Intel® IXP2400/1XP2800 Network
Processors

Development Tools User’s Guide

March 2004

Order Number: 278733-011

Intel® IXP2400/I1XP2800 Network Processors u

Revision History

Revision Date | Revision | Description

3/04 011 Release for SDK 3.51.

1/04 010 Reserved.

11/03 009 Release for SDK 3.5 PR-2.

09/03 008 Release for SDK 3.5 PR-1.

07/03 007 SDK 3.1 Pre-Release 3.

06/03 006 SDK 3.1 Pre-Release 2.

01/03 005 Fifth release of documentation IXP2400/IXP2800 for IXA SDK 3.0 Pre-
Release 6.

10/02 004 Ecglljétahs‘raelsease of documentation for IXP2400/IXP2800 for IXA SDK 3.0 Pre-

08/02 003 ;réilgjarseele‘lase of documentation for IXP2400/IXP2800 for IXA SDK 3.0 Pre-

05/02 002 Second release of documentation for IXP2400/1XP2800 for IXA SDK 3.0

1/25/02 001 First IXP2400/1XP2800 only release for Pre-Release Il

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

The IXP2400 AND IXP2800 Network Processors may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

This document and the software described in it are furnished under license and may only be used or copied in accordance with the terms of the
license. The information in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document. Except as permitted by such license, no part of this document may
be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's Web site at http://www.intel.com.

Copyright © Intel Corporation, 2004
Intel and XScale are registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries
*Other names and brands may be claimed as the property of others.

Development Tools User’s Guide

intel Intel® IXP2400/I1XP2800 Network Processors
®

Contents

1 INEFOTUCTION ...t e e e e e e e e e s e e e e e eeans 17
11 ADOUL thiS DOCUMENTeeiiiiiiie et e e 17
1.2 INtENAEA AUIENCE......ceiiiiiiie ettt e e e 17
13 Related DOCUMENTSccoviiiiiiee ettt e e s e 17

2 DV (o] o= A VAT o] 4 1 oT=T o o] o [P 19
2.1 OVEBIVIBW...ce ettt ettt e e e e e e e 4o oo bbb bt te e et e e e e e e e s e e e e nnbbb bbb e e e e eaaaeee e e annneseeeas 19
2.2 About the Graphical User Interface (GUI)oooiiiiiiiiii e 20

2.2.1 About Windows, Toolbars, and MENUSccoiiiiiiiiiiiiiet e 20
2.2.2 Hiding and Showing Windows and ToolDars...........ccccuuiiiiiiiiiiiiiieeeeee e 21
2.2.3 Customizing TOOIDArs and MENUS..........euiiiiiiiiaiiiiiie et a e e e e 22
2.2.3.1 Creating TOOIDAISttt e e e e e e e 22
2.2.3.2 RenNaming TOOIDAIScccooii i e 23
2.2.3.3 (DT = 1] o [o TR e T0] | o= 23
2.2.3.4 Adding and Removing Toolbar Buttons and Controls...........ccccccevveeeeeeiiiiccvnvnennnn. 23
2.2.3.5 CUSLOMIZING MENUSoiiiiiiiiiii ettt et s b e e 24
2.2.3.6 Returning to Default TooIbar SEttings..........ccveiiiiriiiiiie e 24
2.2.4 GUI Toolbar CONfIQUIALIONSccciiiiriiiieiiiiiiie ettt e e e seneee s 25
2.3 WOTIKDENCN PIOJECLSoiiiiiiiiiie et e e e 25
2.3.1 Creating @ NEW PrOJECT ...c.coiiiiiiie ittt 25
2.3.1.1 DebUG-ONIY PrOJECLS ...ceiiiiiiiiieeiiitie ettt et e e 27
2.3.2 OPENING @ PIOJECT ..coiitiiiii ettt ettt e et e e ba e e e e s e eas 28
2.3.3 SAVING 8 PrOJECT ...eeiiiiiiiiiiii ettt et 28
234 ClOSING @ PrOJECT ...cciiiiiiiiii ettt 29
2.3.5 Specifying a Default ProjeCt FOIUENuiiiiiiiiiiie e 29
2.4 ADOUL the Project WOIKSPACEeiiiiiiiiiiie ittt 30
D A N o To 10 | G 1= YT PSR 30
2.4.2 ADOUL TRIEAUVIEW. ...ttt e e e e e e e e e s e s st aeeeeaaeeeas 31
2.4.2.1 Expanding and Collapsing Thread Treesueiiiiiiiiieiiiiiiiee e 31
2.4.2.2 Renaming @ Threadoueiiiiiiiiiii et 31
2.4.3 ADOUL INFOVIBW ..ottt e e e e et eeeeaaaaeas 32
25 WOrKING WIth FIIES ...t re e e e e e e e e e e 32
251 CreatiNng NEW FIlES ittt e e e e e s e e eeaaaaaeeeas 32
2.5.2 OPENING FlES ..ottt ettt e e e e e e e e e e s s bbb e e eaaaaa s 33
2.5.3 ClOSING FIlES...cciiiiiiieii ettt et e e e e e e e e aab e eaeeeeaaaaeas 33
254 SAVING FIlES.... it e e e e e e aeaa e as 33
2.5.5 Saving CopIeS OF FIlESuuuiiiiiiiiiii et a e e e 34
2.5.6 SAVING All FIlES @t ONCEuuiiiiiiiiieaei ettt et e e e e eeeeaaaaaeas 34
2.5.7 Working With File WINAOWS........coiiiiiiei et 34
2.5.8 PrINtNG FlES ..ottt et e e e e e e e e e eeaae s 35
2.5.8.1 Setting UP the PriNtere it 35
2.5.8.2 Printing the Fle... ..o e e e e e e e e e e 35
2.5.9 Inserting Into and Removing Files from a Projectvciiiiiiiiiieee e 36
2591 Inserting FileS INt0 @ PrOJECTcooiiiieeeece e 36
2.5.9.2 Removing Files From @ Projectcciiiiiiiiii s 36
2 70t 0 T =T 1 1] o T] Pt 36
2.5.10.1 Tab Configurationcoeeeiiiiiiiiiiiie e e e e e e e s e e e e e e e e e e e aeaeaaaearane 36

Development Tools User’s Guide iii

Intel® IXP2400/I1XP2800 Network Processors u tel
®

2.5.10.2 GO TO LINE ettt ettt e e e e e e e e bbb e e e e e ae e e e e e aan 37
2.5.11 BoOKMArkS @nd EITOIS/TAUS . .cooocuuuretieeiieetieiaaaeee e ettt ettt e e e e e e s e s s esaebeseeeeeaaaeeeeasannnnnes 38
2.5.12 ABOUL FINA IN FIIES ...ttt et e e e e e e e e e e e e e e e e anes 38
2.5.13 About FONts and SYNtaX COIOMNGuuueeeiiiiiiiiaeaeie it e e e e eeeees 39
2.5. 14 ADOUL MACIOS ... ittt eet e ettt et e e e e e e a4 e e e kbbbt bttt et e e aae e e s e s s nbnbbbsbeeeeaaaaeeaaaannnnn 40

2.6 THE ASSEIMDBIET ...t e e e e e et e e e e e e e e e e e e e e s erannees 40
2.6.1 ROOt Files and DEPENUENCIESuuuiiiiiiieiieaaie ittt e e e e et re e e e e e e e e e e e e aeaanes 41
2.6.2 Selecting Assembler BUild SEtHiNGSccuiiiiiiiiiiiiiiiiiiee e 41

2.6.2.1 General BUild SEttiNgS......cooiiiiiiiieie ettt 42

2.6.2.2 Specifying Additional Include Paths ... 42

2.6.2.3 Specifying Assembler OPLIONS..........cuuuiiiiiiiiiie e 43
2.6.3 InVOKING the ASSEMIDIET.......cco o 45
A R S Nt ST=T o 41 o]V =) 46

2.7 The MIcroenging C COMPIIEL.....cccieie e e e e e e e e e e e e e e e e e s 47
2.7.1 Adding C Source FileS tO YOUI PrOJECT........uuuuiiieieiiie e 48
2.7.2 Selecting Compiler Build SEtliNgScooiiiiiiiieiiicere e 48

2.7.2.1 Selecting Additional Compiler Include Paths.............ccco oo, 48

2.7.2.2 Selecting the target liSt Fileuuiiiiiiiiiie e 49

2.7.2.3 Selecting C Source Files t0 COMPIIEcevveeeiiiiiciiieiieeeeee e 49

2.7.2.4 Selecting C Object Files t0 COMPIIEcooiiiiiiiiiiiie e 50

2.7.25 Removing C Source Files to COMPIle..........cccuuuiiiiiiiiiiii e 50

2.7.2.6 Selecting the Target .obj File ... 50

2.7.2.7 Deleting a Target .list Or .0Dj File........ccoooiiiiiie e 51

2.7.2.8 Selecting Compile OPLIONScccceiiiiiiiiieie e e e e e e e s e e e e e ae e e s e e aans 51

2.7.2.9 Saving BUild SEHINGS......ccciiiii it e e e e e 53
2.7.3 InvoKIiNg the COMPIIETcoviiiee e e e rr e e e e e e e e e e e nnnns 53
2.7.4 COMPIIALION EITOIS ..uuiiiiiiiieiiee e iis it e e e e e e e e s e s s eeeeeeeaeaessssssnsnneaeeeeeaeeaeessenannnnnnes 53

2.8 LI L T =T PR UTPPRPRTTPPPR 54
2.8.1 Customizing LINKer SEtINGS.......ccccuiiiiiiiieeieeee e e e e e e e e er e e e e e e e e e e ee e 54
2.8.2 Building and Rebuilding @ ProjECEuuuiiiiiiieecie e e e e e e e e 57

2.9 Configuring the IXP2400 Simulation ENVIFONMENTccvvviieeeeiiiicciiieeeereeee e e e 58
2.9.1 IXP2400 ClOCK FreQUENCIES.....ccceeeriiiieeieeeieeee e e iessieeieeeeeeeeeae e e s s e s ssnnsernreeeeeeaeeeseesnnnnnns 58
A T 0 o 10O YT o g T o 59
2.9.3 IXP2400 MSF Device Configurationcoeiieuiriieiiiirieeeeees e s s ssseniesneeeeeseeae e e e s s s snnnnns 61
2.9.4 IXP2400 NetWork CONNECLIONSciieiiiiiiieeeiiiiie ettt e et e st s st e e s nebre e e e e eneeee 65
2.9.5 IXP2400 CBUS CONNECHIONSuvviieeiiiiiiieeeeiiiiie e e ettt e e e sttt e e s sibbee e e s s snbbee e e s e nnbbee e e s eneene 67

2.10 Configuring the IXP2800 Simulation ENVIrONMENLuuvviiiiiereeeeiis e e e e e 68
2.10.1 IXP2800 ClOCK FIrEQUENCIES.....ccueeeriiiieeieeeieeee s e isseitttaeeeeeeeeaee e s s e s snsnansernreeeeeeaaaeeeeannannns 68
A O T D e 100 YT o g T o 69
2.10.3 IXP2800 MSF Device Configurationcoovcviriieiiieieeeee s sessssnineeeeeeeeeee e e e e e e s snnnnes 71
2.10.4 IXP2800 NetwWork CONNECLIONSuuiiieiiiiiiiee ettt ie et eee ettt e et e e et e e s snbaeeeeeenes 76
2.10.5 [IXP2800 CBUS CONNECLIONSuviiieeiiiiiieeesitieee e ettt e e s siteee e e sibaee e e s s st e e e s anbeee e e e eneees 77

2,11 PaCKet SIMUIBLION.....ccciiitiiiiiei ittt e e st e e e st e e e s s srbe e e e e s abbneeeenns 78
2 A 1T o 1= | @) 4o o O EPRRSRRR 79
2.11.2 Traffic INterface LOGQINGccccoiiiiieiiiiiiiieeie e ee e e e e e s e e e e e e e s e s s s e e eeeaeeesanannnnnnes 80
220 o) I 0 o1 (o] OSSPSR 82
2.11.4 Traffic ASSIGNMENTuiiiiiiiiieei et e e e e e s e e e e e e e e e e e e sesssnsanberreneraaaaaeeeeaans 83
2.11.5 Manage NTS PlUQ-iNS ...cccieeiieiiiiiiiieiie et e e e s e e e e e e s e s s s s e e eeeeeaeeesenannnnnnes 88

2.11.5.1 Network Traffic SIMUIAtIoN DLLSueviiiiiiiiiieiiiiieeee e 89

2.12 DALA SIMBAIMNS ...eeeiiiiiiiiee e i ittt ettt et e e e e e e e ek ettt e e e e s e et e e s bbb e e e e et et e e e e e e e e e e eee s 90
2.12.1 Creating and Editing a POS IP Data Streamccccccuviviiriirieeee s csinnieneeeneeee e e e e 92

Development Tools User’s Guide

In

u tel Intel® IXP2400/I1XP2800 Network Processors
®

2.12.2 Creating and Editing an ATM Data Streamccceeiiaiiiiiiiiiiiiiiieeeee e 94
2.12.3 Creating and Editing a Custom Ethernet TCP/IP Data Stream............coocccvvvvieeeeeneeenn. 95
2.12.4 Creating and Editing an Ethernet IP Data Streamcccovviiiiiiiiieiii e 97
2.12.5 Creating and Editing an Ethernet TCP/IP Data Streamcccccccoeiiiiiiiiiiiiiiieiieeeeeenn, 98
2.12.6 Creating and Editing a PPP TCP/IP Data Stream...........cccccviiiiieiiiieeaeiiiiiiieeeeee e 99
2.12.7 Creating an IP PacCKet POOIcooiiiiiiieeie et 101
2.12.8 Specifying an Ethernet HEAUEruuiiiiiiiiiiiiii e 102
2.12.9 Specifying @n 1P HEAUEcoii ittt a e e e e 102
2.12.10 Specifying @ TCP HEAEGTcccei ittt e e e 103
2.12.11 Specifying a Data Payload ... 103
2.12.12 SPECIfYING FrAME SIZEeeeeeiiiiiiaeiii ittt e e e e e e e e e e as 104
2.13 [D7=T o 0T T[T Lo PSP P TP TPPPTTTT 104
2.13.1 Local Simulation Debugging with a Local Foreign Model.............ccoooiiiiiiiiiinnnn. 106
2.13.1.1 Local Simulation Debugging with a Remote Foreign Model........................ooee. 107
P22 R N o - 1 (0 VLV T 1= o 18 o o 11 o S 107
2.13.1.3 P OIMAPPET - ittt e e e e e e e e e e e e et e e ettt et b et bbb e e e e e e e e e e aaaaaaeeeeeeannre 108
2.13.2 Starting and Stopping the DEDUGQETuiiiiiiiii it 108
2.13.3 Changing Simulation OPtiONS........ccoiiiiiiiiiiiii et e e e eeeaaaeeas 108
2.13.3.1 Marking INSIFUCHIONS.uuuiiiiiiiiieeee ettt e e e e e e e e e e e eeas 108
2.13.3.2 Changing the Colors for EXeCution State............cooiiiiiiiiiiiiiiiiieeeeee e 110
2.13.3.3 Initializing Simulation Startup OPLiONScevvviiiiiiiiiiiiie e 110
2.13.3.4 Using Imported Variable Data............ccccuvuriiiiiiieee e ee e e e 111
2.13.4 EXporting the StartuUp SCIPLcceeeii i e e e e e e e e e s 113
2.13.5 Changing Hardware OPLiONSccccuuririiiiiieeeeeese s sisieere e r s e ae e e e s s s snnnnaneaeeereeaeeesees 113
2.13.5.1 Specifying Hardware Startup OptioNnS........cc.uuveriiiiieeeeeiiisiiieeer e e e 113
2.13.6 The Command Line INtEITACE..........cceiiriiiiieieie e 114
b2 I T A o 13 4= U To RS Yol) R 114
2.13.8 Thread WINOOWScociiiiiiiieiiiie sttt e e e e e e nnne e e snneenns 115
2.13.8.1 Controlling Thread WIiNdow ACHVALION...........cccoiiiiiiiiiiiiieiieec e 115
2.13.8.2 Thread WINAOW CONLIOISeeiiiriieiiiieeiee et 117
2.13.8.3 Tracking the ACtIVE TRIEAU.........cuuiiiiiiiiiiiii e 119
2.13.8.4 RUNNING t0 CUISOI uiiiiiiiiiieeeee e e ettt et e e e e e e e e bbbt et e e e et e e e e e e s e s aanbbnbeeeeeeas 119
2.13.8.5 TOQUIE VIBW ...ttt e e ettt e e e e e e e e e e e nnreeeees 119
2.13.8.6 Activating Thread WINUOWSuuuiiiiiiiiiee e e e e e e e e e e aeaeanaees 120
2.13.8.7 Displaying, Expanding, and Collapsing Macros (Assembled Threads Only)....... 121
2.13.8.8 Displaying and Hiding Instruction AAdreSSeScccoovvevevvviiiiieieeeee e 122
2.13.8.9 INSLIUCHION MAIKEISt e e e e e e e e e e e e e e e e e e nnennaeeeeees 123
2.13.8.10 Viewing Instruction Execution in the Thread WiNndow.............ccoccveveeiiniiiieeennnnnee. 123
2.13.8.11 Document and Thread WIiNndow HiStOrYcoooiiiiiiiiiiiiiiieeee e 124
2.13.9 RUN CONION ittt ettt e e e e e e e e st b et et e e e e e e e e e e e e nbabbeaeeeeaaaaanas 125
2.13.9.1 SINGIE SEEPPING ittt a e e e e e e e bbb eeeeas 125
2.13.9.2 Stepping MICTOENGINESuuuueiiiiiei e i e e e e eeeeeeee e e e e e e e e e e aeaaaaaeeeeeaeesannne 125
PG T TR T (=T o o1 T Y= PP 126
2.13.9.4 Stepping Into (Compiled Threads ONlY)ccevreeeiiiiiiiiciiee e 126
2.13.9.5 Stepping Out (Compiled Threads ONlY)........cccoviiiiiiiiiiiiieiiieeee e 126
2.13.9.6 Executing MUIIPIE CYCIES......cooiiiiiiii i 127
2.13.9.7 RuUnNNing to @ SPeCIfic CYCIB.....ccoiiiiii e 127
2.13.9.8 Running to a Label or Microword AdAreSS.........cooevvvviiiiieeeeeicies e e e e e e ee e 127
2.13.9.9 RUNNING INAEfiNItEIY ...cceveeeeeeee e e e e e e e e e e eaaaens 127
2.13.9.10 StopPIiNg EXECULION.......uuiiiiiiiiiiiee e e s et e e e e e s s e e e e e e e e e e e e e snnrnneeeeeees 128
2.13.9.11 Resetting the SIMUIALION........ccoiiiiiiiiiii e 128
2.13.10 ADOUL Bre@kKPOINTScoiueiieiie ittt s bbb e e 129

