the DIP-4 codes.

There is a DIP-4 Error Flag and a 4-bit DIP-4 Accumulator Register. After each Control Word is 
received the Flag is conditionally reset (see Note below this paragraph) and the Accumulator 
Register is cleared. As each Data Word (if any), and the first succeeding Control Word is received, 
DIP-4 parity is accumulated in the register as defined in the SPI-4 spec. The accumulated parity is 
compared to the value received in the DIP-4 field of that first Control Word. If it does not match the 
DIP-4 Error Flag is set. The value of the flag becomes the element status Par Err bit.

Note: An error in the DIP-4 code invalidates the transfer preceding the Control Word and also the transfer 
succeeding it, since the control information is assumed to be in error. Therefore the DIP-4 Error 

Figure 93. DIP-4 Codes’ Extent
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Flag is not reset after a Control Word with bad DIP-4 parity. It is only reset after a Control Word 
with correct DIP-4 parity.

8.2.8.2 CSIX

8.2.8.2.1 Horizontal Parity

The receive logic computes Horizontal Parity on each 16-bits of each received Cword (separate 
parity for data received on rising and falling edge of the clock).

There is an internal HP Error Flag. At the end of each CFrame the flag is reset. As each 16-bits of 
each Cword is received, the expected odd parity value is computed from the data, and compared to 
the value received on RxPar. If there is a mismatch the flag is set. The value of the flag becomes 
the element status HP Err bit.

If the HP Error Flag is set, the FC_Egress_Status[SF_CReady] and 
FC_Egress_Status[SF_DReady] bits are cleared, and the MSF_Interrupt_Status[HP_Error] bit 
is set, which can interrupt the Intel XScale® core if enabled.

8.2.8.2.2 Vertical Parity

The receive logic computes Vertical Parity on CFrames.

There is a VP Error Flag and a 16-bit VP Accumulator Register. At the end of each CFrame the flag 
is reset and the register is cleared. As each Cword is received, odd parity is accumulated in the 
register as defined in the CSIX spec (16 bits of vertical parity are formed on 32 bits of received 
data by treating the data as words; i.e., bit 0 and bit 16 of the data are accumulated into parity bit 0, 
bit 1 and bit 17 of the data are accumulated into parity bit 1, etc.). After the entire CFrame has been 
received (including the Vertical Parity field; the two bytes following the Payload) the accumulated 
value should be 0xFFFF. If it is not the VP Error Flag is set. The value of the flag becomes the 
element status VP Err bit.

Note: The Vertical Parity always follows the Payload, which may include padding to the CWord width if 
the Payload Length field is not an integral number of CWords. The CWord width is programmed in 
MSF_Rx_Control[Rx_CWord_Size].

If the VP Error Flag is set, the FC_Egress_Status[SF_CReady] and 
FC_Egress_Status[SF_DReady] bits are cleared, and the MSF_Interrupt_Status[VP_Error] bit 
is set, which can interrupt the Intel XScale® core.

8.2.9 Error Cases

Receive errors are specific to the protocol, SPI-4 or CSIX. The element status, described in 
Table 92 and Table 93, has appropriate error bits defined. Also, there are some IXP2800 Network 
Processor specific error cases, like when an mpacket arrives with no free elements, which are 
logged in the MSF_Interrupt_Status register, which can interrupt the Intel XScale® core if 
enabled.
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8.3 Transmit

The transmit section consists of:

• Transmit Pins (Section 8.3.1)

• Transmit Buffer (Section 8.3.2)

• Byte Aligner (Section 8.3.2)

Each of these is described below. Figure 94 is a simplified Block Diagram of Section 8.3.

Figure 94. Simplified of Transmit Section Block Diagram
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8.3.1 Transmit Pins

The use of the transmit pins is a function of the protocol (which is determined by TBUF partition in 
MSF_Tx_Control CSR) as shown in Table 96.

8.3.2 TBUF

The TBUF is a RAM that holds data and status to be transmitted. The data is written into sub-
blocks referred to as elements, by Microengine or the Intel XScale® core. TBUF contains a total of 
8 Kbyte of data, and associated control.

Table 97 shows the order in which data is written into TBUF. Each number represents a byte, in 
order of transmission onto the tx interface. Note that this is reversed on a 32-bit basis relative to 
RBUF—the swap of 4 low bytes and 4 high bytes is done in hardware to facilitate the transmission 
of bytes.

The mapping of elements to address offset in TBUF is based on the TBUF partition and element 
size, as programmed in MSF_Tx_Control CSR. TBUF can be partitioned into one, two, or three 
partitions based on MSF_Tx_Control[TBUF_Partition]. The mapping of partitions to transmit 
data is shown in Table 98.

Table 96. Transmit Pins Usage by Protocol

Name Direction SPI-4 Use CSIX Use

TCLK Output TDCLK RxClk

TDAT[15:0] Output TDAT[15:0] RxData[15:0]

TCTL Output TCTL RxSOF

TPAR Output Not Used RTxPar

TSCLK Input TSCLK Not Used

TSTAT[1:0] Input TSTAT[1:0] Not Used

Table 97. Order in Which Data is Transmitted from TBUF

Data/Payload Address Offset (Hex)

0 1 2 3 4 5 6 7 0

8 9 A B C D E F 8

10 11 12 13 14 15 16 17 10
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The data in each segment is further broken up into elements, based on 
MSF_Tx_Control[TBUF_Element_Size_#] (n = 0,1,2). There are three choices of element size, 
64, 128, or 256 bytes.

Table 99 shows the TBUF partition options. Note that the choice of element size is independent for 
each partition.

Microengine can write data from Microengine S_Transfer_Out registers to the TBUF using the 
msf[write] instruction, where they specify the starting byte number (which must be aligned to 4 
bytes), and number of 32-bit words to write. The number in the instruction can be either the 
number of 32-bit words, or number of 32-bit word pairs, using the single and double instruction 
modifiers, respectively. Data is pulled from Microengine to TBUF via S Pull Bus.
msf[write, $s_xfer_reg, src_op_1, src_op_2, ref_cnt], optional_token

The src_op_1 and src_op_2 operands are added together to form the address in TBUF (note that 
the base address of the TBUF is 0x2000). ref_cnt is the number of 32-bit words or word pairs, 
which are pulled from sequential S_Transfer_Out registers, starting with $s_xfer_reg.

Table 98. Mapping of TBUF Partitions to Transmit Protocol

Number of 
Partitions 

in Use

Transmit Data 
Protocol

Data Use by Partition, Fraction of TBUF Used, Start Byte Offset (Hex)

Partition Number

0 1 2

1 SPI-4 only

SPI-4

All

Byte 0

n/a n/a

2 CSIX only

CSIX Data

¾ of TBUF

Byte 0

CSIX Control

¼ of TBUF

Byte 0x1800

n/a

3 Both SPI-4 and 
CSIX

CSIX Data

½ of TBUF

Byte 0

SPI-4

3/8 of TBUF

Byte 0x1000

CSIX Control

1/8 of TBUF

Byte 0x1C00

Table 99. Number of Elements per TBUF Partition

TBUF_Partition Field TBUF_Element_Size_# Field
Partition Number

0 1 2

00 (1 partition)

00 (64 byte) 128 

Unused Unused01 (128 byte) 64

10 (256 byte) 32

01 (2 partitions)

00 (64 byte) 96 32

Unused01 (128 byte) 48 16

10 (256 byte) 24 8

10 (3 partitions)

00 (64 byte) 64 48 16

01 (128 byte) 32 24 8

10 (256 byte) 16 12 4
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Microengine can move data from DRAM to TBUF using the instruction
dram[tbuf_wr, --, src_op1, src_op2, ref_cnt], indirect_ref

The src_op_1 and src_op_2 operands are added together to form the address in DRAM, so the 
dram instruction must use indirect mode to specify the TBUF address. ref_cnt is number of 64-bit 
words which are written into TBUF.

Data is stored in big-endian order. The most significant (lowest numbered) byte of each 32-bit 
word is transmitted first.

All elements within a TBUF partition are transmitted in the order. Control information associated 
with the element (Section 100 and Section 101) defines which bytes are valid. The data from the 
TBUF will be shifted and byte aligned to the TDAT pins as required. Four parameters are defined.

Prepend Offset—Number of the first byte to send. This is information that is prepended onto the 
payload, for example as a header. It need not start at offset 0 in the element.

Prepend Length—Number of bytes of prepended information. This can be 0 to 31 bytes. If it is 0, 
then Prepend Offset must also be 0.

Payload Offset—Number of bytes to skip from the last 64-bit word of the Prepend to the start of 
Payload. The absolute byte number of the first byte of Payload in the element is:
((Prepend Offset + Prepend Length + 0x7) && 0xF8) + Payload Offset

Payload Length—Number of bytes of Payload.

The sum of Prepend Length,  Payload length and any gaps in between them (((prepend_offset + 
preprend_length + 7) & 0xF8) + payload_offset + payload_length)  must be no greater than the 
number of bytes in the element. Typically the Prepend will be computed by a Microengine and 
written into the TBUF by msf[write] and the Payload will be written by dram[tbuf_wr]. These 
two operations can be done in either order; the microcode is responsible for making sure the 
element is not marked valid to transmit until all data is in the element (see Section 8.3.3).

Example 35 illustrates the usage of the parameters. The element in Example 35 is shown as 8 bytes 
wide because the smallest unit that can be moved into the element is 8 bytes. In Example 35, bytes 
to be transmitted are shown in black (the offsets are byte numbers); bytes in gray are written into 
TBUF (because the writes always write 8 bytes), but are not transmitted.

Prepend Offset = 6 (bytes 0x0 through 0x5 are not transmitted).

Prepend Length = 16 (bytes 0x6 through 0x15 are transmitted).

Payload Offset = 7 (bytes 0x16 through 0x1E are not transmitted). The Payload starts in the next 8-
byte row (i.e., the next “empty” row above where the Prepend stops), even if there is room in the 
last row containing Prepend information. This is done because the TBUF does not have byte write 
capability, and therefore would not merge the msf[write] and dram[tbuf_wr]. The software 
computing the Payload Offset only needs to know how many bytes of the payload that were put 
into DRAM need to be removed.

Payload Length = 33 (bytes 0x1F through 0x3F are transmitted).
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The transmit logic will send the valid bytes onto TDAT correctly aligned and with no gaps. The 
protocol transmitted, SPI-4 or CSIX (and the value of the TPROT output) are based on which 
partition of TBUF the data was placed (see Table 97).

8.3.2.1 SPI-4

For SPI-4, data is put into the data portion of the element, and information for the SPI-4 Control 
Word that will precede the data is put into the Element Control Word.

When the Element Control Word is written the information is (note that the data comes from two 
consecutive Transfer Registers; bits [31:0] from the lower numbered and bits[63:32] from the 
higher numbered):

The definitions of the fields are shown in Table 100.

Example 35. TBUF Prepend and Payload

0 1 2 3 4 5 6 7

8 9 A B C D E F

10 11 12 13 14 15 16 17 

18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27

28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37

38 39 3A 3B 3C 3D 3E 3F
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Table 100. TBUF SPI-4 Control Definition

Field Definition

ADR The port number to which the data is directed. This field will be sent in the ADR field of 
the Control Word that will precede the data transfer.

SOP Indicates if the element is the start of a packet. This field will be sent in the SOPC field of 
the Control Word that will precede the data transfer.

EOP Indicates if the element is the end of a packet. This field will be sent in the EOPS field of 
the Control Word that will succeed the data transfer. Note 1.

NOTE:
1. Normally EOPS is sent on the next Control Word (along with ADR and SOP) to start the next element. If 

there is no valid element pending at the end of sending the data, the transmit logic will insert an Idle 
Control Word with the EOPS information.
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8.3.2.2 CSIX

For CSIX protocol, the TBUF should be set to two partitions in 
MSF_Tx_Control[TBUF_Partition], one for Data traffic and one for Control traffic.

Payload information is put into the Payload area of the element, and Base and Extension Header 
information is put into the Element Control Word.

Data is stored in big-endian order. The most significant byte of each 32-bit word is transmitted 
first.

When the Element Control Word is written the information is (note that the data comes from two 
consecutive Transfer Registers; bits [31:0] from the lower numbered and bits[63:32] from the 
higher numbered):

The definitions of the fields are shown in Table 101.

Abort
Indicates if the element is the end of a packet that should be aborted. If this bit is set the 
status code of EOP Abort will be sent in the EOPS field of the Control Word that will 
succeed the data transfer. Note 1.

Prepend Offset Indicates the first valid byte of Prepend, from 0 to 7, as defined in Section 8.3.2.

Prepend Length Indicates the number of bytes in Prepend, from 0 to 31.

Payload Offset Indicates the first valid byte of Payload, from 0 to 7, as defined in Section 8.3.2.

Payload Length

Indicates the number of Payload bytes, from 1 to 256, in the element. The value of 0x00 
means 256 bytes. The sum of Prepend Length and Payload Length will be sent. That 
value will also control the EOPS field (1 or 2 bytes valid indicated) of the Control Word 
that will succeed the data transfer. Note 1.

Skip
Allows software to allocate a TBUF element and then not transmit any data from it. 
0—transmit data according to other fields of Control Word.
1—free the element without transmitting any data.

Table 100. TBUF SPI-4 Control Definition (Continued)

Field Definition

NOTE:
1. Normally EOPS is sent on the next Control Word (along with ADR and SOP) to start the next element. If 

there is no valid element pending at the end of sending the data, the transmit logic will insert an Idle 
Control Word with the EOPS information.
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8.3.3 Transmit Operation Summary

During transmit processing data to be transmitted is placed into the TBUF under ME control. The 
Microengine allocates an element in software; the transmit hardware processes TBUF elements 
within a partition in strict sequential order so the software can track which element to allocate next. 

Microengines may write directly into an element by msf[write] instruction, or have data from 
DRAM written into the element by dram[tbuf_wr] instruction. Data can be merged into the 
element by doing both.

There is a Transmit Valid bits per element, which marks the element as ready to be transmitted. 
Microengines move all data into the element, by either or both of msf[write] and 
dram[tbuf_wr]instructions to the TBUF. MEs also write the element Transmit Control Word with 
information about the element. The Microengines should use a single operation to perform the 
TCW write, i.e., a single msf[write] with a ref_count of 2. When all the data movement is complete 
the Microengine sets the element valid bit as shown in the following steps.

1. Move data into TBUF by either or both of msf[write] and dram[tbuf_wr] instructions to the 
TBUF.

2. Wait for 1 to complete.

3. Write Transmit Control Word at TBUF_Element_Control_# address. Using this address sets 
the Transmit Valid bit.

Note: When moving data from DRAM to TBUF using dram[tbuf_wr], it is possible that there could be 
an uncorrectable error on the data read from DRAM (if ECC is enabled). In that case, the 
Microengine does not get an Event Signal, to prevent use of the corrupt data. The error is recorded 
in the DRAM controller (including the number of the Microengine that issued the TBUF_Wr 
command, refer to the DRAM chapter for details), and will interrupt the Intel XScale® core, if 
enabled, so that it can take appropriate action. Such action is beyond the scope of this document. 

Table 101. TBUF CSIX Control Definition

Field Definition

Type Type Field to put into the CSIX Base Header. Idle type is not legal here.

CR CR (CSIX Reserved) bit to put into the CSIX Base Header.

P P (Private) bit to put into the CSIX Base Header.

Extension Header
The Extension Header to be sent with the CFrame. The bytes are sent in big-endian 
order; byte 0 is in bits 63:56, byte 1 is in bits 55:48, byte 2 is in bits 47:40, and byte 3 is in 
bits 39:32.

Prepend Offset Indicates the first valid byte of Prepend, from 0 to 7, as defined in Section 8.3.2.

Prepend Length Indicates the number of bytes in Prepend, from 0 to 31.

Payload Offset Indicates the first valid byte of Payload, from 0 to 7, as defined in Section 8.3.2.

Payload Length

Indicates the number of Payload bytes, from 1 to 256, in the element. The value of 0x00 
means 256 bytes. The sum of Prepend Length and Payload Length will be sent, and also 
put into the CSIX Base Header Payload Length field. Note that this length does not 
include any padding which may be required. Padding is inserted by transmit hardware as 
needed.

Skip
Allows software to allocate a TBUF element and then not transmit any data from it.
0—transmit data according to other fields of Control Word
1—free the element without transmitting any data.
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However it must include recovering the TBUF element by setting it valid with Skip bit set in the 
Control Word. 

The transmit pipeline will be stalled since all TBUF elements must be transmitted in order; it will 
be un-stalled when the element is skipped.

8.3.3.1 SPI-4

Transmit control logic sends valid elements on the transmit pins in element order. First a Control 
Word is sent—it is formed as shown in Table 102. After the Control Word, the data is sent; the 
number of bytes to send is the total of Element Control Word Prepend Length field plus the 
Element Control Word Payload Length.

If the next sequential element is not valid when its turn comes up:

1. Send an idle Control Word with SOP set to 0, EOPS set to the values determined from the most 
recently sent element, ADR field 0x00, correct parity.

2. Until an element becomes valid, send idle Control Words with SOP set to 0, EOPS set to 00, 
ADR field 0x00, and correct parity.

Note: Sequential elements with same ADR are not “merged”, a Control Word is sent for each element.

Note: SPI-4 requires that all data transfers, except the last fragment (with EOP), be multiples of 16 bytes. 
It is up to the software loading the TBUF element to enforce this rule.

After an element has been sent on the transmit pins, the valid bit for that element is cleared. The 
Tx_Sequence register is incremented when the element has been transmitted; by also maintaining 
a sequence number of elements that have been allocated (in software), the microcode can 
determine how many elements are in-flight.

Table 102. Transmit SPI-4 Control Word

SPI-4 Control 
Word Field Derived From

Type Type Bit of Element Control Word

EOPS EOP Bit, Prepend Length, Payload Length of previous element’s Element Control Word

SOP SOP Bit of Element Control Word

ADR ADR field of Element Control Word

DIP-4 Parity accumulated on previous element’s data and this Control Word
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8.3.3.2 CSIX

Transmit control logic sends valid elements on the transmit pins in element order. Each element 
sends a single CFrame. First the Base Header is sent—it is formed as shown in Table 103. Next the 
Extension Header is sent. Finally, the data is sent; the number of bytes to send is the total of 
Element Control Word Prepend Length field plus the Element Control Word Payload Length; plus 
padding to fill the final CWord if required (the CWord Size is programmed in 
MSF_Tx_Control[Tx_CWord_Size]). Both Horizontal Parity and Vertical Parity are transmitted, as 
described in Section 8.3.5.2.1 and Section 8.3.5.2.2.

Note: When transmitting a Flow Control CFrame, the entire payload must be written into the TBUF 
entry. The extension header field of the Transmit Control Word is not used for Flow Control 
CFrames.

Control elements and Data elements share use of the transmit pins. Each will alternately transmit a 
valid element, if present.

If the next sequential element is not valid when its turn comes up, or if transmission is disabled by 
FC_Ingress_Status[SF_CReady] or FC_Ingress_Status[SF_DReady], then transmit logic will 
alternate sending Idle CFrames with Dead Cycles; it will continue to do so until a valid element is 
ready. Idle CFrames get the value for the Ready Field from FC_Ingress_Status[TM_Cready] and 
FC_Ingress_Status[TM_DReady], the Payload Length is set to 0.

Note: A Dead Cycle is any cycle after the end of a CFrame, and prior to the start of another CFrame (i.e., 
SOF is not asserted). The end of a CFrame is defined as after the Vertical Parity has been 
transmitted. This in turn is found by counting the Payload Bytes specified in the Base Header and 
rounding up to CWord size.

After an element has been sent on the transmit pins, the valid bit for that element is cleared. The 
Tx_Sequence register is incremented when the element has been transmitted; by also maintaining 
a sequence number of elements that have been allocated (in software), the microcode can 
determine how many elements are in-flight.

Table 103. Transmit CSIX Header

CSIX Header Field Derived From

Type Type field of Element Control Word

Data Ready FC_Ingress_Status[TM_DReady] 

Control Ready FC_Ingress_Status[TM_CReady] 

Payload Length Element Control Word Prepend Length + Element Control Word Payload Length

P P Bit of Element Control Word

CR CR Bit of Element Control Word

Extension Header Extension Header field of Element Control Word
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8.3.3.3 Transmit Summary

The states that a TBUF element goes through are shown in Figure 95.

8.3.4 Transmit Flow Control Status

Transmit Flow Control is handled partly by hardware and partly by software. Information from the 
Egress IXP2800 Network Processor can be transmitted to the Ingress IXP2800 Network Processor 
(as described in Section 8.2.7 on Receive Flow Control); how it is used is described in the 
remainder of this section.

8.3.4.1 SPI-4

FIFO status information is sent periodically over the TSTAT signals from the PHY to the Link 
Layer device (which is the IXP2800 Network Processor). [Note that RXCDAT pins can act as 
TSTAT based on MSF_Tx_Control[TSTAT_Select] bit.] The FIFO status of each port is encoded 
in a 2-bit data structure—code 0x3 is used for framing the data, and the other three codes are valid 
status values, which are interpreted by Microengine software.

The FIFO status words are received according to a repeating calendar sequence. Each sequence 
begins with the framing code to indicate the start of a sequence, followed by the status codes, 
followed by a DIP-2 parity code covering the preceding frame. The length of the calendar, as well 
as the port values, are defined in this section, and shown in Figure 96.

Figure 95. TBUF State Diagram
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Tx_Port_Status_# is a register file containing 256 registers, one for each of the SPI-4.2 ports. The 
port status is updated each time a new calendar status is received for each port, according to the 
mode programmed in MSF_Tx_Control[Tx_Status_Update_Mode]. Tx_Port_Status_# holds 
the latest received status for each port, and can be read by CSR reads. 

There are 16 Tx_Multiple_Port_Status_# registers. Each aggregates the status for each group of 
16 ports. These registers provide an alternative method for reading the FIFO status of multiple 
ports with a single CSR read. For example, Tx_Multiple_Port_Status_0 contains the 2-bit status 
for ports 0 through 16, and provides the same status as reading the individual registers 
Tx_Port_Status_0 through Tx_Port_Status_15.

The TX_Port_Status_# or the TX_Multiple_Port_Status_# registers must be read by the 
software in order to determine the status of each port and send data to them accordingly. The MSF 
hardware does not check these registers for port status before sending data out to a particular port.

The MSF_Tx_Control[Tx_Status_Update_Mode] field is used to select which of two methods 
should be used for updating the port status. The first method updates the port status with the new 
status value, regardless of the value received. The second method updates the port status only when 
a value is received that is equal to or less than the current value. 

Figure 96. Tx Calendar Block Diagram
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Note: Detailed information about the status update modes is contained in the Intel® IXP2400/IXP2800 
Network Processor Programmer’s Reference Manual.

Reading a port status causes its value to be changed. This provides a means to avoid reading stale 
status bits. The MSF_Tx_Control[Tx_Status_Read_Mode] field is used to select the method 
used to change the bits after they are read. 

Tx_Calendar is a RAM with 256 entries of 8 bits each. It is initialized with the calendar 
information by software (the calendar is a list that indicates the sequence of port status that will be 
sent—the PHY and the IXP2800 Network Processor must be initialized with the same calendar). 
Tx_Calendar_Length is a CSR field that is initialized with the length of the calendar, since in 
many cases not all 256 entries of Tx_Calendar are used.

When the start of a Status frame pattern is detected (by a value of 0x3 on TSTAT) the Calendar 
Counter is initialized to zero. On each data cycle the Calendar Counter is used to index into 
Tx_Calendar to read a port number. The port number is used as an index to Tx_Port_Status, and 
the information received on TSTAT is put into that location in Tx_Port_Status. The count is 
incremented each cycle.

DIP-2 Parity is also accumulated on TSTAT. At the start of the frame, parity is cleared. When the 
count reaches Tx_Calendar_Length the next value on TSTAT is used to compare to the 
accumulated parity. The control logic then looks for the next frame start. If the received parity does 
not match the expected value MSF_Interrupt_Status[TSTAT_Par_Err] bit is set, which can 
interrupt the Intel XScale® core if enabled.

Note: An internal status flag records whether or not the most recently received DIP-2 was correct. When 
that flag is set (indicating bad DIP-2 parity) all reads to Tx_Port_Status return a status of 
“Satisfied” instead of the value in the Tx_Port_Status RAM. The flag is re-loaded at the next 
parity sample; so the implication is that all ports will return “Satisfied” status for at least one 
calendar.

SPI-4 protocol uses a continuous stream of repeated frame patterns to indicate a disabled status 
link. The IXP2800 Network Processor flow control status block has a Frame Pattern Counter that 
counts up each time a frame pattern is received on TSTAT, and is cleared when any other pattern is 
received. When the Frame Pattern Counter reaches 32 
MSF_Interrupt_Status[Detect_No_Calendar] is set and Train_Data[Detect_No_Calendar] is 
asserted (MSF_Interrupt_Status[Detect_No_Calendar] must be cleared by a write to the 
MSF_Interrupt_Status register; Train_Data[Detect_No_Calendar] will reflect the current 
status and will deassert when the frame pattern stops). The transmit logic will generate training 
sequence on transmit pins while both Train_Data[Detect_No_Calendar] and 
Train_Data[Train_Enable_TSTAT] are asserted.
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8.3.4.2 CSIX

There are two types of CSIX flow control:

• Link-level

• Virtual Output Queue (VOQ)

8.3.4.2.1 Link-level

The Link-level flow control function is done via hardware and consists of two parts:

1. Enable/disable transmission of valid TBUF elements.

2. Ready field to be sent in CFrames sent to the Switch Fabric.

As described in Section 8.2.7, the Ready Field of received CFrames is placed into 
FC_Egress_Status[SF_CReady] and FC_Egress_Status[SF_DReady]. The value in those bits is 
sent to the Ingress IXP2800 Network Processor on TXCSRB. In Full Duplex Mode, the 
information is received on RXCSRB by the Ingress IXP2800 Network Processor and put into 
FC_Ingress_Status[SF_CReady] and FC_Ingress_Status[SF_DReady]. Those bits allow or 
stop transmission of Control and Data elements, respectively. When one of those bits transitions 
from allowing transmission to stopping transmission, the current CFrame in progress (if any) is 
completed, and the next CFrame of that type is prevented from starting.

Also described in Section 8.2.7, if the Egress IXP2800 Network Processor RBUF gets near full, or 
if the Egress IXP2800 Network Processor FCEFIFO gets near full, it will send that information on 
TXCSRB. Those bits are put into FC_Ingress_Status[TM_CReady] and 
FC_Ingress_Status[TM_DReady], and are used as the value in CFrame Base Header Control 
Ready and Data Ready, respectively.