Development Tools User’s Guide v

Intel® IXP2400/I1XP2800 Network Processors u tel
®

vi

2.13.10.1 Breakpoint Properties DIialog BOX.........cccouiiiiiiiiiiiiiiiiiieeee e 131
2.13.10.2 Setting Breakpoints in Hardware Modec..uuuiiiiiiiiiiiiiiiiiieeeeee e 132
2.13.10.3 About Breakpoint Markerscoooiiiiiiiiiiiecce i e e 132
2.13.10.4 Inserting and Removing BreakpointS............cuiieeeeiiiiiiiiiniiiiieeeeeee e ssssevnnseeeeeee e 134
2.13.10.5 Enabling and Disabling BreakpointS..........cccceuiiiiiiiiiiiiiiiieeiee e cssviveeee e ee e 135
2.13.10.6 Changing Breakpoint ProOPertieS.ocuueiieiiiiiieeeeiiiie et 135
2.13.10.7 About Multi-Microengine Breakpoint SUPPOIt.......cccuviiiiiiiiiiieeeeiieeeee e 135
2.13.11 Displaying RegiSter CONENTS.......cccueiiiiiiiiiiieie et e e e e e e e e e e e e e e e 137
2.13.12 Data WaALCR ...t e e e e e e e e 138
2.13.12.1 Data Watches in C Thread WINAOWS...........cccuuuiiiiiiiiiiiiiaaee e 139
2.13.12.2 Entering a New Data WatChcocuiiiiiiiiiiiii e 139
2.13.12.3 Watching Control and Status Registers and PinS........ccccceevviiiiiiiiiiiiiiiecieiiiiienn, 140
2.13.12.4 Watching General Purpose and Transfer RegIiSters......cccccveeeveiiiiiccvvviienneneeeeen, 141
2.13.12.5 Deleting a Data WaLCh...........ccocciiiiiiiiiiiccee e e e 142
2.13.12.6 Changing a Data WAaLCHccuuiiiiiiiiiiic e 143
2.13.12.7 Changing the Data WatCh RadiXuuuiiiiiiiiiiiiiiiiiieiieeee e 143
2.13.12.8 DEPOSITING DALAuutteeiiiiiiiieeee ettt e e e e e e e e st bbb eeeeaaaaens 143
2.13.12.9 Breaking on Data ChanQesccooiiiiiiiiiieeeese e e 143
I T G BV = 0 [0 VA = (o o 144
2.13.13.1 Entering a New Memory WatCh............ooovriiiiiiiiiiiii e 145
2.13.13.2 Adding a Memory WALCHccociiiiieiieeec e r e e e e 146
2.13.13.3 Deleting a Memory WatChc..uviiiiiiiiiicc e 146
2.13.13.4 Changing a Memory WatChcooiiiiiiiiiii e 146
2.13.13.5 Changing the Memory Watch Address RadiX..........ccccuueeieiiiiiiiiiiiniiiiiiiiceeeeeen 146
2.13.13.6 Changing the Memory Watch Value RadiX.............cccouuiieiiiiiiiiiiiiiiicceeeeeen 147
2.13.13.7 Depositing MemOry Datacccoeviiiiiiieeiiiieis s e e e e e e e e 147
2.13.14 EXECULION COVEIAQE ... uuuiiiii i et eeeeeeeieeeeeeeeetetate s s s s e s e e e e e aaaeaeeeeeaeeaeasbatnan e e e e eaaaaaaens 147
2.13.14.1 Changing Execution Count Ranges and Colors.............cccceevviviviieveieivieiiiiceen, 149
2.13.14.2 Displaying and Hiding Instruction AAdreSSescccccuvieieeeieeeeeeiesiiciineeeeeeeeen 149
2.13.14.3 INSIIUCLION MAIKEIS ...coiiiiiiiiie ettt e st e e e e neaeas 149
2.13.14.4 Miscellaneous CONIOISoooiuiiiiiiiiii i e e 150
2.13.14.5 Scaling the Bar Graph ...t 150
2.13.14.6 Resetting EXECULION COUNESuuiiiiiiiiiiieaaiae ittt e e e e eeeaaaae e 150
2.13.15 Performance StatiSHCSooiiiiiiiiiiiiiieie et e e e e e e e e e 150
2.13.15.1 Displaying STAtiSHICS.cuuiiiaieiiiiiiitie ettt a e e e 151
2.13.15.2 ReSEttNG StatiSHICS ...uiiiiiiii e e ee e e e e e e e 154
2.13.16 Thread and QUEUE HiSIOMYccccieiiii i e e e e e e e e e e e e e 154
2.13.16.1 Displaying the History WINAOWoooiviiiiiiiiiiiiciiis e 156
2.13.16.2 Displaying Queues in the History WindoW...............cieiiiiiniiiiei e 156
2.13.16.3 Hardware Debugging ReSIICHONScccooiiiiiciiiiieee e e 156
2.13.16.4 Scaling the DISPIAYccouviiiiiiiiiiie e 156
2.13.16.5 Thread Display Property PAgeccuueieiiiiiiiieiiiiiiee st 157
2.13.16.6 Displaying Code Labels.........cccuuuiiiiiiiiiea e 157
2.13.16.7 Displaying Reference HiStOrycoooiiiiiiiiiiiiiicieie e 158
2.13.16.8 QUEUE HiSTOIY .. .uuiiiieie i i eees 161
2.13.17 QUEUE STALUS ...ceivetiiieei ittt e ettt e ettt e e et s s e e et e e b s e e e e e e baa e s e e e eas b e e e e eebabneeaeeanes 162
2.13.17.1 QUEUE StAtUS HISLOIYcceeee i e e 163
2.13.17.2 Setting QUeUE BreakpOiNtS........c.coiieiiiciiiiiieireee e e e e e s s e e e e e e e e e s rnneeee e 163
2.13.17.3 Changing Thread HiStory ColOrsSooeiiiiiiiiiiiiiiee e 164
2.13.17.4 Displaying the HiStory LEGENG.........ccuuuiiiiiiiiiiie et 165
2.13.17.5 Tracing INStrUCtioN EXECULIONuuiiiiiiiiiiiae ettt e e e 165
2.13.17.6 HiStOry COllECHING. . uuuieiiie i e e e e e e e e e e 166
2.13.18 TRIEAO STATUS.eeeiiiiieeiieee ettt e e e e e e e e et e e e e e e s e s s bbbt e s b e e eeeaaeeeeeaaanes 167

Development Tools User’s Guide

In

2.13.19 Packet SIMUIAtION SEALUSccoieiiiiiiiiiiie e a e e e e e aea e 169
2.14 RUNNING iN BACh MOGEcooiiiiiie ettt e e e e 170
3 Performance Monitoring UNit............coooiiiiiiiiiii s e e e e e e 173
3.1 [0 o [N Tt o] o FO PP URPRTPPPRR 173
3.2 Y 1O I g1 7= 110) £ PP UPRPRPPRPR 173
3.3 ST 1] o] 1o 111, o T [T SRS 173
3.3.1 Time Based SAmMPIiNGuuureeiiiiieeeiieiiiiiieiee e e e e e e e e s s s r e e e e e e e e e s e aa e e e e 174

1 70 70 T A = o T1 | A0S Y= 1] o] o SR 174
3.3.1.2 WiINAOW SAmMPIING .cccoiiiiiiieiiiiiieee ittt 175
3.3.2 Random Based, or Statistical Sampling..........cccooriiiiiiinii 175
3.4 PMU Graphical User Interface (GUI)........eeiiiiiiiiiiieiiiee e 176
3.4.1 Canned Analysis Property SNEELccoiiiiiiiiiiii e 177
3.4.2 Sampling Method Property PAgESccocuuiiiiiiiiiiiei ittt 178
3.4.21 Time Based Sampling (TBS) ...cccoiiuiiiiiiiiiiiee it 178
3.4.2.2 Random Based Sampling (RBS)cccuuiiiiiiiiiiie e 181
3.4.3 Sampling MAcCrOS DiIAIOQueeeiiiiieiiiiiiit ettt e e e e e e e e 183
3.4.3.1 Monitor SAMPING MACIO......ceiiiiiiaiii ittt a e 184
3.4.3.2 Threshold Sampling MaCIO..........ccoiiiiiiiitieieeee e 185
3.4.3.3 Sampling CoNSIAeratioNS..........uuuuuiiiiiiiiieeeeeeeeeee e e e e e e e e aeaaeeeeeeaeanns 186
3.4.4 Event Selection Dialog BOX.........ouuuuiiiiiiiiiiiiiei e e e e et s e e e e e e e e e e e e e aaaeann 186
3.5 (@ 1014010 1R o] 1 4 F= £ TP PRT 187
4 ASSEIMIDIE ...t e e e e e e e e e e 189
4.1 ASSEMDBIY PrOCESSttt e nnanes 189
4.1.1 Command LiNE AFQUMENTSciiiiiieiiiiiiiiiieteei et e e e e e e e e e st e e e e e e e e e e e e e s s ananbesaeeeeeeas 189
4.1.2 ASSEMDIET STEPS .eeeiiiiiei ettt e e e e e e e e e e e 191
4.1.3 CASE SENSIIVITY ..eeeiiiiiiiei ettt e e e e e e e e s e b et e e e e e e e e e e e e e e aannbbereees 192
4.1.4 Assembler OPtiMIZAtIONSuueeiiiiiiiiiiii e e e e e e e e e e eb e eeeeas 192
4.1.5 Processor Type and REVISIONcoiiiiiiiiiiiiiiiiiiieie ettt e e 192
5 Y ol o] g o 1] g =T @ @] o1 o]] 193
5.1 The ComMMANT LINEciiiiiiiiieie ettt et e e s et e e e e enneeas 193
5.2 ISYU o] o o] g (=To I @4o] 0] 7] =11 o] o < R 193
5.3 Supported OPtion SWItCHESuuiiiiiiiiiie e e e e e e e e e e s nnnnaanes 194
5.4 (0] 4] 01 L= S 1= o PR SR 198
5.5 (O 1Y TS 1S3 1Y/ /2R 199
6 T 2= PP 201
6.1 ADOUL the LINKET ...t e e e e e e e e e e nanes 201
6.1.1 Configuration and Data Accessed by the Linker............ccccovrriiiiiciiiii e, 201
6.1.2 Shared Address Update (FIOW)uuuuieiiiiiiiiiii e e e e e e e e e e e e eeeees 201
6.2 Microengine Image LiNKer (UCLD)uuuuuiiiiiiie i e e e e e e e e e e e e e eeanns 202
L T2 A U 1 Vo [U PSP 202
6.2.2 Command LINE OPLIONScciiiiiiieiiiiiiiiisie s e s e e e e e e e e e e e e e ee e ss s e e e e e e eaaaeaeeeeeenaennes 202
6.3 Generating a Microengine ApPlICatioN..............oovirriiiiiiiiiiie e 203
6.4)Y e I L= 11 T 1 203
6.4.1 Image Name DefiNitiON..........ooooiiiiiiiiiiiiie e e e e e e e e e e e e e eeeeanes 203
6.4.2 Import Variable Definitionuuiiiiiiii e e e e 203
6.4.3 MiICroenging ASSIGNMENT...........cevviiiiieiiiiiiiie s st e e e e e e e e e ee e e e e e e eeaee e aaeeaeeeaeaaaeeeaeenes 204
6.4.4 Code Entry Point DefiNItiONoviuiiiiiiiiiiiiis e e e e e e e e e aeaees 204
6.5 = 1141 0] = PSP 204

Development Tools User’s Guide

u tel Intel® IXP2400/I1XP2800 Network Processors
®

Vii

Intel® IXP2400/I1XP2800 Network Processors u tel
®

6.5.1 Uca Source File (*.UC) EXAMPIE ...ttt 204
6.5.2 Uca Output File (*.liSt) EXAMPIEuuiiiiiiiiiieie et 205
6.5.3 .Map File EXAMPIEooeeiiiiiiiee e 205
6.6 MemOory SEgMENT USAGE.......cooiiiiiiiiiiiitttt ettt et e bbb a e e e e e e e e e 206
6.7 Microcode Object File (UOF) FOIMALceiiiiiiiiiiiiiiiiieiee et 207
B.7.1 FlE HEAUEN ...ttt et e e e e e e e s et b b a e e e e e aaaeaeanes 207
6.7.2 File ChUNK HEAAEKueeeeiiieiiiee ettt e e e e e e 207
6.7.2.1 UOF ODJECE HEAUET ...ttt a e 207
6.7.2.2 UOF Object ChunK HEAETc..uuiiiiiiiiiiiiaee et 208
T R T U (O] S I IR 208
6.7.2.4 UOF _IMEM......oiiiiiiiiiiii ettt ettt et et e e e st e e e e nneaeas 208
6.7.2.5 Memory Initialization Value AttribULESooviiiiiiii e, 209
6.7.2.6 UOT_INIEREGSYM .o 209
B.7.2.7 UOF _IMSEGoiiiiiiiiiiie ettt ettt ettt e e e st e e e e e nttte e e e e atta e e e e e annbeeaeeennnees 209
R T U (0] o © 1 5 R RSRR 210
B.7.2.9 UOF _IMAGoiiiiei ittt ettt e e e e ettt e e e s st e e e e e snbbe e e e s atbae e e e e anraeas 210
A X O B VT 0T (=1 - Vo = R 211
A 5 R VT 4 1= T =T I 1= o SR 211
6.7.2.12 UOT_MEREQeiiiiii ittt et e e e 211
6.7.2.13 UOf_NEIGNREQ ...t 212
6.7.2.14 UOf_NEIGNREGTADuiiiiiiiii it 212
A R T ¥ o) 101 o1 1 = o 212
A S TV o] o] =5 d o T = o J 1= L J SO 212
6.7.2.17 uof XferRefleCctTahuuveiieiiee e 212
B.7.2.18 UOT _UCVATI ...ttt e e ebaeas 212
6.7.2.19 UOT _UCVAITAD ..uuuiiiii it 212
6.7.2.20 UOF_INItREGSYMTADttt 213
4 R ¥ o V1Yo o | U] o 213
Ay A V o) w0 Yo [Y =T R 213
6.8 D] =T I @] = N 1 TSP PPRPR 213
6.8.1 Debug ODbJECtS HEAUENcccoe it e e e e e e e e e e 213
6.8.2 Debug Object ChUuNK HEAUETuuuiiiiiiieee et e e e e 214
RS C T B] =1 € S 1 = PRSP 214
6.8.4 ADG _REGTAD ..icc oo e 214
6.8.5 ABG _LBITaD coocce e 214
B.8.6 ADG_SYMTADuiiiiiiiiii e ae s 215
(= T A o | o To [T (o3 = o 215
B.8.8 ADG _TYPTAD ... e e e eee e 215
6.8.9 ADQ _SCOPETAD ...uueiiiiee e ———————————————— 215
(2= 700 K0 o o To [1 F= Vo =0 215
B.8.11 ADG_LADEI ..o e ee e e e eeeee 216
(= 70 2o | o To [T 10 (o = 216
B.8.13 ADG_SYMID ittt e e et e e e e abrree e e anrreeee e 216
LRSI I o | o o [3/ o= PRSPPI 217
6.8.15 dDQ _SHTUCIDET .o 217
(o= T K ST o o To TS £ H o £ T o 217
6.8.17 dDg _ENUMDET ... e —————————————————— 217
(o= 70 I T o o To [=1 010 4 V=111 = 218
(= 70 R o o To [T o o = 218
(o= T2 0 o | o To [N £= 1 1UT= o Lo 218
(o= T2 Mo | o To [N £= U= o] = 218
R Ao | oo TS] o TP PPRPPPRRR 219

viii Development Tools User’s Guide

intel.

LS 22 T o | o o HN I o o PRSP 219
6.8.24 ADY_RIOCTAD ..cciiiiiieii e e e e e e e e e s e bbb e e e e e aaaaeeeas 219
6.8.25 ADG_LMIOC...ceiiiiiiieieiie ettt e ettt e e e e e e e e e e ba e e eaaaaae s 219
6.8.26 ADQ_LIVEIANGE ..coeiiiiiiit ettt e e e e e e ettt e et e e e e e e e e bbb et e aaaaaaeeas 219
B.8.27 ADQ _RANGE ... eeiiiiiee ettt e e e e e e e eeaaaaae s 220
6.8.28 dDQ_INSTOPING ...ttt e e e e e ettt e e e e e e e e e e e s e bbb b e aeeeaaaaaeeas 220
7 Foreign Model Simulation EXtENSIONSiiiiiieiiiieiiice e e e e e 221
7.1 OVBIVIEW. ..ttt ettt ettt e sttt e e s ettt e e e ettt e e e e n b b et e e s e e bbe e e e s annbbe e e e e annbbeeeeenbbeas 221
7.2 Integrating Foreign Models with the Transactorccceevvvveeee e 222
7.3 Foreign Model Dynamic-Link Library (DLL)ceerrereeeiioiiiiiiieeee e ee e e 223
7.4 S 101 F= LT gL AV =T [F= T Lo o R 223
7.5 Creating A FOreign MOdel DLLuuuuiiiiieeeie i er e e e e e e e e e 223
ST A I ST 4T o (=T o o - 224
8 =11 15T = (oo) 229
8.1 OVBIVIBW. ...ttt ettt oottt ettt e e e e e e e e e e bbbt b e et et e eeaaeeesaaaannbbbbenreeeeaaeeaesaannne 229
8.2 INVOKING the TranNSACIONvvviiiiiiiiiee et e s e s e e e e e e e eaeeeeeeeeaeererane 230
8.3 TranSaCtOr COMMANTScciiiiieeiieiiiiiittee ettt e e e e e e e e e e e e s e e s anbbbb b e e e e eeeeaeeeeaaaannns 231
8.3.1 HUEIING e et e e e e e ae s 232
8.3.2 FHUNAET ..o a b e e e arres 233
S TR T (o PP 233
8.3.4 DENCNMAIK ...ttt e e e e e e e e e e e ab e eeaeeeeas 234
ST 1T o o PSP 234
8.3.8 ClOSE .. et e e e e e e e e eaa e e as 234
S TR T A oo o T ! FR TP PPTPPPTPPPRUPRPIN 234
S0 70 TR o 1= o 1 | PSS 235
ST X TR o | PP RR 236
TR I O I ¢ 10] 1= T OO PP TP PPTPPPTPPTPT 236
ST 200 I = (| S PRSP 237
TR T I (o] (ol TP PP P PTPPPTPPPP 237
S0 700 G T o] =1 o | o 1 /(o o 1= PPN 238
ST 201 I o o T PSP TRR 239
S0 700 ST o o T 1] =TT U 239
S 700 201 G T o o o U UPPTPP 239
S 700 201 A o o (o U PP 239
S 70 700 It T o o) (o T = Lo o | PPN 240
SR 00 K T o = | PP 240
ST 202 I T o1 PSPPSR 241
S B0t R 11 PP 241
S TR T2 [Y- To [(oSS 242
ST 02 T [0 To PSPPSR 242
S TR T2 A [To | o | PPN 242
B.3.25 PALN . et e e e e e e anres 243
SR 024 ST 1Yo B PP ERRSTPR 243
8.3.27 TEIMOVE ...ttt er e e e e e e et et et e et et et ee et et et a e e e e e e e e e e e e eeeteeeenenrnrnennes 243
S TR T2 < T (o T | | | PPN 244
8.3.29 SEL CIOCK .. e a e e e et et —————— 244
8.3.30 set_default_go ClKcocoi i a e 244
8.3.31 set_default_goto filter..........ooorrrieiee e 244
8.3.32 set_float threShOld..........coooiiiiiiecc e e e e e e e e e e e e e e eaaaaee 245

Development Tools User’s Guide

Intel® IXP2400/I1XP2800 Network Processors

Intel® IXP2400/I1XP2800 Network Processors u tel
®

8.3.33 SNOW_CIOCKS ...uuiiicii et 245
8.3.34 SN _0IEEE ..ttt —————————————————— 245
G TG LSRS0S S 246
SR TR T 11141 PSPPSR 246
TR TR A 1 7= Vo] T TP TP TT T 246
TG TGS T 1Y/ o1 PP T T PP PP 247
RS IR 1S BT o £ T | PRSP PTPPPRRN 247
RS 1O B U [] (o] of PP U PUPPPRN 248
RS N YT €] T o TP UPPTPUPPPRN 248
RS b 17 (o] o [P T TP PUPPPR 248
8.4 O [01 =] 1 o] (=1 =] SO P PP PPRTUPPTUPPTPRPPPN 249
8.4.1 C MACIOS SUPPOILEAeeiiiiieeieiei ittt e e e e e e e ettt e e e e e e e e e e s e abnbbebreeeeaaaaaeaeeaaannes 250
8.4.2 SUPPOIEd DAA TYPES «eeeiiieeiieieiiitttte ettt e e e e e e e e ettt et e e e e e e e e e e s e bbb e aeeeeaaaaaeeeesaannnes 250
8.5 SIMUIALION SWILCNES ... e a e 251
8.6 Predefined C FUNCLIONS ...t a e e 252
8.7 = g fo] g F=T o Vo | 1 o [P TP PPPRTPPPRT 254
8.8 Printing Statistics from the TranSaCIOrooi i 255
oS T A o 1= 1o S = L =T { () I TP PPRRURTTR 255
8.8.2 P _STAt PIINT()ittt e e e e e e e e e e e e e e e e e 255