8.3.4.2.2 Virtual Output Queue

The Virtual Output Queue flow control function is done by software, with hardware support.

As described in Section 8.2.7, CSIX Flow Control CFrames received on the Egress IXP2800 
Network Processor are passed to the Ingress IXP2800 Network Processor over TXCDAT. The 
information is received on RXCDAT and placed into the FCIFIFO. A Microengine reads that 
information by msf[read], and uses it to maintain per-VOQ information. How that information is 
used is application dependent and is done in software. The hardware mechanism is described in 
Section 8.5.3.

8.3.5 Parity

8.3.5.1 SPI-4

DIP-4 parity is computed by Transmit hardware placed into the Control Word sent at the beginning 
of transmission of a TBUF element, and also on Idle Control Words sent when no TBUF element is 
valid. The value to place into the DIP-4 field is computed on the preceding Data Words (if any), 
and the current Control Word.
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8.3.5.2 CSIX

8.3.5.2.1 Horizontal Parity

The transmit logic computes odd Horizontal Parity for each transmitted 16-bits of each Cword, and 
transmits it on TxPar.

8.3.5.2.2 Vertical Parity

The transmit logic computes Vertical Parity on CFrames. There is a 16-bit VP Accumulator 
Register. At the beginning of each CFrame the register is cleared. As each Cword is transmitted, 
odd parity is accumulated in the register as defined in the CSIX spec (16 bits of vertical parity are 
formed on 32 bits of transmitted data by treating the data as words; i.e., bit 0 and bit 16 of the data 
are accumulated into parity bit 0, bit 1, and bit 17 of the data are accumulated into parity bit 1, etc.). 
The accumulated value is transmitted in the Cword along with the last byte of Payload and any 
padding, if required.

8.4 RBUF and TBUF Summary

Table 104 summarizes and contrasts the RBUF and TBUF operations.

Table 104. Summary of RBUF and TBUF Operations

Operation RBUF TBUF

Allocate 
element

SPI-4

Hardware allocates an element upon receipt 
of a non-idle Control Word, or when a 
previous element becomes full and another 
Data Word arrives with no intervening 
Control Word. Any available element in the 
SPI-4 partition may be allocated, however, 
elements are guaranteed to be handed to 
threads in the order they arrive.

CSIX

Hardware allocates an element upon receipt 
of RxSof asserted. Any available element in 
the CSIX Control or CSIX Data partition may 
be allocated (according to the type), 
however, elements are guaranteed to be 
handed to threads in the order they arrive.

Microengine allocates an element. Because 
the elements are transmitted in FIFO order 
(within each TBUF partition), the Microengine 
can keep the number of the next element in 
software.

Fill element

SPI-4

Hardware fills the element with Data Words.
CSIX

Hardware fills the element with Payload.

Microcode fills the element from DRAM using 
dram[tbuf_wr] instruction and from 
Microengine registers using msf[write] 
instruction.

Set element 
valid

SPI-4

Set valid by hardware when either it 
becomes full or when a Control Word is 
received.

CSIX

Set valid by hardware when the number of 
bytes in Payload Length have been 
received.

The element’s Transmit Valid bit is set. This 
is done by a write to the 
TBUF_Element_Control_$_# CSR ($is A or 
B, # is the element number).
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8.5 CSIX Flow Control Interface

This section describes the Flow Control Interface. Section 8.2 and Section 8.3 of this chapter also 
contain descriptions of how those functions interact with Flow Control. There are two modes—Full 
Duplex, where flow control information goes from Egress IXP2800 Network Processor to the 
Ingress IXP2800 Network Processor, and Simplex mode, where the information from the Switch 
Fabric is sent directly to the Ingress IXP2800 Network Processor, and from the Egress IXP2800 
Network Processor to the Switch Fabric.

8.5.1 TXCSRB, RXCSRB

TXCSRB and RXCSRBare used only in Full Duplex mode. (See Figure 97.) They send 
information from the Egress IXP2800 Network Processor to the Ingress IXP2800 Network 
Processor for two reasons:

1. Pass the CSIX Ready Field (link-level flow control) from the Switch Fabric to the Ingress 
IXP2800 Network Processor. The information is used by the Ingress IXP2800 Network 
Processor’s transmit control logic to stop transmission of CFrames to the Switch Fabric.

2. Set the value of the Ready field sent from the Ingress IXP2800 Network Processor to the 
Switch Fabric. This is to inform the Switch Fabric to stop transmitting CFrames to the Egress 
IXP2800 Network Processor, based on receive buffer resource availability in the Egress 
IXP2800 Network Processor.

Remove data 
from element

Microcode moves data from the element to 
DRAM using dram[rbuf_rd] instruction 
and to Microengine registers using 
msf[read] instruction.

Hardware transmits information from the 
element to the Tx pins. Transmission of 
elements is in FIFO order within each 
partition; that is an element will be 
transmitted only when all preceding elements 
in that partition have been transmitted.

Choice of element to transmit among 
partitions is round-robin.

Return element 
to Free List

Microcode writes to Rx_Element_Done 
with the number of the element to free.

Microengine software uses the 
TX_Sequence_n CSRs to track elements 
that have been transmitted.

Table 104. Summary of RBUF and TBUF Operations (Continued)

Operation RBUF TBUF
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The information transmitted on TXCSRB can be read in FC_Egress_Status CSR, and the 
information received on RXCSRB can be read in FC_Ingress_Status CSR.

TXCSRB/RXCSRB signals carry the Ready information in a serial stream. Four bits of data are 
carried in 10 clock phases, LSB first, as shown in Table 105.

Figure 97. CSIX Flow Control Interface — TXCSRB and RXCSRB
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Table 105. SRB Definition by Clock Phase Number

Clock 
Cycle 

Number

Description

Source of bit on Egress IXP2800 Network 
Processor (TXCSRB)

Use of bit on Ingress IXP2800 Network 
Processor (RXCSRB)

0–5 Framing information. Data is 000001; this pattern allows the Ingress IXP2800 Network Processor to 
get synchronized to the serial stream regardless of the data values.

6

Most recently received Control Ready from a 
CFrame Base Header.
Also visible in 
FC_Egress_Status[SF_CReady].

When 0—Stop sending Control CFrames to the 
Switch Fabric.

When 1—OK to send Control CFrames to the 
Switch Fabric.

Also visible in FC_Ingress_Status[SF_CReady].

7

Most recently received Data Ready from a 
CFrame Base Header.
Also visible in 
FC_Egress_Status[SF_DReady]

When 0—Stop sending Data CFrames to the 
Switch Fabric.

When 1—OK to send Data CFrames to the 
Switch Fabric.

Also visible in FC_Ingress_Status[SF_DReady].

8
RBUF or FCEFIFO are above high water mark.

Also visible in 
FC_Egress_Status[TM_CReady].

Place this bit in the Control Ready bit of all 
outgoing CSIX Base Headers.

Also visible in 
FC_Ingress_Status[TM_CReady].

9
RBUF is above high water mark.
Also visible in 
FC_Egress_Status[TM_DReady].

Place this bit in the Data Ready bit of all outgoing 
CSIX Base Headers.

Also visible in 
FC_Ingress_Status[TM_DReady].
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The Transmit Data Ready bit sent from Egress to Ingress IXP2800 Network Processor will be 
deasserted if the following condition is met.

• RBUF CSIX Data partition is full, based on HWM_Control[RBUF_D_HWM].

The Transmit Control Ready bit sent from Egress to Ingress IXP2800 Network Processor will be 
deasserted if either of the following conditions is met.

• RBUF CSIX Control partition is full, based on HWM_Control[RBUF_C_HWM].

• FCEFIFO full, based on HWM_Control[FCEFIFO_HWM].

8.5.2 FCIFIFO, FCEFIFO

FCIFIFO and FCEFIFO are 1 Kbyte (256 entry x 32-bit) buffers for the flow control information. 
FCEFIFO holds data while it is being transmitted off of the Egress IXP2800 Network Processor. 
FCIFIFO holds data received into the Ingress IXP2800 Network Processor until Microengines can 
read it. There are two usage models for the FIFOs—Full Duplex Mode and Simplex Mode, 
selected by MSF_Rx_Control[Duplex_Mode].

8.5.2.1 Full Duplex CSIX

In Full Duplex Mode, the information from the Switch Fabric is sent to the Egress IXP2800 
Network Processor and must be communicated to the Ingress IXP2800 Network Processor via 
TXCSRB/RXCSRB. CSIX CFrames received from the Switch Fabric on the Egress IXP2800 
Network Processor are put into FCEFIFO based on the mapping in CSIX_Type_Map CSR 
(normally they will be the Flow Control CFrames). The entire CFrame is put in, including the Base 
Header and Vertical Parity field.

The CFrames are forwarded in a “cut-through” manner, meaning the Egress IXP2800 Network 
Processor does not wait for the entire CFrame to be received before forwarding. The Egress 
processor will corrupt the Vertical Parity of the CFrame being forwarded if either a Horizontal or 
Vertical Parity is detected during receive to inform the Ingress processor that an error occured.The 
Ingress IXP2800 Network Processor checks both Horizontal Parity and Vertical Parity and will 
discard the entire CFrame if bad parity is detected. The signal protocol details of how the 
information is sent from the Egress IXP2800 Network Processor to the Ingress IXP2800 Network 
Processor is described in Section 8.5.3. (See Figure 98.)
278 Hardware Reference Manual



Intel® IXP2800 Network Processor
Media and Switch Fabric Interface
The Ingress IXP2800 Network Processor puts the CFrames into the FCIFIFO, including the Base 
Header and Vertical Parity fields. It does not make a CFrame visible in the FCIFIFO until the entire 
CFrame has been received without errors. If there is an error the entire CFrame is discarded and 
MSF_Interrupt_Status[FCIFIFO_Error] is set.

CFrames in the FCIFIFO of the Ingress IXP2800 Network Processor are read by Microengines, 
which use them to keep current VOQ Flow Control information. [How and where that information 
is stored and used is a software function and is application dependent.] The FCIFIFO supplies two 
signals to Microengines, which can be tested using the BR_STATE instruction.

1. FCI_Not_Empty—indicates that there is at least one CWord in the FCIFIFO. This signal stays 
asserted until all CWords have been read. [Note that when FCIFIFO is empty, this signal will 
not assert until a full CFrame has been received into FCIFIFO; as that CFrame is removed by 
the Microengine this signal will stay asserted until all CWords have been removed, including 
any subsequently received CFrames.]

2. FCI_Full—indicates that FCIFIFO is above the high water mark defined in 
HWM_Control[FCIFIFO_Int_HWM].

The Microengine that has been assigned to handle FCIFIFO must read the CFrame, 32 bits at a 
time, from the FCIFIFO using the msf[read] instruction to the FCIFIFO address; the length of the 
read can be anywhere from one to 16. The FCIFIFO handler thread must examine the Base Header 
to determine how long the CFrame is and perform the necessary number of reads from the 
FCIFIFO to dequeue the entire CFrame. If a read is issued to FCIFIFO when it is empty then an 
Idle CFrame will be read back (0x0000FFFF). Note that when FCIFIFO is receiving a CFrame, it 
does not make it visible until the entire CFrame has been received without errors.

Figure 98. CSIX Flow Control Interface — FCIFIFO and FCEFIFO in Full Duplex Mode
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The nearly-full signal is based on the high watermark programmed into 
HWM_Control[FCIFIFO_Int_HWM]. When asserted, this means that higher priority needs to 
be given to draining the FCIFIFO to prevent flow control from being asserted to the Egress 
IXP2800 Network Processor (by assertion of RXCFC).

8.5.2.2 Simplex CSIX

In Simplex Mode, the Flow Control signals are connected directly to the Switch Fabric; flow 
control information is sent directly from the Egress IXP2800 Network Processor to the Switch 
Fabric, and directly from the Switch Fabric to the Ingress IXP2800 Network Processor. (See 
Figure 99.)

The TXCSRB/RXCSRB pins are not used at all in Simplex Mode. The RXCFC and TXCFC pins 
are used for flow control in both Simplex and Duplex Modes.

The Egress IXP2800 Network Processor uses the TXCSOF, TXCDAT, and TXCPAR pins to send 
CFrames to the Switch Fabric.

The Ingress IXP2800 Network Processor uses the RXCSOF, RXCDAT, and RXCPAR pins to 
receive CFrames from the Switch Fabric (the Switch Fabric is expected to send Flow Control 
CFrames on these pins instead of the RDAT pins in Simplex Mode). 
FC_Ingress_Status[SF_CReady] and FC_Ingress_Status[SF_DReady] bits are set are from the 
"Ready bits" received in all incoming CFrames received on this interface. Transmit hardware in the 
Ingress IXP2800 Network Processor uses the FC_Ingress_Status[SF_CReady] and 
FC_Ingress_Status[SF_DReady] bits to flow control the data and control transmit on TDAT.

CFrames in the FCIFIFO of the Ingress IXP2800 Network Processor are read by Microengines, 
which use them to keep current VOQ Flow Control information (this is the same as for Full Duplex 
Mode). The FCI_Not_Empty and FCI_Full status flags, as described in Section 8.5.2.1 let the 

Figure 99. CSIX Flow Control Interface — FCIFIFO and FCEFIFO in Simplex Mode
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Microengine know if the FCIFIFO has any CWords in it. When FCI_Full is asserted 
FC_Ingress_Status[TM_CReady] will be deasserted; that bit is put into the Ready field of 
CFrames going to the Switch Fabric, to inform it to stop sending Control CFrames.

Flow Control CFrames to the Switch Fabric are put into FCEFIFO, instead of into TBUF as in the 
Full Duplex Mode case. In this mode, the Microengines create CFrames and write them into 
FCEFIFO using msf[write] instruction to the FCEFIFO address; the length of the write can be 
anywhere form one to 16. The Microengine creating the CFrame must put a header that conforms 
to CSIX Base Header format in front of the message (in order to inform the hardware how many 
bytes to send). 

The Microengine must first test if there is room in FCEFIFO by reading 
FC_Egress_Status[FCEFIFO_Full] status bit. After the CFrame has been written to FCEFIFO, 
the Microengine writes to FCEFIFO_Validate register to indicate that the CFrame should be sent 
out on TXCDAT. This is required to prevent underflow by insuring that the entire CFrame is in 
FCEFIFO before it can be transmitted. A validated CFrame at the head of FCEFIFO will be started 
on TXCDAT if FC_Egress_Status[SF_CReady] is asserted, and held off if it is deasserted. 
However, once started the entire CFrame is sent regardless of changes in 
FC_Egress_Status[SF_CReady]. FC_Egress_Status[SF_DReady] is ignored in controlling 
FCEFIFO.

FC_Egress_Status[TM_CReady] and FC_Egress_Status[TM_DReady] are placed by hardware 
into the Base Header of those outgoing CFrames. Horizontal and Vertical parity are created by 
hardware. 

If there is no valid CFrame in FCEFIFO, or if FC_Egress_Status[SF_CReady] is deasserted, then 
idle CFrames are sent on TXCDAT. The idle CFrames also carry 
FC_Egress_Status[TM_CReady] and FC_Egress_Status[TM_DReady] in the Base Header 
Ready Field. In all cases the Switch Fabric must honor the "ready bits" to prevent overflowing 
RBUF.

8.5.3 TXCDAT/RXCDAT, TXCSOF/RXCSOF, TXCPAR/RXCPAR,
and TXCFC/RXCFC

TXCDAT and RXCDAT, along with TXCSOF/RXCSOF and TXCPAR/RXCPAR are used to 
send CSIX Flow Control information from the Egress IXP2800 Network Processor to the Ingress 
IXP2800 Network Processor.

The protocol is basically the same as CSIX-LI, but with only four data signals.

TXCSOF is asserted to indicate start of a new CFrame. The format is the same as any normal 
CFrame—Base Header, followed by Payload and Vertical Parity, the only difference is that each 
CWord is sent on TXCDAT in four cycles, most significant bits first. TXCPAR carries odd parity 
for each four bits of data. The transmit logic also creates valid Vertical Parity at the end of the 
CFrame, with one exception. If the Egress IXP2800 Network Processor detected an error on the 
CFrame, it will create bad Vertical parity so that the Ingress IXP2800 Network Processor will 
detect that and discard it.

The Egress IXP2800 Network Processor sends CFrames from FCEFIFO in cut-though manner. If 
there is no data in FCEFIFO then the Egress IXP2800 Network Processor alternates sending Idle 
CFrames and Dead Cycles. [Note that FCIFIFO never enqueues Idle CFrames in either Full Duplex 
or Simplex Modes. The transmitted Idle CFrames are injected by the control state machine, not 
taken from the FCEFIFO.]
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The Ingress IXP2800 Network Processor asserts RXCFC to indicate that FCIFIFO is full, as 
defined by HWM_Control[FCIFIFO_Ext_HWM]. The Egress IXP2800 Network Processor, 
upon receiving that signal asserted, will complete the current CFrame, and then transmit Idle 
CFrames until RXCFC deasserts. During that time the Egress IXP2800 Network Processor can 
continue to buffer Flow Control CFrames in FCEFIFO, however if that fills further CFrames 
mapped to FCEFIFO will be discarded.

Note: If there is no Switch Fabric present, this port could be used for interchip message communication. 
FC pins must connect between network processors as in Full Duplex Mode. Set 
MSF_RX_CONTROL[DUPLEX_MODE] = 0 and MSF_TX_CONTROL[DUPLEX_MODE] 
= 0 (Simplex) and FC_STATUS_OVERRIDE=0x3ff. MEs write CFrames to the FCEFIFO CSR 
as in Simplex Mode. The RXCFC and TXCFC pins must be connected between network 
processors to provide flow control.

8.6 Deskew and Training

This section describes the mechanisms used for deskewing and training. 

There are three methods of operation that can be used, based on the application requirements.

1. Static Alignment — the receiver latches all data and control signals at a fixed point in time 
relative to clock.

2. Static Deskew — the receiver latches each data and control signal at a programmable point in 
time relative to clock. The programming value for each signal is characterized for a given 
system design and loaded into deskew control registers at system boot time.

3. Dynamic Deskew — the transmitter periodically sends a training pattern, which the receiver 
uses to automatically select the optimal timing point for each data and control signal. The 
timing values are loaded into the deskew control registers by the training hardware.

The IXP2800 Network Processor supports all three methods. There are three groups of high speed 
pins which this applies, as shown in Table 106, Table 107, and Table 108. The groups are defined 
by which clock signal is used.

Table 106. Data Deskew Functions

Clock Signals IXP2800 Network Processor Operation

RCLK

RDAT 1. Sample point for each pin is programmed in Rx_Deskew.
2. Deskew values set automatically when training pattern (Section 8.6.1) is 

received and is enabled in Train_Data[Ignore_Training].RCTL

RPAR

RPROT

TCLK

TDAT 1. Send training pattern

• under software control (write to Train_Data[Continuous_Train] or 
Train_Data[Single_Train])

• when TSTAT input has framing pattern for more than 32 cycles and enabled in 
Train_Data[Train_Enable].

TCTL

TPAR

TPROT
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8.6.1 Data Training Pattern

The data pin training sequence is shown in Table 109. This is a superset of SPI-4 training sequence, 
because it includes the TPAR/RPAR and TPROT/RPOT pins, which are not included in SPI-4.

Table 107. Calendar Deskew Functions

Clock Signals IXP2800 Network Processor Operation

RSCLK RSTAT

1. Used to indicate need for data training on receive pins by forcing to continual 
framing pattern (write to Train_Data[RSTAT_En]).

2. Send training pattern under software control (write to 
Train_Calendar[Continuous_Train] or Train_Calendar[Single_Train]).

TSCLK TSTAT

1. Sample point for each pin is set in Rx_Deskew, either by manual programming 
or automatically.

2. Deskew values set automatically when training pattern (Section ) is received 
and is enabled in Train_Calendar[Ignore_Training].

3. Received continuous framing pattern can be used to initiate data training 
(Train_Data[Detect_No_Calendar]), and/or interrupt the Intel XScale® core.

Table 108. Flow Control Deskew Functions

Clock Signals IXP2800 Network Processor Operation

RXCCLK

RXCSOF 1. Sample point for each pin is programmed in Rx_Deskew.
2. Deskew values set automatically when training pattern (Section 8.6.2) is 

received and is enabled in Train_Flow_Control[Ignore_Training].

Note 1, 2

RXCDAT

RXCPAR

RXCSRB

TXCCLK

TXCSOF 1. Send training pattern

• under software control (write to Train_Flow_Control[Continuous_Train] or 
Train_Flow_Control[Single_Train])

• when TXCFC input has been asserted for more than 32 cycles and enabled in 
Train_Flow_Control[Train_Enable].

Note 1, 2

TXCDAT

TXCPAR

TXCSRB

NOTES:
1. TXCFC is not trained. RXCFC is driven out relative to RXCCLK; TXCFC is received relative to TXCCLK, 

but is treated as asynchronous.
2. RXCFC can be forced asserted by write to Train_Flow_Control[RXCFC_En].
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8.6.2 Flow Control Training Pattern

This section defines training for the flow control pins (Table 110). These pins are normally used for 
CSIX flow control (Section 8.5), but can be programmed for use as SPI-4 Status Channel. The 
training pattern used is based on the usage.

The flow control pin training sequence when the pins are used for CSIX flow control is shown in 
Table 110.

Table 109. Data Training Sequence

Cycle 
(Note 4)

P
R

O
T

PA
R

C
T

L

DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 (Note 5) 0 x 1 0 x x 0 0 0 0 0 0 0 0 0 a b c d

2 to 11 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

12 to 21 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

20α-18 to 20α-9 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

20α-8 to 20α+1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

NOTES:
1. In cycle 1, x and abcd depend on the contents of the interval after the last preceding control word. This is 

an Idle Control Word.
2. α represents the number of repeats, as specified in SPI-4 specification. When the IXP2800 Network 

Processor is transmitting training sequences the value is in Train_Data[Alpha]. 
3. On receive, the IXP2800 Network Processor will do dynamic deskew when Train_Data[Ignore_Training] 

is 0, and RCTL = 1 and RDATA = 0x0FFF for three consecutive samples. Note that RPROT and RPAR are 
ignored when recognizing the start of training sequence.

4. These are really phases (i.e.,each edge of the clock is counted as one sample).
5. This cycle is valid for SPI4, it is not used in CSIX training.

Table 110. Flow Control Training Sequence

Cycle
(Note 3)

X
C

S
O

F

XCDAT

X
C

P
A

R

X
C

S
R

B3 2 1 0

1 to 10 1 1 1 0 0 0 0

11 to 20 0 0 0 1 1 1 1

20α-19 to 20α-10 1 1 1 0 0 0 0

20α-9 to 20α 0 0 0 1 1 1 1

NOTE:
1. α represents the number of repeats, as specified 

in SPI-4 specification. When the IXP2800 Network 
Processor is transmitting training sequences the 
value is in Train_Flow_Control[Alpha].

2. On receive, the IXP2800 Network Processor will 
do dynamic deskew when 
Train_Flow_Control[Ignore_Training] is 0, and 
RXCSOF = 1, RXCDATA = 0xC, RXCPAR =0, 
and RXCSRB = 0 for three consecutive samples.

3. These are really phases (i.e.,each edge of the 
clock is counted as one sample).
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The training sequence when the pins are used for SPI-4 Status Channel is shown in Table 111. This 
is compatible to SPI-4 training sequence.

8.6.3 Use of Dynamic Training

Dynamic training is done by cooperation of hardware and software as defined in this section. 

The IXP2800 Network Processor will need training at reset or it loses training. Loss of training will 
typically be detected by parity errors on received data. Table 112 lists the steps to initiate the 
training. SPI-4, CSIX Full Duplex, and CSIX Simplex cases follow similar but slightly different 
sequences. SPI-4 protocol uses the calendar status pins, TSTAT/RSTAT (or RXCDAT/TXCDAT 
if those are used for calendar status), as an indicator that data training is required. For CSIX use, 
the IXP2800 Network Processor uses a proprietary method of in-band signaling using Idle 
CFrames and Dead Cycles to indicate need for training.

Until the LVDS IOs are deskewed correctly, dip4 errors will occur. At startup, the receiver should 
request training followed by the transmitting device being sent training. The receive should 
initially see received_training set and dip4 parity errors. The receiver should then clear the parity 
errors, wait for receive_training set and dip4_error cleared and check that all of the applicable 
RX_PHASEMON registers indicate no training errors. Then the LVDS IOs are properly trained.

Table 111. Calendar Training Sequence

Cycle
(Note 3)

XCDAT

1 0

1 to 10 0 0

11 to 20 1 1

20α-19 to 20α-10 0 0

20α-9 to 20α 1 1

NOTE:
1. α represents the number of repeats, 

as specified in SPI-4 specification. 
When the IXP2800 Network 
Processor is transmitting training 
sequences the value is in 
Train_Calendar[Alpha].

2. On receive, the IXP2800 Network 
Processor will do dynamic deskew 
when 
Train_Calendar[Ignore_Training] is 
0, and TCDAT= 0x0 for ten 
consecutive samples.

3. These are really phases (i.e.,each 
edge of the clock is counted as one 
sample).

4. Only XCDAT[1:0] are included in 
training.
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The second case is when the Switch Fabric or SPI-4 framing device indicates it needs Data 
training. Table 113 lists that sequence.

Table 112. IXP2800 Network Processor Requires Data Training

Step
SPI-4

(IXP2800 Network Processor 
is Ingress Device)

CSIX
(IXP2800 Network Processor is Egress Device)

Full Duplex Simplex

1 Detect need for training (for example, reset or excessive parity errors)

2

Force RSTAT (when using 
LVTTL status channel) to 
continuous framing pattern 
(Write a 0 to 
Train_Data[RSTAT_En]), or 
force RXCDAT (when using 
LVDS status channel) to 
continuous training (Write a 1 to 
Train_Calendar[Continous_Tr
ain])

Force Transmission of Idle 
CFrames on Flow Control 
(Write a 1 to 
Train_Flow_Control
[Force_FCIdle])

Force Transmission of Dead 
Cycles on Flow Control (Write a 
1 to Train_Flow_Control
[Force_FCDead])

3

Framer device detects RSTAT 
in continuous framing (when 
using LVTTL status channel, or 
RXCDAT in continuos training 
(when using LVDS status 
channel)

Ingress IXP2800 Flow Control 
port detects Idle CFrames and 
sets Train_Flow_Control
[Detect_FCIdle]

Switch Fabric detects Dead 
Cycles on Flow Control

4
Framer device transmits 
Training Sequence (IXP2800 
receives on RDAT)

Ingress IXP2800 sends Dead 
Cycles on TDAT (if Train_Data
[Dead_Enable_FCIdle] is set)

5 Switch Fabric detects Dead 
Cycles on Data

6 Switch Fabric transmits Training Sequence on Data

7

When MSF_Interrupt_Status[Received_Training_Data] interrupt indicates training happened, 
MSF_Interrupt_Status[DIP4_ERR] write DIP4_ERR bit sent to clear previous errors and check that 
all of the applicable RX_PHASEMON registers indicate no training errors.