9 SIMUIATOT AP IS .t enree 257
9.1 Lo =TT g T 1Y To o = I = PSSR 257
9.1.1 FOR_MOD_INITIALIZEotteiieiiiteee ettt e et e e e sbbneeeeean 257
9.1.2 FOR_MOD_PRE_SIM ..coiiitiiiiei ittt e et e e e s sbbneeeeean 257
9.1.3 FOR_MOD_POST_SIM ...ttt ittt ettt e e e s snbbe e e e s snbneeeeeaas 257
9.1.4 FOR_MOD _EXIT .oiiiitiiiie ittt ettt ettt ettt e e ettt e e e s et e e e s snbbeeeeessnbneeeeeans 257
9.1.5 FOR_MOD _RESETttiiiiiiiiiiie ettt sttt ettt e ettt e e sttt e e e s bt e e e s snbaeeeeeane 258
9.1.6 FOR_MOD_DELETE ...iiiiiiitiiiie ittt ettt e ettt e e st ee e e s snbneeeeean 258
9.2 Overview Of XACT AP FUNCHIONScooiiiiiiieiiiiiiiee ettt et ee e e snbneee e aees 258
9.3 State Name Reference ROULINES.........cooiiiiiiiiiiiiie e 260
9.3.1 XACT_find_wildcard_Stat€ NAME.........ceeviiiieeiiiiiiiiiiiieier e e e e s rrr e e e e e s e enanes 260
9.3.2 XACT_get NANAIE......ceeeeiieieeeeie it e e e e e e e s s ereaeeeeeeeeannnnes 261
9.3.3 XACT_delete_handl@..........coooieiiiiiiiiiiiiee e r e e e e e e e s e e e 261
9.3.4 XACT_get_State INTO ..ciiiiiiiiiiiii i e e e e e e e e e e e s e anes 261
9.3.5 XACT_get _State ValUEcccoeiiiiiiiieiieiet et e e e e e e s e e e e e e e e e e e e s e nnnes 262
9.3.6 XACT_get state fieldccooiiiiiiiiee e e e e e e e 262
9.3.7 XACT_get array_state ValUecccuuuiiiiieiiiie et e e e s e e e e e e e e e 262
9.3.8 XACT_Set_State ValUEceeeeeieiiiieeeeee e e e e e e e e e e e e e e e s e aanes 263
9.3.9 XACT_set_state fieldcceeeeiiiiieeeer e e e e e e 263
9.3.10 XACT_set_array_State ValUEccccccuuriiiiiiiiiee et e e e e s sanreen e e e e ae e e 263
9.3.11 XACT_add_SIM_STAE ..ieiiieeeieiie i r e e e e e e e e s s s r e e e e e e e e e e e e e annnes 263
9.3.12 XACT_HANDLE XACT _alloc_user_Sim_State.........cccvrreirriieeeresiiiiiiiiineeeeeeeeeseesnnnnns 264
9.3.13 XACT _Start Of CYCIE ..ueeeiiiiieeee it e e e e e e s e e nnes 264
9.3.14 XACT_full_cycle_SIMUIALEdcooe i a e e e 264
9.3.15 XACT _CIOCK _CYCIE ..uvveeeeieieie ettt e e e e e e e e s e e st raeaeee e e e s e nnnes 264
9.3.16 XACT_clock_cycle with remainder.........ccccccvveeeiiiiiiiiieeeee e 265
9.3.17 XACT_get tOp _1EVEl INSt...ciiceiiiii e e s e e e e e e e e e s e e 265
9.4 Callback Creation and Deletion FUNCLIONScoooiiiiiiii i 265
9.4.1 XACT_Define_Callback _Create Chipcccccceeeiiiiiiiiiiiiiiieeee e e e 265
9.4.2 XACT_Define_Callback INit._SiMc..uuuiiiiiiiiee e 265

X Development Tools User’s Guide

intel.

9.4.3 XACT Define_Callback _Sim_RESEL.......ccccoiiiiiiiiiierrisir e 265
9.4.4 XACT Define_Callback _Sim_Delete.........cccoiiiiiiiiiiiiiesies e eeevaanens 266
9.45 XACT Define_Callback RESIOIE........uuuuiiiiiiiiiiiii et e e e e e e e e e aeeens 266
9.4.6 XACT_Define_Callback _Sim_IN_ProgreSs ...t 266
9.4.7 XACT_ Define_Callback Default Go_Clock_DOmain...........cccccveeiiiieieiieeieeeeeeeeeeeeenns 266
9.4.8 XACT Define_Callback _State Transitionceeuviiiiiiiiiiiiiinieieieee e, 266
9.4.9 XACT Define_Cancel_Callback _State_Transitionccccceeeeeeiiiiiiiiiieeeeieeeeeeeeeieennns 267
9.4.10 XACT_Cancel_State Transition_CallbackK.........ccccoeieviiiiiiiiiiiiiiccin e, 267
9.4.11 XACT_Define_Handle_Invalidation_CallbacK..............cccccoeiiiiiiiiiiiiiiiciieie e, 267
9.4.12 XACT_Define_Callback_Output_ MESSAQJEcceeeieiiiiiiiiiiiiiiitee e 267
9.4.13 XACT_Define_Callback _Set Prompt ... 267
9.4.14 XACT_Define_Callback_Get_Console_INPULoooiiiiiiiiiiiieiieee e 268
9.5 MiISCElANEOUS FUNCHIONSeiiiiiiiiiei ittt e e e e e e e e e 268
9.5.1 XACT Define_Automatic_Sim_Halt.............ooooriiiiiiiccrre e 268
9.5.2 XACT_OULPUL T0_CONSOIE ..ccoiiiiieiiieiitte et e e e e 268

S T B ¢ X O B o] 1 F TP 268
9.5.4 XACT _ PRI _BITOF .ttt et e e e e e e e e s e enb bbb e e eeeeaaaaaeas 268
9.5.5 XACT_register_console_fUNCLON............eoiiiiiiiiiiiie e 268
9.5.6 XACT_register_console_function_wW_arrayed_args........cccccceeeereiiiiiiiiinieeeieaeaeaeeeeeen 269
9.5.7 XACT_unregister_console_fUNCLON............oiiiiiiiie e 269
9.5.8 XACT_EXecuteCommMAaNdSLEooviiiiiiiiiiiiiie e i e e eeeeee e eeee e e e e e e e e e aeaaeeaeeees 269
9.5.9 XACT_INIt_QUI_CONSOIEuiiiiiiieeeiie ettt e e e e e et eeeeaaaeeeas 270
9.5.10 XACT_gui_eXeCute_COMMEANGcuuuuiiiiiiiiiaaaeaa ettt e e e e e e e e e e aeeeeeaaaaaeeeas 270
9.5.11 XACT_StArt_ CONSOIE() .uuurureeeieeiiaaeaeeiae ittt ettt e e e e e e e et e e e e e e e e e e e e s arnbbbbeaeeeeeaaaeeas 270
9.5.12 XACT _INItIANZE() .o eeiee ettt ettt e et e e e e e e e e nb b e areeeaaaaeeas 270
9.5.13 XACT_stop_exeCUution_at_ ClKoooeuiiiiiiiiiee e 270
9.5.14 XACT _eXit traNSACIONcciiiiiiieieitiii i eire e e e s e e e e e e e e e e e e e e e e ee et as s e s eaaeaeeaeaaaeeresennnns 271
9.5.15 XACT_CTRL_C_SWITCH...ci ittt e e e e e 271
9.5.16 XACT_SIOP_EXECULIONevvieiiiiiaaeaee ittt e et e e e e e e et bt e e e e e e e e e e e s e s aaannbbbbeaeeeeaaaaeeas 271
9.5.17 XACT _QUI_INTEITACE ...t e ettt e e e e e e e e aeaaaaaaeeeas 271
A TIANSACION STALES ...eevivieiititiiiie it e et e ettt ettt ettt s s e e e e et e e e e aeaeeeeeeeeeeeetebbebennn e ee s 273
AL ADOUL SEALES ...ttt ettt e e e e e e s e bbb r e e e e e e e e e e e eea e e e e s 273
A.1.1 State Definition FOMMAL ..o 273
A.2 Y =70 T0] oY AR Y= (U o PP UOPPPRTN 273
A.3 HAIAWAIE STALES....ceiiiiiiii ittt e e e e e e e s e bbb e e e e e aaeeeas 274
N 0 A O o 11 o T =T (=T (= o = PR 274
ALB.2 SRAM et e e e e e et e e e e e e e e e 274
N T TS T > (o]] = Lo [PPSR 274
ALB.4 DRADM . et e et e e e e e e e 275
A3 RBUF et e e e e e e e e e 275
ALB.8 TBUF ettt e e e e e e e e et e e e e e e e e e e 276
ALBT FIFO et e e e a e e e e e e 276
A.4 Y IeTgoT=T o [ToT =T o] (=T 277
N O I Tor= I 1Y/ =T T Y 277
A42 GPR A DANK ... a e e e 277
A4.3 GPR B DANK ... a e 278
A.4.4 Transfer REQISIEN S IN ... s e e e e e e e e e e e eeeeeeeeenaneees 278
A.45 Transfer REQISIEr S OULuuuiiiiiiiiiiii i e s e e e e e e e e e aaeeeeaeaeerannee 278
A.4.6 Transfer REQISIEN D IN......uuuiiiiiiiiie i s e e e e e e e e e e e eaeeeeaeeaannee 279

Development Tools User’s Guide

Intel® IXP2400/I1XP2800 Network Processors

xi

Intel® IXP2400/I1XP2800 Network Processors u tel
®

B

C

D

E

Xii

A4 7 Transfer REGISIE D OULuueiiiiiiai ittt e e e e s aeeeeaaaeaeas 279
A.4.8 Next NeighbOr REQISIEISueiiiiiiieei ittt e e e e e e 280
N T O35 = £ PRSP 280
A.6 Intel XScale® MEMOIY MAP ACCESS .. uutietieiiieiae e ettt e e e e e e e e e e e bbb eeeeeeaaaeeaeaaannes 280
A7 IXP2400 and IXP2800 TranSactor Statesccccuuuiiiiiiiiiaeaeee et ieeee e e e e e e 281
A.8 Transactor States fOr PCl PiNSuiiiiiiiiieeaee e 285
Developer Workbench ShOMCULScooiiiiiiiiiiiiie e 289
B.1 g eo [ox i o] o DT T PU PP PPPPPPPTN 289
Intel XScale® Core Memory Bus Functional Model ... 295
C.1l SUMMATY Of APIS ooieiiiiiie ittt s e e e e e e e e e e s s e et be e e e e eeeeeeesassnnneenanneeeees 295
C.Ll XACT_IO AP ittt ettt ettt e e s s bbbt e e e s bt te e e e snnaeaeee s 296
C.1.2 SIMREAd32 / SIMWIIE32eeiiiiiiiiiie ettt ettt e e e st e e e s sbaeeeee e e 296
C.1.3 simIntConnect / simintEnable / simIntDisable
cmblintConnect/cmbintEnable/cmbIntDisable ..o 296
C.1.4 simintEnablelRQ / simintEnableFIQ / simIntDisablelRQ /
simiIntDisableFIQcmblintEnablelRQ / cmbintEnableFIQ / cmbintDisablelRQ /
CMBINIDISADIEFTQ ..cvviiiii e ——————— 297
C.1.5 IS _CMB_ADDR_RESERVED /IS _CMB_INT_RESERVED........cccccccovitiiiieiiiiiieeeenns 297
C.1.6 Additional CMB_IO APluiiiiiiiiiiiee ettt e e et ae e e e snsaaeea s 298
C.1.7 cmbRead32 / CMBWIIEE32.ttt e e e e e e e e snaees 298
O S o 4] 0 T (@4 o I PSPPSRI 299
C.1.9 cmbSwapRead32 / cmbSWapWIItE32.......coiiiiiiiiiiieie e 299
C.1.10 cmbBFMRead32 / CMBBFMWIIE32ceiiiiiiiiiee ittt 300
C.2 ENUMS ..ottt ettt ettt e e et e e sttt e e e et b e e e s e s ta e e e e s bt e e e e e e nbeeeeeannneaeeeeanraeeas 301
C.3 D= 01T PP PP TP 301
PCI Bus FUNCLONAI MOUEI ...t 303
D.1 Loading the BFEMccooiiiiiiiiiiic i 303
D.2 INILIANZING The BFM ... rr e e e e e e e s s e rr e e e e e e e e e s aeannes 303
D.3 CreatiNg @ DEVICEcccoi ittt et e e e e e e e e s et r e e e ae e e e e e an e rraeaaes 303
D.4 Calling Console Functions from Another Foreign Model.........ccccvvvveeeeiiiiiicciiiiiieeeceeee, 304
D.5 Setting a Callback FUNCHON........ccooiiii e 304
D.6 Header file PCICONTX.N c.oeeviiiiee e 304
SPI4 Bus FUNCHONAl MOEL ...t 311
E.1 OVEBIVIBW ...ttt ettt et e e e e s e s ettt te et et eeeeeeeesaannebebaeteeeeeaaeeeseeannsenbenneeeeeess 311
E.2 SPIA BFEM HEIP ettt ettt e e e e e e s r e e e e e e e e e eeaaes 311
E.3 (0] g 1STo] L= =TT] od 1T o 1S SR 312
E.3.1 DeVvice/Port CONfIQUIrAtioNceeeiiiiiiiieiiiiiee ettt 312
E.3.1.1SPid_defiNe_dEVICEeoiiiiiiiiiie it 312
E.3.1.2spi4_set_device_X_param/spid_set _port_ X_paramcccccoeeveuvrrriiieneeeaaeenns 313
E.3.1.3SPI4_Create OEVICE......c.cuuuiiiiiiiiiiiiie e et e e e ee ettt s e s e e e e e e e e e aaaaaeaeaeanes 314
E.3.1.45Pi4_CONNECE_UEVICE ...vvvueiiiii e i e e e e ettt e s eeaaaeeeeanennes 314
R B Y o1 R =T a =][PSSR 314
E.3.2 SIMUIALION CONLIOL....ccciiiiiiiiiie it e e e 315
E.3.2.1Spid_set_X_StOP_CONIOI ...eeiiiiiiiiiiieiiiiiiie ettt 315
E.3.2.2SPi4_Set_SIM_OPLONS ...coieiiiiieiiiiiiiee et 315
e e N 011V o o1 1 o) SRR 316
E.3.3.1spi4_set_rx_fc_info/spi4_set_tx_fc_info/spi4_set_rx_calendar/
SPI4_Set_tX_CAlENUANccoeiiieee e 316

Development Tools User’s Guide

In

tel.

Intel® IXP2400/I1XP2800 Network Processors

E.3.4 Statistical INfOrmMation ACCESScuuuiiiei it e e e e e e e s e e e aaas 317
E.3.4.1spi4_get_receive_stats_X/spid_get_transmit_stats Xcccooiiiiiiiiiiieennnnnnn. 317
E.3.4.2spi4_get_rx_buffer_byte/ spi4_get_tx_buffer_byte and
spi4_get_rx_buffer_int32/spi4_get tx_buffer_int32ccccvevvvieiiiiiieee e, 318
E.3.4.3spi4_get_rx_clock cycle/spi4_get_tx_cycle _count.........cccccevveeeeeiiiiiicninnnnnnnn. 319
E.3.4.4SPI4_TeSEL SEAL ...ceie it 319
E.3.4.5SPI4 _VEISION.....ciiiiiiiittt ettt e e ettt e e e e e e e e e e e e e bbb e e 319

N O N PP P P PRPPP 319
Figures
1 The Developer Workbench GUIooiiiiiiiiiiiiie e 20
2 Floating Window, Tool Bar, and Menu Bar...............ciiiiaiiiiiiiiiiiiiiiiiieeee e 21
3 Specify Debug-only UOF Files Dialog BOX..........coooiuiiiiiiiiiiiiiiiaeiiiieeee e 28
4 Configure Tabs Dialog BOXcooiiiiiiiiiiiiiieieee e 37
5 GO TO LINE DIAIOG BOX ...tvtiieiieiiieeee ettt e e e e e 37
6 Clock Frequencies for the IXP2400..............uueiiiiiiiaaiiiiieeieee e 59
7 IXP2400 MeMOFY OPLIONSiiiiiiiiiieeiie ettt e e e e e e e e e e e e e e e e as 60
8 IXP2400 MSF Device Configuration...........c.oouaiiiiiiiiiiiiieeeeeee e 61
9 The Create Media Bus Device Dialog Box for CSIX ..ot 62
10 The Create Media Bus Device Dialog Box for X32MPHY16.........ccccccieiiiiniiinnes 63
11 Port Characteristics Edit Port Dialog BOX............uuuuiiiiiiiiiaaniiiiiiiiiiiieieeee e 65
12 Network Connections Property Page - IXP2400coooiiiiiiiiiiiiiiieieeee e 66
13 CBUS Connections Property Page - IXP2400cooooiiiiiiiiiiieiieeaeeeeiiiiee 67
14 Clock Frequencies for the IXP2800..............uueiiiiiiiaaiiiiiiiiiieee e 69
15 IXP2800 MEMOIY OPLIONSiiiiiiiiiieeiie e ettt e e e eeeaaeaaeeas 70
16 IXP2800 MSF DEVICESeeiiiiiiiiiiie ittt ettt e a e 71
17 The Create Media Bus Device Dialog Box for SPI-4 ... 72
18 The Create Media Bus Device Dialog Box for CSIX ..ot 73
19 Port Characteristics Edit Port Dialog BOX............uuuuiiiiiiiiaeaniiiiiiiiiiieieeee e 75
20 Network Connections Property Page - IXP2800coooiiiiiiiiiiiiiiiieiieeeeeeeeee 76
21 CBUS Connections Property Page - IXP2800ccooiiiiiiiiiiiiiiiiiiiaeae s 77
22 Packet Simulation Options Property Sheet- General Tab ... 79
23 Packet Simulation Options Dialog Box (IXP2400 and IXP2800) - Traffic
Ta1 =T = Lot TN oo T |1 o T 81
24 Packet Simulation Options (IXP2400 IXP2800) - Stop Control Tab.................... 82
25 Packet Simulation Options (IXP2400 and IXP2800) - The Traffic Assignment
JLIE= LT PSR PT PP 84
26 Assign Input to Port - DataStreamsS...........ooovvvvievieeiiiiccres e e e e e e e e 85
27 Assign Input to Port - Network TraffiC............oovvveiiiiiiiiiiicii e, 85
28 ASSIgN OULPUL FrOM POt .. .eeeiiici s e e e e e e e e e e e eeeaaaeenees 87
29 Manage NTS Plug-ins Property Pageoooovvviiiiiiiiiiiiii e 88
30 Define Network Traffic - Data Stream Dialog BOX.......ccccooveiiiiiiiiiiiiiiiiieeeeeeiiiiines 91
31 Create Sream POP-UP ...ttt e e a e s s e st s e s s eesb e e aeens 91
32 Marking Instructions for the Network ProCessor.........cceeveeiiiiiieeeeeeieceeeeiiii, 109
33 Using Imported Variable Data at Startup in Simulation Mode...............ccccceenn... 112
34 Using Imported Variable Data at Startup in Hardware Modecccveveee. 112
35 The Assembler Thread WINOWcooiiiiiiiiiiiicee e 117
36 The Compiled Thread WINAOW..........cccooieiiiiiiiiiiiceeeeees e e e e e e e e e eeeeanns 118
Development Tools User’s Guide Xiii

Intel® IXP2400/I1XP2800 Network Processors u tel
®

Tables

Xiv

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

O©CoO~NOOOUTA,WNPE

10

EXPANAING MACTOS ...coiiiiiiiieiiiiite ettt e e e e e e e e e e as 121
Inline Function Breakpoints in Source and LiSt VIEWSccciieiiiiiniiiiiinnnns 130
Breakpoint Properties Dialog BOXcoooiiiiiiiiiiiiiiieeieee et 131
Multi-Microengine Breakpoint Dialog BOXccoviiiiiiiiiiiiiiiieiiieeee e 137
The Execution Coverage WINGOWueiiiiiiiaiaiaiiiiiieiie e 148
Performance Statistics - Summary Tabcccccooiiiiiiii e 151
Save Packet Simulation StatS to a File ... 152
Performance Statistics - MiCroengineTab ... 153
Performance Statistics - All Tab ..o 154
HISTONY WINAOW ...ttt e e e e e e e e 155
Queue Display Property Sheet...... ... 156
Display Threads Property PAgecoooiiiiiiiiiiiieiieaee et 157
CUSTOMIZE HISEOIY ...ttt eeeeeas 161
QueUE Status WINGOWcooiiiiiiiiiiieeecis s e e e e e e e e e e e e e e e e 162
HIStOry DIalog BOX......cooiiiiiiiiiieie ettt a e e e e 167
The Thread StatuS WINGOW.........oooiiiiiiiie et 168
Packet Simulation Status Debug WINAOW...........cccooeiiiiiiiiiiiiiiiiieeee e 169
Save Packet Simulation StatS to @ File ... 170
TBS POINt SAMPIING ... e e e e neneees 174
TBS WINAOW SAMPIING ...eeeeeeiiiiiieiieiiie et 175
Random Based SampPlingcoouii e 175
Canned Analysis Property PAge ... 177
Time-Based Sampling Property Page............ceiiiiiiiiiiieiee e 179
Random Based Sampling Property Pagecccuuveeeiiiieiiiiiiiiiiiiceee e 181
SAMPING MACTOS ...ttt e e e e e e e e e eees 183
Monitor SAMPIING MACIOcoiiiiiiiieieee e a e 184
Threshold SampPling MaCTOc.ooiiiiiiiee e 185
Event Selection DIialog BOX........cuiiiiiiiiiiiiiiiieiet e 187
ASSEMDBIY PrOCESS.t 191
COMPIIALION STEPS ..eeeeeiiiiieee ittt e e e e e eeeaaaaeas 198
Example of Foreigh Model USAge.........coouiiiiiiiiiiieieee e 221
Simulation and Hardware Mode FEatUres...........ccccceeevriiiiee e 105
INSTIUCHION MAIKEISeeeiiiiiiieee et 123
Canned Analysis Property Page Entries and Buttons...............cccoevvvvvvvvvininnnnnnn. 177
TBS Property Page Entries and BUttONS...........ccceiiiiiiiiiiee e, 179
RBS Property Page Entries and BUttonSoovviviiiiiiiiiiii e 181
Monitor Sampling Macro Dialog BOX..........ooeevvivviiiiiiiiiiiieis i eee e e, 184
Threshold Sampling Macro Dialog BOX.........ccccoeeeieeiiiiiiiiieeeeeevv e 185
Supported uccl CLI Option SWILChES........cccvvviviiiiiiiiiii e, 194
Linker Command LiNe OPtiONS......ccooiiiiiieiei it e e e e e e e e e e e eeeeaananens 202
Transactor Optional SWItCHESuuuuiiiiiiiiii e 231
Transactor COMMEANGvevviiiiiiiee e e 231
XACT APIFUNCHONS ...cciiiiiiiiie ettt 258
IXP2400 Transactor States for QDR and MSF Pinscoovvviiiciiiiiieneeeee, 281
IXP2800 Transactor States for QDR and MSF Pinsooovvviiiiciiiiiieeeeen, 283

Development Tools User’s Guide

tel.

Intel® IXP2400/I1XP2800 Network Processors

IXP2400 Transactor States for PCI PINS........ccooiiiiiiiiiiiieeeiee e 285
IXP2800 Transactor States for PCI PINS........ccooiiiiiiiiiiiee e 287
Developer Workbench Shortcuts—Filesouueiiiiiiiiiiieeeen 289
Developer Workbench Shortcuts—Projects..........occcueiiiiieiiiiieeieeee, 290
Developer Workbench Shortcuts—Edit.........ccoooooiiiiiiiiiiii e 290
Developer Workbench Shortcuts—Bo0oKMarksccooviiiiiiiiiiiiiiiieeeeee 291
Developer Workbench Shortcuts—Breakpointscceveeeiieiiiiiiiiiiiiiieeee, 291
Developer Workbench Shortcuts—BUIldS ..., 292
Developer Workbench Shortcuts—Debugouuveiiiiiiiiiiiiiiieeeeee, 292
Developer Workbench Shortcuts—Run Control..........ccccceeeiiiiiiiiiiiiiiiiiiieeeeeen. 292
Developer Workbench ShortcutsS—View ... 293

Development Tools User’s Guide XV

intel.

Introduction 1

1.1 About this Document

Thismanual is areference for network processor development tools and is organized as follows:

¢ Chapter 2, “Developer Workbench” - Describes the Workbench and its graphical user interface
(GUI).

* Chapter 3, “Performance Monitoring Unit” - Describes the Performance Monitoring Unit
(PMU)

* Chapter 4, “Assembler” - Describes how to run the Assembler.
¢ Chapter 5, “Microengine C Compiler” - Describes how to run the Microengine C Compiler.
* Chapter 6, “Linker” - Describes how to run the Linker.

* Chapter 7, “Foreign Model Simulation Extensions’ - Provides information on interfacing the
Network Processor to foreign models.

* Chapter 8, “Transactor” - Describes the Transactor and its commands.
® Chapter 9, “Simulator APIS’ - Desribes the Simulation APIs.
¢ Appendix A, “Transactor States’ - Describes the Transactor internal states.

¢ Appendix B, “Developer Workbench Shortcuts” - Contains a listing and description of
commonly used shortcuts.

¢ Appendix C, “Intel XScale® Core Memory Bus Functional Model” - Describes the Intel
X Scale® Bus Functional Model.

¢ Appendix D, “PCI Bus Functional Model” - Describes the PCI Bus Functional Model.
¢ Appendix E, “SPI4 Bus Functional Model” - Describes the SPI4 Bus Functional Model.

1.2 Intended Audience

The intended audience for this book is Developers and Systems Programmers.

1.3 Related Documents

Further information on the network processors is available in the following documents:

Intel® 1XP2400/1XP2800 Networ k Processor Programmer’s Reference Manual—Contains detailed
programming information for designers.

Intel® 1XP2800 Network Processor Datasheet—Contains summary information on the X P2800
Network Processor including afunctional description, signal descriptions, electrical specifications,
and mechanical specifications.

Developer’s Manual 17

IXP2400/IXP2800 Network Processors u
Introduction In
®

Intel® 1XP2400 Network Processor Datasheet—Contains summary information on the X P2400
Network Processor including afunctional description, signal descriptions, electrical specifications,
and mechanical specifications.

Intel® Intel® 1XP2400/1XP2800 Microengine C Compiler LIBC Library Reference Manual -
Contains amodified subset of standard C Library functions supported on the I XP2400 and
I XP2800 Network Processors

Intel® 1XP2400 Network Processor Hardware Reference Manual -Contains detailed hardware
technical information about the | XP2400 Network Processor for designers.

Intel® 1XP2800 Network Processor Hardware Reference Manual - Contains detailed hardware
technical information about the I XP2800 Network Processor for designers.

18 Developer’s Manual

intel.

Developer Workbench 2

2.1 Overview

The Developer Workbench is an integrated devel opment environment for assembling, compiling,
linking, and debugging microcode that runs on the 1XP2400 and 1XP2800 Network Processor
Microengines.

Features:

Important Workbench features include:

Source level debugging.

Debug-only project creation mode.

Execution history.

Statistics.

Media Bus device and network traffic ssimulation for the Network Processors
Command line interface to the Network Processor simulators (Transactors).

Customizable graphical user interface (GUI) components.

Debugging Support:

The Workbench supports debugging in four different configurations:

L ocal simulation with no foreign model, in which the Workbench and the Network
Processor simulator (Transactor) both run on the same Microsoft Windows* platform.

L ocal ssimulation with local foreign models, in which the Workbench, the Transactor, and
one or more foreign model Dynamic-Link Libraries all run on the same Windows platform.

L ocal simulation with aremote foreign model, in which the Workbench and the Transactor
both run on the same Windows platform and communicate over the network with aforeign
model running on aremote system.

Har dwar e, in which the Workbench runs on a Windows host and communicates over a
network or a serial port with a subsystem containing actual Network Processors.

Getting Help:

You can get help about the Devel oper Workbench and the Network Processors in several ways:

On the Help menu, click Help Topics. This opens the Developer Workbench online help tool.

In the Project Workspace window (see Figure 1), click the InfoView tab. This give you
access to documentation installed along with the Software Development Kit (SDK). See
Section 2.4.3, “About InfoView.”

On the Web, go to http://devel oper.intel.com/desi gn/network/products/npfamily/index.htm to
get more information about Intel products.

Development Tools User’s Manual 19

http://developer.intel.com/design/network/products/npfamily/ixp1200.htm
http://developer.intel.com/design/network/products/npfamily/ixp1200.htm
http://developer.intel.com/design/network/products/npfamily/ixp1200.htm

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

Developer Workbench Revision Information:

To determine the revision:

* OntheHelp menu, click About Developer Workbench.

The About Developer Workbench information box appears displaying the revision of your
Developer Workbench.

2.2 About the Graphical User Interface (GUI)

The Workbench GUI (Figure 1) conforms to the standard Windows look and feel. You can do the
following:

* Dock and undock (float) windows, menu bars, and toolbars (see Section 2.2.1).
* Hideand show windows and toolbars (see Section 2.2.2).

* Customize toolbars and menu bars (see Section 2.2.3).

* Save and restore GUI customizations (see Section 2.2.3.6).

Figure 1. The Developer Workbench GUI

itle Bar Close

Toolbar Maximiz
Minimizz\

o i
[[e 5 o o 5kt e St e ok ot
[osaa| e x |G e =i ||

™_Project Workspace Window

~—_ View/Edit Area

uild resu errors, a
[[S[<TEToIT\ Buna £ Fin Fles 1A Find i s 2

(6] o] Gota[™ cyi]| Gotocyc| | otottetasges] omt: [
AAAAAA ST || o] adesten]

o] 1 sient s ;lj

R £e0.PLTO_T_CLE:276> —]

For Help, select Help->Help Topics on¥ye main menu. [P2s0080 ung: 276 R
Run Control Window Command Line Window

2.2.1 About Windows, Toolbars, and Menus

Dockable windows contain controls and data. You can attach them to alocation on the Workbench
main window or you can float them over the main window. All toolbars and menu bars are
dockable. (See Figure 2.)

To float, or undock, awindow or toolbar, double-click its gripper bar (see Figure 1). To restoreit to

its previously docked location, double-click itstitle bar. You can aso drag the window to a new
docking location.

20 Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors
In ® Developer Workbench

Figure 2. Floating Window, Tool Bar, and Menu Bar

Project Workspace |

Az C
EI--- wh_test files L 0N g b | W

[:l Aszembler Source Files Floating Toolbar
23 Compiler Source Files
D Ma_c:rns_ Title Bar
22 Scrpt Files
Menubar
File Edit Yiew Project Build Debug

Simulation Hardware Tools ‘Window Help

" [Fiteview (b rteavicn | R wioview |

Floating Menu

2.2.2 Hiding and Showing Windows and Toolbars

Form the View menu, you can toggle the visibility of the following windows in the Workbench's

GUI:

Toolbar If you are viewing a source file, or the edit/view
areais empty, selecting Toolbar on the View P
menu displays the Toolbar s dialog box. Here [o— =
you can select to view or clear to hide any of the Iry i
available toolbars. You can also select Show ot %l
Tooltips, L arge Buttons, and Cool L ook. e — |

Workbook Mode This control puts the tabs at the bottom of the st

view/edit area (see Figure 1). Without the tabs
you must use other methods to select different
windows, such as going to the Window menu and selecting the window;
cascading the windows using the |21 button and selecting with the
mouse pointer; pressing CTRL+F6 to switch from one window to the
next. Removing the tabs gives you more workspace in the windows.

Project Workspace See Section 2.4.

Output Window Thiswindow displaystheresults of Find in Files, assembly and compile
results, build results and other messages. See Figure 1.

Click the E button to show or hide this window.
Debug Windows Command Line - see Section 2.13.6.

Data Watch - see Section 2.13.12.1.

Memory Watch - see Section 2.13.13.2.

History - see Section 2.13.17.6.

Thread Status - see Section 2.13.18.

Queue Status - see Section 2.13.17.

Packet Simulation Status- see Section 2.13.19

Run Control - see Section 2.13.9.

Development Tools User’s Manual 21

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

To toggle the visibility of a dockable window, select or clear the window’s name on the View
menu.

If awindow isvisible, you can hideit by clicking the [x] button in either the upper-right or upper-
left corner of the window.

If atoolbar isfloating, you can hide it by clicking the [x] button in the upper right corner.

Note: You can float and dock the GUI’'s default menu bar but you cannot hideit. If you create a
customized menu bar, you can display or hide in it using the same method used for windows and
toolbars.

SatusBar The status bar appears at the bottom on the Workbench GUI.

For Help, select Help-=Help Topics on the main menu |[rxPza00 AL juEng: 352 [tnio, calzs [[READ
|
i i Microengine clock
General Information Chip Type I e Insertion Point ReadWrite

General Information Information and tips appear here as you work.

Chip Type Identifies the network processor and revision (stepping).

Microengine Clock The present cycle count of the Microengine clock (simulation debug
mode only). In hardware debug mode, it shows stopped or running to
indicate microengine state.

Text Insertion Point The location of the text insertion point (cursor) by line and column.

Read-only/Write The Read/Write status of the selected file. If READ isdimmed, the status
is Read/Write.

2.2.3 Customizing Toolbars and Menus

You can add and remove buttons from toolbars and create your own toolbars.

2.2.3.1 Creating Toolbars

22

To create atoolbar:

1. On the Tools menu, click Customize.
The Customize dialog box appears.

2. Click the Toolbar s tab.

3. Click New.
The New Toolbar dialog box appears.

4. Type aname for the new toolbar and click OK.

The toolbar name is added to the Toolbar s list and the new toolbar appearsin afloating state. If
you want the toolbar to be docked, drag it to the desired location.

To popul ate the toolbar with buttons, go to Section 2.2.3.4.

Development Tools User’s Manual

intel.

IXP2400/IXP2800 Network Processors
Developer Workbench

2.2.3.2 Renaming Toolbars

You can rename toolbars that you have created.

To rename atoolbar:

1

o~ DN

On the Tools menu, click Customize.
The Customize dialog box appears.

Click the Toolbar s tab.

Select the desired toolbar in the Toolbar s list.

Edit the name in the Toolbar Name box at the bottom.
Click OK.

Note: You cannot rename the GUI’s default toolbars (Menu bar, File, Debug, Build, Edit, View).

2.2.3.3 Deleting Toolbars

To delete atoolbar you have created:

1

On the Tools menu, click Customize.
The Customize dialog box appears.

2. Click the Toolbar s tab.
3. Select the toolbar to delete in the Toolbar s list.
4. Click Delete.

Note: You cannot delete the GUI’s default toolbars (Menu bar, File, Debug, Build, Edit, View).

2.2.3.4 Adding and Removing Toolbar Buttons and Controls

To customize the buttons on the toolbars:

1.

On the Tools menu, click Customize.
The Customize dialog box appears.

2. Click the Commands tab.
3. From the Categorieslist, select acommand category.

A set of toolbar buttons for that category appearsin the Buttons area.

To get adescription of the command associated with abutton, click the button. The description
appears in the Description area at the bottom of the dialog box.

To place a button in atoolbar, drag the button to alocation on atoolbar.

5. To remove a button from atoolbar, drag the button into the dialog box.
6. Click OK when done.

Development Tools User’s Manual 23

IXP2400/IXP2800 Network Processors
Developer Workbench

2.2.35

Note:

2.2.3.6

24

Customizing Menus

intel.

You can change the appearance of the main menu or you can put menus on toolbars.

Main Menu Appearance:

To change the order of the main menu items:

1. On the Tools menu, click Customize.
The Customize dialog box appears.

2. Drag any main menu item to the new position on the main menu bar. For example, drag File

and drop it after Help.

3. To remove a menu from the main menu bar, drag it into the work area below.

4, To add a menu to the main menu bar:

a. Inthe Customize dialog box, click the Commands tab.

b. Click Menu in the Commands box.
All the menus appear in the Buttons box.

¢. Select amenu and drag it to the main menu bar.

That menu then becomes a new menu on the main menu bar.

Menus on Toolbars:

To put amenu on atoolbar:

1. Inthe Customize dialog box, click the Commands tab.

2. Click Menu in the Categories box.
All the menus appear in the Buttons box.

3. Drag any menu to any toolbar.
You can put your most used or favorite menus on afloating

toolbar by creating a new toolbar (see example at right) and
dragging the menus to that tool bar.

Returning to Default Toolbar Settings

To set toolbars to their default configurations:

1. Onthe Tools menu, click Customize.
The Customize dialog box appears.

2. Click the Toolbar s tab.
3. Sdlect the desired toolbar and click Reset.

Only the Workbench default toolbars can be reset.

Favorites A

Edit Hardware Toolz Project

Development Tools User’s Manual

INlal.

224

2.3

2.3.1

IXP2400/IXP2800 Network Processors
Developer Workbench

GUI Toolbar Configurations

Build Versus Debug:

The Workbench maintains two sets of toolbar and docking configurations, one for debug mode and
one for build, or non-debug mode. The GUI configuration that you establish while in build mode
applies only when you are in build mode. Similarly, the debug mode GUI configuration applies
only for debug mode.

Save and Restore:

Menu bar and toolbar configurations are saved when you exit the Workbench. These configurations
persist from one Workbench session to the next.

Workbench Projects

Projects may be created in two ways. standar d and debug-only.

A standard project consists of one or more network processor(s), microcode source files, debug
script files, and Assembler, Compiler, and Linker settings used to build the microcode image files.
Thisproject configuration information is maintained in a Devel oper Workbench project file (.dwp).

A debug-only project is one in which the user specifies an externally built uof file for each chipin
the project. If aproject is created as “debug-only” the user does not specify assembler and compiler
source files, manage build settings, or perform uof file builds using the Workbench GUI.

When you start the workbench you can:
* Create a new project (see Section 2.3.1).
¢ Open an existing project (see Section 2.3.2).
* Save aproject (see Section 2.3.3).
* Close aproject (see Section 2.3.4).

Specify adefault folder for creating and opening projects (see Section 2.3.5).

Creating a New Project

The processor type, that you select when you create a new project, determines which Transactor is
used for simulation. The Workbench will display only the GUI components that are relevant to the
selected processor type. The processor family cannot be changed once a project is created; i.e. you
cannot change your project from an 1 XP2400 processor to an | XP2800 processor, or vice versa.

The processor types supported by the workbench are:
* |XP2800 A1
* |XP2800A2
* |XP2800 BO
* |XP2400 BO

Development Tools User’s Manual 25

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

26

To create a new project:
1. Onthe File menu, click New Project.

The New Project dialog box appears.