Write a 1 to 
Train_Data[RSTAT_En] or 
Write a 0 to 
Train_Calendar[Continous_Tr
ain]

Write a 0 to 
Train_Flow_Control
[Force_FCIdle]

Write a 0 to 
Train_Flow_Control
[Force_FCDead]
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The IXP2800 Network Processor will need training at reset, or if it loses training. Loss of training 
will typically be detected by parity errors on received flow control information. Table 114 lists the 
steps to initiate the training. CSIX Full Duplex, and CSIX Simplex cases follow similar but slightly 
different sequences.

Table 113. Switch Fabric or SPI-4 Framer Requires Data Training

Step SPI-4
CSIX

Full Duplex Simplex

1

Framer sends continuous 
framing code on IXP2800 
calendar status pins TSTAT 
(when using LVTTL status 
channel) or sends continuos 
training on IXP2800 calendar 
status pins RXCDAT (when 
using LVDS status channel).

Switch Fabric sends continuous 
Dead Cycles on Data.

Switch Fabric sends continuous 
Dead Cycles on Flow Control.

2

IXP2800 detects no calendar 
on TSTAT (when using LVTTL 
status channel) or detects 
continuos training on RXCDAT 
(when using LVDS status 
channel), and sets Train_Data
[Detect_No_Calendar]

Egress IXP2800 detects Dead 
Cycles and sets 
Train_Data[Detect_CDead]

Ingress IXP2800 detects Dead 
Cycles and sets 
Train_Flow_Control
[Detect_FCDead]3

IXP2800 transmits Training 
Pattern (if Train_Data
[Train_Enable_TDAT] is set)

Egress IXP2800 Flow Control 
port sends continuous Dead 
Cycles if Train_Flow_Control
[TD_Enable_CDead]

4

Ingress IXP2800 Flow Control 
port detects continuous Dead 
Cycles and set 
Train_Flow_Control
[Detect_FCDead]

5 Ingress IXP2800 transmits continuous Training Sequence on data 
if Train_Data[Train_EN_FCDead]

6

When Framer/Switch Fabric is trained it indicates that fact by reverting to normal operation.

Framer stops continuous 
framing code on calendar 
status pins.

Switch Fabric stops continuous 
Dead Cycles on Data.

Switch Fabric stops continuous 
Dead Cycles on Flow Control.
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The last case is when the Switch Fabric indicates it needs Flow Control training. Table 115 lists 
that sequence.

Table 114. IXP2800 Network Processor Requires Flow Control Training

Step

CSIX
(IXP2800 Network Processor is Ingress Device)

Full Duplex Simplex

1

Force TXCFC pin asserted 
(Write a 0 to 
Train_Flow_Control
[RXCFC_En])

Force Data pins to continuos 
Dead Cycles (Write a 1 to 
Train_Data[Force_CDead])

2

Egress IXP2800 Network 
Processor Flow Control port 
detects RXCFC sustained 
assertion and sets 
Train_Flow_Control
[Detect_TXCFC_Sustained]

Switch Fabric detects Dead 
Cycles on Data

3

Ingress IXP2800 Network 
Processor transmits Training 
Sequence on Flow Control pins 
(if Train_Flow_Control
[Train_Enable_CFC] is set)

Switch Fabric transmits 
Training Sequence on Flow 
Control pins.

4

When MSF_Interrupt_Status[Received_Training_FC] interrupt 
indicates training happened and all of the applicable 
RX_PHASEMON registers indicate no training errors, write CSR 
bits set in Step 1 to inactive value.

Write a 1 to 
Train_Flow_Control
[RXCFC_En]

Write a 1 to 
Train_Data[Force_CDead]

Table 115. Switch Fabric Requires Flow Control Training

Step Simplex
(IXP2800 Network Processor is Egress Device)

1 Switch Fabric sends continuous Dead Cycles on 
Data.

2
Egress IXP2800 Network Processor detects Dead 
Cycles and sets Train_Data
[Detect_CDead]

3

Egress IXP2800 Network Processor transmits 
Training Sequence on Flow Control pins (if 
Train_Flow_Control
[Train_Enable_CDead] is set)

4 Switch Fabric, upon getting trained stops continuous 
Dead Cycles on Data.
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8.7 CSIX Startup Sequence

This section defines the sequence required to startup the CSIX interface.

8.7.1 CSIX Full Duplex

8.7.1.1 Ingress IXP2800 

1. On reset, FC_STATUS_OVERRIDE[Egress_Force_En] is set to force the Ingress IXP2800 to 
send Idle CFrames with low CReady and DReady bits to the Egress IXP2800 over TXCSRB.

2. The Microengine or the Intel XScale® core writes a 1 to MSF_Rx_Control[RX_En_C] so that 
Idle CFrames can be received.

3. The Microengine or the Intel XScale® core polls on 
MSF_Interrupt_Status[Detected_CSIX_Idle] to see when the first Idle CFrame is received. 
The Intel XScale® core may use the Detected_CSIX_Idle Interrupt if 
MSF_Interrupt_Enable[Detected_CSIX_Idle] is set.

4. When the first Idle CFrame is received, ME or the Intel XScale® core writes a 0 to 
FC_STATUS_OVERRIDE[Egress_Force_En] to deactivate SRB Override or writes 2’b11 to 
FC_STATUS_OVERRIDE[7:6] ([TM_CReady] and [TM_DReady]). This will inform the 
Egress IXP2800 that the Switch Fabric has sent an Idle CFrame and the Ingress IXP2800 has 
detected it.

8.7.1.2 Egress IXP2800

1. On reset, FC_STATUS_OVERRIDE[Ingress_Force_En] is set.

2. The Microengine or the Intel XScale® core writes a 1 to MSF_Tx_Control[Transmit_Idle] and 
MSF_Tx_Control[Transmit_Enable] so that Idle CFrames with low CReady and Dready bits 
are sent over TDAT.

3. The Microengine or the Intel XScale® core writes a 0 to 
FC_STATUS_OVERRIDE[Ingress_Force_En]. The Egress IXP2800 will then be sending Idle 
CFrames with CReady and DReady according to what is received on RXCSRB from the 
Ingress IXP2800. If the Egress IXP2800 has not detected an Idle CFrame, low TM_CReady 
and TM_DReady bits will be transmitted over its TXCSRB pin. If it has detected an Idle 
CFrame, the TM_CReady and TM_DReady bits are high. The TM_CReady and TM_DReady 
bits received on RXCSRB by the Ingress IXP2800 are used in the Base Headers of CFrames 
transmitted over TDAT.

4. The Microengine or the Intel XScale® core polls on FC_Ingress_Status[TM_CReady] and 
FC_Ingress_Status[TM_DReady]. When they are seen active, ME or the Intel XScale® core 
writes a 1 to MSF_Tx_Control[TX_En_CC] and MSF_Tx_Control[TX_En_CD]. Egress 
IXP2800 then resumes normal operation. Likewise, when the Switch Fabric recognizes Idle 
CFrames with "ready bits" high, it will assume normal operation.
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1. The Microengine or the Intel XScale® core writes a 1 to MSF_Tx_Control[Transmit_Idle] and 
MSF_Tx_Control[Transmit_Enable] so that Idle CFrames with low CReady and DReady bits 
are sent over TDAT.

2. The Microengine or the Intel XScale® core writes a 1 to MSF_Rx_Control[RX_En_C] so that 
Idle CFrames can be received.

3. The Microengine or the Intel XScale® core writes a 0 to 
FC_STATUS_OVERRIDE[Ingress_Force_En].

4. The Microengine or the Intel XScale® core polls on 
MSF_Interrupt_Status[Detected_CSIX_Idle] to see when the first Idle CFrame is received. 
The Intel XScale® core may use the Detected_CSIX_Idle Interrupt if 
MSF_Interrupt_Enable[Detected_CSIX_Idle] is set.

5. When the first Idle CFrame is received, the Microengine or the Intel XScale® core writes a 0 
to FC_STATUS_OVERRIDE[Egress_Force_En] to deactivate SRB Override or writes 2’b11 
to FC_STATUS_OVERRIDE[7:6] ([TM_CReady and TM_DReady]).

6. The Microengine or the Intel XScale® core writes a 1 to MSF_Tx_Control[TX_En_CC] and 
MSF_Tx_Control[TX_En_CD]. IXP2800 resumes normal operation.

8.7.2 CSIX Simplex

8.7.2.1 Ingress IXP2800 

1. On reset, FC_STATUS_OVERRIDE[Egress_Force_En] is set to force Ingress IXP2800 to 
send Idle CFrames with low CReady and DReady bits to Switch Fabric over TXCDAT.

2. The Microengine or the Intel XScale® core writes a 1 to MSF_Rx_Control[RX_En_C] so that 
Idle CFrames can be received.

3. The Microengine or the Intel XScale® core polls on 
MSF_Interrupt_Status[Detected_CSIX_Idle] to see when the first Idle CFrame is received. 
The Intel XScale® core may use the Detected_CSIX_Idle Interrupt if 
MSF_Interrupt_Enable[Detected_CSIX_Idle] is set.

4. When the first Idle CFrame is received, the Microengine or the Intel XScale® core writes a 0 
to FC_STATUS_OVERRIDE[Egress_Force_En]. Idle CFrames with "ready bits" high will be 
transmitted over TXCDAT. Ingress IXP2800 may resume normal operation.

8.7.2.2 Egress IXP2800

1. On reset, FC_STATUS_OVERRIDE[Ingress_Force_En] is set.

2. The Microengine or the Intel XScale® core writes a 1 to MSF_Tx_Control[Transmit_Idle] and 
MSF_Tx_Control[Transmit_Enable] so that Idle CFrames with low CReady and DReady bits 
are sent over TDAT.

3. The Microengine or the Intel XScale® core polls on 
MSF_Interrupt_Status[Detected_CSIX_FC_Idle] to see when the first Idle CFrame is 
received. The Intel XScale® core may use the Detected_CSIX_FC_Idle Interrupt if 
MSF_Interrupt_Enable[Detected_CSIX_FC_Idle] is set.

4. When the first Idle CFrame is received, ME or the Intel XScale® core writes a 0 to 
FC_STATUS_OVERRIDE[Ingress_Force_En] to deactivate SRB Override.
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5. The Microengine or the Intel XScale® core polls on FC_Ingress_Status[TM_CReady] and 
FC_Ingress_Status[TM_DReady]. When they are seen active, the Microengine or the Intel 
XScale® core writes a 1 to MSF_Tx_Control[TX_En_CC] and 
MSF_Tx_Control[TX_En_CD]. Egress IXP2800 then resumes normal operation. Likewise, 
when the Switch Fabric recognizes Idle CFrames with "ready bits" high, it will assume normal 
operation.

8.7.2.3 Single IXP2800

Both CSIX startup routines described above will be needed to complete the CSIX startup sequence. 
Using Simplex mode on a single IXP2800 with RDAT, TDAT and RXCDAT, TXCDAT using 
CSIX, there are essentially two independent CSIX receive and transmit busses.

8.8 Interface to Command and Push and Pull Busses

The block diagram in Figure 100 shows the interface of the MSF to the command and push and 
pull busses.

Data transfers to and from the TBUF/RBUF are done in the following cases (refer to section for 
details):

• RBUF or MSF CSR to Microengine S Transfer In Register for instruction:

• Microengine S Transfer Out Register to TBUF or MSF CSR for instruction:

• Microengine to MSF CSR for instruction:

• From RBUF to DRAM for instruction:

• From RBUF to DRAM for instruction:
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Figure 100. MSF to Command and Push and Pull Busses Interface Block Diagram
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8.8.1 RBUF or MSF CSR to Microengine S Transfer In Register for 
instruction:

msf[read, $s_xfer_reg, src_op_1, src_op_2, ref_cnt], optional_token

For transfers to a Microengine, the MSF acts as a target. Commands from Microengines and the 
Intel XScale® core are received on the command bus. The commands are checked to see if they are 
targeted to the MSF. If so, they are enqueued into the Command Inlet FIFO, and then moved to the 
Read Cmd FIFO. When the Command Inlet FIFO is nearly full, it asserts a signal to the command 
arbiters. The command arbiters prevent further commands to the MSF until after the full signal is 
asserted. The RBUF element or CSR specified in the address field of the command is read and the 
data is registered in the SPUSH_DATA Register. The control logic then arbitrates for 
S_PUSH_BUS, and when granted, it drives the data.

8.8.2 Microengine S Transfer Out Register to TBUF or MSF CSR 
for instruction:

msf[write, $s_xfer_reg, src_op_1, src_op_2, ref_cnt], optional_token

For transfers from Microengine, the MSF acts as a target. Commands from Microengines are 
received on the two command busses. The commands are checked to see if they are targeted to the 
MSF. If so, they are enqueued into the Command Inlet FIFO, and then moved to the Write Cmd 
FIFO. When the Command Inlet FIFO is nearly full, it asserts a signal to the command arbiters. 
The command arbiters prevent further commands to the MSF until after the full signal is asserted. 
The control logic then arbitrates for S_PULL_BUS, and when granted, it receives and registers the 
data from the Microengine into the S_PULL_DATA register. It then writes that data into the TBUF 
element or CSR specified in the address field of the command.

8.8.3 Microengine to MSF CSR for instruction:

msf[fast_write, src_op_1, src_op_2]

For fast write transfers from the Microengine, the MSF acts as a target. Commands from 
Microengines are received on the two command busses. The commands are checked to see if they 
are targeted to the MSF. If so, they are enqueued into the Command Inlet FIFO, and then moved to 
the Write Cmd FIFO. When the Command Inlet FIFO is nearly full, it asserts a signal to the 
command arbiters. The command arbiters prevent further commands to the MSF until after the full 
signal is asserted. The control logic uses the address and data, both found in the address field of the 
command. It then writes the data into the CSR specified.

8.8.4 From RBUF to DRAM for instruction:

dram[rbuf_rd, --, src_op1, src_op2, ref_cnt], indirect_ref

For the transfers to DRAM, the RBUF acts like a slave. The address of the data to be read is given 
in D_PULL_ID. The data is read from RBUF and registered in the D_PULL_DATA register. It is 
then multiplexed and driven to the DRAM channel on D_PULL_BUS.
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8.8.5 From DRAM to TBUF for instruction:

dram[tbuf_wr, --, src_op1, src_op2, ref_cnt], indirect_ref

For the transfers from DRAM, the TBUF acts like a slave. The address of the data to be written is 
given in D_PUSH_ID. The data is registered and assembled from D_PUSH_BUS, and then written 
into TBUF.

8.9 Receiver and Transmitter Interoperation with Framers and 
Switch Fabrics

The Intel® IXP2800 Network Processor can process data received at a peak rate of 16 Gb/s and 
transmit data at a peak rate of 16 Gb/s. In addition, data may be received and transmitted via the 
PCI bus at an aggregate peak rate of 4.2 Gb/s, as shown in Figure 101.

The network processor’s receiver and transmitter can be independently configured to support either 
an SPI-4.2 framer interface or a fabric interface consisting of DDR LVDS signaling and the CSIX-
L1 protocol. The dynamic training sequence of SPI-4.2, used for de-skewing the signals, has been 
optionally incorporated into the fabric interface.

“SPI-4.2 is an interface for packet and cell transfer between a physical layer (PHY) device and a 
link layer device, for aggregate bandwidths of OC-192 ATM and Packet over SONET/SDH (POS), 
as well as 10 Gb/s Ethernet applications.”1 “CSIX-L1 is the Common Switch Interface. It defines a 
physical interface for transferring information between a traffic manager (Network Processor) and 
a switching fabric…”2 The network processor adopts the protocol of CSIX-L1, but uses a DDR 
LVDS physical interface rather than an LVCMOS or HSTL physical interface.

SPI-4.2 supports up to 256 port addresses, with independent flow control for each. For data 
received by the PHY and passed to the link layer device, flow control is optional. The flow control 
mechanism is based upon independent pools of credits, corresponding to 16-byte blocks, for each 
port.

Figure 101. Basic I/O Capability of the Intel® IXP2800
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1. “System Packet Interface Level 4 (SPI-4) Phase 2: OC-192 System Interface for Physical and Link Layer Devices,” Implementation 
Agreement: OIF-SPI4-02.0, Optical Internetworking Forum

2. “CSIX-L1: Common Switch Interface Specification-L1,” CSIX
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The CSIX-L1 protocol supports 4096 ports and 256 unicast classes of traffic. It supports various 
forms of multicast and 256 multicast queues of traffic. The protocol supports independent link-
level flow control for data and control traffic and supports virtual output queue (VOQ) flow control 
for data traffic.

8.9.1 Receiver and Transmitter Configurations

The network processor receiver and transmitter independently support three different 
configurations:

• Simplex (SPI-4.2 or CSIX-L1 protocol), described in Section 8.9.1.1.

• Hybrid simplex (transmitter only, SPI-4.2 data path, and CSIX-L1 protocol flow control), 
described in Section 8.9.1.2.

• Dual NPU, full duplex (CSIX-L1 protocol), described in Figure 8.9.1.3.

Additionally, the combined receiver and transmitter support a single NPU, full-duplex 
configuration using two different protocols:

• Multiplexed SPI-4.2 protocol, described in Section 8.9.1.4.

• CSIX-L1 protocol, described in Section 8.9.1.5. 

In both the simplex and hybrid simplex configurations, the path receiving from a framer, fabric, or 
NPU is independent of the path transmitting to a framer, fabric, or NPU. In a full duplex 
configuration, the receiving path forwards CSIX-L1 control information for the transmit path and 
vice versa.

8.9.1.1 Simplex Configuration

In the simplex configuration, as shown in Figure 102, the reverse path provides control information 
to the transmitter. This control information may include flow control information and requests for 
dynamic training sequences.

The SPI-4.2 mode of the simplex configuration supports an LVTTL reverse path or status interface 
clocked at up to 125 MHz or a DDR LVDS reverse path or status interface clocked at up to 500 
MHz. The SPI-4.2 mode status interface consists of a clock signal and two data signals. 

Figure 102. Simplex Configuration
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The CSIX-L1 protocol mode of the simplex configuration supports a full-duplex implementation 
of the CSIX-L1 protocol, but no Data CFrames are transferred on the reverse path and the reverse 
path is a quarter of the width of the forward path. The CSIX-L1 protocol mode supports a DDR 
LVDS reverse path interface clocked at up to 500 MHz. The CSIX-L1 protocol mode reverse path 
control interface consists of a clock signal, four data signals, a parity signal, and a start-of-frame 
signal.

8.9.1.2 Hybrid Simplex Configuration

In the hybrid simplex configuration, data transfers and link-level flow control is supported via the 
SPI-4.2 modes of the receiver and transmitter, as shown in Figure 103. Only the LVTTL SPI-4.2 
status interface is supported in this configuration.

Virtual output queue flow control information (or other information) is delivered to the transmitter 
via the CSIX-L1 protocol via an interface similar to the reverse path of the CSIX-L1 protocol mode 
of the simplex configuration. Flow control for the CSIX-L1 CFrames is provided by an 
asynchronous LVDS signal back to the fabric and not by the "ready bits" of the CSIX-L1 protocol.

The hybrid simplex configuration for a fabric interface may be especially useful to implementers 
when an SPI-4.2 interface implementation is readily available. The CSIX-L1 protocol reverse path 
may not need to operate at a clock rate as aggressive as the SPI-4.2 interface and, as such, may be 
easier to implement than a full-rate data interface.

Figure 103. Hybrid Simplex Configuration
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8.9.1.3 Dual NPU Full Duplex Configuration

In the dual NPU, full duplex configuration, an ingress NPU and an egress NPU are integrated to 
offer a single full duplex interface to a fabric, similar to the CSIX-L1 interface, as shown in 
Figure 104. This configuration provides an interface that is closest to the standard CSIX-L1 
interface. It is easiest to bridge between this configuration and an actual CSIX-L1 interface.

Flow control CFrames are forwarded by the egress NPU to the ingress NPU over a separate flow 
control interface. The bandwidth of this interface is a quarter of the primary interface offered to the 
fabric. A signal from ingress NPU to egress NPU provides flow control for this interface. (This 
interface is the same interface that was used in the hybrid simplex configuration.) A separate signal 
from egress NPU to ingress NPU provides the state of the CSIX-L1 "ready bits" that were received 
from the fabric, conveying the state of the fabric receiver, and those that should be sent to the 
fabric, conveying the state of the egress NPU receiver. 

The PCI may be used to convey additional information between the egress NPU and ingress NPU.

Figure 104. Dual NPU, Full Duplex Configuration
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8.9.1.4 Single NPU Full Duplex Configuration (SPI-4.2)

The single NPU, full duplex configuration (SPI-4.2 only) allows a single NPU to interface to 
multiple discrete devices, processing both the receiver and transmitter data for each, as shown in 
Figure 105. Up to 256 devices can be addressed by the SPI-4.2 implementation. The bridge chip 
implements the specific interfaces for each of those devices.

Figure 105. Single NPU, Full Duplex Configuration (SPI-4.2 Protocol)
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8.9.1.5 Single NPU, Full Duplex Configuration (SPI-4.2 and CSIX-L1)

The Single NPU, Full Duplex Configuration (SPI-4.2 and CSIX-L1 Protocol) allows a single NPU 
to interface to a fabric via a CSIX-L1 interface and to multiple other discrete devices, as shown in 
Figure 106. The CSIX-L1 and SPI-4.2 protocols are multiplexed on the network processor receiver 
and transmitter interface. Independent processing and buffering resources are allocated to each 
protocol.

Figure 106. Single NPU, Full Duplex Configuration (SPI-4.2 and CSIX-L1 Protocols)
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8.9.2 System Configurations

The receiver and transmitter configurations in the preceding Section 8.9.1 enable several system 
designs, as shown in Figure 107 through Figure 111.

8.9.2.1 Framer, Single NPU Ingress and Egress, and Fabric Interface Chip

Figure 107 illustrates the baseline system configuration consisting of the dual chip, full-duplex 
fabric configuration of network processors with a framer chip and a fabric interface chip

Figure 107. Framer, Single NPU Ingress, Single NPU Egress, and Fabric Interface Chip
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8.9.2.2 Framer, Dual NPU Ingress, Single NPU Egress, and Fabric Interface
Chip

If additional processing capacity is required in the ingress path, an additional network processor 
can be added to the configuration, as shown in Figure 108. The configuration of the interface 
between the two ingress network processors can use either the SPI-4.2 or CSIX-L1 protocol.

8.9.2.3 Framer, Single NPU Ingress and Egress, and CSIX-L1 Chips for
Translation and Fabric Interface

To interface to existing standard CSIX-L1 fabric interface chips, a translation bridge can be 
employed, as shown in Figure 109. Translation between the network processor interface and 
standard CSIX-L1 is very simple by design.

Figure 108. Framer, Dual NPU Ingress, Single NPU Egress, and Fabric Interface Chip
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Figure 109. Framer, Single NPU Ingress, Single NPU Egress, CSIX-L1 Translation Chip
and CSIX-L1 Fabric Interface Chip
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8.9.2.4 CPU Complex, NPU, and Fabric Interface Chip

If a processor card requires access to the fabric, a single network processor can provide both 
ingress and egress access to the fabric for the processor via the PCI interface, as shown in 
Figure 110. In many cases the available aggregate peak bandwidth of 4.2 Gb/s is sufficient for the 
processor’s capacity.

Figure 110. CPU Complex, NPU, and Fabric Interface Chips
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8.9.2.5 Framer, Single NPU, Co-Processor, and Fabric Interface Chip

The network processor supports multiplexing the SPI-4.2 and CSIX-L1 protocols over its physical 
interface via a protocol signal. This capability enables using a bridge chip to allow a single network 
processor to support the ingress and egress paths between a framer and a fabric, provided the 
aggregate system bandwidth does not exceed the capabilities of that single network processor, as 
shown in Figure 111.

Figure 111. Framer, Single NPU, Co-Processor, and Fabric Interface Chip
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8.9.3 SPI-4.2 Support

Data is transferred across the SPI-4.2 interface in variously-sized bursts and encapsulated with a 
leading and trailing control word. The control words provide annotation of the data with port 
address (0-255) information, start-of-packet and end-of-packet markers, and an error detection 
code (DIP-4). Data must be transferred in 16-byte integer multiples, except for the final burst of a 
packet. 

The status interface transfers state as an array of state or calendar, two bits per port, for all of the 
supported ports. The status information provides for reporting one of three status states for each 
port (satisfied, hungry, and starving) corresponding to credit availability for the port. The mapping 
of calendar offset to port is flexible. Individual ports may be repeated multiple times for greater 
frequency of update.

8.9.3.1 SPI-4.2 Receiver

The network processor receiver stores received SPI-4.2 bursts into receiver buffers. The buffers 
may be configured as 128 buffers of 64 bytes, 64 buffers of 128 bytes, or 32 buffers of 256 bytes. 
Information from the control words, the length of the burst, and the TCP checksum of the data are 
stored in an additional eight bytes of control storage. The buffers support storage of bursts 
containing an amount of data that is less than or equal to the buffer size. A burst that is greater than 
the configured size of the buffers is stored in multiple buffers. Each buffer is made available to 
software as it becomes filled.

As the filling of each buffer completes, the buffer is dispatched to a thread of a Microengine that 
has been registered in a free list of threads, and the eight bytes of control information are forwarded 
to the register context of the thread. If no thread is currently available, the receiver waits for a new 
thread to become available as other buffers are also filled (and then also have “waiting queues”). 

Figure 112. SPI-4.2 Interface Reference Model with Receiver and Transmitter Labels
Corresponding to Link Layer Device Functions
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As threads complete processing of the data in a buffer, the buffer is returned to a free list. 
Subsequently, the thread also returns to a separate free list. The return of buffers and threads to the 
free lists may occur in a different order than the order of their removal.

All SPI-4.2 ports sharing the interface have equal access to the buffering resources. Flow control 
can transition to a non-starving state when 25%, 50%, 75%, or 87.5% of the buffers are consumed, 
as configured by HWM_Control[RBUF_S_HWM]. At this point, the remaining buffers are 
available and, additionally, 2K bytes of packed FIFO (corresponding to 128 SPI-4.2 credits) are 
available for incoming data storage. If receiver flow control is expected to be asserted and for a 
sufficiently large number of ports and values of MaxBurst1 or MaxBurst2, it may be necessary for 
the PHY device to discard credits already granted if a state of Satisfied is reported by the network 
processor to the device, treating the Satisfied state more as an XOFF state. Otherwise, excessive 
credits may be outstanding for the storage available and receiver overruns may occur.