Froject name:

(]9

X
k|
Cancel |
—

|I><F'2SDD_BD

Location:
IE:\IXF'2SDD_BD

— Select the chip family and revizion — Specify the chipz to be in the project

Chip Farmily: Revision:

1XP2400 Al [0x01)
AZ[0x02)
BO[0x10]

Sdd [elete | Henamel

To add chipz to the project you must
give a name to the first chip.

[Debug only [UOF builds done extermally]

2. Type the name of the new project in the Project name box.

3. Specify afolder where you want to store the project in the L ocation box.

If the folder doesn't exist, the Workbench creates it. You can browse to select the folder by
clicking the [button.

. Select the chip family in the Chip Family box.
5. Select the revision number (stepping) for the chip in the Revision box.
6. Specify the number of chipsto be in the project in the Specify the chipsto bein the project

box. Do the following:
— If you have only one chip in your project, it can be <unnamed>.

— To specify more than one chip, they must al have unique names. You cannot add a second
chip until you have named the first chip. When you finish creating a project, you cannot
change the number of chipsinit.

— Torename achip, select the chip in thelist and click Rename. The Chip Name
dialog box appears. Type the chip’s name and click OK.

— Toadd achip to the configuration, click Add. The Chip Name dialog box appears.
Type the chip’s name and click OK.

— To delete a chip from the configuration, select the chip in the list and click Delete.

. If this project isto be " debug-only”, click the Debug only check box.

This specification tells the Workbench that the source files and list files to be used in this
project will be built externally. Since the uof file contains the absol ute paths of the source and
list files, you must make sure to specify the correct locations for those files. If the Workbench
cannot find the proper files, debugging will not work as expected.

Development Tools User’s Manual

intel.

Caution:

Note:

2311

IXP2400/IXP2800 Network Processors
Developer Workbench

Once aproject is created as Debug only, it cannot be converted to a standard, Workbench buildable
project. Neither can an existing standard project be converted to Debug only.

8. When you are finished, click OK to create the project.

The project name you typed, by default, becomes afolder containing two files—project_name.dwp
and project_name.dwo (optionally you can specify any name for this folder). From this point on,
all the project files and information defaults to this folder or one of its subfolders. For example, a
project named CrossBar has a project file named Crossbar.dwp.

Creating a new project automatically closes the active project, if oneis open, and asksyou if you
want to save any changesif there are any.

Debug-only Projects

If you select the Debug-only option when you create the project, there are some Workbench
features that will be unavailable when you open the project.

* There are no source files available since the Workbench does not do the builds, and thereisno
way to add source files to a Debug-only project. The conventional options on the Project
menu are replaced with the option Specify Debug-only UOF files.

¢ The Project Workspace Fileview tab does not display the tree elements Assembler Source
Files, Compiler Source Files, or M acr os since the Workbench does not associate source files
with the Debug-only project.

Select Specify Debug-only UOF Files from the Project menu. When you select the Debug-only
option, the dialog box shown in Figure 3 is used to specify the uof file for each chip in the project.

If you try to start debugging without specifying a uof file, or if the uof or any list file identified in
the uof fileis not readable, errors will occur and debugging will not take place. If alist file cannot
be found in the location specified in the uof file, the user is prompted to browse to the correct
location for thelist file. This can occur if the list file has been moved from where it was when the
uof file was created or if the build was done on a different system from the one where the
Workbench is being run.

Similarly, if the user executes a Go To Sour ce command but the source file cannot be found in the
location specified in the uof file, the user is prompted to browse to the correct location for the list
file.

The user aso hasthe option to delete dll file paths that were saved by the Workbench, as previously
described. This may berequired if the user moves the list and source filesto different locations. To
delete saved file paths, click the Delete Paths button.

Development Tools User’s Manual 27

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

Figure 3. Specify Debug-only UOF Files Dialog Box

Specify Externally-built UOF Files x|

Select chip: -EIK
<unnamed: Cancel |

Externally-built .uaf file far chip

| -]
Delete Paths [%) |

[¥] Delete saved paths for files that previously could not be found.

2.3.2 Opening a Project

To open an existing standard project:

1. Onthe File menu, click Open Project.
The Open Project dialog box appears.

2. Browseto the folder that contains the project file (*.dwp) for the project you want to open.

3. Double-click the project filename or select the project filename and click Open.
Once open, the processor type is displayed in the status bar, as shown below:

For Help, select Help->Help Topics on the main menu [[%P230060 | [ovR | v

You can also select aproject from the most recently used list of projects, if it is one of the most
recent four projects opened.

1. Onthe File menu, click Recent Projects.
2. Click the project file from the list.

Note: Opening a project automatically closes the currently open project, if any, after asking you if you
want to save changes if there are any.

2.3.3 Saving a Project

To save amodified project:

* On the File menu, click Save Project.
This saves al project configuration information, such as debug settings to the project file. If your
project hasn’t been modified, the Save Project selection is unavailable. Also, on the File menu,
click Save All to save all files and the current project.

The project is saved in the folder that you specified when you created it. If you opened an existing
project, it is saved in the folder from which that you opened it.

28 Development Tools User’s Manual

intel.

Note:

2.3.4

2.3.5

IXP2400/IXP2800 Network Processors
Developer Workbench

You do not have the option of saving the project in a different folder.

Closing a Project

To close a project:

* Onthe File menu, click Close Project.

If there are any modified but unsaved files in the opened project, you are asked if you want to
save these changes.

— Click Yesto savethefile and closeit, or
— Click Noto close it without saving any changes, or

— Click Cancel to abort closing the project.

An open project isautomatically closed whenever you open another project or create a new project.

Specifying a Default Project Folder

You can specify a default folder for creating new projects and opening projects. When you select
Default Project Folder from the File menu, the Browse for folder dialog box appears. The
default project folder is used as theinitia folder in the following cases:

* If the user selects New Project from the File menu.

¢ |f the user selects Open Project from the File menu.

* If no project is open and the user creates a new file then selects Save As from the File menu.
¢ |f no project is open and the user selects Open from the File menu.

Browse for Folder EH

Please select the default project Folder

I Cihdev_2000VMicroCode

] documentation ;I
[esix_bfm
-] Documentation

] osbpi_mey?

{:l Frojects =
4| | »

I, I Cancel |

Development Tools User’s Manual 29

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.4 About the Project Workspace

The project workspace is a dockable window where you access and modify project files. It consists
of three tabbed windows:

FileView = 12 Ipm_iwp2B00 files

ThreadView [:| Azzembler Source Files
i+ Compiler Source Files

InfoView Eel (3 Macros

B Secript Files
To select awindow, click itstab.

. Whg? you start the Workbench, only InfoView is " [Fitoview MO Theatview | 3 woview |
visible.

* When aproject is open, FileView and ThreadView become visible, but accessto
ThreadView is unavailable.

* When you start debugging, accessto ThreadView is enabled.
* When you stop debugging, accessto ThreadView is disabled.

To toggle the visibility of the Project Wor kspace:

* Onthe View menu, select or clear Project Workspace, or
Click the button on the View toolbar.

2.4.1 About FileView

FileView contains atree listing your project files. The top-level item in the tree is labeled <project-
name> files. There are four second-level folders:

* Assembler Source Files, which expandsto an = T

L 0
Azzemble

alphabetical list of all project Assembler source 5L e ource Files
files. [:l Compiler Source Files
. . . =3 Macros
* Compiler Source Files, which expandsto an | -3 ByName
alphabetical list of al project Compiler source files. - @[ByFile

. i [:I Script Filez
* Macros, which expands to list the macros that are

defined in the project’s source files. Thisfolder
expands to:

— Macros by name, and
— Macrosby file.
* Script Files, which expands to an aphabetical list of all debugging script files.

30 Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors

In ® Developer Workbench

2.4.2 About ThreadView

ThreadView contains atree listing all Microengines
that are loaded with microcode. ThreadView provides access

to al enabled threads for each chip and is only available = [newi_ntrsscs -
while debugging. 1= # Chip[<unnamed:|
Mt Miciosngne 00
The top-level item in the tree is labeled <project-name> - Haf Micioengine (-1
threads. There is a second-level item for each chip in the - Hok Micioengine 02
- L. --Fak Micoengine 0:3
project. Each chip item expandsto list the Microenginesin ek Miciosnans 04
the chip. Microengines are implemented in two clusters, 0 . Bk Micioonging 05
and 1, with amaximum of 16 Microenginesin each cluster. Bk Miciosngins DR
For the 1XP2800, there are eight Microengines per cluster, - Rk Micioengine 07
with addresses 0 - 7 and 16 - 23. For the IXP2400, there are - Hok Micioengine 1:0
four Microengines per cluster, with addresses 0 - 3 and 16 - - KM Micosngine 1:1 -)
19. The Workbench displays each Microengine name as ﬁ ::z:g:g:: } :3

Microengine c:n where ¢ represents the cluster number (0 or - Ba Hicioengine 1 &
1) and n isthe number within the cluster. D wiw wneeoe_ae =

Elre. JmlThre... Iﬂ I, . _I

Each Microengine item expands to list the four or eight
threadsin a Microengine, but only if the threads are active in
the microcode. If a Microengineis not loaded with code, no
“+" sign appears to the left of the icon and therefore cannot be expanded to show the threads.

By default, a chip’s threads are named Thread 0 through Thread n.
Thelast thread by default varies depending on which network processor you choose:
¢ | XP2800 Network Processor - Thread 127
¢ |XP2400 Network Processor - Thread 63
24.2.1 Expanding and Collapsing Thread Trees

You can expand the entire tree for a chip asfollows:

. . . J__@ redt_t threads
1. Right-click the chip name. ") # Chio[<wnamad:|
. =1 Rl Mi jne (10
2. Click Expand All from the shortcut menu. ﬂ_g iomaenging 01
. . X . “ Micengne 0:2
Note that in the tree to the right, Microengines 0:2, 0:3, and 0:4 cannot be ~ k. Micioenone 0°3
expanded because they contain no microcode. B Micioengine 04

To collapse a chip’s tree, double-click the chip name.

2.4.2.2 Renaming a Thread

You can rename athread (to indicate its function or for any other reason). To do this:
1. Right-click the thread namein ThreadView.

2. Click Rename Thread from the shortcut menu.
The Rename Thread dialog box appears.

3. Type the new name for the thread.
4. Click OK.

Development Tools User’s Manual 31

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.4.3 About InfoView

InfoView provides access to documentation as part of the Software Developer’s Kit (SDK).

To view adocument, double-click its name or icon. This invokes Adobe Acrobat Reader*, which
then displays the document. A copy of Acrobat Reader is provided on the distribution CD-ROM.

2.5 Working with Files

The Workbench allows you to:
* Createfiles (see Section 2.5.1).
* QOpen files (see Section 2.5.2).
* Closefiles (see Section 2.5.3).
¢ Savefiles (see Section 2.5.4).
* Save copies of files (see Section 2.5.5).
¢ Saveadl files at once (see Section 2.5.6).
* Print files (see Section 2.5.8).
¢ |nsert filesinto a project (see Section 2.5.9).
* Remove files from aproject (see Section 2.5.9).
¢ Edit afile (see Section 2.5.10).
* Bookmarks, error/tags (see Section 2.5.11).

Seedlso:
* Working with File Windows (see Section 2.5.7).
* About Find in Files (see Section 2.5.12).
* About Fonts and Syntax colors (see Section 2.5.13).
* About Macros (see Section 2.5.14).

2.5.1 Creating New Files

To create anew file:
5. On the File menu, click New, or
Click the button on the File toolbar.
The New dialog box appears.
6. Select which type of file you want to create from the list.
7. Click OK.

This creates a new document window. The name of the window in the title bar reflects the type of
file you have created.

32 Development Tools User’s Manual

INlal.

2.5.2

2.5.3

Note:

254

IXP2400/IXP2800 Network Processors
Developer Workbench

Opening Files

To open an file for viewing or editing, do one of the following:
¢ Onthe File menu, click Open, and select afile from the Open dialog box, or

Click the button on the File toolbar, or
If thefileisin your project, double-click the file namein FileView.

In the open dialog box you can filter your choices using the Files of type: list to select afile
extension. Thislimits your choices to only files with that extension. If you select All files (*.*),
your choices are unlimited. You can select any unformatted text file to view or edit.

You can open any of the last four files that you have opened. To do this:
1. OntheFile menu, click Recent Files.
2. Select from the list of filesthat appears to the right.

Closing Files

To close an open file:
* OntheFile menu, click Close, or
On the Window menu, click Close to close the active file and its document window, or
On the Windows menu, click Close All to close all open files and their document windows.
All files that have been edited but not saved are automatically saved when you perform any

operation which usesfile data, such as assembling, building, updating dependencies, and finding in
files.

Saving Files

To save afile:
1. Onthe File menu, click Save, or

Click the button on the File toolbar.

If you have just created the new file, the Save As dialog box appears. If you are saving an
existing file, the Save dialog box appears.

2. Type the name of the new file.

3. Click OK.
This saves your work to afile when you are finished editing. It aso displays the new file namein
the title bar of the window. By convention, microcode source files have the file type .uc, C
Compiler source files have the file type .c, and script files have the file type .ind.
If you are saving an existing file, you do not need to type a new name.

To save afile under a new name:
1. OntheFile menu, click Save As.

Development Tools User’s Manual 33

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.5.5

2.5.6

2.5.7

34

The Save As dialog appears. The current name of the file appearsin the File Name box.

2. Type anew name in the File Name box and click Save.

Note that the old file remains in the folder but will not have edits that you have made. The new
name appears in the title bar.

Saving Copies of Files

You can save a copy of afilethat you are viewing or editing.
To do this:

1. OntheFile menu, click Save As.
The Save As dialog box appears.

2. Browseto the folder where you want to save thefile.

3. Typethe new name of thefile in the File name box.

4. Click Save.
The Save astypelist is used only if you don’t include the extension in the File name box. If you
select All files (*.*), you must include the extension in the name.

Saving All Files at Once

You can save all modified filesin your project at once.

To do this:
* On the File menu, click Save All, or

Click the button on the File toolbar.

Working With File Windows

When you select afile (text, Assembler source, Compiler source, source header, or script) for
viewing or editing, it appearsin afile window in the upper-left part of the Workbench. The
Windows menu deals mostly with the text file windows in the Workbench.

New Window Createsanew window containing acopy of thefilein the active window.
The Title Bar displays filename.ext:2.

Close Closes the active window.

Close All Closes all the open windows.

Cascade Cascades all windows that are not minimized in the viewing area.

Tile Tiles all windows that are not minimized in the viewing area.

Arrengelons thebotiom of theviewng e sioix|

810 x|

Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors
In ® Developer Workbench

Open Windows Selection:

At the bottom of the Windows menuisalist of the first nine windows that you opened. Click any
one of these windows to make it the active window. If you opened more than nine windows, click
M ore Windows. From the Select Window diaog box, click the window that you want to make
active and then click OK.

Other Window Controls:

Minimize Click the g button on the window that you want to minimize.

Maximize Click the @ button on the window that you want to maximize. You can
also double-click the title bar to do this.

Close Click the button on the window that you want to close.

Restore Click the button on the minimized window that you want to restore

to its previous view.

2.5.8 Printing Files

2.5.8.1 Setting Up the Printer

1. Onthe File menu, click Printer Setup.

s #]]
The Print Setup dialog box appears. i —
2. Select the printer properties for your printer. They will et S
vary depending on the printer you select in the Name ik St
box. o Dvenision
. O (PR | = Pomt
3. Click OK when done. ey el
Setting the printer properties does not print the file. To do | o |
this see Section 2.5.8.2.

2.5.8.2 Printing the File

You can print text filesto a hardcopy printer or to afile.

To do this:
1. Make sure that the file you want to print isin the active window.
2. Onthe File menu, click Print, or

Click the button on the File toolbar. (This button is not on the default File menu. To put
this button there, see Section 2.2.3.4.)

The Print dialog box appears.
3. Select the printer (or printer driver) from the Namelist.
4. Click Propertiesto customize your particular printer. Each printer has its own printer settings.

5. If you want to print to afile (*.prn), select Print to file and select afolder and file name after
you click Print.

6. Select the pages you want to print in the Print range area.

Development Tools User’s Manual 35

IXP2400/IXP2800 Network Processors u
Developer Workbench

2.5.9

2.59.1

2.59.2

Note:

2.5.10

2.5.10.1

36

intel.

7. Select the number of copiesin the Copies area.
8. Click Print.

Inserting Into and Removing Files from a Project

Inserting Files Into a Project
You can insert Assembler source files, Compiler source files, and script filesinto a project.

To do this:

1. Onthe Project menu, click Insert Assembler Source File, or
Insert Compiler SourceFile, or
Insert Script Files, whichever is appropriate.
The corresponding dialog box appears.

2. Browseto the desired folder and select one or more files to be inserted.
3. Click Insert.

The newly inserted files are added to the list of files displayed in FileView in the corresponding
folder.

Removing Files From a Project

To remove afile from your project: 50 Assembler Sounce Files
1. Inthe Project Workspace, click the File View tab.
. . . Assembl
2. Right-click the file that you want to delete. =D o |
3. Click Delete on the shortcut menu, or ;ycle. T ——
Select the file and then pressthe DELETE key. G i ride
ether. Properties...

Thefileisremoved from the project but it is not deleted from the disk.

Editing Files

The Workbench editor is similar to standard text editors. See Table 7 on page 290 for alist of Edit
controls.

If afile has been modified, an asterisk appears after its name in the Workbench title bar.

Tab Configuration

To configure tab settings, select Options from the Tools menu. The dialog box shown in Figure 4
appears. The user selects the file type — Microcode assembler, Microengine C or Default — for
which the tab settings will have effect. For the selected file type, the user specifies:

* Thetab size, which determines the number of space characters that equal one tab character.
* Whether or not the editor converts tab characters to spaces.

Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors
In ® Developer Workbench

¢ Whether or not to automatically indent a new line to the same column as the first non-
whitespace character in the previous line

Figure 4. Configure Tabs Dialog Box

Configure T abs |

File Type:
IMiu:r-:u:u:ude azzembler j

Tab Size; I " Inzert Spaces
' Keep Tabs

¥ Auto Indent;

k. I Caricel

2.5.10.2 Go To Line

The Workbench alows for navigating directly to a specified line within an opened document or
thread window. If the user selects Go To from the Edit menu, the dialog shown in Figure 5
appears. The user enters the desired line number and clicks Go To. The insertion cursor in the
document or thread window that currently has focusis moved to the beginning of the specified line
and the window is scrolled so that the specified line isvisible.

Figure 5. Go To Line Dialog Box

']
Enter line number:

|123

Development Tools User’s Manual 37

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.5.11

2.5.12

38

You can mark your placein afileusing
bookmarks. Table 8 lists the tools to o Jtypedef struct
{

manipulate bookmarksin your files. . .
Bookmarks < unsigned int data:
. . . i un=s=igned int thread:
You can find errorsin your files using N unsigned int command:
the Error/Tag tools listed in the tables unsigned int reserved.
below. } ho=t_comm_=truct

1. Onthe Edit menu, click Find In FlleS, m x|
or
. . i X - Fric
Click the | button on the Edit Find tat | =
tool bar. In ezl tpes: e =l Canosl
The Find In Files dialog box appears. e [\ 200l =
. [T Matchwhde word orlp [Lok in subfolders

. Typethetext string you want to search ™ Watchgas et e

for, or select from thelist of previously

Bookmarks and Errors/Tags

See Table 11 for alist of Bookmark and Error/Tag controls.

About Find In Files

The Workbench supports the ability to search multiple files for the occurrence of a specified text
string. To perform this search:

searched-for strings from the Find
what list.

. Typethefile types to be searched, or select from a predefined list of file typesin the

In files/filetypeslist.

This box acts as afilter on the names of files to be searched. For example, you can specify
“foo*.txt" to search only files with names that begin with “foo” and have an file extension of
“ tXt” .