For more information about the SPI-4.2 receiver, see Section 8.2.7.

8.9.3.2 SPI-4.2 Transmitter

The network processor transmitter transfers SPI-4.2 bursts from transmitter buffers. The buffers 
may be configured as 128 buffers of 64 bytes, 64 buffers of 128 bytes, or 32 buffers of 256 bytes. 
The control word information and other control information for the burst are stored in additional 
control storage. The buffers are always transmitted in a fixed order. Software can determine the 
index of the last buffer transmitted, and keep track of the last buffer committed to the transmitter. 
The transmitter buffers are used as a ring, with the “get index” updated by the transmitter and the 
“put index” updated due to committing a buffer element to transmission.

Each transmit buffer supports a limited gather capability to stitch together a protocol header and a 
payload. The buffer supports independent prefix (or prepended) data and payload data. The prefix 
data can begin at any offset from 0 to 7 and have a length of from 0 to 31 bytes. The payload begins 
at an offset of 0 to 7 bytes from the next octal-byte boundary following the prefix and can fill out 
the remainder of the buffer. For more complicated merging or shifting of data within a burst, the 
data should be passed through a Microengine to perform any arbitrary merging and/or shifting.

Buffers may be statically allocated to different ports in an inter-leaved fashion so that bandwidth 
availability is balanced for each of the ports. Transmit buffers may be flagged to be skipped if no 
data is available for a particular port.

The transmitter scheduler, implemented on a Microengine, is responsible for reacting to the status 
information provided by the PHY device. The status information can be read via registers. The 
status information is available in two formats: a single status per register and status for 16 ports in 
a single register. For more information, see Section 8.3.4.
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8.9.4 CSIX-L1 Protocol Support

8.9.4.1 CSIX-L1 Interface Reference Model: Traffic Manager and Fabric
Interface Chip

The CSIX-L1 protocol operates between a Traffic Manger and a Fabric Interface Chip(s) across a 
full-duplex interface. It supports mechanisms to interface to a fabric that avoid congestion using 
virtual output queue (VOQ) flow control and enables a fabric that offers lossless, non-blocking 
transfer of data from ingress port to egress ports. Both data and control information pass over the 
receiver and transmitter interfaces.

The Traffic Manger on fabric ingress is responsible for segmentation of packet data and scheduling 
the transmission of data segments into the fabric. The fabric on ingress is responsible for 
influencing the scheduling of data transmission through link-level flow control and Virtual Output 
Queue (VOQ) flow control so that the fabric does not experience blocking or data loss due to 
congestion. The fabric on egress is responsible for scheduling the transfer of data to the Traffic 
Manager according to the flow control indications from the Traffic Manager.

The CSIX-L1 protocol supports addressing up to 4096 fabric ports and identifies up to 256 classes 
of unicast traffic. It optionally supports multicast and broadcast traffic, supporting identification of 
up to 256 queues of such traffic. Virtual output queue flow control is supported at the ingress to the 
fabric and the egress from the fabric.

The standard CSIX-L1 interface supports interface widths of 32, 64, 94, and 128 bits. A single 
clocked transfer of information across the interface is called a CWord. The CWord size is the width 
of the interface.

Figure 113. CSIX-L1 Interface Reference Model with Receiver and Transmitter Labels
Corresponding to Fabric Interface Chip Functions
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Information is passed across the interface in CFrames. CFrames are padded out to an integer 
multiple of CWords.   CFrames consist of a 2-byte base header, an optional 4-byte extension 
header, a payload of 1 to 256 bytes, padding, and a 2-byte vertical parity. Transfers across the 
interface are protected by a horizontal parity. When there is no information to pass over the 
interface, an alternating sequence of Idle CFrames and Dead Cycles are passed across the interface.

There are 16 possible codes for CFrame types. Each CFrame type is either a data CFrame or a 
control CFrame. Data CFrame types include Unicast, Multicast Mask, Multicast ID, Multicast 
Binary Copy, and Broadcast. Control CFrames include Flow Control.

CSIX-L1 supports independent link-layer flow control for data CFrames and control CFrames by 
using “ready bits” (CRdy and DRdy) in the base header.   The response time for link-level flow 
control is specified to be 32 interface clock ticks, but allows for additional time to complete 
transmission of any CFrame already in progress at the end of that interval.

8.9.4.2 Intel® IXP2800 Support of the CSIX-L1 Protocol

The adaptation of the CSIX-L1 protocol to the network processor physical interface has been 
accomplished in a straightforward manner.

8.9.4.2.1 Mapping to 16-Bit Wide DDR LVDS

The CSIX-L1 interface is built in units of 32 data bits. For each group of 32 data signals, there is a 
clock signal (RxClk, TxClk), a start-of-frame signal (RxSOF, TxSOF) and a horizontal-parity 
signal (RxPar, TxPar). If the CWord or interface width is greater than 32 bits, the assertion of the 
Start-of-Frame signal associated with each group of 32 data bits is used to synchronize the transfers 
across the independently clocked individual 32-bit interfaces.

The network processor supports 32-bit data transfers across two transfers or clock edges of the SPI-
4.2 16-bit DDR LVDS data interface. The CSIX-L1 RxSOF and TxSOF signals are mapped to the 
SPI-4.2 TCTL and RCTL signals. For the transfer of CFrames, the start-of-frame signal is asserted 
on only the first edge of the 32-bit transfer. (Assertion of the start-of-frame signal for multiple 
contiguous clock edges denotes the start of a de-skew training sequence as described below.) 

Receiver logic for the interface should align the start of 32-bit transfers to the assertion of the start-
of-frame signal. The network processor always transmits the high order bits of a 32-bit transfer on 
the rising edge of the transmit clock, but a receiver may de-skew the signals and align the received 
data with the falling edge of the clock. The network processor receiver always aligns the received 
data according to the assertion of the start-of-frame signal.

The network processor supports CWord widths of 32, 64, 96, and 128 bits. It will pad out CFrames 
(including Idle CFrames) and Dead Cycles according to this CWord width. The physical interface 
remains just 16 data bits. The start-of-frame signal is only asserted for the high order 16 bits of the 
first 32-bit transfer. It is not asserted for each 32-bit transfer. Support for multiple CWord widths is 
intended to facilitate implementation of Intel® IXP2800-to-CSIX-L1 translator chips and to 
facilitate implementation of chips with native network processor interfaces, but with wider internal 
transfer widths.

The network processor supports a horizontal parity signal (RPAR, TPAR). The horizontal parity 
signal covers the 16 data bits that are transferred on each edge of the clock. It does not cover 32 bits 
as in CSIX-L1. Support for horizontal-parity requires an additional physical signal beyond that 
required for SPI-4.2. Checking of the horizontal parity can be optionally disabled on reception. If a 
fabric interface chip does not support TPAR, then the checking of RPAR should be disabled.
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The network processor supports a variation of the standard CSIX-L1 vertical parity. Instead of a 
single vertical XOR for the calculation of the vertical parity, the network processor can be 
configured to calculate as DIP-16 code, as documented within the SPI-4.2 specification (see Figure 
6.8 of that document). If horizontal parity is not enabled for the interface, the use of the DIP-16 
code is recommended to provide for better error coverage than that provided by a vertical parity.

8.9.4.2.2 Support for Dual Chip, Full-Duplex Operation

A dual-chip configuration of network processors consisting of an ingress and egress network 
processor, can present a full-duplex interface to a fabric interface chip, consistent with the 
expectations of the CSIX-L1 protocol. A flow control interface is supported between the ingress 
and egress chips to forward necessary flow control information from the egress network processor 
to the ingress network processor. Additional information can be transferred between the ingress 
and egress network processors through the PCI bus.

The flow control interface consists of a data transfer signal group, a serial signal for conveying the 
state of the CSIX-L1 "ready bits" (TXCSRB, RXCSRB), and a backpressure signal (TXCFC, 
RXCFC) to avoid overrunning the receiver in the ingress network processor. (The orientation of the 
signal names is consistent with the egress network processor, receiving CFrames from the fabric, 
and forwarding flow control information out through the transmit flow control pins.) The data 
transfer signal group consists of:

• four data signals (TXCDAT[0..3], RXCDAT[0..3])

• a clock (TXCCLK, RXCCLK)

• a start-of-frame signal (TXCSOF, RXCSOF)

• a horizontal-parity signal (TXCPAR, RXCPAR)

The network processor receiver forwards Flow Control CFrames from the fabric in a cut-through 
fashion over the flow control interface. The flow control interface has one-fourth of the bandwidth 
of the network processor fabric data interface. The Crdy bit in the base header of the CSIX-L1 
protocol (link-level flow control) prevents overflowing of the FIFO for transmitting out the flow 
control interface from the egress network processor. The fabric can implement a rate limit on the 
transmission of Flow Control CFrames to the egress network processor, consistent with the 
bandwidth available on the flow control interface. With a rate limit, the fabric can detect 
congestion of Flow Control CFrames earlier, instead of waiting for the assertion of cascaded 
backpressure signals.

The CRdy and DRdy bits of CFrames sent across the flow control interface are set to 0 on 
transmission and ignored upon reception at the ingress network processor. If no CFrames are 
available to send from the egress network processor to the ingress network processor, an alternating 
sequence of Idle CFrames and Dead Cycles is sent from the egress to the ingress network 
processor, consistent with the CSIX-L1 protocol.

The state of the CRdy and DRdy bits sent to the egress network processor by the fabric and the 
state of the CRdy and DRdy bits that should be sent to the fabric by the ingress network processor, 
reflecting the state of the egress network processor buffering, are sent through the TXCSRB signal 
and received through the RXCSRB signal. A new set of bits are conveyed every 10 clock edges or 
five clock cycles, of the interface. A de-assertion of a "ready bit" is forwarded immediately upon 
processing the "ready bit". An assertion of a "ready bit" is forwarded only after all of the horizontal 
parities and the vertical parity of the CFrame are checked. A configuration of ingress and egress 
network processors is expected to respond to the de-assertion of a CRdy or DRdy bit within 32 
clock cycles (RCLK), consistent with the formulation described for CSIX-L1.
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The backpressure signal (TXCFC, RXCFC) is an asynchronous signal and is asserted by the 
ingress network processor to prevent overflow of the ingress network processor ingress flow 
control FIFO. If the egress network processor is so optionally configured, it will react to assertion 
of the backpressure signal for 32 clock cycles (64 edges) as a request for a de-skew training 
sequence to be transmitted on the flow control interface.

The flow control interface only supports a 32-bit CWord. Flow Control CFrames that are received 
by the egress network processor are stripped of any padding associated with large CWord widths 
and forwarded to the flow control interface.

The various options for parity calculation and checking supported on the data interface are 
supported on the flow control interface. Horizontal parity checking may be optionally disabled. 
The standard calculation of vertical parity may be replaced with a DIP-16 calculation.

8.9.4.2.3 Support for Simplex Operation

The network processor supports a mode of operation that supports the CSIX-L1 protocol, but offers 
an independent interface for the ingress and egress network processors. In this mode, the ingress 
and egress network processors each offer an independent full-duplex CSIX-L1 flavor of interface 
to the fabric, but the NPU-to-fabric interface on the egress network processor and the fabric-to-
NPU interface of the ingress network processor are of reduced width, consisting of four (instead of 
16) data signals. These narrow interfaces are referred to as Reverse Path Control Interfaces and use 
the same physical interface as the flow control interface in the dual-chip, full duplex configuration. 
They support the transfer of Flow Control CFrames and the CRdy and DRdy “ready” bits, but are 
not intended to support the transfer of data CFrames.

The Reverse Path Control Interfaces (RPCI) support only the 32-bit CWord width of the dual chip, 
full duplex flow control interface. The variations of parity support provided by the data interface 
and the flow control interface are supported by the RPCI.

Figure 114. Reference Model for Intel® IXP2800 Support of the Simplex Configuration Using
Independent Ingress and Egress Interfaces
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The transfer time of CFrames across the RPCI is four times that of the data interface. The latency 
of link-level flow control notifications depends on the frequency of sending new CFrame base 
headers. As such, the maximum size of CFrames supported on the RPCI should be limited to 
provide sufficient link-level flow control responsiveness.

The behavior of state machines for a full-duplex interface regarding interface initialization, link-
level flow control, and requests to send a de-skew training sequence is supported by the data 
interface in combination with its reverse path control interface as if the two interfaces were 
equivalent to a full-duplex interface.

The simplex mode of interfacing to the ingress and egress network processor is an alternative to the 
dual chip full-duplex configuration. It provides earlier notification of Flow Control CFrame 
congestion within the ingress network processor and marginally less latency for delivery of Flow 
Control CFrames to the ingress network processor. It allows more of the bandwidth on the data 
interface to be used for the transfer of data CFrames as Flow Control CFrames are transferred on 
the RPCI. 

 The simplex configuration provides a straightforward mechanism for the egress network processor 
to send VOQ flow control to the fabric if the fabric supports such functionality. In the dual chip, 
full-duplex configuration, the egress network processor sends a request across the PCI to the 
ingress network processor, requesting that a Flow Control CFrame be sent to the fabric.

8.9.4.2.4 Support for Hybrid Simplex Operation

The SPI-4.2 interface may be used to transfer data to and from a fabric, although there is no 
standard protocol for such conveyance. The necessary addressing information for the fabric and 
egress network processor may be encoded within the address bits of the preceding control word or 
stored in the initial data words of the SPI-4.2 burst. The LVTTL status interface may be used to 
provide link-level flow control for the data bursts. (The SPI-4.2 LVDS status interface cannot be 
used, because it shares the same pins with the fabric flow control interface.)

Figure 115. Reference Model for Hybrid Simplex Operation
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The SPI-4.2 interface does not support a virtual output queue (VOQ) flow control mechanism. The 
Intel® IXP2800 Network Processor supports use of the CSIX-L1 protocol-based flow control 
interface (as used in the dual chip, full-duplex configuration) on the ingress network processor, 
while SPI-4.2 is operational on the data interface. This interface can provide VOQ flow control 
information from the fabric and allow the transmitter scheduler, implemented in a Microengine 
within the ingress network processor, to avoid sending data bursts to congested destinations.

The fabric should send alternating Idle CFrames and Dead Cycles when there are no Flow Control 
CFrames to transmit. The CRdy and DRdy “ready bits” should be set to 0 on transmission and are 
ignored on reception.

The fabric should respond to the RXCFC backpressure signal. In this mode of operation, the 
RXCSRB signal that would normally receive the state of the CRdy and DRdy “ready bits” is not 
used. If dynamic de-skew is configured on the interface, and the backpressure signal is asserted for 
32 clock cycles, the fabric sends a (de-skew) training sequence on the flow control interface. It may 
be acceptable in this configuration to operate the flow control interface at a sufficiently low clock 
rate that dynamic de-skew is not required.

Operation in the hybrid simplex mode for the ingress network processor is slightly more taxing on 
the transmit scheduler computation than the homogenous CSIX-L1 protocol configurations. The 
status reported for the data interface must be polled by the transmit scheduler. In this configuration, 
the response to link-level flow control is performed in software and is slower than in the 
homogenous CSIX-L1 protocol configurations where it is accomplished in hardware.

Intel® reference software does not currently support this mode of fabric inter-operation.

8.9.4.2.5 Support for Dynamic De-Skew Training

The SPI-4.2 interface incorporates a training sequence for dynamic de-skew of its signals relative 
to the source synchronous clock. This training sequence has been extended and incorporated into 
the CSIX-L1 protocol support of the Intel® IXP2800 Network Processor.

The training pattern for the 16-bit data interface consists of 20 words, 10 repetitions of 0x0fff 
followed by 10 repetitions of 0xf000. The CTL and PAR signals are asserted for the first 10 words 
and de-asserted for the second 10 words. The PROT signal (see below) is de-asserted for the first 
10 words and asserted for the second 10 words. A training sequence consists of “alpha” repetitions 
of the training pattern. The idle control word that precedes a training sequence in SPI-4.2 is not 
used in conjunction with the CSIX-L1 protocol. See Section 8.6.1 for more information.

A receiver should detect a training sequence in the context of the CSIX-L1 protocol 
implementation by the assertion of the start-of-frame signal for three adjacent clock edges and the 
correct value on the data signals for those three adjacent clock edges.

A receiver may request a training sequence to be sent by transmitting continuous Dead Cycles on 
the interface. Reception of two adjacent Dead Cycles triggers the transmission of a training 
sequence in the opposite direction. If an interface is sending Dead Cycles and a training sequence 
becomes pending, the interface must send the training sequence at a higher priority than the Dead 
Cycles. Otherwise, a deadlocked situation may arise.

In the simplex configuration, the request for training, and the response to it, occur between a 
primary interface and its associated reverse path control interface. In the dual chip, full-duplex 
configuration, requests for training and Dead Cycles are encoded across the flow control interface 
as either continuous Dead Cycles or continuous Idle CFrames, both of which violate the standard 
CSIX-L1 protocol.
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The training pattern for the flow control data signals consists of 10 nibbles of 0xc followed by 10 
nibbles of 0x3. The parity and serial "ready bits" signal is de-asserted for the first 10 nibbles and 
asserted for the second 10 nibbles. The start-of-frame signal is asserted for the first 10 nibbles and 
de-asserted for the second 10 nibbles. See Section 8.6.2 for more information.

When a training sequence is received, the receiver should update the state of the received CRdy 
and DRdy “ready bits” to a de-asserted state until they are updated by a subsequent CFrame.

8.9.4.3 CSIX-L1 Protocol Receiver Support

The Intel® IXP2800 Network Processor receiver support for the CSIX-L1 protocol is similar to 
that for SPI-4.2. CFrames are stored in the receiver data buffers. The buffers are configured to be of 
a size of 64, 128, or 256 bytes. The contents of the CFrame base header and extension header are 
stored in separate storage with the reception status of the CFrame. Unlike SPI-4.2 data bursts, the 
entire CFrame must fit into a single buffer. The receiver does not progress to the next buffer to 
store subsequent parts of a single CFrame. (The buffer is required only to be sufficiently large to 
accommodate the payload, not the header, the padding, or the vertical parity.) Designated CFrame 
types, typically Flow Control CFrames, are forwarded in cut-through mode directly to the flow 
control egress FIFO and not stored in the receiver buffers.

The receiver resources are separately allocated to the processing of data and control CFrames. 
Separate free lists of buffers and Microengine threads for each category of CFrame type are 
maintained. The size of the buffers in each resource pool is separately configurable. The mapping 
of CFrame type to data or control category is completely configurable via the CSIX_Type_Map 
register. This register also allows for any types to be designated for cut-through forwarding to the 
flow control egress FIFO. Typically, only the Flow Control CFrame type is configured in this way. 

The receiver buffers are partitioned into two pools via MSF_Rx_Control[RBUF_Partition], 
providing 75% of the buffer memory (6 Kbytes) for data CFrames and 25% of the buffer memory
(2 Kbytes) for control CFrames. The number of buffers available per pool depends on the 
configured buffer size. For 64-byte buffers, there are 96 and 32 buffers, respectively. For 128-byte 
buffers, there are 48 and 16 buffers, respectively. For 256-byte buffers, there are 24 and 8 buffers, 
respectively.

As with SPI-4.2, link-level flow control for a buffer pool can be asserted by configuration when 
buffer consumption reaches 25%, 50%, 75%, or 87.5% within that pool. The receiver has an 
additional 1024 bytes of packed FIFO storage for each traffic category to accept additional 
CFrames after link-level flow control (CRdy or DRdy) is asserted. Link-level flow control for 
control CFrames (CRdy) is also asserted if the flow-control egress FIFO contents exceeds a 
threshold as configured by HWM_Control[FCEFIFO_HWM]. The threshold may be set to 16, 32, 
64, or 128 32-bit words. The total capacity of the FIFO is 512 32-bit words.

Within the base header, the receiver hardware processes the CRdy bit, the DRdy bit, the Type field, 
and the Payload Length. Only the Flow Control Frame CFrame is expected to lack the 32-bit 
extension header. The receiver hardware validates the vertical parity of the CFrame and only writes 
it to the receiver buffer if the write operation also includes payload data. The hardware supports 
configuration options for processing all 16 CFrame types. In all other respects, processing of the 
CFrame contents is done entirely by software. Variations in the CSIX-L1 protocol are supported 
that only affect the software processing. These variations might include address swapping (egress 
port address swapping with ingress port address) and use of reserve bits to encode start and end of 
packets.

When the network processor is configured to forward Flow Control Frame CFrames to the flow 
control egress FIFO, software does not process those CFrames. Processor interrupts occur if there 
are reception errors, but the actual CFrames are not made available for further processing.
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8.9.4.4 CSIX-L1 Protocol Transmitter Support

The Intel® IXP2800 Network Processor transmitter support for the CSIX-L1 protocol is similar to 
that for SPI-4.2. The transmitter fetches CFrames from transmitter buffers. An entire CFrame must 
fit within a single buffer. In the case of SPI-4.2, the array of transmitter buffers operates as a single 
ring. In the case of CSIX-L1 protocol support, the array of buffers operates as two rings, one for 
data CFrames and another for control CFrames. The partitioning of the transmitter buffers is 
configured via MSF_Tx_Control[TBUF_Partition]. The portion of the aggregate transmitter buffer 
storage (8 Kbytes) allocated to data CFrames is 75% (6 Kbytes), with the remainder (2 Kbytes) 
allocated to control CFrames. The size of the buffers within each partition is independently 
configurable to a size of 64, 128,or 256 bytes. The payload size of CFrames sent from the buffers 
may vary from 1 to the size of the buffer.

The CSIX-L1 protocol link-level flow control operates directly upon the hardware that processes 
the two (control and data) transmitter rings. The transmitter services the two rings in round-robin 
order when allowed by link-level flow control. The transmitter transmits Idle CFrames and Dead 
Cycles according to the CSIX-L1 protocol if there are no CFrames to transmit.

Virtual output queue flow control is accommodated by a transmit scheduler implemented on a 
Microengine. In all three network processor ingress configurations, Flow Control CFrames are 
loaded by hardware into the flow control ingress FIFO. Two bits of state associated with this FIFO 
are distributed to all of the Microengines:

• The FIFO is non-empty.

• The FIFO contains more than a threshold amount of CFrame 32-bit words 
(HWM_Control[FCIFIFO_Int_HWM]).

Any Microengine can perform transmitter scheduling by sensing the state associated with the flow 
control ingress FIFO, using the branch-on-state instruction. If the FIFO is not empty, the transmit 
scheduler processes some of the FIFO by performing a read of the FCIFIFO registers. A single 
Microengine instruction can perform a block read of up to 16 32-bit words. The data for the read is 
likely to arrive after several subsequent scheduling decisions. The scheduler should incorporate the 
new information from the newly-read Flow Control CFrame(s) in its later scheduling decisions. If 
the FIFO state indicates that the threshold capacity has been exceeded, the scheduler should 
suspend further scheduling decisions until the FIFO is sufficiently processed, otherwise it risks 
making scheduling decisions with information that is too stale.

The responsiveness of the network processor to VOQ flow control depends on the length of the 
transmit pipeline, from transmit scheduler to CFrames on the interface signals. For rates at and 
above 10 Gb/s, the pipeline length is likely to be 32 to 64 CFrames, assuming four pipeline stages 
(schedule, de-queue, data movement, and transmit) and 8 to 16 CFrames concurrently processed 
per stage.

In the simplex configuration, the egress network processor can send CFrames over the Reverse 
Path Control Interface. The CFrames are loaded into the flow control egress FIFO by performing 
writes of 32-bit words to the FCEFIFO registers. The base header, the extension header, the 
payload, the padding, and a dummy vertical parity must be written to the FIFO. The transmitter 
hardware calculates the actual vertical parity as the CFrame is transmitted.
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Note: The transmitter hardware for the transmitter buffers and the flow control egress FIFO expects that 
only the Flow Control CFrame type does not have an extension header of 32 bits. All other types 
have a 32-bit extension header. The hardware disregards the contents of the extension header or the 
payload.

The limited gather capability described for SPI-4.2 also is available for CFrames. A prefix header 
of up to 31 bytes and a disjoint payload is supported. The prefix header may start at an offset of 0 to 
7 bytes. The payload may start at an offset of 0 to 7 bytes from the octal-byte boundary following 
the end of the prefix header. For more complicated merging or shifting of data within a CFrame, 
the data should be passed through a Microengine to perform any arbitrary merging and/or shifting.

8.9.4.5 Implementation of a Bridge Chip to CSIX-L1

The Intel® IXP2800 Network Processor support for the CSIX-L1 protocol in the dual chip, full-
duplex configuration minimizes the difficulty in implementing a bridge chip to a standard CSIX-L1 
interface. If dynamic de-skew training is not employed, the bridge chip can directly pass through 
the different CSIX-L1 protocol elements, CFrames, and Dead Cycles. The horizontal parity must 
be re-calculated on each side of the bridge chip. If the standard CSIX-L1 interface implements a 
CWord width that is greater than 32 bits, it must implement a synchronization mechanism for 
aligning the received 32-bit portions of the CWord before passing the CWord to the network 
processor.

For transmitting the standard CSIX-L1 interface, the bridge chip must assert the start-of-frame 
signal for each 32-bit portion of the CWord, as the network processor only asserts it for the first 32-
bit portion. If the bridge chip requires clock frequencies on the network processor interface and the 
standard CSIX-L1 interface to be appropriate, exact multiples of each other (2x for 32-bit CWord, 
4x for 64-bit CWord, 6x for 96-bit CWord, and 8x for 128-bit CWord), then the bridge chip 
requires only minimal buffering and does not need to implement any flow control mechanisms.

A slightly more complicated bridge allows incorporating dynamic de-skew training and/or 
independent clock frequencies for the network processor and standard CSIX-L1 interfaces. The 
bridge chip must implement a control and data FIFO for each direction and the link-level flow 
control mechanisms specified in the protocol using CRdy and DRdy. The FIFOs must be large 
enough to accommodate the response latency of the link-level flow control mechanisms. Idle 
Cframes and Dead Cycles are not directly passed through this more complicated bridge chip, but 
are discarded on reception and generated on transmission. The network processor interface of this 
bridge chip can support the dynamic de-skew training protocol extensions implemented on the 
network processor because it can send a training sequence to the network processor between 
CFrames without regard to CFrames arriving over the standard CSIX-L1 interface. (In the simpler 
bridge design, these CFrames must be forwarded immediately to the network processor.)
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8.9.5 Dual Protocol (SPI and CSIX-L1) Support

In many system designs that are less bandwidth-intensive, a single network processor can forward 
and process data from the framer to the fabric and from the fabric to the framer. A bridge chip must 
pass data between the network processor and multiple physical devices. The network processor 
supports multiplexing SPI-4.2 and CSIX-L1 protocol elements over the same transmitter and 
receiver physical interfaces, differentiated by a protocol signal that is de-asserted for SPI-4.2 
protocol elements and asserted for CSIX-L1 protocol elements.

In the dual protocol configuration, the CSIX-L1 configuration of the network processor 
corresponds to the dual chip, full duplex configuration. The flow control transmitter interface is 
looped back to the flow control receiver interface, either externally or internally. Only the LVTTL 
status interface is available for the SPI-4.2 interface.

8.9.5.1 Dual Protocol Receiver Support

When the network processor receiver is configured for dual protocol support, the aggregate 
receiver buffer is partitioned in three ways: 50% for data CFrames (4 Kbytes), 37.5% for SPI-4.2 
bursts (3 Kbytes) and 12.5% for control CFrames (1 Kbyte). The buffer sizes within each partition 
are independently configurable. Link-level flow control can be independently configured for 
assertion at thresholds of 25%, 50%, 75%, or 87.5%. For the traffic associated with each partition, 
an additional 680 bytes of packed FIFO storage is available to accommodate received traffic after 
assertion of link-level flow control.

8.9.5.2 Dual Protocol Transmitter Support

When the network processor transmitter is configured for dual protocol support, the aggregate 
transmitter buffer is partitioned three ways, in the same proportions as the receiver. Each partition 
operates as a separate ring. The transmitter services each ring in round-robin order. If no CFrames 
are pending, an Idle CFrame is transmitted to update link-level flow control. If no SPI-4.2 bursts 
are pending, idle control words are not sent.

8.9.5.3 Implementation of a Bridge Chip to CSIX-L1 and SPI-4.2

A bridge chip can provide support for both standard CSIX-L1 and standard physical layer device 
interfaces such as SPI-3 or UTOPIA Level 3. The bridge chip must implement the functionality of 
the less trivial CSIX-L1 bridge chip described previously and additionally, implement bridge 
functionality between SPI-4.2 and the other physical device interfaces. The size of the FIFOs must 
be in accordance with the response times of the flow control mechanisms. Figure 116 is a block 
diagram of a dual protocol (SPI-4.2 and CSIX-L1) bridge chip.
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8.9.6 Transmit State Machine

Table 116 describes the transmitter state machine by providing guidance in interfacing to the 
network processor. The state machine is described as three separate state machines for SPI-4.2, 
training, and CSIX-L1. When each machine is inactive, it tracks the states of the other two state 
machines.

Figure 116. Block Diagram of Dual Protocol (SPI-4.2 and CSIX-L1) Bridge Chip
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8.9.6.1 SPI-4.2 Transmitter State Machine

The SPI-4.2 Transmit State Machine makes state transitions on each bus transfer of 16 bits, as 
described in Table 116.

Table 116. SPI-4.2 Transmitter State Machine Transitions on 16-Bit Bus Transfers

Current State Next State Conditions

Idle Control Idle Control No data pending and no training sequence pending, 
CSIX-L1 mode disabled.

Payload Control Data pending and no training sequence pending, 
CSIX-L1 mode disabled.

Training Training sequence pending, CSIX-L1 mode disabled.

CSIX CSIX-L1 mode enabled.

Payload Control Data Burst Always

Data Burst Data Burst Until end of burst as programmed by software.

Payload Control Data pending and no training sequence pending and 
CSIX-L1 mode not enabled.

Idle Control No data to send or training sequence pending or CSIX-
L1 mode enabled.

Tracking Other State Machine States

Training Training Training SM not entering CSIX-L1 or SPI state.

CSIX Training SM entering CSIX-L1 state.

Payload Control Training SM entering SPI state and data pending.

Idle Control Training SM entering SPI state and no data pending.

CSIX CSIX CSIX-L1 SM not entering Training or SPI state.

Training CSIX-L1 SM entering Training state.

Payload Control CSIX-L1 SM entering SPI state and data pending.

Idle Control CSIX-L1 SM entering SPI state and no data pending.
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8.9.6.2 Training Transmitter State Machine

The Training State Machine makes state transitions on each bus transfer of 16 bits, as described in 
Table 117. 

8.9.6.3 CSIX-L1 Transmitter State Machine

The CSIX-L1 Transmit State Machine makes state transitions on CWord boundaries. CWords can 
be configured to consist of 32, 64, 96, or 128 bits, corresponding to 2, 4, 6, or 8 bus transfers, as 
described in Table 118. 

Table 117. Training Transmitter State Machine Transitions on 16-Bit Bus Transfers

Current State Next State Conditions

Training Control Training Control Until 10 control cycles.

Training Data After 10 control cycles.

Training Data Training Data Until 10 data cycles.

Training Control After 10 data cycles and repetitions of training 
sequence or new training sequence pending.

CSIX After 10 data cycles and no training sequence pending 
and CSIX-L1 mode enabled.

SPI After 10 data cycles and No training sequence pending 
and CSIX-L1 mode disabled.

Tracking Other State Machine States

CSIX CSIX CSIX-L1 SM not entering SPI or Training state.

SPI CSIX-L1 SM entering SPI state.

Training Control CSIX-L1 SM entering Training state.

SPI SPI SPI SM not entering CSIX-L1 or Training state.

CSIX SPI SM entering CSIX-L1 state.

Training Control SPI SM entering Training state.

Table 118. CSIX-L1 Transmitter State Machine Transitions on CWord Boundaries

Current State Next State Conditions

SoF CWord CFrame CWord CFrame longer than a CWord.

Dead Cycle CFrame fits in a CWord.

CFrame CWord CFrame CWord CFrame remainder pending.

SoF CWord Un-flow-controlled CFrame pending, no training 
sequence pending, and SPI mode not enabled.

Dead Cycle
No un-flow-controlled CFrame pending or training 
sequence pending or requesting training sequence or 
SPI mode enabled and data pending.

Dead Cycle SoF CWord
Un-flow-controlled CFrame pending and no training 
sequence pending and no SPI data pending and not 
requesting training sequence.

Idle CFrame
No un-flow-controlled CFrame pending and no training 
sequence pending and no SPI data pending and not 
requesting training sequence.
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8.9.7 Dynamic De-Skew

The Intel® IXP2800 Network Processor supports optional dynamic de-skew for the signals of the 
16-bit data interface and the signals of the 4-bit flow control interface or the signals of the 2-bit 
SPI-4.2 LVDS status interface. (The flow control interface and the LVDS status interface are 
alternate configurations of the same signal balls and pads. They share the same de-skew circuits.)

In both cases, eight evenly-spaced phases of the received clock are generated for each bit time.
As the transition occurs during training a pattern, the best pair of clock phases is identified for 
sampling each received signal. An interpolated clock is generated from a pair of clock phases for 
each signal and that clock is used as a reference for sampling the data. This provides maximum 
quantization error in the sampling of the signals of 6.25%.

Dead Cycle Requesting reception of training sequence and no 
training sequence pending.

Training Training sequence pending.

SPI Training sequence not pending and SPI data pending 
and not requesting training sequence.

Idle CFrame Dead Cycle Always.

Tracking Other State Machine States

SPI SPI SPI SM not entering CSIX-L1 or Training state.

SoF CWord SPI SM entering CSIX-L1 state and un-flow-controlled 
CFrame pending.

Idle CFrame SPI SM entering CSIX-L1 state and un-flow-controlled 
CFrame not pending.

Training SPI SM entering Training state.

Training Training Training SM not entering CSIX-L1 or Training state.

SoF CWord Training SM entering CSIX-L1 state and un-flow-
controlled CFrame pending.

Idle CFrame Training SM entering CSIX-L1 state and un-flow-
controlled CFrame not pending.

SPI Training SM entering SPI state.

Table 118. CSIX-L1 Transmitter State Machine Transitions on CWord Boundaries (Continued)

Current State Next State Conditions
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8.9.8 Summary of Receiver and Transmitter Signals

Figure 117 summarizes the Receiver and Transmitter Signals.

Figure 117. Summary of Receiver and Transmitter Signaling
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PCI Unit 9

This section contains information on the IXP2800 Network Processor PCI Unit.

9.1 Overview

The PCI Unit allows PCI target transactions to internal registers, SRAM, and DRAM. It also 
generates PCI initiator transactions from the DMA Engine, Intel XScale® core, and Microengines. 

The PCI Unit main functional blocks are shown in Figure 118 and include:

• PCI Core Logic

• PCI Bus Arbiter

• DRAM Interface Logic

• SRAM Interface Logic

• Mailbox and Message registers

• DMA Engine

• Intel XScale® core Direct Access to PCI

The main function of the PCI Unit is to transfer data between the PCI Bus and the internal devices, 
which are the Intel XScale® core, the internal registers and memories. 

These are the data transfer paths supported as shown in Figure 119:

• PCI Slave read and write between PCI and internal buses

— CSRs (PCI_CSR_BAR)

— SRAM (PCI_SRAM_BAR)

— DRAM (PCI_DRAM_BAR)

• Push/Pull Master (Intel XScale® core, Microengine, or PCI) accesses to internal registers 
within PCI unit

• DMA 

— Descriptor read from SRAM

— Data transfers between PCI and DRAM

•  Push/Pull Master (Intel XScale® core and Microengines) direct read and write to PCI Bus

Note: Detailed information about CSRs is contained in the Intel® IXP2400/IXP2800 Network Processor 
Programmer’s Reference Manual.
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Figure 118. PCI Functional Blocks
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9.2 PCI Pin Protocol Interface Block

This block generates the PCI compliant protocol logic. It operates either as an initiator or a target 
device on the PCI Bus. As an initiator, all bus cycles are generated by the core. As a PCI target, the 
core responds to bus cycles that have been directed towards it. 

On the PCI Bus, the interface supports interrupts, 64-bit data path, 32-bit addressing, and single 
configuration space. The local configuration registers are accessible from the PCI Bus or from the 
Intel XScale® core through an internal path.

The PCI block interfaces with the other sub-blocks with a FIFO bus called FBus. The FBus speed 
is the same as the internal Push/Pull bus speed. The FIFOs are implemented with clock 
synchronization logic between the PCI speed and the internal Push/Pull bus speed.

There are four data FIFOs and two address FIFOs in the core. The separate slave and master data 
FIFOs allows simultaneous operations and multiple outstanding PCI bus transfers. Table 119 lists 
the FIFO sizes. The target address FIFO latches up to four PCI read or write addresses. 

Figure 119. Data Access Paths
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If a read address is latched, the subsequent cycles will be retried and no address will be latched 
until the read completes. The initiator address FIFO can accumulate up to four addresses which can 
be PCI reads or writes.

These FIFOs are inside the PCI Core which stores data that are received from the PCI Bus or to be 
sent out to the PCI Bus. There are additional buffers implemented in other sub-blocks that buffers 
data to and from the internal push/pull buses.

Table 120 lists the maximum PCI Interface loading.

9.2.1 PCI Commands

Table 121 lists the supported PCI commands and identifies them as either a target or initiator. 

Table 119. PCI Block FIFO Sizes

Location Depth

Target Address 4

Target Write Data 8

Target Read Data 8

Initiator Address 4

Initiator Write Data 8

Initiator Read Data 8

Table 120. Maximum Loading1

1. These specifications are currently under evaluation.

Bus Interface Max # of Loads Trace Length (inches)

PCI
Four loads at 66 MHz bus frequency 

Eight loads at 33 MHz bus frequency
5 to 7 

Table 121. PCI Commands  (Sheet 1 of 2)

C_BE_L Command
Support

Target Initiator

0x0 Interrupt Acknowledge Not Supported Supported

0x1 Special Cycle Not Supported Supported

0x2 IO Read cycle Not Supported Supported

0x3 IO Write cycle Not Supported Supported

0x4 Reserved - -

0x5 Reserved - -

0x6 Memory Read Supported Supported

0x7 Memory Write Supported Supported

0x8 Reserved - -

0x9 Reserved - -

0xA Configuration Read Supported Supported
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PCI functions not supported by the PCI Unit include:

• IO Space response as a target

• Cacheable memory

• VGA palette snooping 

• PCI Lock Cycle

• Multi-function devices

• Dual Address cycle

9.2.2 IXP2800 Network Processor Initialization 

When the IXP2800 Network Processor is a target, the internal CSR, DRAM, or SRAM address is 
generated when the PCI address matches the appropriate base address register. The window sizes to 
the SRAM and DRAM Base Address Registers (BARs) can be optionally set by PCI_SWIN and 
PCI_DWIN strap pins or mask registers depending on the state of the PROM_BOOT signal.

There are two initialization modes supported. They are determined by the PROM_BOOT signal 
sampled on the de-assertion edge of Chip Reset. If PROM_BOOT is asserted, which indicates that 
there is a boot prom in the system. The Intel XScale® core will boot from the prom and be able to 
program the BAR space mask registers. If PROM_BOOT is not asserted, the Intel XScale® core is 
held in reset and the BAR sizes are determined by strap pins. 

9.2.2.1 Initialization by the Intel XScale® Core

The PCI unit is initialized to an inactive, disabled state until the Intel XScale® core has set the 
Initialize Complete bit in the Control register. This bit is set after the Intel XScale® core has 
initialized the various PCI base address and mask registers (which should occur within 1 ms of the 
end of PCI_RESET). The mask registers are used to initialize the PCI base address registers to 
values other than the default power-up values which includes the base address visible to the PCI 
host and the prefetchable bit in the base registers (see Table 122).

0xB Configuration Write Supported Supported

0xC Memory Read 
Multiple

Aliased as Memory Read except 
SRAM accesses where the number 

of Dwords to read is given by the 
cache line size 

Supported

0xD Reserved

0xE Memory read line

Aliased as Memory Read except 
SRAM accesses where the number 

of Dwords to read is given by the 
cache line size 

Supported

0xF Memory Write and 
Invalidate Aliased as Memory Write Not Supported

Table 121. PCI Commands  (Sheet 2 of 2)

C_BE_L Command
Support

Target Initiator
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When the PCI unit is in the inactive state, it returns retry responses as the target of PCI 
configuration cycles if the PCI Unit is not configured as the PCI host. In the case of PCI Unit being 
configured as the PCI host, the PCI bus will be held in reset until the Intel XScale® core completes 
the PCI Bus configurations and clears the PCI Reset (as described in Section 9.2.11).

9.2.2.2 Initialization by a PCI Host

In this mode, the PCI Unit is not hosting the PCI Bus regardless of the PCI_CFG[0] signal. The 
host processor is allowed to configure the internal CSRs while the Intel XScale® core is held in 
reset. The host processor configures the PCI address space, the memory controllers, and other 
interfaces. Also, the program code for the Intel XScale® core may be downloaded into local 
memory. 

The host processor then clears the Intel XScale® core reset bit in the PCI Reset register. This de-
asserts the internal reset signal to the Intel XScale® core and the core begins its initialization 
process. The PCI_SWIN and PCI_DWIN strap signals are used to select the window sizes to 
SRAM BAR and DRAM BAR (see Table 123).

9.2.3 PCI Type 0 Configuration Cycles 

A PCI access to a configuration register occurs when the following conditions are satisfied:

• PCI_IDSEL is asserted. (PCI_IDSEL only support PCI_AD[23:16] bits).

• The PCI command is a configuration write or read.

• The PCI_AD [1:0] are 00.

A configuration register is selected by PCI_AD[7:2]. If the PCI master attempts to do a burst 
longer than one 32-bit Dword, the PCI unit signals a target disconnect. PCI unit does not issue 
PCI_ACK64 for configuration cycle.

Table 122. PCI BAR Programmable Sizes

Base Address
Register

Address
Space Sizes

PCI_CSR_BAR CSR 1Mbyte

PCI_SRAM_BAR SRAM 0Byte,128Kbyte,256Kbyte,512Kbyte,1Mbyte,2Mbyte,4Mbyte, 
8Mbyte,16Mbyte,32Mbyte,64MByte,128Mbyte,256Mbyte

PCI_DRAM_BAR DRAM 0Byte,1Mbyte,2Mbyte,4Mbyte,8Mbyte,16Mbyte,32Mbyte,64Mbyte,128Mbyte,
256Mbyte,512Mbyte,1Gbyte

Table 123. PCI BAR Sizes with PCI host Initialization

Base Address 
Register

Address 
Space Sizes

PCI_CSR_BAR CSR 1MByte

PCI_SRAM_BAR SRAM 32M/64MByte/128MByte/256MByte

PCI_DRAM_BAR DRAM 128MByte/256MByte/512MByte/1GByte
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9.2.3.1 Configuration Write

A write occurs if the PCI command is a Configuration Write. The PCI byte enables determine 
which bytes are written.If a nonexistent configuration register is selected within the configuration 
register address range, the data is discarded and no error action is taken. 

9.2.3.2 Configuration Read

A read occurs if the PCI command is a Configuration Read. The data from the configuration 
register selected by PCI_AD[7:2] is returned on PCI_AD[31:0]. If a nonexistent configuration 
register is selected within the configuration register address range, the data returned are zeros and 
no error action is taken. 

9.2.4 PCI 64-Bit Bus Extension

The PCI Unit is in 64-bit mode when PCI_REQ64# is sampled active on the de-assertion edge of 
PCI Reset. These are the general rules in assertions of PCI_REQ64# and PCI_ACK64#:

As a target:

1. PCI Unit asserts PCI_ACK64# only in 64-bit mode.

2. PCI Unit asserts PCI_ACK64# only to target cycles that matches the PCI_SRAM_BAR and 
PCI_DRAM_BAR and a 64-bit transaction is negotiated.

3. PCI Unit does not assert PCI_ACK64# target cycles that matches the PCI_CSR_BAR even a 
64-bit transaction is negotiated.

As an initiator:

1. PCI Unit asserts PCI_REQ64# only in 64-bit mode.

2. PCI Unit asserts PCI_REQ64# to negotiate a 64-bit transaction only if the address is double 
Dword aligned (PCI_AD[2] must be 0 during the address phase).

3. If the target responses to PCI_REQ#64 with PCI_ACK64# de-asserted, PCI Unit will 
complete the transaction acting as a 32-bit master by not asserting PCI_REQ64# on 
subsequent cycle.

4. If the target responses to PCI_REQ#64 with PCI_ACK64# de-asserted and PCI STOP# 
asserted, PCI Unit will complete the transaction by not asserting PCI_REQ64# on subsequent 
cycles.
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9.2.5 PCI Target Cycles

The following PCI transactions are not supported by the PCI Unit as a target:

• IO read or write

• Type 1 configuration read or write

• Special cycle

• IACK cycle

• PCI Lock cycle

• Multi-function devices

• Dual Address cycle

9.2.5.1 PCI Accesses to CSR

A PCI access to a CSR occurs if the PCI address matches the CSR base address register 
(PCI_CSR_BAR).The PCI Bus will be disconnected after the first data-phase if the data is more 
than one data phase. For 64-bit CSR accesses, the PCI Unit will not assert PCI_ACK64# on the 
PCI bus.

9.2.5.2 PCI Accesses to DRAM

A PCI access to DRAM occurs if the PCI address matches the DRAM base address register 
(PCI_DRAM_BAR).

9.2.5.3 PCI Accesses to SRAM

A PCI access to SRAM occurs if the PCI address matches the SRAM base address register 
(PCI_SRAM_BAR). The SRAM is organized as three distinct channel and the address is not 
contiguous. The PCI_SRAM_BAR programmed window size will be used as the total memory 
space. The upper two bits of the address will be used as channel number in addressing the 
particular channel and the remaining address bits will be used as the memory address.

9.2.5.4 Target Write Accesses From PCI Bus

A PCI write occurs if the PCI address matches one of the base address registers and the PCI 
command is either a Memory Write or Memory Write and Invalidate. The core will store up to four 
write addresses into the target address FIFO along with the BAR IDs of the transaction. The write 
data will be stored into the target write FIFO.When either the address FIFO or data FIFO is full, a 
retry is forced on the PCI Bus in response to write accesses.

The FIFO data is forwarded to an internal slave buffer before being written into SRAM or DRAM. 
If the FIFO fills during the write, the address is crossing the 64-byte address boundary, or in the 
case of the command being a burst to the CSR space, the PCI unit signals target disconnect to the 
PCI master.
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9.2.5.5 Target Read Accesses From PCI Bus

A PCI read occurs if the PCI address matches one of the base address registers and the PCI 
command is either a Memory Read, Memory Read Line, or Memory Read Multiple. 

The read is completed as a PCI delayed read. That is, on the first occurrence of the read, the PCI 
unit signals a retry to the PCI master,. If there is no prior read pending, the PCI unit latches the 
address and command and places it into the target address FIFO. When the address reaches the 
head of the FIFO, the PCI unit reads the DRAM. Subsequent reads will also get retry responses 
until data is available.

When the read data is returned into the PCI Read FIFO, the PCI unit begins to decrement its 
discard timer. If the PCI bus master has not repeated the read by the time the timer reaches zero, the 
PCI unit discards the read data, invalidates the delayed read address and sets Discard Timer 
Expired (bit 16) in the Control register (PCI_CONTROL). If enabled, the PCI unit interrupts the 
Intel XScale® core. The discard timer counts 215 (32768) PCI clocks.

When the master repeats the read command, the PCI unit compares the address and checks that the 
command is a Memory Read, a Memory Read Line, or a Memory Read Multiple. If there is a 
match, the response is as follows:

• If the read data has not yet been read, the response is retry. 

• If the read data has been read, assert trdy_l and deliver the data. If the master attempts to 
continue the burst past the amount of data read, the PCI unit signals a target disconnect.

• CSR reads are always 32-bit reads.

• If the discard timer has expired for a read, the subsequent read will be treated as a new read.

9.2.6 PCI Initiator Transactions

PCI master transactions are caused by either the Intel XScale® core loads and stores that fall into 
the various PCI address spaces, Microengine read and write commands, or by DMA engine. The 
command register (PCI_COMMAND) bus master bit (BUS_MASTER) must be set for the PCI 
unit to perform any of the initiator transactions.

The PCI cycle is initiated when there is an entry in the PCI Core Interface initiator address FIFO. 
The core handshakes with the master interface with the FBus FIFO status signals. The PCI core 
supports both burst and non-burst master read transfers by the burst count inputs 
(FB_BstCntr[7:0]), driven by Master Interface to inform the core the burst size. For a Master write, 
FB_WBstonN indicates to the PCI core whether the transfers are burst or non-burst, on a 64-bit 
double Dword basis.

The PCI core supports read and write memory cycles as an initiator while taking care of all 
disconnect/retry situations on the PCI Bus. 
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9.2.6.1 PCI Request Operation

If an external arbiter is used (PCI_CFG_ARB[1] is not active), the reql[0] and gnt[0] are connected 
to the PCI_REQ# and PCI_GNT# pins. Otherwise, they are connected to the internal arbiter.

The PCI unit asserts req_l[0] to act as a bus master on the PCI. If gnt_l[0] is asserted, the PCI unit 
can start a PCI transaction regardless of the state of req_l[0]. When the PCI unit requests the PCI 
bus, it performs a PCI transaction when gnt_l[0] is received. Once req_l[0] is asserted, the PCI unit 
never de-asserts it prior to receiving gnt_l[0] or de-asserts it after receiving gnt_l[0] without doing 
a transaction. PCI Unit de-asserts req_l[0] for two cycles when it receives a retry or disconnect 
response from the target. However, 

9.2.6.2 PCI Commands

The following PCI transactions are not generated by PCI Unit as an initiator:

• PCI Lock Cycle

• Dual Address cycle

• Memory Write and Invalidate

9.2.6.3 Initiator Write Transactions

The following general rules apply to the write command transactions:

• If the PCI unit receives either a target retry response or a target disconnect response before all 
of the write data has been delivered, it resumes the transaction at the first opportunity, using 
the address of the first undeliverable data.

• If the PCI unit receives a master abort, it discards all of the write data from that transaction and 
sets the status register (PCI_STATUS) received master abort bit, which, if enabled, interrupts 
the Intel XScale® core.

• If the PCI unit receives a target abort, it discards all of the remaining write data from that 
transaction, if any, and sets the status registers (PCI_STATUS) received target abort bit, which, 
if enabled, interrupts the Intel XScale® core.

• The PCI unit can dessert frame_l prior to delivering all data due to the master latency timer, If 
this occurs, it resumes the write at the first opportunity, using the address of the first 
undeliverable data.

9.2.6.4 Initiator Read Transactions

The following general rules apply to the read command transactions:

• If the PCI unit receives a target retry, it repeats the transaction at the first opportunity until the 
whole transaction is completed.

• If the PCI unit receives a master abort, it substitutes 0xFFFF FFFF for the read data and sets 
the status register (PCI_STATUS) received master abort bit, which, if enabled, interrupts the 
Intel XScale® core.

• If the PCI unit receives a target abort, it sets the status registers (PCI_STATUS) received target 
abort bit, which, if enabled, interrupts the Intel XScale® core and does not try to get any more 
read data. PCI unit will substitute 0xFFFF FFFF for the data which are not read and complete 
the cycle.
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9.2.6.5 Initiator Latency Timer

When the PCI unit begins PCI transaction as an initiator, asserting frame_l, it begins to decrement 
its master latency timer. When the timer value reaches zero, the PCI unit checks the value of 
gnt_l[0]. If gnt_l[0] is de-asserted, the PCI unit de-asserts frame_l (if it is still asserted) at the 
earliest opportunity. This is normally the next data phase for all transactions.

9.2.6.6 Special Cycle

As an initiator, special cycles are broadcast to all PCI agents, so DEVSEL# is not asserted and no 
error can be received.

9.2.7 PCI Fast Back to Back Cycles

The core supports fast back-to-back target cycles on the PCI Bus. The core does not generate 
initiator fast back-to-back cycles on the PCI Bus regardless of the value in the fast back to back 
enable bit of the Status and Command register in the PCI configuration space. 

9.2.8 PCI Retry

As a slave, the PCI Unit generates retry on:

• A slave write when the Data write FIFO is full.

• When address FIFO is full

• Data read is handled as delay transactions. If the HOG_MODE bit is set in the 
PCI_CONTROL register, the bus will be held for 16 PCI clocks before asserting retry.

As an initiator, the core supports retry by maintaining an internal counter of the current address. On 
receiving a retry, the core de-asserts PciFrameN and then re-assert PciFrameN with the current 
address from the counter.

9.2.9 PCI Disconnect

As a slave, it disconnects for the following conditions:

• Bursted PCI configuration cycle.

• Bursted access to PCI_CSR_BAR.

• PCI reads past the amount of data in the read FIFO.

• PCI burst cycles that cross 1K PCI address boundary which includes PCI burst cycles that 
cross memory decodes from the core as a target to decodes that are outside the core (e.g., 
started inside a BAR and ends outside of that BAR).