. Type the name of the folder to be searched in the I n folder box, or select from the list of

previously searched foldersin thelist. You can aso browse for the folder by clicking the El
button to the right of the In folder box.

5. You can a'so select from the options:

Match wholeword only Search for whole word matches only. The characters (){}[]"'<>,.?

\; $H@! ~+=-|:* & "%, plus space, tab, carriage return and line feed are
considered delimiters of whole words.

Match case Search only for strings that match the case of the charactersin your

string.

Look in subfolders Search al subfolders beneath the specified folder.
Output to pane 2 Display the search results in the second output pane, labeled Find In

Files 2.

6. When you have selected all the options, click Find.

Development Tools User’s Manual

The results of the search are displayed in the
Find In Files 1 (or 2) tab of the Output
window. For each occurrence of the search
string that is found, the file name, line number,
and line of text are displayed.

IXP2400/IXP2800 Network Processors
Developer Workbench

4

108 occurrence(s) have been found.

[4] b [} Buid 4 Find in Files 1 £ Findin Files 2/

Do any of the following to display an occurrence of the search string:

¢ Double-click the occurrence.

¢ Click the occurrence and then press ENTER.

* Press F4 (the default key binding for the GoToNextTag command) to go to the next
occurrence. If no occurrence is currently selected, then the first occurrence becomes selected.
If thelast occurrenceis currently selected, then no occurrence is selected, or

* Press SHIFT+F4 to go to the previous occurrence. If no occurrenceis currently selected, then
the last occurrence becomes selected. If the first occurrence is currently selected, then no

occurrence is selected.

In all cases, the window containing the fileis

automatically put on top of the document windows. If the = | o _
e o . S :
fileisn't already open, it is automatically opened. ik hurst_giizﬁ
. o . . ¥ npum_prior_blank o
The line containing the occurrence is marked with a blue o
arrow. SE data:
S
2.5.13 About Fonts and Syntax Coloring
Sourcefiles, that is, those with file .
extensions of .uc, .c or .h, appear with E
syntax coloring of keywords and ~Coler Fent
comments. Keywords are words that are] Cauicy
reserved by the Assembler and Compiler 1 Eut Eslecien Size:
are used in specific context. For example, Spear Lef:3 Chass Fort
‘alu_shf’ isreserved becauseit isan Keywrrd [
Assembler instruction. E— J——
Comments comprise*;’ followed by text 1 e .
on alinein Assembler language. By e e _ [|
default, keywords are colored blue and S L Tof] cenn |
comments are colored green.

WL L

addr;

To change color defaults:

1. Open asourcefile.

2. Onthe Tools menu, click Font and Color Settings.
The Font and Color Settings dialog box appears.

3. Inthe Color list box, select the item for which you want to specify a color.

At the Foreground and Background controls, the colors already selected for the item you selected

in Step 3 are displayed.

* Select Automatic to use the Window’s default colors.

Development Tools User’s Manual

39

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

* Clear Automatic to enable the color selection controls. Then select a color for the item you
selected.

Continue this procedure for any other items that you want to change.
* To changefonts, click Choose Font to select a different font for display.

* To go back to original settings, click Reset All.

Your customized settings are saved in the UcSyntaxColoring.ini file located in the folder with
the Workbench executable.

2.5.14 About Macros

The FileView tab in the Project Workspace has a Macro folder that contains the macros that are
defined in the project’s source files.

The macros are:
¢ Listed alphabetically, in the By Name folder, and
* Grouped according to the file that they are defined in, in the By File folder.

The Workbench:
¢ Creates these folders when you open a project.
¢ Updates them when:
— An edited sourcefileis saved,
— A sourcefileisinserted into or deleted from the project, or

— You update dependencies, by selecting Update Dependencies from the Project menu.
To go to the location in the source file where a macro is defined, double-click the macro name.

If an opened source file contains a macro reference and you want to go to the file and location
where that macro is defined:

1. Right-click the macro reference.
2. Click Go To Macro Definition on the shortcut menu.

2.6 The Assembler

The Workbench contains an Assembler for your *.uc source files. The following topics on the
Assembler will help you understand:

* How root files and dependencies are determined (see Section 2.6.1).

* How to make and change Assembler build settings (see Section 2.6.2).
* How to invoke the Assembler (see Section 2.6.3).

* How to handle assembly errors (see Section 2.6.4).

For information on:

* Creating new files, see Section 2.5.1.

40 Development Tools User’s Manual

2.6.1

2.6.2

Note:

IXP2400/IXP2800 Network Processors
Developer Workbench

* Saving files, see Section 2.5.4.

* Opening files, see Section 2.5.2.

¢ Editing files, see Section 2.5.10.

¢ Closing afile, see Section 2.5.3.

¢ Searching for text in asource file, see Section 2.5.10 and Section 2.5.12.
¢ Fontsand syntax colorsin a source file, see Section 2.5.13.

For details, refer to the Intel® 1XP2400/1XP2800 Network Processor Programmer’s Reference
Manual.

Root Files and Dependencies

The executable image for aMicroengine is generated by a single invocation of the Assembler that
produces an output ‘.list’ file. You can place all the code for aMicroengineinto asingle sourcefile,
or you can modularize it into multiple source files. However, the Assembler allows you to specify
only asingle filename. Therefore, to use multiple source files, you must designate a primary, or
root, file as the one that gets specified to the Assembler. You include the other files from within the
root file or from within already included files, by nesting or chaining them. The included files are
considered to be descendants of the root file. In the FileView tab of the Project Workspace, root
files are distinguished by having an B to the left of it.

You can designate the same output file to be loaded into more than one Microengine. You can also
include the same source file under more than one root file, making the file a descendant of multiple
root files.

In order for the Workbench to build list and image files, you must assign a .list file to at |east one
Microengine. You set root files as part of setting Assembler options. On the Project menu, click
Update Dependencies to have the Workbench update the dependencies for al sourcefilesin the
project. If afileisincluded by a sourcefile but is not itself a source file in the project, the
Workbench automatically inserts that source file into the project. The Workbench automatically
performs a dependency update when a project is opened. When you insert a microcode fileinto a
project, the Workbench checks that file for dependencies.

Selecting Assembler Build Settings

To make or change Assembler settings:

1. OntheBuild menu, click Settings.
The Build Settings dialog box appears.

2. Click the General tab to specify additional include directories and the processor revision
(stepping) range (see Section 2.6.2.1).

3. Click the Assembler tab to specify parameters for creating .list files and other Assembler
options.

Compiler settings on the General tab are covered in Section 2.7.2.

Development Tools User’s Manual 41

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

26.2.1

Note:

2.6.2.2

42

General Build Settings
The following settings, on the General tab, apply to the compiler as well as the assembler.
Specifying Preprocessor Definitions:

Use the Preprocessor definitions edit box to enter preprocessor definitions that will be applied to
al microengine list file assembles and compiles in the project. After entering preprocessor
definitions on the General page, when you open the Assembler or Compiler pages you will see
that the General definitions appear in the command line just prior to any microengine-specific
settings. This means that an engine-specific preprocessor definition will override a general setting.

Freprocessor definitions [common to all microengines):
SIMULATION_BUILDAPPLICATION_MAME =Firewall ;I

-

Specifying Processor Revision Range:

The network processors are available in different versions (steppings) with different features. You
can specify arange of revisions for which you want your microcode assembled. Section 4.1.5
coversthistopic in more detail.

Do the following:

. . . Specify the range of processor revigions on which
1. Onthe Build menu, click Settings. wou want the linked code to run:

The Build Settings dialog box appears.
2. Click the General tab.

3. Select the range of processor revisions on
which you want the linked code to run.

befinimnm revision; bef airnuim revigion:

|Booa10) = [rolmt =]

Select from the Minimum revision and the Maximum revision lists. If you select no limit asthe
maximum revision number then you are specifying that your microcode is written to run on al
future revisions of the processor.

Specifying Additional Include Paths

The Assembler needs to know which folders contain the files referenced in #i ncl ude statements
in Assembler source files.

To do this:
1. Onthe Build menu, click Settings.
2. Click the General tab.

To specify additional Assembler include
directories, the following controls are provided: | Aszembler include directories:

i | button to specify anew path.
Type the path name in the space provided or
use the browse button E| to search for it.
You must double-click the include path
listed in order to display the browse button.

5 Srefdes
AN Anclude’

Development Tools User’s Manual

intel.

2.6.2.3

IXP2400/IXP2800 Network Processors
Developer Workbench

e A button to delete an included path from the list.
e A button to move an included path up the list.
e A button to move an included path down the list.

Absolute versus Relative Paths:

Regardless of whether the path information is entered in an absolute or relative format, it is
automatically converted to arelative format. This allows the project to be moved to other locations
on a system or to other systems without rendering the path information invalid in most instances as
long as files are maintained in the same relative locations. This path information is passed to the
Assembler so it may locate the files referenced in #include statements in the source code. It isalso
used by the dependency checker for locating assembly source filesin the project.

Specifying Assembler Options

To specify Assembler options, do the following:
1. OntheBuild menu, click Settings.
The Build Settings dialog box appears.
2. Click the Assembler tab.

The .list File:

The Output totarget .list filelist allows you to select a .list file from the set of .list files that are
currently defined in the project. All other controls on the page are updated according to which .list
fileyou select in thelist.

Insert file:

1. Onthe Assembler tab, click New.

Thelnsert New List Fileinto :
Project dialog box appears. Irec_fD.hst j

2. Select apath for the .list file.
3. Type afilename.
You cannot insert a .list file that has already been inserted into the project.

4, Click Insert List File.

This closes the dialog box and adds the new filename to the list. Thefile's path appearsin the
read-only Path of target .list file box. Therest of the boxes assume default values.

Output to barget list file

Mew. . | Delete

Delete File:

Todeletea list file from aproject, click Delete. Thisremovesthe .list file currently selected in the
list box from the project. All referencesto thefile on the Linker page are removed. The actual .list
file, if it exists on disk, is hot altered or deleted.

Development Tools User’s Manual 43

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

44

Note:

Root files:

The Root Filelist provides aread-only list of al of the .uc and .h Froot File

filesin the project. Select afileto designate it astheroot file for the

Jlist file. TeC_engueLe.uc j
rec enguele. uc e

If noroot fileisselected, "- noroot file-" (default) isdisplayed. If a tec. Imatchuc

root file is not selected and you attempt to select another page or 18C_nestpac.Lc o

close the dialog box with the OK button, a warning message [gfd—;;hnfadgl'gfszuf

appears. rfifo.uc -

Warning Level:

Use the arrow buttons to raise or lower the War ning level numbers corresponding to the warning
level that you want to specify. For more information on warning levels, refer to Chapter 3
Assembler.

Warnings as Errors:

Select Warnings as errorsto indicate to the Assembler to treat all warnings as errors.

Local Memory:

The L ocal Memory settings allow the user to specify theregion - Lacal memorn

of local memory that is available to the assembler for allocating | Start [bytel ™ Size [bytesk
local memory variables. | e

[V alues automatically longword aligned)

The Sart valueis alongword-aligned byte address which
specifies the start of the region. If Size is unchecked, then the
region begins at the start address and extends to the end of local memory. If Size is checked, then
the region begins at the start address and extends for the number of bytes specified in the Size field.

Produce Debug Information:

Select Produce debug info to add debug information to the output file. If you do not select this
option, you will not be able to open athread window in debug mode.

The Produce debug info switch must be set for the necessary debug information to be present in
the uof file. Unchecking the Produce debug info check box causes the size of the uof file to be
smaller at the expense of the project not being debuggable (in any fashion) through the Workbench
Require Register Declarations:

Select Requireregister declarationsto force the programmer to explicitly declare registersin the
Assembler source code. Undeclared registerswill cause an error. The default for | XP2nnn network
processorsis enabled.

Automatically Fix A/B Bank Conflicts:

Select Automatically fix A/B bank conflicts to have the Assembler try to resolve A/B bank
conflicts among registers.

Development Tools User’s Manual

2.6.3

IXP2400/IXP2800 Network Processors
Developer Workbench

Automatically spill GPRs:

Select Automatically spill GPRsto instruct the Assembler to spill
GPR Contentsto local memory inthe event that therearetoo many = &, tomatically spil GPRs
registersto fit in the available number of GPRs.

Preprocessor Definitions:

Preprocessor definitions are symbolsused in
#ifdef and#ifndef statementsto Preprocessor definitions:

Multiple definitions are separated by spaces.
Optionally areplacement value may be assigned
to adefinition by append an "=" and avalue; no
spaces can occur between the symbol name and
the "=" or between the "=" and the value. Default is blank.

Additional Assembler Options:
Mdditional asssmblar ookions:

This control alows you to enter text that isused to =l
edit the command line, replacing the Edit/Override
check box used in previous releases of the I-]

Workbench. Text added in this control will appear in
the command line just prior to the list file.

Save Build Settings:

The Build Settings dialog box works with a copy of the build settings in the project. When you
click OK, the Workbench validates your data and does not allow the dialog box to closeif there are
any errors. Validation is independent of which page is active at the time.

You have the option to fix the errors or click Cancel if you choose not to save any changes you
have made. When the data in Build Settings passes validation, the data in the project is updated.

Invoking the Assembler

To assemble a microcode source file:
1. Onthe File menu, click Open to open thefile or double-click on thefilein FileView.
If thefileis already open, activate its document window by clicking on the file window.

2. Onthe Build menu, click Assemble, or
Press CTRL+F7, or

Click the #2 button.
Root Files:

If thefileisaproject source file, the Workbench assembles all list files for which that fileis aroot
or for which that file is a descendant of aroot.

If thefileisaproject sourcefile, but isnot aroot or adescendant of aroot, or if thefileisnot in the
project, the Workbench assembles it using default assembler settings and produces alist file of the
same name with the ‘ list’ file type.

Development Tools User’s Manual 45

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.6.4

46

Note:

Note:

Results:

The results of an assembly appear in the Build tab of T .
the Output window, which appears automatically. — =
You can control the amount of detail providein the (S e TS ———

results. On the Build menu, click Verbose Output
to toggle between getting detailed results and
summary results.

hepemioly ceaulta: (D) errors, (13] oarnings

K

4 |
[TETET, buitd f, T Fi=s 1k, Fodin fies 2 [

Assembly is also done as part of a build operation.

You can toggle the visibility of the Output window by clicking the El button on the View
toolbar.

Assembly Errors
Assembly errors appear in the Build tab of the Output window. Do any of the following to display
the line of source code that caused an error:

* Double-click the error description, or

PressF4, or
—

Clickthe ~* button.

If no error is selected, the first error becomes selected. If the last error is selected, then no error is
selected.

To go to the source line for the previous error:
* Press SHIFT+F4, or

r—
Click the ® button.

If no error is selected, then the last error becomes selected. If thefirst error is selected, then no error
is selected.

In all cases, the window containing the source file is put on top of the document windows. If the
source file isn't open, Workbench opensiit.

A blue arrow in the left margin marks lines containing errors. Only

one error at atimeis marked. - hash_lockup_]

rtn[link pc]
.endsub

The default Debug toolbar does not contain these buttons. To add them, go to Section 2.2.3.4

Development Tools User’s Manual

IXP2400/IXP2800 Network Processors
Developer Workbench

2.7 The Microengine C Compiler

The Workbench contains a C Compiler to compile C source code into microcode for the
Microengines. The Microengine C Compiler is ageneral purpose Compiler but the C language
used for the Microenginesis limited. Refer to the Microengine C Compiler Language Support
Reference Manual for information on the functions and intrinsics designed for use with the
network processors.

The C Compiler can compile a sourcefile (.c, .h) or an object file (.obj).

For information on:

Creating new C source files, see Section 2.5.1.

Saving C source files, see Section 2.5.4.

Opening C source files, see Section 2.5.2.

Editing C source files, see Section 2.5.10.

Closing a C source file, see Section 2.5.3.

Searching for text in a C source file, see Section 2.5.10 and Section 2.5.12.
Fonts and syntax colorsin a C source file, see Section 2.5.13.

This section details:

Adding C source files to your project (see Section 2.7.1).
Selecting the target .list file (see Section 2.7.2.2).
Selecting the target .obj file to compile (see Section 2.7.2.6).
Deleting atarget .list file (see Section 2.7.2.7).
Selecting C source files to compile (see Section 2.7.2.3).
Selecting C object filesto compile (see Section 2.7.2.4).
Removing C source files from project (see Section 2.7.2.5).
Selecting compile parameters (see).

— “Optimizer:”

— “Inlining:”

— “Endian Mode”

— “Warning level:”

— “Context”

— “Produce debug information:”

— “Produce assembler sourcefile:”

— “Preprocessor definitions.”

— “Additional compiler options:”

Development Tools User’s Manual 47

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.7.1

2.7.2

Note:

2.7.2.1

48

Adding C Source Files to Your Project

After creating and saving C source files, you need to add them to your project. To do this:
1. On the Project menu, click Insert Compiler SourceFiles.
The Insert Compiler Source Filesinto Project dialog box appears.
2. Fromthe Look in list, browse to the folder containing your C source file(s).
3. Select the file(s) that you want to insert into your project.
4. Click Insert.
In the Project Workspace window, to the left of the Compiler Source Filesfolder, a“+' appears (if

the folder was previously empty) indicating the folder now containsfiles. Click the ‘+' to expand
the folder and display the files. You should see the files that you have just added to your project.

Selecting Compiler Build Settings
Before building your project, you must select your C Compiler options.

General build settings are detailed in Section 2.6.2.1.

Selecting Additional Compiler Include Paths

The C Compiler needsto know which areas of the file system to search for locating files referenced
in #include statements in C source code files. This control displays alist of paths with a GUI for
typing in or editing of directory paths, or browsing to directories to be added to the list. The GUI
also provides the means for deleting or changing the search order of the paths.

Regardless of whether the path information is entered in an absolute or relative format, it is
automatically converted to arelative format. This allows the project to be moved to other locations
on asystem or to other systems without rendering the path information invalid in most instances, as
long as the relative location of the paths is maintained. This path information is passed to the
Assembler so it may locate the files referenced in #include statements in the source code. It isalso
used by the dependency checker for locating C source files in the project.

To specify additional Compiler include
directories: |D:umpiler include directories:
1. On the Build menu, click Settings. % MEngineLinclude’,

A AuEngineCheampleshatily
2. Inthe Build Settings dialog box, click the
General tab (if not already selected).

The following controls are provided:

i | button to specify anew path.

Type the path name in the space provided or use the |;| button to search for it. You must
double-click the include path listed in order to display the browse button.

LI\ E button to delete an included path from the list.
e A button to move an included path up the list.

Development Tools User’s Manual

intel.

2.7.2.2

2.7.2.3

IXP2400/IXP2800 Network Processors
Developer Workbench

e A button to move an included path down the list.

Selecting the target .list File

When you compile your C source file, the result can become a .list file. You must select the name
of the list file.

To do this:
1. OntheBuild Settings dialog box, click the Compiler tab.

2. To changethe settingsfor apreviously created .list file, select the name of the .list file from the
Output target .list and .obj fileslist.

3. Tocreateanew .list file, click New .list file.
Thelnsert New List Fileinto Project dialog box appears.

a. IntheLook in list, browse to the folder where you want to store the .list file.
b. Type the file namein the File name box.
c. Click Insert List File.

The path of the target .list file box isaread-only text field displaying the absolute path of the target
Jist file. If this path is not correct, click New again and select a new path.

Selecting C Source Files to Compile

The C Compiler in the Workbench can compile one or more C source filesinto one .list file. You
must select the source files that you want to compile. To do this:
1. Inthe Build Settings dialog box, click the Compiler tab.

2. Click Choose sourcefiles.
The Compiler Sour ces dialog box appears. The files displayed [Sourcs fes to compie: X |

here are all the*.cfilesinyour project, that isall thefilesin the tl.obj
Compiler Source Files folder in the Project Workspace ht!-”cc'lb]:
window. '

3. Click thefile(s) that you want to compile.

Clicking the file once selects the file and clicking a selected file
deselectsiit.