As an initiator, the core supports retry and disconnect by maintaining an internal counter of the 
current address. On receiving a retry or disconnect, the core de-asserts PciFrameN and then re-
assert PciFrameN with the current address + “current transfer byte size” from the counter.
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9.2.10 PCI Built In System Test 

The IXP2800 Network Processor supports BIST when there is an external PCI host. The PCI host 
will set the STRT bit in the PCI_CACHE_LAT_HDR_BIST configuration register. An interrupt is 
generated to the Intel XScale® core if it is enabled by the Intel XScale® core Interrupt Enable 
register. The Intel XScale® software can respond to the interrupt by running an application specific 
test. Upon successful completion of the test, the Intel XScale® core will reset the STRT bit. If this 
bit is not reset 2 seconds after the PCI host sets the STRT bit, the host will indicate that the IXP 
failed the test.

9.2.11  PCI Central Functions

The CFG_RSTDIR pin is active high for enabling the PCI Unit central function.

The CFG_PCI_ARB(GPIO[2]) pin is the strap pin for the internal arbiter. When this strap pin is 
high during reset then the XPI Unit owns the arbitration.

The CFG_PCI_BOOT_HOST(GPIO[1]) pin is the strap pin for the PCI host.When 
PCI_BOOT_HOST is asserted during reset then PCI Unit will support as a PCI host.

Note * CFG_PCI_RSTDIR = 1 then central function.
* PCI_Host must be central function.
* PCI_Arbiter must be central function.

9.2.11.1 PCI Interrupt Inputs

The PCI Unit supports two interrupt lines from the PCI Bus as host. One of the interrupt lines will 
be open-drain output and input. The other interrupt line will be selected as PCI interrupt input. 
Both the interrupt lines can be enabled in the Intel XScale® core Interrupt Enable register.

Table 124. Legal Combinations of the Strap Pin Options

CFG_PCI_BOOT_HOST
(GPIO[1])

CFG_PCI_Arbiter
(GPIO[2])

CFG_PCI_RSTDIR
(Central function)

CFG_PROM_BOOT
(GPIO[0])

OK 0 0 0 0

OK 0 0 0 1

OK 0 0 1 1

Not supported 0 1 0 x

OK 0 1 1 1

Not supported 1 0 0 x

OK 1 0 1 1

Not supported 1 1 0 x

OK 1 1 1 1
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9.2.11.2 PCI Reset Output

If the IXP2800 Network Processor is central function (CFG_RSTDIR =1), PCI Unit will be 
asserting the PCI_RST# after the system power-on. The Intel XScale® core has to write to the PCI 
External Reset bit in the IXP Reset register to de-assert the PCI_RST#. In this case, chip reset 
(SYS_RESET_L) is driven by a signal other than PCI_RST#.

When the PCI Unit is not configured as the central function (CFG_RSTDIR =0), PCI_RST# is 
used as a chip reset input.

9.2.11.3 PCI Internal Arbiter

The PCI unit contains a PCI bus arbiter that supports two external masters in addition to the PCI 
Unit’s initiator interface. To enable the PCI arbiter, the CFG_PCI_ARB(GPIO[2]) strapping pin 
must be 1 during reset. As shown in Figure 120, the local bus request and grant pair become 
externally not visible. These signals will be made available to external debug pins for debug 
purpose.

The arbiter uses a simple round-robin priority algorithm, The arbiter asserts the grant signal 
corresponding to the next request in the round-robin during the current executing transaction on the 
PCI bus (this is also called hidden arbitration). If the arbiter detects that an initiator has failed to 

Figure 120. PCI Arbiter Configuration Using CFG_PCI_ARB(GPIO[2])
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assert frame_l after 16 cycles of both grant assertion and PCI bus idle condition, the arbiter de-
asserts the grant. That master does not receive any more grants until it de-asserts its request for at 
least one PCI clock cycle. Bus parking is implemented in that the last bus grant will stay asserted if 
no request is pending.

To prevent bus contention, if the PCI bus is idle, the arbiter never asserts one grant signal in the 
same PCI cycle in which it de-asserts another, It de-asserts one grant, and then asserts the next 
grant after one full PCI clock cycle has elapsed to provide for bus driver turnaround.

9.3 Slave Interface Block

The slave interface logic supports internal slave devices interfacing to the target port of the FBus.

• CSR—register access cycles to local CSRs. 

• DRAM—memory access cycles to the DRAM push/pull Bus.

• SRAM—memory access cycles to the SRAM push/pull Bus.

The slave port of the FBus is connected to a 64-byte write buffer to support bursts of up to 64 bytes 
to the memory interfaces. The slave read data are directly downloaded into the FBus read FIFO. 
See Table 125.

As a push/pull command bus master, the PCI Unit translates these accesses into different types of 
push/pull command. As the push/pull data bus target, the write data is sent through the pull data 
bus and the read data is received on the push data bus.

9.3.1 CSR Interface 

The internal Control and Status registers data is directed to or from the Slave FIFO port of the PCI 
core FBus when the BAR id matches PCI_CSR_BAR (BAR0). The CSR accesses from the PCI 
Bus directed towards CSRs not in PCI Unit is translated into a push/pull CSR type command. PCI 
local CSRs are handled within the PCI Unit.

For writes, the data is sent when the pull bus is valid and the ID matches. The address is unloaded 
from the FBus target address FIFO as indication to the PCI core logic that the cycle is completed. 
The slave write buffer is not used for CSR access.

For reads, the data is loaded into the target receive FIFO as soon as the push bus is valid and the ID 
matches. The address is unloaded from the FBus address FIFO.

One example of a PCI host access to internal registers is the initialization of internal registers and 
memory to enable the Intel XScale® core to boot off the DRAM in the absence of a boot up PROM. 

The accesses to the CSRs inside the PCI Unit are completed internally without sending the 
transaction out to the push pull bus, just like the other internal register accesses.

Table 125. Slave Interface Buffer Sizes

Location Slave Address Slave Write Slave Read

Buffer Depth 1 64Byte 0

Usage CSR, SRAM, DRAM SRAM, DRAM NONE
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9.3.2 SRAM Interface

The SRAM interface connects the FBus to the internal push/pull command bus and the SRAM 
push/pull data buses. Request to memory is sent on the command bus. Data request is received as 
valid push/pull ID sent by the SRAM push/pull data bus.

If the PCI_SRAM_BAR is used, the target state machine generates a request to the command bus 
for SRAM access. Once the grant is received, the address, then data is directed between the slave 
FIFOs of the PCI core and the SRAM push/pull bus. 

9.3.2.1 SRAM Slave Writes

The slave write buffer is used to support memory burst accesses. The buffer is added to guarantee 
data transfer for each clock and burst size can be determined before memory request is issued. Data 
is assembled in the buffers before being sent to memory for SRAM write.

On the push/pull bus, AM access can start at any address and have length up to 16 Dwords as 
shown in Figure 121. For masked writes, only size 1 is supported to transfer up to four bytes. 

The slave interface also has to make sure there is enough data in the slave write buffer to complete 
the memory data transfer before making a memory request.

Figure 121. Example of Target Write to SRAM of 68 Bytes
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9.3.2.2 SRAM Slave Reads

For a slave read from SRAM, a 32-bit DWORD is fetched from the memory for memory read 
command, one cache line is fetched for memory read line command, and two cache lines are read 
for memory read multiple command. Cache line size is programmable in the CACHE_LINE field 
of the PCI_CACHE_LAT_HDR_BIST configuration register. If the computed read size is greater 
than 64 bytes, the PCI SRAM read will default to the maximum of 64 bytes. No pre-fetch is 
supported in that the PCI Unit will not read beyond the computed read size.

The PCI core resets the target read FIFO before issuing a memory read data request on FBus. The 
maximum size of SRAM data read is 64 bytes. The PCI core will disconnect at the 64-byte address 
boundary.

9.3.3 DRAM Interface

The memory is accessed using the push/pull mechanism. Request to memory is sent on the 
command bus. If the PCI_DRAM_BAR is used, the target state machine generates a request to the 
command bus for DRAM access with the address in the slave address FIFO. Once the push/pull 
request is received. The data is directed between the Slave FIFOs of the PCI core and DRAM push/
pull bus.

9.3.3.1 DRAM Slave Writes

The slave write buffer is used to support memory burst accesses. The buffer is added to guarantee 
data transfer for each clock and burst size can be determined before memory request is issued. Data 
is assembled in the buffers before being sent to memory for memory write.

DRAM target write access is only required to be 8-byte address aligned and the address does not 
wrap around the 64-byte address boundary on a DRAM burst. Each 8-byte access which is a partial 
write to the memory is treated as single write. Remaining writes of the 64-byte segment is written 
as one single burst. Transfers which cross a 64 -byte segment are split in to separate transfers. 
Figure 123 splits the 68 bytes transfers in to two partial 8-byte transfer to address 06 and address 48 
and one 56 byte burst transfer in the first 64-byte segment from address 08 to 38 and one 8-byte 
transfer to address 40.

For write to DRAM on the push/pull bus, the burst must be broken down into address aligned 
smaller transfer sizes (see Figure 122).

The Target interface also must make sure there is enough data in the target write buffer to complete 
the memory data transfer before making a memory request.
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Figure 122. Example of Target Write to DRAM of 68 Bytes
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9.3.3.2 DRAM Slave Reads

For target reads from IXP2400 Network Processor memory, the entire 64-byte block is fetched 
from DRAM. For target reads from IXP2800 Network Processor memory, the block size 
is 16 bytes. Depending on the address for the target request, extra data is discarded at the beginning 
until the target address is reached. Also, extra data is discarded at the end of the transfer also when 
the burst ends in the middle of a data block. No pre-fetch is supported for DRAM access. See 
Figure 123.

The PCI core resets the read FIFO before issuing a memory read data request on FBus. The PCI 
core will disconnect at the 64-byte address boundary.

Figure 123. Example of Target Read from DRAM Using 64-Byte Burst
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9.3.4 Mailbox and Doorbell Registers 

Mailbox and Doorbell registers provide hardware support for communication between the Intel 
XScale® core and a device on the PCI Bus.

Four mailbox registers are provided so that messages can be passed between the Intel XScale® core 
and a PCI device. All four registers are 32 bits and can be read and written with byte resolution 
from both the Intel XScale® core and PCI. How the registers are used is application dependent and 
the messages are not used internally by the PCI Unit in any way. The mailbox registers are often 
used with the Doorbell interrupts.

Doorbell interrupts provide an efficient method of generating an interrupt as well as encoding the 
purpose of the interrupt. The PCI Unit supports an Intel XScale® core Doorbell register that is used 
by a PCI device to generate an Intel XScale® core FIQ and a separate PCI Doorbell register that is 
used by the Intel XScale® core to generate a PCI interrupt. A source generating the Doorbell 
interrupt can write a software defined bitmap to the register to indicate a specific purpose. This 
bitmap is translated into a single interrupt signal to the destination (either a PCI interrupt or a 
IXP2800 Network Processor interrupt). When an interrupt is received, the Doorbell registers can 
be read and the bit mask can be interpreted. If a larger bit mask is required than that is provided by 
the Doorbell register, the Mailbox registers can be used to pass up to four 32-bit blocks of data.

The doorbell interrupts are controlled through the registers shown in Table 126.

The Intel XScale® core and PCI devices write to the corresponding DOORBELL register to 
generate up to 32 doorbell interrupts. Each bit in the DOORBELL register is implemented as an SR 
flip-flop. The Intel XScale® core writes a 1 to set the flip-flop and the PCI device writes a 1 to clear 
the flip-flop. Writing a 0 has no effect on the registers. The PCI interrupt signal is the output of an 
NOR functions of all the PCI DOORBELL register bits (outputs of the SR flip-flops). The Intel 
XScale® core interrupt signal is the output of an NAND function of all the Intel XScale® core 
DOORBELL register bits (outputs of the SR flip-flops).

To assert an interrupt (i.e., to “push a doorbell”):

• A write of 1 to the corresponding bit of the DOORBELL register generates an interrupt. This 
is the case for either PCI device or the Intel XScale® core, since writing 1 changes the doorbell 
bit to the proper asserted state (i.e., 0 for an Intel XScale® core interrupt and 1 for a PCI 
interrupt).

To dismiss an interrupt:

• A write of 1 to the corresponding bit of the DOORBELL register clears an interrupt. This is 
the case for either PCI device or the Intel XScale® core, since writing 1 changes the doorbell 
bit to the proper de-asserted state (i.e., 1 for an Intel XScale® core interrupt and 0 for a PCI 
interrupt).

Table 126. Doorbell Interrupt Registers

Register Name Description

Intel XScale® core 
Doorbell Used to generate the Intel XScale® core Doorbell interrupts.

Intel XScale® core 
Doorbell Setup Used to initialize the Intel XScale® core Doorbell register and for diagnostics.

PCI Doorbell Used to generate the PCI Doorbell interrupts.

PCI Doorbell Setup Used to initialize the PCI Doorbell register and for diagnostics.
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Figure 124 and Figure 125 illustrates how a Doorbell interrupt is asserted and cleared by both the 
Intel XScale® core and a PCI device. 

The Doorbell Setup register allows the Intel XScale® core and a PCI device to perform two 
functions that are not possible using the Doorbell register. This register is used during setup and 
diagnostics and is not used during normal operations. First, it allows the Intel XScale® core and 
PCI device to clear an interrupt that it has generated to the other device. If the Intel XScale® core 
sets an interrupt to PCI device using the Doorbell register, the PCI device is the only one that can 
use the Doorbell register to clear the interrupt by writing one. With the Doorbell setup register, the 
Intel XScale® core can clear the interrupt by write 0 to it.

Second, it allows the Intel XScale® core and PCI device to generate a doorbell interrupt to itself. 
This can be used for diagnostic testing. Each bit in the Doorbell Setup register is mapped directly to 
the data input of the Doorbell register such that the data is directly written into the Doorbell 
register.

Figure 124. Generation of the Doorbell Interrupts to PCI

Figure 125. Generation of the Doorbell Interrupts to the Intel XScale® Core
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During system initialization, the doorbell registers must be initialized by clearing the interrupt bits 
in the Doorbell register using the Doorbell Setup register by writing zeros to the PCI Doorbell 
setup register and ones to the Intel XScale® core Doorbell setup register.

9.3.5 PCI Interrupt Pin 

An external PCI interrupt can be generated in the following way:

• The Intel XScale® core initiates a Doorbell interrupt XSCALE_INT_ENABLE.

• One or more of the DMA channels have completed the DMA transfers.

• The PNI bit is cleared by the Intel XScale® core to generate a PCI interrupt

• An internal functional unit generates either an interrupt or an error directly to the PCI host. 

Table 127 describes how IRQ are generated for each silicon stepping.

Figure 126 shows how PCI interrupts are managed via the PCI and the Intel XScale® core

Table 127. IRQ Interrupt Options by Stepping

Stepping Description

A stepping IRQ interrupts can be handled only by the Intel XScale® core.

B Stepping

IRQ interrupts can be handled by either the Intel XScale® core or a 
PCI host. Refer to the description of the PCI_OUT_INT_MASK and 
PCI_OUT_INT_STATUS registers in the in the Intel® IXP2400/
IXP2800 Network Processor Programmer’s Reference Manual.

Figure 126. PCI Interrupts
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9.4 Master Interface Block

The Master Interface consists of the DMA engine and the Push/pull target interface. Both can 
generate initiator PCI transactions:

9.4.1 DMA Interface

There are two DMA channels, each of which can move blocks of data from DRAM to the PCI or 
from the PCI to DRAM. The DMA channels read parameters from a list of descriptors in SRAM, 
perform the data movement to or from DRAM, and stop when the list is exhausted. The descriptors 
are loaded from predefined SRAM entries or may be set directly by CSR writes to DMA registers. 
There is no restriction on byte alignment of the source address or the destination address. For PCI 
to DRAM transfers, the PCI command is Memory Read, Memory Read line, or Memory Read 
Multiple. For DRAM to PCI transfers, the PCI command is Memory Write. Memory Write 
Invalidate is not supported.

DMA reads are unmasked reads (all byte enables asserted) from DRAM. After each transfer, the 
byte count is decremented by the number of bytes read, and the source address is incremental by 
one 64-bit double Dword. The whole data block is fetched from the DRAM. For a system using 
RDRAM (like the IXP2800 Network Processor), the block size is 16 bytes. 

DMA reads are masked reads from the PCI and writes are masked for both the PCI and DRAM. 
When moving a block of data, the internal hardware adjusts the byte enables so that the data is 
aligned properly on block boundaries and that only the correct bytes are transferred if the initial 
and final data requires masking.

For DMA data, the DMA FIFO consists of two separate FBus initiator read FIFOs and two initiator 
write FIFOs, which are inside the PCI Core and three DMA buffers (corresponding to the DMA 
channels), which is for buffering data to and from the DRAM. Since there is no simultaneous DMA 
read and write outstanding, one shared 64-byte buffer is used for both read and write DRAM data 

Up to two DMA channels are running at a time with three descriptors outstanding. The two DMA 
channels and the direct access channel to PCI Bus from Command Bus Master are contending to 
use the address, read and write FIFOs inside the Core.

Effectively, the active channels interleave bursts to or from the PCI Bus. Each channel is required 
to arbitrate for the PCI FIFOs after each PCI burst request.

9.4.1.1 Allocation of the DMA Channels

Static allocation are employed such that the DMA resources are controlled exclusively by a single 
device for each channel. The Intel XScale® core, a Microengine and the external PCI host can 
access the two DMA channels. The first two channels can function in one of the following modes, 
as determined by the DMA_INF_MODE register:

• The Intel XScale® core owns both DMA channel 1 and channel 2.

• The Microengines owns both DMA channel 1 and channel 2.

• PCI host owns both DMA channel 1 and channel 2.

• The Intel XScale® core owns both DMA channel 1 and channel 2.

The third channel can be allocated to either the Intel XScale® core, PCI host, or Microengines.
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The DMA mode can be changed only by the Intel XScale® core under software control. The 
software should signal to suspend DMA transactions and wait until all DMA channels are free 
before changing the mode. Software should determine when all DMA channels are free either by 
polling XSCALE_INT_STATUS register bits DMA1 and DMA3 until both DMA channels are 
done.

9.4.1.2 Special Registers for Microengine Channels

Interrupts are generated at the end of DMA operation for the Intel XScale® core and PCI initiated 
DMA. However, the Microengine does not provide the interrupt mechanism. The PCI Unit will 
instead use an “Auto-Push” mechanism to signal the particular Microengine on completion of 
DMA. 

When the Microengine sets up the DMA channel, it would also write the CHAN_X_ME_PARAM 
with Microengine number, Context number, Register number, and Signal number. When the DMA 
channel completes, it writes some status information (Error or OK status) to the Microengine/
Context/Register/Signal. PCI Unit will arbitrate for the SRAM Push bus. The Push ID is from the 
parameters in the register. 

The ME_PUSH_STATUS reflects the DMA Done bit in each of the CHAN_X_CONTROL 
registers. The Auto-Push operation will proceed after the DMA is done for the particular DMA 
channel if the corresponding enable bit in the ME_PUSH_ENABLE is set.

9.4.1.3 DMA Descriptor

Each descriptor occupies four 32 bit Dwords and is aligned on a 16-byte boundary. The DMA 
channels read the descriptors from local SRAM into the four DMA working registers once the 
control register has been set to initiate the transaction. This control must be set explicitly. This 
starts the DMA transfer. The register names for the DMA channels are listed in Figure 127. 
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After a descriptor is processed, the next descriptor is loaded in the working registers. This process 
repeats until the chain of descriptors is terminated (i.e., the End of Chain bit is set). See Table 128.

Figure 127. DMA Descriptor Reads
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Table 128. DMA Descriptor Format

Offset from Descriptor Pointer Description

0x0 Byte Count

0x4 PCI Address

0x8 DRAM Address
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9.4.1.4 DMA Channel Operation

Since a PCI device, Microengine, or the Intel XScale® core can access the internal CSRs and 
memory in a similar way, the DMA channel operation description that follows will apply to all 
channels. CHAN_1_, CHAN_2_, or CHAN_3_ can be placed before the name for the DMA 
registers.

The DMA channel owner can either set up the descriptors in SRAM or it can write the first 
descriptor directly to the DMA channel registers.

When descriptors and the descriptor list are in SRAM, the procedure is as follows:

1. The DMA channel owner writes the address of the first descriptor into the DMA Channel 
Descriptor Pointer register (DESC_PTR).

2. The DMA channel owner writes the DMA Channel Control register (CONTROL) with 
miscellaneous control information and also sets the channel enable bit (bit 0). The channel 
initial descriptor bit (bit 4) in the CONTROL register must also be cleared to indicate that the 
first descriptor is in SRAM.

3. Depending on the DMA channel number, the DMA channel reads the descriptor block into the 
corresponding DMA registers, BYTE_COUNT, PCI_ADDR, DRAM_ADDR, and 
DESC_PTR.

4. The DMA channel transfers the data until the byte count is exhausted, and then sets the 
channel transfer done (bit 2) in the CONTROL register.

5. If the end of chain bit (bit 31) in the BYTE_COUNT register is clear, the channel checks the 
Chain Pointer value. If the Chain Pointer value is not equal to 0. it reads the next descriptor 
and transfers the data (step 3 and 4 above). IF the Chain Pointer value is equal to 0, it waits for 
the Descriptor Added bit of the Channel Control register to be set before reading the next 
descriptor and transfers the data (step 3 and 4 above). If bit 31 is set, the channel sets the 
channel chain done bit (bit 7) in the CONTROL register and then stops.

6. Proceed to the Channel End Operation.

When single descriptors are written directly into the DMA channel registers, the procedure is as 
follows:

1. The DMA channel owner writes the descriptor values directly into the DMA channel registers. 
The end of chain bit (bit 31) in the BYTE_COUNT register must be set, and the value in the 
DESC_PTR register is not used.

2. The DMA channel owner writes the base address of the DMA transfer into the PCI_ADDR to 
specify the PCI starting address.

3. When the first descriptor is in the BYTE_COUNT register, the DRAM_ADDR register must 
be written with the address of the data to be moved.

4. The DMA channel owner writes the CONTROL register with miscellaneous control 
information, along with setting the channel enable bit (bit 0). The channel initial descriptor in 
register bit (bit 4) in the CONTROL register must also be set to indicate that the first descriptor 
is already in the channel descriptor registers.

5. The DMA channel transfers the data until the byte count is exhausted, and then sets the 
channel transfer done bit (bit 2) in the CONTROL register.

6. Since the end of the chain bit (bit 31) in the BYTE_CONT register is set, the channel sets the 
channel chain done bit (bit 7) in the CONTROL register and then stops.

7. Proceed to the Channel End Operation.
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9.4.1.5 DMA Channel End Operation

1. Channel owned by PCI

If not masked via the PCI Outbound Interrupt Mask register, the DMA channel interrupts the 
PCI host after the setting of the DMA done bit in the CHAN_X_CONTROL register, which is 
readable in the PCI Outbound Interrupt Status register.

2. Channel owned by the Intel XScale® core

If enabled via the Intel XScale® core Interrupt Enable registers, the DMA channel interrupts 
the Intel XScale® core by setting the DMA channel done bit in the CHAN_X_CONTROL 
register, which is readable in the Intel XScale® core Interrupt Status register.

3. Channel owned by Microengine

If enabled via the Microengine Auto-Push Enable registers, the DMA channel signals the 
Microengine after setting the DMA channel done bit in the CHAN_X_CONTROL register, 
which is readable in the Microengine Auto-Push Status register. 

9.4.1.6 Adding Descriptor to an Unterminated Chain

It is possible to add a descriptor to a chain while a channel is running. To do so the chain should be 
left un-terminated, that is the last descriptor should have End of Chain clear, and the Chain Pointer 
value equal to 0. A new descriptor (descriptors) can be added to the chain by overwriting the Chain 
Pointer value of the un-terminated descriptor (in SRAM) with the Local Memory address of the 
(first) added descriptor (Note that the added descriptor must actually be valid in Local Memory 
prior to that). After updating the Chain Pointer field, the software must write a 1 to the Descriptor 
Added bit of the Channel Control register. This is necessary for the case where the channel was 
paused in order to re-activate the channel. However, software need not check the state of the 
channel before writing that bit; there is no side-effect of writing that bit in the case where the 
channel had not yet read the unlinked descriptor.

If the channel was paused or had read an unlinked Pointer, it will re-read the last descriptor 
processed (i.e.,the one that originally had the zero value for Chain Pointer) to get the address of the 
newly added descriptor.

A descriptor can not be added to a descriptor which has End of Chain set.

9.4.1.7 DRAM to PCI Transfer

For a DRAM-to-PCI transfer, the DMA channel reads data from DRAM and places it into the 
DMA buffer for transfer to the FBus FIFO when the following conditions are met:

• There is at least free space for a read block in the buffer.

• The DRAM controller issues data valid on DRAM push data bus to the DMA engine.

• DMA transfer is not done.

Before data is stored into the DMA buffer, the DRAM starting address is evaluated. Extra data will 
be discarded in case the DRAM starting address does not start at aligned addresses. The lower 
address bits determine the byte enables for the first data double Dword. At the end of the DMA 
transfer, extra data will be discarded and byte enables are calculated for the last 64-bit double 
Dword. After the data is loaded into the buffer, the PCI starting address is evaluated and the buffer 
is shifted byte wise to align the starting DRAM data with the starting PCI starting address. 
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A 64-bit double Dword with byte enables is pushed into the FBus FIFO from the DMA buffers as 
soon as there is data available in the buffer and there is space in the FBus FIFO. The Core logic will 
transfer the exact number of bytes to the PCI Bus. The maximum burst size on the PCI bus varies 
according to the stepping and is described in Table 129

9.4.1.8 PCI to DRAM Transfer

The DMA channel issues a sequence of PCI read request commands through the FBus address 
FIFO to read the precise byte count from PCI.

The DMA engine will continue to load the DMA write buffer with FBus FIFO data as soon as data 
is available.

The DMA engine determines the largest size of memory request possible with the current DRAM 
address and remaining byte count. It also has to make sure there is enough data in the write buffer 
before sending the memory request. 

9.4.2 Push/Pull Command Bus Target Interface

Through the command bus target interface, the command bus masters (PCI, Intel XScale® core, 
and Microengines) can access the PCI Unit internal registers including the local PCI configuration 
registers and the local PCI Unit CSRs. Also, the Microengine and the Intel XScale® core can issue 
transactions on the PCI bus. The requests are generated from the command master to the command 
bus arbiter. The arbiter selects a master and sends it a grant. That master then sends a command, 
which is passed through by the arbiter.

PCI Unit will issue the push and pull data responses to the SRAM push/pull data buses. When the 
read command is received, the PCI Unit will issue the push data request on the SRAM push data 
bus. When the write command is received, PCI Unit will issue the pull command on the SRAM 
pull data bus.

9.4.2.1 Command Bus Master Access to Local Configuration Registers

The configuration register within the PCI unit can be accessed by push/pull command bus access to 
configuration space through the FBus interface of the PCI core. When the IXP2800 Network 
Processor is a PCI host, these registers have to be accessed through this internal path and no PCI 
bus cycle will be generated.

Table 129. PCI Maximum Burst Size

Stepping Description

A Stepping The maximum burst size is 64 bytes.

B Stepping

The maximum burst size can be greater than 64 bytes 
for certain operations.

The register PCI_IXP_PARAM configures the burst 
length for target write operations.

The register CHAN_#_CONTROL configures the burst 
length for DMA read and write operations.

The register PCI_CONTROL configures the atomic 
feature for target write operations of 64 bytes or fewer.

Note: Bursts longer than 64 bytes are not supported for 
PCI target read operations.
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9.4.2.2 Command Bus Master Access to Local Control and 
Status Registers

These are CSRs within the PCI Unit that are accessible from push/pull bus masters. The masters 
include the Intel XScale® core, Microengines. There is no PCI bus cycles generated. The CSRs 
within the PCI Unit can be accessed internally by external PCI devices. 

9.4.2.3 Command Bus Master Direct Access to PCI Bus

The Intel XScale® core and Microengines are the only command bus masters that have direct 
access to the PCI bus as a PCI Bus initiator. The PCI Bus can be accessed by push/pull command 
bus access to PCI bus address space. The PCI Unit will share the internal SRAM push/pull data bus 
with SRAM for the data transfers. 

The data from the SRAM push/pull data bus are transferred through the master data port of the 
FBus interface of the PCI core. The PCI Core will handle all the PCI Bus protocol handshakes. The 
SRAM pull data received for a write command will be transferred to the Master write FIFO for PCI 
writes. For PCI reads, data is transferred from the read FIFO to the SRAM push data bus. A 32-
byte Direct buffer is used to support up to 32 bytes of data responses to the direct access to PCI 
Bus.

The Command Bus Master access to PCI bus will require internal arbitration to gain access to the 
data FIFOs inside the core, which are shared between the DMA engine and direct access to PCI.

9.4.2.3.1 PCI Address Generation for IO and MEM cycles

When push/pull command bus master is accessing the PCI Bus, the PCI address is generated based 
on the PCI address extension register (PCI_ADDR_EXT). Figure 128 shows how the address is 
generated from a Command Bus Master address.

Figure 128. PCI Address Generation for Command Bus Master to PCI

A9775-01

31 2627282930 232425 19202122 15161718 1214 13 891011 4567 3 2 1 0

PMSA
PCI Extension
Register

PCI Address for PCI
Memory Accesses

PIOADD RES

31 2627282930 232425 19202122 15161718 1214 13 891011 4567 3 2 1 0

PCI Address for
PCI I/O AccessesPIOADD 00

31 2627282930 232425 19202122 15161718 1214 13 891011 4567 3 2 1 0

PMSAPIOADD RES

Intel® XScale™ Core Address[15:2]
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9.4.2.3.2 PCI Address Generation for Configuration Cycles

When a push/pull command bus master is accessing the PCI Bus to generate a configuration cycle, 
the PCI address is generated based on the a Command Bus Master address as shown in Table 130 
and Figure 129:

9.4.2.3.3 PCI Address Generation for Special and IACK Cycles

The PCI address is undefined for special and IACK PCI cycles

9.4.2.3.4 PCI Enables

The PCI byte enables are generated based on the Command Bus Master instruction and the PCI 
unit does not change the states of the enables.

9.4.2.3.5 PCI Command

The PCI command is derived from the Command Bus Master address space map. The different 
spaces supported are listed in Table 131:

Table 130. Command Bus Master Configuration Transactions

Cycle Result

Type 1 Configuration Cycle Command Bus address bits [31:24] are equal to 0xDA

Type 0 Configuration Cycle Command Bus address bits [31:24] are equal to 0xDB.

Figure 129. PCI Address Generation for Command Bus Master to PCI Configuration Cycle

A9776-01

31 2627282930 232425 19202122 15161718 1214 13 891011 4567 3 2 1 0

0000 0000 00Intel® XScale™ Core Address[23:2]

Table 131. Command Bus Master Address Space Map to PCI

PCI Command Intel XScale® Core Address Space

PCI Memory 0xE000 0000 to 0xFFFF FFFF

Local CSR 0xDF00 0000 to 0xDFFF FFFF

Local Configuration Register 0xDE00 0000 to 0xDEFF FFFF

PCI Special Cycle/PCI IACK Read 0xDC00 0000 to 0xDDFF FFFF

PCI Type 1 Configuration Cycle 0xDB00 0000 to 0xDBFF FFFF

PCI Type 0 Configuration Cycle 0xDA00 0000 to 0xDAFF FFFF

PCI I/O 0xD800 0000 to 0xD8FF FFFF
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9.5 PCI Unit Error Behavior

9.5.1 PCI Target Error Behavior

9.5.1.1 Target Access Has an Address Parity Error

1. If PCI_CMD_STAT[PERR_RESP] is not set, PCI Unit will ignore the parity error.

2. If PCI_CMD_STAT[PERR_RESP] is set:

a. PCI core will not claim the cycle regardless of internal device select signal.

b. PCI core will let the cycle terminate with master abort. 

c. PCI core will not assert PCI_SERR#.

d. Slave Interface sets PCI_CONTROL[TGT_ADR_ERR], which will interrupt the Intel 
XScale® core if enabled.

9.5.1.2 Initiator Asserts PCI_PERR# in Response to One of Our Data 
Phases

1. Core does nothing.

2. Responsibility lies with the initiator to discard data, report this to the system, etc.

9.5.1.3 Discard Timer Expires on a Target Read

1. PCI unit discards the read data.

2. PCI Unit invalidates the delayed read address 

3. PCI Unit sets Discard Timer Expired bit (DTX) in the PCI_CONTROL. 

4. If enabled (XSCALE_INT_ENABLE [DTE]), the PCI unit interrupts the Intel XScale® core. 

9.5.1.4 Target Access to the PCI_CSR_BAR Space Has Illegal
Byte Enables

Note: The acceptable byte enables are BE[3:0] = 0x0 or 0xF.

1. Slave Interface will set PCI_CONTROL[TGT_CSR_BE] 

2. Slave Interface will issue target abort for target read and drop the transaction for target write.

9.5.1.5 Target Write Access Receives Bad Parity PCI_PAR with the Data

1. If PCI_CMD_STAT[PERR_RESP] is not set, PCI Unit will ignore the parity error.

2. If PCI_CMD_STAT[PERR_RESP] is set:

a. core asserts PCI_PERR# and sets PCI_CMD_STAT[PERR].

b. Slave Interface sets PCI_CONTROL[TGT_WR_PAR], which will interrupt the Intel 
XScale® core if enabled.

c. Data is discarded.
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9.5.1.6 SRAM Responds With a Memory Error on One or More Data Phases
on a Target Read

1. Slave Interface sets PCI_CONTROL[TGT_SRAM_ERR], which will interrupt the Intel 
XScale® core if enabled.

2. Assert PCI Target Abort at or before the data in question is driven on PCI.

9.5.1.7 DRAM Responds With a Memory Error on One or More Data Phases
on a Target Read

1. Slave Interface sets PCI_CONTROL[TGT_DRAM_ERR], which will interrupt the Intel 
XScale® core if enabled.

2. Slave Interface asserts PCI Target Abort at or before the data in question is driven on PCI.

9.5.2 As a PCI Initiator During a DMA Transfer

9.5.2.1 DMA Read From DRAM (Memory-to-PCI Transaction) Gets a 
Memory Error

1. Set PCI_CONTROL[DMA_DRAM_ERR] which will interrupt the Intel XScale® core if 
enabled.

2. Master Interface terminates transaction before bad data is transferred (okay to terminate 
earlier).

3. Master Interface clears the Channel Enable bit in CHAN_X_CONTROL.

4. Master Interface sets DMA channel error bit in CHAN_X_CONTROL. 

5. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer pointing to 
the DMA descriptor of the failed transfer.

6. Master Interface resets the state machines and DMA buffers.

9.5.2.2 DMA Read From SRAM (Descriptor Read) Gets a Memory Error

1. Set PCI_CONTROL[DMA_SRAM_ERR] which will interrupt the Intel XScale® core if 
enabled.

2. Master Interface clears the Channel Enable bit in CHAN_X_CONTROL.

3. Master Interface sets DMA channel error bit in CHAN_X_CONTROL. 

4. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer pointing to 
the DMA descriptor of the failed transfer.

5. Master Interface resets the state machines and DMA buffers.
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9.5.2.3 DMA From DRAM Transfer (Write to PCI) Receives PCI_PERR# on 
PCI Bus

1. If PCI_CMD_STAT[PERR_RESP] is not set, PCI Unit will ignore the parity error.

2. If PCI_CMD_STAT[PERR_RESP] is set:

a. Master Interface sets PCI_CONTROL[DPE] which will interrupt the Intel XScale® core 
if enabled.

b. Master Interface clears the Channel Enable bit in CHAN_X_CONTROL.

c. Master Interface sets DMA channel error bit in CHAN_X_CONTROL. 

d. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer 
pointing to the DMA descriptor of the failed transfer.

e. Master Interface resets the state machines and DMA buffers.

f. Core sets PCI_CMD_STAT[PERR] if properly enabled.

9.5.2.4 DMA To DRAM (Read from PCI) Has Bad Data Parity 

1. If PCI_CMD_STAT[PERR_RESP] is not set, PCI Unit will ignore the parity error.

2. If PCI_CMD_STAT[PERR_RESP] is set:

a. Core asserts PCI_PERR# on PCI if PCI_CMD_STAT[PERR_RESP] is set.

b. Master Interface sets PCI_CONTROL[DPED] which can interrupt the Intel XScale® core 
if enabled.

c. Master Interface clears the Channel Enable bit in CHAN_X_CONTROL.

d. Master Interface sets DMA channel error bit in CHAN_X_CONTROL. 

e. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer 
pointing to the DMA descriptor of the failed transfer.

f. Master Interface resets the state machines and DMA buffers.

9.5.2.5 DMA Transfer Experiences a Master Abort (Time-Out) on PCI 

Note: That is, nobody asserts DEVSEL during the DEVSEL window.

1. Master Interface sets PCI_CONTROL[RMA] which will interrupt the Intel XScale® core if 
enabled.

2. Master Interface clears the Channel Enable bit in CHAN_X_CONTROL.

3. Master Interface sets DMA channel error bit in CHAN_X_CONTROL. 

4. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer pointing to 
the DMA descriptor of the failed transfer.

5. Master Interface resets the state machines and DMA buffers
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9.5.2.6 DMA Transfer Receives a Target Abort Response During a 
Data Phase

1. Core terminates the transaction. 

2. Master Interface sets PCI_CONTROL[RTA] which can interrupt the Intel XScale® core if 
enabled.

3. Master Interface clears the Channel Enable bit in CHAN_X_CONTROL.

4. Master Interface sets DMA channel error bit in CHAN_X_CONTROL. 

5. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer pointing to 
the DMA descriptor of the failed transfer.

6. Master Interface resets the state machines and DMA buffers.

9.5.2.7 DMA Descriptor Has a 0x0 Word Count (Not an Error)

1. No data is transferred.

2. Descriptor is retired normally.

9.5.3 As a PCI Initiator During a Direct Access from the Intel
XScale® Core or Microengine

9.5.3.1 Master Transfer Experiences a Master Abort (Time-Out) on PCI

1. Core aborts the transaction. 

2. Master Interface sets PCI_CONTROL[RMA] which will interrupt the Intel XScale® core if 
enabled.

9.5.3.2 Master Transfer Receives a Target Abort Response During
a Data Phase

1. Core aborts the transaction. 

2. Master Interface sets PCI_CONTROL[RTA] which will interrupt the Intel XScale® core if 
enabled.

9.5.3.3 Master from the Intel XScale® Core or Microengine Transfer
(Write to PCI) Receives PCI_PERR# on PCI Bus

1. If PCI_CMD_STAT[PERR_RESP] is not set, PCI Unit will ignore the parity error.

2. If PCI_CMD_STAT[PERR_RESP] is set:

a. Core sets PCI_CMD_STAT[PERR].

b. Master Interface sets PCI_CONTROL[DPE] which will interrupt the Intel XScale® core 
if enabled.
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9.5.3.4 Master Read From PCI (Read from PCI) Has Bad Data Parity

1. If PCI_CMD_STAT[PERR_RESP] is not set, PCI Unit will ignore the parity error.

2. If PCI_CMD_STAT[PERR_RESP] is set:

a. Core asserts PCI_PERR# on PCI.

b. Master Interface sets PCI_CONTROL[DPED] which will interrupt the Intel XScale® 
core if enabled.

c. Data that has been read from PCI is sent to the Intel XScale® core or Microengine.

9.5.3.5 Master Transfer Receives PCI_SERR# from the PCI Bus

Master Interface sets PCI_CONTROL[RSERR] which will interrupt the Intel XScale® core if 
enabled.

9.5.3.6 Intel XScale® Core Microengine Requests Direct Transfer when 
the PCI Bus is in Reset

Master Interface will complete the transfer and drop the write data and return all ones on the read 
data.

9.6 PCI Data Byte Lane Alignment

During any endian conversion, PCI does not need to do any long word swapping between two 32 
bits long words(LW1, LW0). But PCI may need to do byte swapping within the 32-bits long word. 
Because of the different endian convention between PCI Bus and the memory, all data going 
between the PCI core FIFO and memory data bus passes through the byte lane reversal as shown in 
Table 132 through Table 139.

PCI allows byte-enable swapping only without the data swapping or allow data swapping only 
without byte enable swapping. When PCI handle the mis align data in above two cases, PCI will 
only care about valid data. So PCI will drive any data values for those misalign invalid data 
portions.

--

Table 132. Byte Lane Alignment for 64-Bit PCI Data In (64 Bits PCI Little Endian to Big Endian
with Swap)

PCI Data IN[63:56] IN[55:48] IN[47:40] IN[39:32] IN[31:24] IN[23:16] IN[15:8] IN[7:0]

SRAM Data
OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]

Long Word1 (32 bits)
LW1 drive after LW0

Long Word0 (32 bits)
LW0 drive first

DRAM Data OUT[39:32] OUT[47:40] OUT[55:48] OUT[63:56] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]
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Table 133. Byte Lane Alignment for 64-bit PCI Data In (64 Bits PCI Big Endian to Big Endian
without Swap)

PCI Data IN[39:32] IN[47:40] IN[55:48] IN[63:56] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

SRAM Data
OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]

Long Word1 (32 bits)
LW1 drive after LW0

Long Word0 (32 bits)
LW0 drive first

DRAM Data OUT[39:32] OUT[47:40] OUT[55:48] OUT[63:56] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]

Table 134. Byte Lane Alignment for 32-bit PCI Data In (32 Bits PCI Little Endian to Big Endian
with Swap)

PCI Add[2]=1 PCI Add[2]=0

Long Word1 (32 bits)
LW1 drive after LW0

Long Word0 ((32 bits)
LW0 drive first

PCI Data IN[31:24] IN[23:16] IN[15:8] IN[7:0] IN[31:24] IN[23:16] IN[15:8] IN[7:0]

SRAM Data
OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]

Long Word1 (32 bits)
LW1 drive after LW0

Long Word0 ((32 bits)
LW0 drive first

DRAM Data OUT[39:32] OUT[47:40] OUT[55:48] OUT[63:56] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]

Table 135. Byte Lane Alignment for 32-bit PCI Data In (32 Bits PCI Big Endian to Big Endian
without Swap)

PCI Add[2]=1 PCI Add[2]=0

Long Word1 (32 bits)
LW1 drive after LW0

Long Word0 ((32 bits)
LW0 drive first

PCI Data IN[7:0] IN[15:8] IN[23:16] IN[31:24] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

SRAM Data OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]

Long Word1 (32 bits)
LW1 drive after LW0

Long Word0 ((32 bits)
LW0 drive first

direct map
pci to dram IN[7:0] IN[15:8] IN[23:16] IN[31:24] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

DRAM Data OUT[39:32] OUT[47:40] OUT[55:48] OUT[63:56] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]

Table 136. Byte Lane Alignment for 64-bit PCI Data Out (Big Endian to 64 Bits PCI Little
Endian with Swap)

SRAM Data
IN[7:0] IN[15:8] IN[23:16] IN[31:24] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

Long Word1 (32 bits)
LW1 drive after LW0

Long Word0 ((32 bits)
LW0 drive first

DRAM Data IN[39:32] IN[47:40] IN[55:48] IN[63:56] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

PCI Side OUT[63:56] OUT[55:48] OUT[47:40] OUT[39:32] OUT[31:24] OUT[23:16] OUT[15:8] OUT[7:0]
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The BE_DEMI bit of the PCI_CONTROL register can be set to enable big endian on the incoming 
data from the PCI Bus to both the SRAM and DRAM. The BE_DEMO bit of the PCI_CONTROL 
register can be set to enable big endian on the outgoing data to the PCI Bus from both the SRAM 
and DRAM.

Table 137. Byte Lane Alignment for 64-bit PCI Data Out (Big Endian to 64 Bits PCI Big Endian
without Swap)

SRAM Data IN[7:0] IN[15:8] IN[23:16] IN[31:24] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

Long Word1 (32 bits)
LW1 drive after LW0

Long Word0 ((32 bits)
LW0 drive first

DRAM Data IN[39:32] IN[47:40] IN[55:48] IN[63:56] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

direct map
pci to dram IN[7:0] IN[15:8] IN[23:16] IN[31:24] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

PCI Side OUT[39:32] OUT[47:40] OUT[55:48] OUT[63:56] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]

Table 138. Byte Lane Alignment for 32-bit PCI Data Out (Big Endian to 32 Bits PCI Little
Endian with Swap)

SRAM Data IN[7:0] IN[15:8] IN[23:16] IN[31:24] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

Long Word1 (32 bits)
LW1 drive after LW0

Long Word0 ((32 bits)
LW0 drive first

DRAM Data IN[39:32] IN[47:40] IN[55:48] IN[63:56] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

PCI Data OUT[31:24] OUT[23:16] OUT[15:8] OUT[7:0] OUT[31:24] OUT[23:16] OUT[15:8] OUT[7:0]

Long Word1 (32 bits)
LW1 drive after LW0

Long Word0 ((32 bits)
LW0 drive first

PCI Add[2]=1 PCI Add[2]=0

Table 139. Byte Lane Alignment for 32-bit PCI Data Out (Big Endian to 32 Bits PCI Big Endian
without Swap)

SRAM Data IN[7:0] IN[15:8] IN[23:16] IN[31:24] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

Long Word1 (32 bits)
LW1 drive after LW0

Long Word0 ((32 bits)
LW0 drive first

DRAM Data IN[39:32] IN[47:40] IN[55:48] IN[63:56] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

PCI Data OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]

Long Word1 (32 bits)
LW1 drive after LW0

Long Word0 ((32 bits)
LW0 drive first

PCI Add[2]=1 PCI Add[2]=0
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9.6.1 Endian for Byte Enable

During any endian conversion, PCI does not need to do any long word byte enable swapping 
between two 32-bit long words(LW1, LW0). But PCI may need to do byte enable swapping within 
the 32 bits long word byte enable. Because of the different endian convention between PCI Bus and 
the memory, all data going between the PCI core FIFO and memory data bus passes through the 
byte lane reversal as shown in Table 140 through Table 147:

Table 140. Byte Enable Alignment for 64-bit PCI Data In (64 Bits PCI Little Endian to Big
Endian with Swap)

PCI Data IN_BE[7] IN_BE[6] IN_BE[5] IN_BE[4] IN_BE[3] IN_BE[2] IN_BE[1] IN_BE[0]

SRAM Data
OUT_BE[3] OUT_BE[2] OUT_BE[1] OUT_BE[0] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]

Long Word1byte enable
LW1 byte enable drive after LW0 byte enable

Long Word0 byte enable
LW0 byte enable drive first

DRAM Data OUT_BE[4] OUT_BE[5] OUT_BE[6] OUT_BE[7] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]

Table 141. Byte Enable Alignment for 64-bit PCI Data In (64 Bits PCI Big Endian to Big Endian
without Swap)

PCI Data IN_BE[4] IN_BE[5] IN_BE[6] IN_BE[7] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

SRAM Data
OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]

Long Word1byte enable
LW1 byte enable drive after LW0 byte enable

Long Word0 byte enable
LW0 byte enable drive first

DRAM Data OUT_BE[4] OUT_BE[5] OUT_BE[6] OUT_BE[7] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]

Table 142. Byte Enable Alignment for 32-bit PCI Data In (32 bits PCI Little Endian to Big
Endian with Swap)

PCI Add[2]=1 PCI Add[2]=0

Long Word1byte enable
LW1 byte enable drive after LW0 byte enable

Long Word0 byte enable
LW0 byte enable drive first

PCI Data IN_BE[3] IN_BE[2] IN_BE[1] IN_BE[0] IN_BE[3] IN_BE[2] IN_BE[1] IN_BE[0]

SRAM Data
OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]

Long Word1byte enable
LW1 byte enable drive after LW0 byte enable

Long Word0 byte enable
LW0 byte enable drive first

DRAM Data OUT_BE[4] OUT_BE[5] OUT_BE[6] OUT_BE[7] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]
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Table 143. Byte Enable Alignment for 32-bit PCI Data In (32 Bits PCI Big Endian to Big Endian
without Swap)

PCI Add[2]=1 PCI Add[2]=0

Long Word1byte enable
LW1 byte enable drive after LW0 byte enable

Long Word0 byte enable
LW0 byte enable drive first

PCI Data IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

SRAM Data
OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]

Long Word1byte enable
LW1 byte enable drive after LW0 byte enable

Long Word0 byte enable
LW0 byte enable drive first

direct map
pci to dram IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

DRAM Data OUT_BE[4] OUT_BE[5] OUT_BE[6] OUT_BE[7] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]

Table 144. Byte Enable Alignment for 64-bit PCI Data Out (Big Endian to 64 Bits PCI Little
Endian with Swap)

SRAM Data
IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

Long Word1byte enable
LW1 byte enable drive after LW0 byte enable

Long Word0 byte enable
LW0 byte enable drive first

DRAM Data IN_BE[4] IN_BE[5] IN_BE[6] IN_BE[7] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

PCI Side OUT_BE[7] OUT_BE[6] OUT_BE[5] OUT_BE[4] OUT_BE[3] OUT_BE[2] OUT_BE[1] OUT_BE[0]

Table 145. Byte Enable Alignment for 64-bit PCI Data Out (Big Endian to 64 Bits PCI Big
Endian without Swap)

SRAM Data IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

Long Word1byte enable
LW1 byte enable drive after LW0 byte enable

Long Word0 byte enable
LW0 byte enable drive first

DRAM Data IN_BE[4] IN_BE[5] IN_BE[6] IN_BE[7] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

PCI Side OUT_BE[4] OUT_BE[5] OUT_BE[6] OUT_BE[7] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]

Table 146. Byte Enable Alignment for 32-bit PCI Data Out (Big Endian to 32 Bits PCI Little
Endian with Swap)

SRAM Data IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

Long Word1byte enable
LW1 byte enable drive after LW0 byte enable

Long Word0 byte enable
LW0 byte enable drive first

DRAM Data IN_BE[4] IN_BE[5] IN_BE[6] IN_BE[7] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

PCI Data OUT_BE[3] OUT_BE[2] OUT_BE[1] OUT_BE[0] OUT_BE[3] OUT_BE[2] OUT_BE[1] OUT_BE[0]

Long Word1byte enable
LW1 byte enable drive after LW0 byte enable

Long Word0 byte enable
LW0 byte enable drive first

PCI Add[2]=1 PCI Add[2]=0
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The BE_BEMI bit of the PCI_CONTROL register can be set to enable big endian on the incoming 
byte enable from the PCI Bus to both the SRAM and DRAM. The BE_BEMO bit of the 
PCI_CONTROL register can be set to enable big endian on the outgoing byte enable to the PCI 
Bus from both the SRAM and DRAM.

The B-stepping silicon provides a mechanism to enable byte swapping for PCI I/O operations as 
described in Table 148.

Table 147. Byte Enable Alignment for 32-bit PCI Data Out (Big Endian to 32 Bits PCI Big
Endian without Swap)

SRAM Data IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

Long Word1byte enable
LW1 byte enable drive after LW0 byte enable

Long Word0 byte enable
LW0 byte enable drive first

DRAM Data IN_BE[4] IN_BE[5] IN_BE[6] IN_BE[7] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

PCI Data OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]

Long Word1byte enable
LW1 byte enable drive after LW0 byte enable

Long Word0 byte enable
LW0 byte enable drive first

PCI Add[2]=1 PCI Add[2]=0
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Table 148. PCI I/O Cycles with Data Swap Enable

Stepping Description

A Stepping
A PCI IO cycle is treated like CSR where the data bytes are not swapped. It is sent in 
the same byte order whether the PCI bus is configured in Big Endian or Little Endian 
mode.

B Stepping

When PCI_CONTROL[IEE] is 0, PCI data is sent in the same byte order whether the 
PCI bus is configured in Big Endian or Little Endian mode.

When PCI_CONTROL[IEE] is 1, PCI IO data will follow the same memory space 
swapping rule. The address always follows the physical location, Example:

BEs not Swapped(1 byte access) BEs Swapped(1 byte access)

ad[1:0] BE3 BE2 BE1 BE0 ad[1:0] BE3 BE2 BE1 BE0

0 0 1  1  1  0 1 1 0  1  1  1

0 1 1  1  0  1 1 0 1  0  1  1

1 0 1  0  1  1 0 1 1  1  0  1

11 0  1  1  1 0 0 1  1  1  0

BEs not Swapped(2 byte access) BEs Swapped(2 byte access)

ad[1:0] BE3 BE2 BE1 BE0 ad[1:0] BE3 BE2 BE1 BE0

0 0 1  1  0  0 1 0 0  0  1  1

0 1 1  0  0  1 0 1 1  0  0  1

1 0 0  0  1  1 0 0 1  1  0  0

BEs not Swapped(3 byte access) BEs Swapped(3 byte access)

ad[1:0] BE3 BE2 BE1 BE0 ad[1:0] BE3 BE2 BE1 BE0

0 0 1  0  0  0 0 1 0  0  0  1

0 1 0  0  0  1 0 0 1  0  0  0

BEs not Swapped(4 byte access) BEs Swapped(4 byte access)

ad[1:0] BE3 BE2 BE1 BE0 ad[1:0] BE3 BE2 BE1 BE0

0 0 0  0  0  0 0 0 0  0  0  0
360 Hardware Reference Manual



Intel® IXP2800 Network Processor
Clocks, Reset, and Initialization
Clocks, Reset, and Initialization 10

This section describes the IXP2800 Network Processor clocks, reset, and initialization sequence.