4. Click the button to move the selected files from the left
window to the right window. : : :
You can select any file(s) in the right window and move them | Choose source mes_..@
back to the left window by clicking the button. Chooss obiect fles .|

5. Click OK when done.

In the Sour ce filesto compile box isalist of C source files that you selected to compile.

Development Tools User’s Manual 49

IXP2400/IXP2800 Network Processors
Developer Workbench

2.7.2.4

2.7.2.5

2.7.2.6

50

Selecting C Object Files to Compile

The C Compiler in the Workbench can compile

one or more C object filesinto one .list file.

You must select the object filesthat you want to

compile. To do this:

1. Onthe C Compiler tab, click Choose
object files.
The Object fileto include... dialog box
appears.

2. Enter the absolute path of any external

object filesyou want to include in the build

in the External .obj files... box.

3. Usethe arrowsto select or deselect any of
your project object files you want to
compile.

Object fles toinchade in compiling o tamget Jisk Al

Edtermal oo ik 2 nol buk by ez piciec! butard in the fle svsam
Esterrial .00 ks o inchide in bkt i
CHBPEIO0Ent He b ohy

Select objtaigets bk by taz
Urglezled projec! ohis: Selectad obis bo comple:

wilae]

LS Carcsl

Removing C Source Files to Compile

To remove any file:

1. Click the desired filein the Source filesto compile list.

2. Click the button.

This removes the file from the compilation but not from the project.

Selecting the Target .obj File

You can compile your C source file to create an .obj file rather than a .list file.

To do this:

1. IntheBuild Settings dialog box, click the Compiler tab.

2. Click New .obj file.

The Compiler - .obj target dialog box appears.
a. Inthe Select project C sourcefilelist, select the name of the .c

file you want to compile.

In the .obj tar get file name box, the source file you selected

Select project C source file:

obi taiget fle name

Browse obj peth
Cancel

above appears with an .obj extension. You can change the
name of thisfileif you like. By default, the .obj file that you are creating goes into the
current project folder. If you want to place thisfile into another folder:

1: Click the Browse .obj path button.

2: Select anew folder.
b. Click OK when done.

Development Tools User’s Manual

INlal.

2.7.2.7

Note:

2.7.2.8

IXP2400/IXP2800 Network Processors
Developer Workbench

Deleting a Target .list or .obj File

To delete atarget .list or .obj file from the project:
1. Select thefile from thelist in the Output to target .list and .obj files box.

2. Click Delete.

This removes the file from the project but does not delete it from the disk.

Selecting Compile Options

In the Compiler Options box, select:

Optimizer:
None (debug)
Size (default)

Speed

Local memory start:

0 (default)

Spill sequence:

Inlining:

None

Explicit (default)

Auto

Endian Mode:
Little Endian

Big Endian (default) Compilein big-endian mode.

Neighbor mode:
Neighbor

Development Tools User’s Manual

Turns off optimizations for better code troubleshooting.

Compiled for smallest memory footprint. Speed may be
sacrificed.

Compiled for fastest instruction execution. Size may be
sacrificed.

Local remaly stalt -

Determinesthe region inlocal memory where the
Compiler can allocate variables. Theregion starts

at the address you specify and extends to the end of local memory.

Spill sequence: I HM-Lb->5RAM = I

Determines the algorithm used by the
Compiler for spilling register contents to memory

No inlining is done, including functions explicitly
tagged in the source code with the inline specifier.

Only functions tagged with the inline specifier are
inlined. Any function that could be inlined by the
Compiler but not having thistag is not inlined.

All functionswith theinlinetag and all other functions
thought by the Compiler to be inlinable are inlined.

Inlining
" Mone
' Explicit
 Auto

Compilein little-endian mode.

Endian kMode
¢ Little Endian
¥ Big Endian

Writing to a neighbor register will write to the
neighbor register in the adjacent Microengine.

Meighbor mode
& Weighbor
 Sglf

51

Developer Workbench

IXP2400/IXP2800 Network Processors int9I
®

52

Note:

Self

Warning level:
0
1, 2, or 3 (default)
4

Context

M ode

Number

Writing to a neighbor register will write to the neighbor register in the
same Microengine as the one executing the instruction.

Print only errors.

Wearming level

Print only errors and warnings. -
y g | 3 3
Print errors, warnings, and remarks.

Specify whether the Microengineis configured to have
4 or 8 contextsin use. Mode

Select the number of contexts that you want to be |8]
activein the Microengine (1 through 8). All others are Ml

killed. [&

Produce debug information:

Select (default)

Clear

Produces debug information in the .list file. This
information is needed for many of the debugging
features of the Workbench.

| W Produce debug info |

No debug information is compiled into the .list file.

The Produce debug info switch must be set for the necessary debug information to be present in
the uof file. Unchecking the Produce debug info check box causes the size of the uof fileto be
smaller at the expense of the project not being debuggable (in any fashion) through the Workbench

Produce assembler source file:

Select
Clear (default)

Produces an assembly code file (*.uc).

Does not produce an assembly codefile.

Allow mixed C and assembler source files:

Select

Clear (default)

Allows the user to select both C and MicroCode project files instead of
only C files. The compiler isinvoked with the “-uc” switch to indicate
that the compiler should automatically invoke the assembler after
generating the microcode. The -FA” path\filename.ext” switchisused to
specify the name of the generated assembler source file. The filename
chosen by the Workbench is aways the same path and filename as the
LIST file, but with afile extension of “.ucg” instead of “.list”.

Allows only C filesto be selected.

Preprocessor definitions:

Thisisatext edit box where you type symbols used in #ifdef and #ifndef
statements to conditionally compile sections of Assembler sources.
Multiple definitions are separated by spaces. Optionally a replacement
value may be assigned by appending an “=" and avalue. There can be
not spaces between the symbol name and the“=" or between the“=" and
the value. The default is blank.

Development Tools User’s Manual

2.7.2.9

2.7.3

2.7.4

IXP2400/IXP2800 Network Processors
Developer Workbench

Additional compiler options:

Here you can enter additional command line options that can not be
implemented by normal GUI controls. See Chapter 5, “Microengine C
Compiler” for complete list of options.

Saving Build Settings

The Build Settings dialog box works with a copy of the build settings in the project. When you
click OK, the Workbench validates your data and does not allow the dialog box to closeif there are
any errors. Validation isindependent of which pageis active at the time. You have the option to fix
the errors or click Cancel if you choose not to save any changes you have made. When the datain
Build Settings passes validation, the datain the project is updated.

Invoking the Compiler

To compile a C sourcefile:

1. Onthe File menu, click Open, or

You can also double-click thefilein FileView. If thefileis already open, activate its document
window by clicking on the file window.

2. On the Build menu, click Compile, or
Press CNTRL+SHIFT+F7, or
C
Click the L button on the Build toolbar.

Results:

The results of an assembly appear in the Build tab of the Output window, which automatically
appesars.

You can control the amount of detail provide in the results. On the Build menu, select Verbose
Output to display detailed results, or clear it to display summary results.

Compilation is aso done as part of abuild operation.

Compilation Errors
Compiler errors appear in the Build tab of the Output window. To locate the error in the source
file
¢ Double-click the error description in the Output window, or
Click the error description, then press ENTER.

—
You can press F4 or click the % button to go to the next error. If no error is selected in the Output
window, the first error becomes selected. If the last error is selected, then no error is selected, or

You can press SHIFT+F4 or click the 2 button to go to the previouserror. If no error isselected in
the Output window, the last error becomes selected. If the first error is selected, then no error is
selected.

Development Tools User’s Manual 53

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

In all cases, the window containing the source file is put on top of the document windows and
becomes the active document. If the source fileisn't already open, it opens.

A blue arrow in the left margin marks lines containing errors. Only one error at atime is marked.

2.8 The Linker

The Linker takes the Assembler or Compiler output (.list files) on a per-Microengine basis and
generates an image file for all the Microengines specified.

2.8.1 Customizing Linker Settings

To customize your build configuration:

1. Onthe Build menu, click Settings.
The Build Settings dialog box appears.

2. Click the Linker tab to view the Linker settings.
3. Customizethe Linker settings (see Section 2.8.1).
4. Click OK.

The Linker page provides an interface for selecting options for the Linker and directing the
packaging of one or more Microengine specific *.list filesinto a*.uof file. Each chip has several
Microengines that can each be loaded with execution code according to the * .list file selected for
that Microengine.

You can also specify the assembly options by clicking the Assembler tab and the C Compiler tab
in the Build Settings dialog box.

Chip
The Chip box contains alist of all the Network Processor chipsin :
your project. Select the chip for which you want to change Linker Chip:
settings. The other controls on the page are updated based on the | Chipt =]
selected chip. 7o)
ip

Output to target .uof file

The Output to target .uof file box displaysthe .uof file that the Digulim bt e
Linker produces. refdes.uot [

Note: The Developer Workbench does not support multiple .uof files.

To change the output *.uof file to the project for the selected chip:

1. Click the [:=] button.
The Select Name and L ocation for the Linker Output File dialog box appears.

2. Inthe L ook in box, browse to the folder where you want to put the output file.
3. Type anew name in the File name box.

54 Development Tools User’s Manual

In

tel.

Note:

IXP2400/IXP2800 Network Processors
Developer Workbench

You do not have to type the .uof extension—the Workbench adds it for you. Typing it does no
harm.

4. Click Select.

Microengine .list file selection
Lirker cphans for chip

The project has one or more .list file(s) generated Edact e files for micioangines

using the Assembler or Compiler. On the Linker page Micraegne 00 Iﬁj
you can control which .list fileislinked into the .uof

file and for which Microengine. Micraengne 0:1 |h:|Igctlist

To do this: Micraengine 02 |{r1|:ﬂc“:
1. Click thelist box to the right of Microengine 0:0. Micrsengna 03 [rore>

A scrollable list of list filesis displayed. Micragnigie 0:4 |<n.m> .
2. Select either: -

a. <none>, or
b. Any .list file from list.
3. Do the same for remaining Microengines.

This method allows you to select any combination of .list files or no .list file for any or al the
Microenginesto be linked to the .uof file.

If you specify <none>, no microcode gets loaded into that Microengine. If you select <none> for
all the Microengines, you get an error.

Produce debug information
Select Produce debug info to add debug information to the

output file. If you do not select this option, you will not be
able to open athread window in debug mode.

¥ Froduce debug infa [Generate hex o' file

The Produce debug info switch must be set for the necessary debug information to be present in
the uof file. Unchecking the Produce debug info check box causes the size of the uof fileto be
smaller at the expense of the project not being debuggable (in any fashion) through the Workbench

Generate memory-map file

Select Gener ate memory-map file to have the
Workbench pass the -map option switch to the linker to
generate a.map file. The file contains the symbols and
their addresses. The edit control allows the user to
specify the filename or browseto it.

V¥ Generate memaorny-map file:

IC:\IX&_SDK_3.5\src\E>¢&MPLES‘\micmcode'\ |

Hex “.c” files

Select Generate hex ‘.¢’ fileto request the Linker to create a*.c file, with the same name as the
corresponding *.uof file. Thisfile contains amicrocode listing in aform that can be included in a
processor core application. Thisis usually done when deploying microcode into afinal product.

Development Tools User’s Manual 55

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

56

Unused microstore

Unused microstore can be initialized by using the controls
in the Fill optionsfor unused microstore area.

Fill optionz for unuzed microztore
" Do nat fill

To leave the unused microstore unchanged, select Do not € Fill with defavlt pattern (1xe000010000)
fill. & Fill with custom patternl Oxel000z0000
To fill the unused microstore:

1. Select Fill with default pattern (0xe000010000).
0xe000010000 for the 1XP2400, I XP2800 network processors.

or

2. Click Fill with custom pattern and type a 10 character hex pattern to be used. Make sure the
number begins with “0x.”

Reserved memory segment for variables

The reserved memory segment for variables provides the Linker with information needed for
allocating memory to be used for variable data storage.

Scratch offset

The Scratch offset is a parameter sent to the Linker. The Linker uses scratch memory starting at the
base address, allocating as much memory as needed up to the Scratch offset size for variables.

Scratch segment size (bytes)

The Scratch segment size is a parameter sent to the Linker. The Linker reserves as much scratch
memory as necessary for variables up to the segment size.

SRAM offset

The SRAM offset is a parameter sent to the Linker. The Linker uses scratch memory starting at the
base address, allocating as much memory as needed up to the SRAM segment size for variables.

SRAM segment size (bytes)

The SRAM segment size is a parameter sent to the Linker. The Linker reserves as much SRAM as
necessary for variables up to the segment size.

DRAM offset

The DRAM offset isaparameter sent to the Linker. The Linker uses DRAM memory starting at the
base address, allocating as much memory as needed up to the DRAM segment size for variables.

DRAM segment size (bytes)

The DRAM segment size is a parameter sent to the Linker. The Linker reserves as much DRAM as
necessary for variables up to the segment size.

Development Tools User’s Manual

2.8.2

IXP2400/IXP2800 Network Processors
Developer Workbench

Header file generation

Selecting Generate a header file causes the Linker to produce a C language *.h file with the same
filename as the linked *.uof file. The defined symbols are set to values based on how the Linker
allocated memory for the reserved memory variables. The base address symbols should have the
same values as the ones defined in the GUI, but the size symbols have the actual sizes used by the
Linker.

Saving settings

Linker settings are saved when you save the project.

The Build Settings dialog box works with a copy of the build settings in the project. When you
click OK, the Workbench validates your data and does not allow the dialog box to closeif there are
any errors. Validation isindependent of which page on Build Settingsis active at the time. You

have the option to fix the errors or click Cancel if you choose not to save any changes you have
made. When the datain Build Settings passes validation, the datain the project is updated.

Building and Rebuilding a Project

Building a project
* On the Build menu, click Build, or

Click the =% putton on the Build tool bar, or

PressF7.
The re@ults of the build appear in =2lpzserinling root file 'main.uc' for list file 'lpm ixp2B00.list'... =]
the Build tab of the Output Al inking for file ' lpw 1xp2s00.uct ... -
WindOW, which appears Build results: (0) errara, (0} warnings
automatically. You can cqntrol the _Ij
amount of detail provide in the :_f« T e [T R AR .

results. On the Build menu, click

Verbose Output to toggle

between getting detailed results and summary results.

Stopping

Thereisno way to stop abuild in progress. You must wait until it finishes or encounters an error.
Out-of-date files

To perform alink, the Workbench requires that all .list files be up to date. If any microcode or
compiler source fileis newer than the list file generated from it, or if Assembler or Compiler
settings have been changed since the last build, the Workbench automatically assembles or
compilesanew .list file.

Rebuilding a project

To force the assembling or compiling of all sources, regardless of whether the list files are up to
date:

¢ On the Build menu, click Rebuild, or

Click the e button on the Build toolbar, or

Development Tools User’s Manual 57

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.9

29.1

58

Press Alt + F7.

Configuring the IXP2400 Simulation Environment

To configure the simulation environment for an 1XP2400 project, select System Configuration
from the Simulation menu. You can set or change configuration valuesin the following property
pages depending on the Chip Family you have selected:

* Clock frequencies- see Section 2.9.1

* Memory - see Section 2.9.2

* MSF Devices - see Section 2.9.3

* Network Connections - see Section 2.9.4
CBUS Connections - see Section 2.9.5

The contents of each dialog depends on the processor type defined for the project. This
configuration datais passed to the Transactor and device models through the command line
interface when you start debugging.

IXP2400 Clock Frequencies

Depending on the processor type defined for the project the Clock Frequencies property page will
(seeFigure 6) display different default values. The values that you specify on this property page are
passed to the Transactor using theset _cl ocks() console function.

* Clock frequencies are set independently for each chip in the project.

* InthePLL output frequency combo box, you may currently select the PLL output frequency
of 1200 MHz.

* The Derived frequencies group box is for information only and displays the frequencies for
the Microenginesand I ntel X Scale® core. These frequencies are derived from the PL L output
frequency using fixed divisors and they cannot be modified.

* The Programmable frequencies group box contains selectable values for the two SRAM
channels and DRAM. These frequencies are programmable as afixed set of ratios of the PLL
output frequency. These ratios correspond to fieldsin the Clock Control CSR, whichis
displayed for reference only.

* Inthe External freguencies group box, the MSF unit is externally clocked. Select either
Single or Dual mode clocking for receive and transmit interfaces. If you select Single mode,
only one clock value can be specified; the other control is disabled. Ratios correspond to fields
inthe M SF Clock Control CSR, which is displayed for reference only.

* The PCI unit is always externally clocked. Select either 33 or 66 MHz from the scroll values.
The values shown in the following figure are the default values. The complete description of clock
frequencies, ratios, can be found in the Intel® XP2400 Network Processor Hardware Reference

Manual. The Clock and MSF CSRs can be found in the Intel® 1XP2400/1XP2800 Network
Processor Programmer’s Reference Manual.

Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors
In ® Developer Workbench

Figure 6. Clock Frequencies for the IXP2400

System Configuration il

Clock Frequencies | Memory | MSF Devices | Metwork Connections | CBUS Connections |

Select chip: — Programmable frequencies — Enternal frequencies

<unnamed:
SRAM 0 |2DD.D 'I hiH R Clock. Mod IS' | *I
— PLL output frequency z mek Hade g

om0 | MHz SRAM 1 [2000 v | MHz RXCLKDN [125] MHz
RXCLK23 [125] MHz

T Clock Mode IS' I vl
— Derived frequencies ingle

TR o T DRAM [1500 +| MHz THCLKO! [125 =] MHz
¥Seale Core | 6000 MHz TxoLkzs [125 7] M

PCI IBB 'I MHz
Clock Control CSR | 0200040033 MSF Clock Control CSR | Ox00FF0000

-~

u] I Cancel

2.9.2 IXP2400 Memory

The Memory tab on the System Configuration property sheet supports the configuration of
simulator memory (see Figure 7). There are some variations on the screen depending on which
network processor is being configured. For the I XP2400 the following simulator conditions apply:

* No SRAM channel can exceed 64 MB, so the Part count option of 2 becomes unavailable if
the Part sizeis 64.

* The simulator must have a populated SRAM channel. Zero memory cannot be configured,
therefore thereis no option for azero Part size or Part count.
There are two channels available for configuring the IXP2400 SRAM memory.

* The DRAM sizeiscurrently limited to 64 MB by the simulator, so there is only one DRAM
size option available. Channel count is unavailable for the DRAM.

¢ Each of the two SRAM channels may be configured independently.

Development Tools User’s Manual 59

IXP2400/IXP2800 Network Processors u
Developer Workbench In

Figure 7. 1XP2400 Memory Options

Systemn Configuration il
Clock Frequencies Memany | MSF Devices | Metwaork Connections | CBUS Connections

Select chip:

— DR&M — SRaM
Size [MB] Fart size [ME]: Part count:
|E;4 -] Charnel 0 [&4 i | 1 :Il &4 ME
. - =]
Charinel 1: |54 J I = &4 MB

Tatal SRAM: 128 MB

[u]4 I Cancel

60 Development Tools User’s Manual

INlal.

2.9.3 IXP2400 MSF Device Configuration

The M SF Device Configuration tab on the System Configuration property page supports the

IXP2400/IXP2800 Network Processors

Developer Workbench

configuration of media and switch fabric interfaces (see Figure 8).

You have the following options on this tab:

* Create Device...
¢ Edit Device...
Delete Device
Edit Port...

If no deviceis currently configured, only the Create Device... button will be available. The Delete

Device and Edit Port... buttons become active when devices are configured for selection.