10.1 Clocks

The block diagram in Figure 130 shows how the IXP2800 Network Processor implements an 
onboard clock generator to generate the internal clocks used by the various functional units in the 
device. It takes an external reference frequency and multiplies it to a higher frequency clock using 
a PLL. That clock is then divided down by a set of programmable dividers to provide clocks to 
SRAM and DRAM controllers. The Intel XScale® core and MEs get clocks using fixed divide 
ratios. The Media and Switch Fabric Interface clock is selected based on the strap pin 
(CFG_MSF_FREQ_SEL) so that when CFG_MSF_FREQ_SEL is high, internally generated clock 
using the programmable divider is used and when CFG_MSF_FREQ_SEL is low, externally 
received clock on MSF interface is used. PCI controller use external clocks. Each of the units also 
interfaces to internal busses, which run at ½ the Microengine frequency. Figure 130 shows the 
overall clock generation and distribution. Table 149 summarizes the clock usage.
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Figure 130. Overall Clock Generation and Distribution
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Table 149. Clock Usage Summary

Unit Name Description Comment

Microengine MEs internal.

Internal 
Busses

Command/Push/Pull interface of 
DRAM, SRAM, Intel XScale® 
core, Peripheral, MSF, and PCI 
Units.

½ Microengine frequency.

Intel 
XScale® 

core

Intel XScale® core 
microprocessor, caches, 
microprocessor side of Gasket.

½ of Microengine frequency.

DRAM
DRAM pins and control logic (all 
of DRAM unit except Internal Bus 
interface).

Divide of Microengine frequency. All DRAM channels use 
the same frequency. Clocks are driven by IXP2800 to 
external DRAMs.
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The fast frequency on the IXP2800 Network Processor is generated by an on-chip PLL that 
multiplies a reference frequency provided by an on-board LVDS oscillator (frequency 100 MHz) 
by a selectable multiplier. The multiplier is selected by using external strap pins SP_AD[5:0] and 
can be viewed by software via the STRAP_OPTIONS[CFG_PLL_MULT] CAP CSR register bits. 
The multiplier range is even multiples between 16 and 48, so the PLL can generate a 1.6 GHz to 
4.8 GHz clock (with a 100Mhz reference frequency). 

The PLL output frequency is divided by 2 to get the ME clock and by 4 to get the Intel XScale® 
core and the internal Command/Push/Pull bus frequency. An additional division (after the divide 
by 2) is used to generate the clock frequencies for the other internal units. The divisors are 
programmable via the CLOCK_CONTROL CSR. APB divisor specified in the 
CLOCK_CONTROL CSR clock is scaled by 4 (that is a value of 2 in the CSR selects a divisor of 
8).

Table 150 shows the frequencies that are available based on a 100Mhz oscillator and various values 
of PLL multipliers, for the supported divisor values of 3 to 15.

SRAM
SRAM pins and control logic (all 
of SRAM unit except Internal Bus 
interface).

Divide of Microengine frequency. Each SRAM channel 
has its own frequency selection. Clocks are driven by 
IXP2800 to external SRAMs and/or Coprocessors.

Scratch, 
Hash, CSR

Scratch RAM, Hash Unit, CSR 
access block

½ of Microengine frequency. Note that Slow Port has no 
clock. Timing for Slow Port accesses is defined in Slow 
Port registers.

MSF Receive and Transmit pins and 
control logic.

The transmit clock for the Media and Switch interface can 
be derived in two different ways.

• From TCLK input signal (supplied by PHY device).

• Divided from internal clock.

For details please refer to Chapter 8, “Media and Switch 
Fabric Interface”.

APB APB logic Divide of Microengine frequency

PCI PCI pins and control logic. External reference. Either from Host system or on-board 
oscillator.

Table 149. Clock Usage Summary (Continued)

Unit Name Description Comment
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Figure 131 shows the clocks generation circuitry for the IXP2800. When the chip is powered up, 
bypass clock will be sent to all the units. After the PLL is locked, clock unit will switch all units 
from bypass clock to a fixed frequency clock which is generated by dividing PLL OUTPUT 
FREQUNCY by 16. Once Clock Control CSR is written, clock unit will replace fixed frequency 
clock with the defined clocks for different units.

Table 150. Clock Rates Examples

Input Oscillator Frequency (MHz) 100

PLL Output Frequency (MHz)
[PLL Multiplier]1

1. This multiplier is selected via SP_AD[5:0] strap pins. 

2000
[20]

2200
[22]

2400
[24]

2600
[26]

2800
[28]

4000
[40]

4800
[48]

Microengine Frequency2

2. This frequency is the PLL output frequency divided by 2. 

1000 1100 1200 1300 1400 2000 2400

Intel XScale® core & Command/Push/
Pull Bus Frequency 3

3. This frequency is the PLL output frequency divided by 4. 

500 550 600 650 700 1000 1200

Divide Ratio for other Units

(except APB)4

4. The ABP divisor specified in the CLOCK_CONTROL CAP CSR is scaled by an additional x4. 

D
iv

is
or

5

5. This divisor is selected via the CLOCK_CONTROL CAP CSR. The Base Frequency is the PLL output frequency di-
vided by 2

26

6. This divide ratio is only used by test logic. In the normal functional mode, this ratio is reserved for Push/Pull clocks
only. 

500 550 600 650 700 1000 1200

3 333 367 400 433 467 666 800

4 250 275 300 325 350 500 600

5 200 220 240 260 280 400 480

6 167 183 200 217 233 334 400

7 143 157 171 186 200 286 342

8 125 138 150 163 175 250 300

9 111 122 133 144 156 222 266

10 100 110 120 130 140 200 240

11 91 100 109 118 127 182 218

12 83 92 100 108 117 166 200

13 77 85 92 100 107 154 184

14 71 79 86 93 100 142 172

15 67 73 80 87 93 134 160
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10.2 Synchronization Between Frequency Domains

Due to the internal design architecture of the IXP2800, it is guaranteed that one of the clock 
domains of an asynchronous transfer will be the Push/Pull domain (PLL/4). Additionally, all other 
clocks are derived by further dividing the ME clock (PLL/2n where n is 3 or more); refer to 
Figure 132.

Note: The exception is the PCI unit where the PCI clock is fully asynchronous with the PP clock. 
Therefore in the PCI unit, data is synchronized using the usual 3 flop synchronization method.

Therefore the clock A and clock B relationship will always be apart by at least 2 PLL clocks. To 
solve hold problem between clock A and clock B, a delay is added anytime data is transferred from 
clock A to clock B. The characteristic of this delay element is such that it is high enough to resolve 
any hold issue in fast environment but in the slow environment its delay is still less than 2 PLL 
clocks.

Figure 131. IXP2800 Network Processor Clock Generation
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10.3 Reset

The IXP2800 Network Processor can be reset four ways.

• Hardware Reset Using nRESET or PCI_RST#

• PCI Initiated Reset 

• Watchdog Timer Initiated Reset

• Software Initiated Reset

10.3.1 Hardware Reset Using nRESET or PCI_RST#

The IXP2800 Network Processor provides the nRESET pin so that it can be reset by an external 
device. Asserting this pin resets the internal functions and generates an external reset via the 
nRESET_OUT pin.

Upon power-up, nRESET (or PCI_RST#) must remain asserted for 1ms after VDD is stable to 
properly reset the IXP2800 Network Processor and ensure that the external clocks are stable. While 
nRESET is asserted, the processor is held in reset. When nRESET is released, the Intel XScale® 
core begins executing from address 0X0. If PCI_RST# is input to the chip, nRESET should be 
removed before or at the same time as PCI_RST#.

All the strap options are latched with nRESET except for PCI strap option BOARD_IS_64 which 
is latched with PCI_RST# only (by latching the status of REQ64# at the trailing edge of 
PCI_RST#).

If nRESET is asserted, while the Intel XScale® core is executing, the current instruction is 
terminated abnormally and the reset sequence is initiated.

The nRESET_OUT signal de-assertion depends upon settings of “reset_out_strap” and 
IXP_RESET0[22] also called EXTRST_EN bit. During power up, IXP_RESET0[22] is reset to 
“0” therefore value to be driven on nRESET_OUT is defined by “reset_out_strap”. When 

Figure 132. Synchronization Between Frequency Domains
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“reset_out_strap” is sampled “0” on the trailing edge of reset, nRESET_OUT is de-asserted based 
on the value of IXP_RESET0[17] which is written by software. If “reset_out_strap” is sampled “1” 
on the trailing edge of reset, nRESET_OUT is de-asserted after PLL locks. 

During normal function mode, if software wants to assert nRESET_OUT, it should set 
IXP_RESET0[22] and then set IXP_RESET0[17]. To de-assert nRESET_OUT again, software 
should write IXP_RESET0[17] bit back to “0”. 

Figure 133. Reset Out Behavior
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10.3.2 PCI Initiated Reset 

CFG_RST_DIR is not asserted and PCI_RST# is asserted.

When the CFG_RST_DIR strap pin is not asserted (sampled “0”), PCI_RST# is input to the 
IXP2800 Network Processor and is used to reset all the internal functions. Its behavior is the same 
as a hardware reset using nRESET pin.

10.3.3 Watchdog Timer Initiated Reset 

The IXP2800 Network Processor provides a watchdog timer that can cause a reset if the Watchdog 
timer expires and the Watchdog enable bit WDE in Timer Watchdog Enable Register is also set. 
The Intel XScale® core should be programmed to reset the watch dog timer periodically to ensure 
that the timer does not expire. If a watchdog timer expires, it is assumed that the Intel XScale® core 
has ceased executing instructions properly. When the timer expires, the Watchdog History Register 
bit[0]”is set which can be read by the software later on.

IXP2800 Network Processor behavior for the watchdog event is defined in the sections that follow.

Figure 134. Reset Generation
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10.3.3.1 Slave IXP (Non-Central Function)

• If the Watchdog timer reset enable bit set to 1, Watchdog reset will trigger the soft reset

• If the Watchdog timer reset enable bit set to 0, Watchdog reset will trigger the PCI interrupt to 
external PCI host (if interrupt is enabled by PCI Outbound Interrupt Mask Register[3]). 
External PCI host can check the IXP2800 error status and log the error then reset the Slave 
IXP2800 Network Processor only or reset all the PCI devices (assert the PCI_RST_L).

• If the Watchdog history bit is already set when a new watchdog event happens, Watchdog 
timer reset enable bit is disregarded and soft reset is generated.

10.3.3.2 Master IXP (PCI Host, Central Function)

• If Watchdog timer reset enable bit set to 1, Watchdog reset will trigger the soft reset and set 
watchdog history bit.

• If Watchdog timer reset enable bit set to 0, check watchdog history bit. If is already set, 
generate soft reset. If watchdog history bit is not set already, watchdog reset will just set the 
watchdog history bit and no further action is taken. 

10.3.3.3 Master IXP (Central Function)

• If Watchdog timer reset enable bit set to 0, Watchdog reset will trigger the PCI interrupt to 
external PCI host (if interrupt is enabled by PCI Outbound Interrupt Mask Register[3]). 

• If Watchdog history bit is already set when a new watchdog event happens, Watchdog timer 
reset enable bit is disregarded, and soft reset is generated.

• If Watchdog timer reset enable bit set to 1, Watchdog reset will trigger the soft reset.

10.3.4 Software Initiated Reset

The Intel XScale® core or external PCI bus master can reset specific functions in the IXP2800 
Network Processor by writing to the IXP_RESET0 and IXP_RESET1 registers. All the individual 
micro-engines and specific units can be reset individually in this fashion.

Software reset initiated by “Reset All” bit in IXP_RESET0 register behaves almost the same as 
hardware resets in the sense that PLL and rest of the core gets reset. The only difference between 
soft reset and hard reset is that a 512 cycle counter is added at the output of “RESET_ALL” bit 
going to PLL unit for chip reset generation. PCI unit in the meantime detects the bus idle condition 
and generates local reset. This local reset is removed once chip reset is generated and chip reset 
reset then takes over the reset function of PCI unit.

Both hardware and software resets (software reset after 512 cycles delay) combined generate 
PLL_RST for the PLL logic. During the assertion of PLL_RST, PLL block remains in the bypass 
mode and passes the incoming clock directly to the core logic. At this time everyone inside the core 
gets the same basic clock. The Clock Control Register is reset to “0x0FFF_FFFF” using the same 
signal.

Once PLL_RST signal goes away, PLL starts generating divide_by_2 clock for MicroEngines, 
divide_by_4 clock for the Intel XScale® core and divide_by_16 clock for the rest of the chip (not 
using divide_by_4 clock) after inserting 16–32 idle clocks. Once clock control CSR is written by 
software, PLL block detects it by finding change in value of this register. 
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Once in operation, if watchdog timer expires with watchdog timer enable bit WDE from Timer 
Watchdog Enable Register set, reset pulse from the watchdog timer logic goes to PLL unit after 
passing through a counter to guarantee minimum assertion time which in turn resets the 
IXP_RESETn registers that causes entire chip to be reset. 

Figure 134 explains the reset generation for PLL logic and for the rest of the core. CORE_RST is 
used inside the IXP2800 to reset everything. PLL_RST can be disabled 

10.3.5 Reset Removal operation based on CFG_PROM_BOOT 

Reset removal operation based on the CFG_PROM_BOOT strap option (BOOT_PROM) can be 
divided into two parts:

1. When CFG_PROM_BOOT is “1” (BOOT_PROM is present).

2. When CFG_PROM_BOOT is “0” (BOOT_PROM is not present)

10.3.5.1 When CFG_PROM_BOOT is 1 (BOOT_PROM is Present)

After CORE_RST is de-asserted, reset from the Intel XScale® core, SHAC and CMDARB is 
removed. Once the Intel XScale® core reset is removed, the Intel XScale® core starts initializing 
the chip. The Intel XScale® core writes “clock control CSR” to define the operating frequencies of 
different units. The Intel XScale® core writes IXP_RESET0[21] to allow PCI logic to start 
accepting transactions on the PCI bus as part of initialization process.

10.3.5.2 When CFG_PROM_BOOT is 0 (BOOT_PROM is Not Present)

After CORE_RST is de-asserted, IXP_RESET0[21] is set allowing PCI unit to start accepting 
transactions on the PCI bus. In this mode, the Intel XScale® core is kept in reset. Reset from 
DRAM logic is removed by the PCI host by writing “0” to specific bits in the IXP_RESET0 
register. C.

10.3.6 Strap Pins

The IXP2800 Strap pins for reset and initialization operation are described in Table 151. 
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Table 151. IXP2800 Network Processor Strap Pins 

Signal Name Description

CFG_RST_DIR RST_DIR

PCI_RST direction pin: (Also called PCI_HOST) Need to 
be a dedicated pin.

1: IXP is the host supporting central function. PCI_RST# is 
output

0: IXP is not central function. PCI_RST# is input

This pin is Stored at XSC[31] (XScale_Control Register) at 
the trailing edge of reset.

CFG_PROM_BOOT GPIO[0]

PCI PROM BOOT Pin:

1: IXP will boot from PROM: Whether Intel XScale® core 
will configure the system or not will be defined by 
CFG_PCI_BOOT_HOST strap option.

0: IXP will not boot from PROM. So after host has 
downloaded image od boot code into DRAM, Intel XScale® 
core will boot from DRAM address “0”. 

This pin is Stored at XSC[29] (XScale_Control Register) at 
the trailing edge of reset.

CFG_PCI_BOOT_HOST GPIO[1]

PCI BOOT HOST pin

1: IXP2800 Network Processor will configure the PCI 
system

0: IXP2800 Network Processor will not configure the PCI 
system

This pin is Stored at XSC[28] (XScale_Control Register) at 
the trailing edge of reset.

CFG_PCI_ARB GPIO[2]

PCI Arbiter Pin

1: IXP2800 Network Processor is the arbiter on the PCI bus

0: IXP2800 Network Processor is not the arbiter on the PCI 
bus

PLL_MULT[5:0] SP_AD[5:0]
PLL Multiplier 

Valid values are 010000-110000 for multiplier range of 16 
to 48. Other values will result in undefined behavior by PLL.

RESET_OUT_STRAP SP_AD[7]

When “1”: nRESET_OUT is removed after PLL locks

When “0”: nRESET_OUT is removed by software using

bit IXP_RESET0[17]

CFG_PCI_SWIN[1:0] GPIO[6:5]

SRAM Bar Window

11: SRAM BAR size of 256 MByte

10: SRAM BAR size of 128 MByte

01: SRAM BAR size of 64 MByte

00” SRAM BAR size of 32 MByte

CFG_PCI_DWIN[1:0] GPIO[4:3]

DRAM BAR Window

11: DRAM BAR size of 1024 MByte

10: DRAM BAR size of 512 MByte

01: DRAM BAR size of 256 MByte

00: DRAM BAR size of 128 MByte

CFG_MSF_FREQ_SEL SP_AD[6]

Select source of MSF Tx Clock

0—TCLK_Ref input pin

1—Internally generated clock
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Table 152 lists the supported Strap combinations of CFG_PROM_BOOT, CFG_RST_DIR, and 
CFG_PCI_BOOT_HIST.

One more restriction in PCI unit is that if IXP2800 Network Processor is PCI_HOST or 
PCI_ARBITER, it should also be PCI_CENTRAL_FUNCTION.

10.3.7 Powerup Reset Sequence

When the system is powered up, bypass clock is sent to all the units as the chip begins to power up. 
It will merely be used to allow a gradual power up and to begin clocking state elements to remove 
possible circuit contention. When PLL gets locked after nRESET is de-asserted, it will start 
generating divide_by_16 clocks for all the units. Reset from IXP_RESET register is also removed 
at the same time. When software updates the clock count register, clocks are again stopped for 32 
cycles and then start again. 

The reset sequence described above is the same in the case when reset happens through the 
PCI_RST# signal and CFG_RST_DIR is asserted.

Once in operation, if watchdog timer expires with watchdog timer enable bit (bit [0] in Timer 
Watchdog Enable Register ON, a reset pulse from the watchdog timer logic resets the 
IXP_RESETn registers and in turn causes entire chip to be reset.

10.4 Boot Mode

The IXP2800 can boot in following two modes:

• Flash ROM

• PCI Host Download

Figure 135 shows the IXP2800 Network Processor Boot process.

Table 152. Supported Strap Combinations

{CFG_PROM_BOOT, CFG_RST_DIR, CFG_PCI_BOOT_HOST} Result

000 ALLOWED

001 ALLOWED

010 NOT ALLOWED

011 NOT ALLOWED

100 ALLOWED

101 ALLOWED

110 ALLOWED

111 ALLOWED
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Figure 135. Boot Process
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END
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10.4.1 Flash ROM

At power up, if FLASH_ROM is present, strap pin CFG_PROM_BOOT should be sampled “1” 
(should be pulled up). Therefore after reset being removed by the PLL logic from the 
IXP_RESET0 register, the Intel XScale® core reset is automatically removed. “Flash Alias 
Disable” (bit [8] of Misc Control Register) information is used by the Intel XScale® gasket to 
decide where to forward address “0” from the Intel XScale® core when the Intel XScale® core 
wakes up and starts accessing the code from address 0. In this mode, since “flash alias disable: bit 
is reset to “0”, the Intel XScale® gasket will convert access to address “0” to PROM access from 
address “0” using the CAP command. Based on the code residing inside PROM, the Intel XScale® 
core starts removing reset from SRAM, PCI, DRAM, MicroEngines etc. by writing “0” in their 
corresponding bit location of IXP_RESETn register and then initializing their configuration 
registers.

Boot code in PROM can change flash alias disable bit to "1" anytime to map DRAM at address 
zero and therefore block further accesses to PROM at address "0". This change should be done 
before putting any data in DRAM at address “0”. 

The Intel XScale® core also sets different BARs inside PCI unit to define memory requirements for 
different windows.

The Intel XScale® core behavior as a host is controlled by CFG_PCI_BOOT_HOST strap option. 
If CFG_PCI_BOOT_HOST is sampled asserted in the de-asserting edge of reset, the Intel XScale® 
core will behave as boot host and configure the PCI system.

10.4.2 PCI Host Download

At power up, if FLASH_ROM is not present, strap pin CFG_PROM_BOOT should be sampled 
“0” (should be pulled down). In this mode CFG_RST_DIR pin should be “0” at power up signaling 
PCI_RST# pin is an input that behaves as global chip reset.

1. Even after reset is removed by the PLL logic from IXP_RESET0 register (after PCI_RST# 
reset is de-asserted), the Intel XScale® core reset is not removed.

2. PCI Reset through IXP_RESET0 [16] is removed automatically after being set and reset being 
removed.

3. IXP_RESET0[21] is set after PCI_RST# has been removed and PLL_LOCK is sampled 
asserted.

4. Once IXP_RESET0[21] is set, PCI unit starts responding to transactions.

5. PCI Host first configures CSR, SRAM and DRAM base address registers after reading size 
requirements for these BARs. The size for CSR, SRAM and DRAM is defined by the use of 
Strap pins. Pre-fetchability for the window is defined by bit [3] of the respective BAR registers 
therefore when host reads these registers, bit [3] is returned as “0” for CSR, SRAM and 
DRAM defining CSRs and also if SRAM and DRAM are to be non-prefetchable. “Type” Bits 
[2:0] are always Read-Only and return the value of “0x0” when read for CSR, SRAM and 
DRAM BAR registers.

6. PCI Host also programs “Clock Control CSR”, for PLL unit to generate proper clocks for 
SRAM, DRAM and other units.

Once these base address registers have been programmed, PCI host programs DRAM channels by 
initializing SDRAM_CSR, SDRAM_MEMCTL0, SDRAM_MEMCTL1 and SDRAM_MEMINIT 
registers. Once these registers have been programmed, PCI host writes the BOOT Code in DRAM 
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starting at DRAM address “0”. PCI Host can also program other registers if required. Once the 
boot code is written in DRAM, PCI host writes “1” at bit [8] of Misc_Control register called “Flash 
Alias Disable” (Reset value “0”). Alias Disable bit can be wired to the Intel XScale® gasket 
directly so that gasket knows how to transform address 0 from the Intel XScale® core After writing 
“1” at “Flash Alias Disable” bit, host removes reset from the Intel XScale® core by writing “0” in 
bit [0] of IXP_RESET0 register. The Intel XScale® core starts booting from address 0, which is 
now directed by the gasket to DRAM.

10.5 Initialization

Boot Sequence task must be performed by the IXP2800 Network Processor after reset for proper 
processor function. The boot sequence tasks configure the IXP2800 Network Processor resources 
to a determined state by writing predetermined values to certain registers. Some register settings 
are determined by the components selected, such as SDRAM, SRAM, and BootROM. Other 
register settings are determined by the desired processor performance and system configuration.

The resources that must be configured after reset are the Phase-Locked Loop (PLL), PROM 
interface, the SRAM controller, the SDRAM controller, and the Memory Management Unit 
(MMU). There are other resources that if used during the boot sequence must be configured at this 
time. They are the UART and the PCI Interface. For a more detailed description of the registers and 
their settings, please refer to the appropriate sections in the IXP2400/IXP2800 Network Processor 
Programmers Reference Manual.

The configuration tasks must be performed in the following sequence.

1. Configure PLL. Since PLL output frequency is determined using the configuration pins 
(SP_AD[5:0], these pin should be pulled up or pulled down to define the operating frequency 
of PLL. These strap options are stored in Strap_Options_Register as defined in the IXP2400/
IXP2800 Network Processor Programmers Reference Manual.

2. Configure Clock Switching: Details will be added later.

3. Configure XPI Interface to access PROM if CFG_PROM_BOOT is set: 

Following registers should be programmed.

— SP_CCR: To configure the clocks for the slow port. Initially these clocks start at some 
default value which may not be optimal.

— SP_WTC: This register should be programmed for PROM interface to define proper write 
timing 

— SP_RTC: This register should be programmed for PROM interface to define proper read 
timing

— SP_FAC: To define the address size of flash memory device used.

— SP_FRM: To define the data width of the read back from the flash memory.

4. Configure clock logic: 

To define the operating frequency of SRAM and DRAM interface, following registers that 
define the operation of stepping stone logic must be initialized:

— CCR: Clock Control CSR to define the frequency of SRAM and DRAM channels, 
MSF and APB
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5. Release from Reset. After reset, units not coming out of reset automatically are brought out of 
reset by programming the following registers.

— IXP_RESET0

— IXP_RESET1

6. Configure SRAM. 

Configure the SRAM controller. The registers that configure the SRAM controller are:

SRAM_Control:To define the configuration of SRAM Controller

SRAM_Parity_Status1:For parity control and recording of last faulty address

SRAM_Parity_Status2:Recording of source of request which generated parity error

7. Configure DRAM channels. Configure the in-use DRAM channels. This is done through a 
sequence of register writes.

— DU_CSRA_[2:0]

— DU_CSRB_[2:0]

— DU_INIT_[2:0]

8. Configure and Enable MMU (Optional). Configure the Memory Mapped Unit, Cache, and 
Buffer.

This is done by configuring the following register:

StrongARM Coprocessor 15—CONTROL_CP15

9. Configure PCI. 

If CFG_PROM_BOOT is not set, loading of boot image by the PCI host is required into 
DRAM. For this to happen, de-asserting edge of reset should set these registers to their 
required value. 

IXP_RESET0: IXP_RESET0[21] should be set to “1”.

— DRAM_BASE_ADDR_MASK

— PCI_DRAM_BAR: Strap pins define the window size

— PCI_SRAM_BAR: Strap pins define the window size

— PCI_CSR_BAR: Strap pins define the window size

After boot image is loaded into DRAM, “Flash_Alias_Disable” bit in Misc Control register 
from IXP_CHASSIS should be set to “1” so that DRAM appears at address 0.

If CFG_PROM_BOOT is set, configure the following four registers:

— PCI_MEM_BAR

— PCI_IO_BAR

— PCI_DRAM_BAR

— PCI_CMD_STAT

— IXP_RESET0[21]

In this mode, code jumps to normal flash location and then disables the "map flash to zero" 
feature. If CFG_PCI_BOOT_HOST is not true, then CFG_RST_DIR will program the 
IXP2800 Network Processor PCI interface based on its memory requirements. If 
CFG_PCI_BOOT_HOST is true, then the IXP2800 Network Processor will program its PCI 
interface.
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10. Configure Serial Port. 

If serial interface is required, the following registers must be configured.

— UART_DLRH

— UART_DLRL

— UART_IER

— UART_FCR

— UART_LCR
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