Figure 8. IXP2400 MSF Device Configuration

System Configuration

Clock. Flequenciesl Memory MSF Davices | MNetwork Connections I CEUS Connections

Create Device... I Edit Device... |

Delete Device |

Device D Device type Buz mode MNumber of ports
] SPHY 1416 1
1 #1EMPHY 32 1416_M5F0 Kl
r— Ports for device id 0
Edit Part... |
Fort # | Protocal Receive Receive Receive Tranzmit Tranzmit Tranzmit
of MOMC0L | datarate | buffer size threshold | datarate | buffer zize threshaold
2 | uToRsz | 2500 | 256 | B4 | 2800 | 256 | B4 |
ak. Cancel

Device Creation

To create adevice:

1. Click Create Device...
The Create Media Bus Device dialog box appears. (see Figure 9.)

Development Tools User’s Manual

61

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2. Select the device type from those available on the Select device type... scrolling list.

Supported device types for IXP2400: SPHY, x32MPHY 4, x16M PHY 32, x32M PHY 32, and
CS1X. The IXP2400 architecture also supports connecting two devices with different
restrictions.

The Device parameters and Default port parameters areas will display default values once
you select the device type.

Figure 9. The Create Media Bus Device Dialog Box for CSIX

Create Media Bus Device x|

Sefect devie type: TR -

— Device parameters

MNumber of ports

—

— Default port parameters

Protocal |C50+ i

— Receive — Tranzmit

Iw Data rate [Mbits/zec) IW Data rate [Mbitz/zec)
Iw Receive buffer size Iﬁ Transmit buffer size
|—54 Receive threshald |—54 Lo water mark
I—D Interpacket gap [in nsecs) I— High weater mark [F]
I—EI I:tl[.:;'usb;; ;f:rféegft};:cdkee\:ice I—EI Interpacket gap [in neecs]
I—D MHumber of bytes of zeros the

device appends to packet

I U Mumber of extra bytes (] [¥] Uszed anly if faw contral iz enabled

[**] The number of bytes that are stripped fram the packet before it reaches the device and
added after it leaves the device, e.q, the Ethernet preamble.

Ok, I Cancel

62 Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors
In ® Developer Workbench

Figure 10. The Create Media Bus Device Dialog Box for x32MPHY16

Create Media Bus Device x|

Select device ype: [P

— Device parameters

Mumber of ports
16

— Default port parameters

Pratocal ILITDF'I.-’-\S "I

— Receive — Tranzmit

IW [rata rate [Mbitedzec) Iw Data rate [Mbits/zec)
lw Receive buffer size Iw Transmit buffer size
|—54 Receive threshold |—54 Lowe water mark
I—D Interpacket gap (in nsecs) I— High weater mark [F]
I—D Et#;nsbﬁror?lf:r_l,:éegftl'p'u:cdkee\;ice I—EI Interpacket gap [in neecs)
I—D Mumber of bytes of zeros the

device appends to packet
I U Mumber of extra bytes () [¥] Uged anly if flaw contral iz enabled

[**] The number of bytes that are stipped from the packet before it reaches the device and
added after it leaves the device, e.q, the Ethernet preamble.

[].4 I Cancel

The Default port parameter s section isdivided into Receive and Transmit areas. You may edit
these characteristics, which are:

Data rate (M bits/sec) Specifies the rate at which datais taken from the network and inserted
into the port’sreceive (Rx) buffer and therate at which dataistaken from
the port’s transmit (Tx) buffer and put onto the network.

Receive buffer size Specifies the number of bytesin the receive buffer. The receive buffer
holds the data received from the network until the Network Processor
reads it from the port.

Receivethreshold Specifies number of bytes that must be in the port’s receive buffer in
order for the port to signal the Network Processor that it can select the
port and request data fromit.

Transmit buffer size Specifiesthe number of bytesin the transmit buffer. The transmit buffer
holds the data transmitted by the Network Processor until itis
transmitted onto the network.

Development Tools User’s Manual 63

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

64

L ow water mark See High water mark, below.

High water mark If flow control isenabled, the high water mark isused to determineif the
deviceis“Hungry” or “ Satisfied”. If the number of bytesinthe Tx buffer
is between the low and high water marks, then the device tells the
network processor that it is Hungry. If the number of bytesis above the
high water mark, then the device tells the network processor that it is
Satisfied.

Interpacket gap (nsec) Specifies the amount of time between packets when receiving packets
from and transmitting packets to the network.

Number of bytesthe device stripsfrom end of packet

Specifies the number of bytes that the device must strip from the end of
each received packet before the packet is passed to the Network
Processor. For example, for POS | P packets, the trailing checksum bytes
are normally stripped.

Number of bytes of zerosthe device appendsto packet

Specifies the number of bytes of zeroesthe device appendsto the packet
beforeit is transmitted by the Network Processor.

Number of extra bytes Specifiesthe number of bytesthat are stripped from the beginning of the
packet beforeit reaches the device and appended to the beginning of the
packet after it leaves the device, for example the Ethernet preamble.

Note that no bytes are actually stripped or appended to the packet data.
Instead, the number of extra bytes are added into the calculation of data
rate at the network.

Device Removal:

To remove a device from the project:
1. Onthe Simulation menu, click System Configuration, then click the M SF Devicestab.

The M SF Devices property sheet appears.

2. Select adevice that you want to remove. Previously created devices appear in the list box
under the Create button. You can select one by clicking anywhere in the row listing.

3. Click Delete Device.
Port Characteristics Edit:

To edit an individual port’s characteristics:

1. Onthe Simulation menu, click System Configuration, then click the M SF Devices tab.
The M SF Devices property sheet appears.

2. Inthe Port section of the property sheet, select the port that you want to modify, click the Edit
Port ... button, and the Edit Port dialog opens (see Figure 11).

3. When you have finished editing the port, click OK.

Any changes that you have made now appear in the corresponding column of the edited port.

Development Tools User’s Manual

intel.

IXP2400/IXP2800 Network Processors
Developer Workbench

Figure 11. Port Characteristics Edit Port Dialog Box

294

Edit Port 2 on Device 0 x|

Protocol | [ERgeia/fed

— Receive Tranzmit

Iw [ata rate [Mbits/sec) Iw [ata rate [Mbits/sec)

Iw Receive buffer size 286 Transmit buffer size

|—54 Receive threshold |—4 Law water mark.

I—D Interpacket gap [in nzecs| I—

I—U quber of bytes the device I— |rterpacket gap (in nzecs]
I—

High water mark: [*

strips from end of packet

MNumber of bytes of zeros the
device appends to packet

I 0 Mumber of extra bytes [+ [¥] Used only if low contral iz enabled

[*] The nurmber of bytes that are stipped from the packet befare it reaches the device and
added after it leaves the device, e.g, the Ethernet preamble.

Ok I Cancel

IXP2400 Network Connections

After you have configured the packet simulation with devices and ports and created or imported
data streams, you need to specify the connections to the media/switch fabric for each chip in your
project.

1. Onthe Simulation menu, click System Configuration, then click the Network Connections
tab.

The Networ k Connections property page appears. The page is divided into two sections:
Receive side connection and Transmit side connection.

2. Select the chip to which you want to make connections in the Specify connectionsfor chip
combo box.

3. When you have finished click OK.

If No Connection is selected, then the simulation runs without anything connected to that side of
the MSF.

In multi-chip projects, the receive side can be connected to the transmit side of another chip in the
project by selecting Connect to transmit side of chip. The user must select which chip and what
protocol to use for the connection. For the I XP2400, the protocols are POS3 and CSIX. Similarly,
the transmit side can be connected to the receive side of another chip in the project by selecting
Connect to receive side of chip.

To connect adevice to either side, the user selects Connect to device then selects the desired
device in the combo box. Note that because a device can only be connected once, if it is selected
for a connection then the Workbench removes it as a choice for al other connections.

Development Tools User’s Manual 65

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

For the 1XP2400, the Workbench displays the property page shown in Figure 12. When two
devices are connected, the 32-bit busis considered to be split into two 16-bit busses— alower and
an upper bus. Only an x16MPHY 32 device can be connected to the lower bus and only an SPHY
device with 1x16 or 2x8 bus mode can be connected to the upper bus.

Figure 12. Network Connections Property Page - IXP2400

System Configuration ﬂ

Clock Frequenciesl Memor_l,ll M5F Devices Metwork Connections | CEUS Connections

Specify connections for chip |<unnamed> vI Mate: the same device cannot be

connected to bath transmit and receive

— Receive zide connection(z)
Media Buz Rx Devices

 No connection

¢~ Cannect ta transmit side of chip | j Lgitg |PDSS j protacal
% Connect to device(s) 1st device * 2nd dewice *
[ID0SPHY 1616 MSF21 =] | =l

— Transmit side connection(s)
Media Bus Tx Devices

 No connection
” Connect to receive side of chip j LEing IF'DS3 j protocal

=

¢ Connect to devicels) 1st device ® Znd device
D 1 [+16MPH | =l

* Muote: Selection of 1zt device determines the available selections for
the 2nd device and whether or not a 2nd device can be connected.

Ok I Cancel

66 Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors

In ® Developer Workbench

295 IXP2400 CBUS Connections

After you have configured the packet simulation with devices and ports and created or imported
data streams, you need to specify the connections to the media/switch fabric for each chip in your
project.

1. Onthe Simulation menu, click System Configuration, then click the CBUS Connections
tab.

The CBUS Connections property page appears. The page contains a check box to enable
connections using the CBUS. When you select Connect using the CBUS the receive (ingress)
and transmit (egress) pull down boxes are active.

2. Select the chip to which you want to make connectionsin the pull down boxes.
3. When you have finished click OK.

Figure 13 displays the CBUS Connections property page.
Figure 13. CBUS Connections Property Page - IXP2400

System Configuration il

Clack Frequenciesl Memoryl MSF Devices | Netwark Connections CBUS Connections

¥ Connect chips using the CBUS

Receive side [ingress] chip | COMaEl= b

Tranzmit side [egress] chip |<unnamed> j

ak. I Cancel

Development Tools User’s Manual 67

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.10

2.10.1

68

Configuring the IXP2800 Simulation Environment

To configure the simulation environment, select System Configuration from the Simulation
menu. You can set or change configuration valuesin the following property pages depending on the
Chip Family you have selected:

* Clock freguencies - see Section 2.10.1

* Memory - see Section 2.10.2

M SF Devices- see Section 2.10.3
Network Connections - see Section 2.10.4
CBUS - see Section 2.10.5

The contents of each dialog depends on the processor type defined for the project. This
configuration datais passed to the Transactor and device models through the command line
interface when you start debugging.

IXP2800 Clock Frequencies

Depending on the processor type defined for the project the Clock Frequencies property page will
display different default values (see Figure 14). The values that you specify on this property page
are passed to the Transactor using theset _cl ocks() console function.

* Clock frequencies are set independently for each chip in the project.

* Inthe PLL output frequency group box, select the PLL output frequency: Supported
frequencies are 1600, 2000, and 2800.

* The Derived frequencies group box isfor information only and displays the frequencies for
the Microengines and the Intel X Scale® core. These frequencies are derived from the PL L
output frequency using fixed divisors and they cannot be modified.

* The Programmable frequencies group box contains selectable values for the four SRAM
channels, DRAM, MSF and APB. These frequencies are programmable as afixed set of ratios
of the PLL output frequency. These ratios correspond to fields in the Clock Control CSR,
which is displayed for reference only.

* |nthe External frequencies group box, you can optionally specify that the MSF unit be
externally clocked. The PCI unit is always externally clocked. Select either 33 or 66 MHz
from the PCI combo box.

The values shown in the following figure are the default values. The complete description of clock
frequencies, ratios, can be found in the Intel® IXP2800 Network Processor Hardware Reference
Manual. Clock and MSF CSRs can be found in the Intel® 1XP2400/1 XP2800 Network Processor
Programmer’s Reference Manual.

Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors
In ® Developer Workbench

Figure 14. Clock Frequencies for the IXP2800

System Configuration il
Clock Frequencies | Memory | MSF Devices | Metwork Connections | CBUS Connections

Select chip:
<unnamed: j

r— Programmable frequencies

SRAM O |2DD.D 'I tH v ing:
~PLL output frequency z W Clock M5F externally using:
2800 =] MHz SRAM 1 |2DD.D VI MHz RELE |4E? 'l MHz
SRAM 2 |2DD.D vI MHz TCLK_REF |4E? 'l MHz
SRAM 3 |2DD.D VI MHz RCCLE |4E? 'l MHz

r— Derived frequencies
Microengine | 14000 MHz DRAM [1000 =] M
#Scale Core | V000 MHz MSF Ithemal 'I MHz

APEIED.D vIMHz PCl |66 - | MHz
Clock Contral C5R | 0«073E7TYY

r— External frequencies

ak. I Cancel

2.10.2 IXP2800 Memory

The Memory tab on the System Configuration property sheet supports the configuration of
simulator memory (see Figure 15). There are some variations on the screen depending on which
network processor is being configured. For the I XP2800 the following simulator conditions apply:

* No SRAM channel can exceed 64 MB, so the Part count option of 2 becomes unavailable if
the Part sizeis 64.

* The simulator must have a populated SRAM channel. Zero memory cannot be configured,
therefore thereis no option for azero Part size or Part count.
There are four channels available for configuring the IXP2800 SRAM memory.

* The DRAM Chan size value multiplied by the Chan count value yields the total DRAM
memory available in the ssmulator. Between 1 and 3 DRAM channels are possible. The
DRAM sizeislimited to 2046 MB, so the available channel count value options become
limited at the higher channel sizes.

¢ Each of the four SRAM channels may be configured independently.

Development Tools User’s Manual 69

IXP2400/IXP2800 Network Processors

Developer Workbench

Figure 15. IXP2800 Memory Options

System Configuration

Clock Frequencies Memany | MSF Devices | Metwaork Connections | CBUS Connections

Select chip:
|<unnamed> j
— DR&M — SRaM
Chan size [MEB]: Fart size [ME]: Part count:
I vI Chaninel 0; IE;4 =] I 1 :ll &4 MEB
Chan count: . - —=1
= Charinel 1: |54 J I = &4 MB
= Channel 2: |54 j I | &4 MB
il
Total: 192 MEB
b - =l
Charnel 3: |54 J I = G4 MB

Tatal SRAM: 256 MB

[u]4 I Cancel

70

Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors
In ® Developer Workbench

2.10.3 IXP2800 MSF Device Configuration

The M SF Device Configuration tab on the System Configuration property page supports the
configuration of media and switch fabric interfaces (see Figure 16).

You have the following options on this tab:
* Create Device...

¢ Edit Device...

¢ Delete Device

e Edit Port...

If no deviceis currently configured, only the Create Device... button will be available. The Delete
Device and Edit Port... buttons become active when devices are configured for selection.

Figure 16. IXP2800 MSF Devices

System Configuration il

Clock. Flequenciesl Memory MSF Davices | MNetwork Connections I CEUS Connections

Create Device... I Edit Device... | Delete Device |

Device D Device type Buz mode MNumber of ports
0 SPI4 1%32 32
1 CSl< 1=32 1

r— Ports for device id 0

Edit Part... |
Fort # | Protocal Receive Fieceiw_e Receive Tranzmit Transmit Transmit 1=l
datarate | buffer size threshold | datarate | buffer zize threshaold
] SFl14 15000 ER536 B4 15000 B553R B4 |
1 SFl4 15000 E553E6 B4 15000 B553E6 54
2 SPl4 15000 ER536 Fd 15000 G5536 Fd
3 SFl4 15000 ER53E Ed 15000 BBA3E B4
4 SPl4 15000 E5536 B4 15000 G553 B4
5 SFl14 15000 ER536 E4 15000 F553R B4
B SFl4 15000 E553E6 B4 15000 B553E6 54
7 SPl4 15000 ER536 Fd 15000 G5536 Fd
=] colA 1 F00 CRR2C Cd 1 FE0nn CRRIC [=,] j
ak. Cancel

Device Creation

To create adevice:

1. Click Create Device...
The Create Media Bus Device dialog box appears. (see Figure 17.)

Development Tools User’s Manual 71

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2. Select the device type from those available on the Select device type... scrolling list, for
example, SP14 or CSI X for the IXP2800.

Supported device types for IXP2800 A1, A2 and BO: SPI4 and CSI X.

The Device parameter s and Default port parameters areas will display default values once
you select the device type.

Figure 17. The Create Media Bus Device Dialog Box for SPI-4

Create Media Bus Device x|

Select device type: ISPM j

 Device parameters
Murber of parts Buz cycle threshald Baze port address Finirmunn burst size
| B2 | 32 | &0 | [

e S ™ Enable Tx flow contral

I 4 Training frequency |10
— Default port parameters

Pratocal ISF'M 'l

:

— Receive — Tranzmit
I 15000 Data rate (Mbitzfzec) 15000 Data rate [Mbitz/zec)

I E553E Receive bulfer size BE536 Transmit buffer size

I—E4 Receive threshold B4 Low water mark

I—EI Interpacket gap [in neecs) Im High waater mark, []

I—EI fs»{ﬁg?sb;;;f:ﬁée;ftgzcdkee\;ice I—EI Interpacket gap [in nsecs]
I—EI MHumber of bytes of zeros the

device appends to packet
I 0 Mumber of extia bytes] ("] Used only if flaw contral iz enabled

[**] The number of bytes that are stripped from the packet before it reaches the device and
added after it leaves the device, e.q, the Ethernet preamble.

il

]9 I Cancel

72 Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors
In ® Developer Workbench

Figure 18. The Create Media Bus Device Dialog Box for CSIX

Create Media Bus Device x|

Select dovis type: BT -

— Device parameters

Mumber of ports

—

— Default port parameters

Pratocal |C50- i

— Receive — Tranzmit

IW [rata rate [Mbitedzec) Iw Data rate [Mbits/zec)
lw Receive buffer size Iw Transmit buffer size
|—54 Receive threshold |—54 Lowe water mark
I—D Interpacket gap (in nsecs) I— High weater mark [F]
I—D Et#;nsbﬁror?lf:r_l,:éegftl'p'u:cdkee\;ice I—EI Interpacket gap [in neecs)
I—D Mumber of bytes of zeros the

device appends to packet
I U Mumber of extra bytes () [¥] Uged anly if flaw contral iz enabled

[**] The number of bytes that are stipped from the packet before it reaches the device and
added after it leaves the device, e.q, the Ethernet preamble.

[].4 I Cancel |

Note: If you select SP14 as the device type, the Create M edia Bus Device dialog box will display the
defaults for the controls shown in Figure 17 in the Device parameter s section: Number of ports,
Buscycle threshold, Base port address, Minimum burst size, Maximum burst 1, Enable Tx
flow control, and Training frequency.

If you select adevice type other than SP14 (CSIX, SPHY, etc.), the Device parameterswill be re-
positioned on the screen as appropriate to the device type.

Bus cycle threshold This value determines the default maximum # of M SF cycles (one cycle
isequal to 2 bytes) per burst. A long burst will be broken into small
bursts with non-payload cyclesinserted

Base port address The base address of a SPI4 MAC device. The SPI4 supports 8-bit
address, so for a device with 10-port, the base port address could be
between 0 and 245. The SPI4 device assigns consecutive addressto ports
of the same device. So, for adevice of 10-port with base port address of
220. The port address space for this device will be 220 to 229.

Minimum burst size This value determines the minimum number of bytes that the SPI4
device will transfer in one transaction, unless EOP is reached.

Development Tools User’s Manual 73

Developer Workbench

IXP2400/IXP2800 Network Processors intel
®

74

Maximum burst 1

Enable Tx flow control

Training frequency

This value is the maximum number of 16 byte blocks that the Tx FIFO
can accept when the FIFO Status channel indicates a“ Starving”
condition.

Thischeck box enable Tx flow control training between the SPI4 device
and the network processor.

Thisvalue indicates the maximum interval (in TS clock cycles, with the
TS clock being one-fourth the Tx clock Frequency) between scheduling
of flow control training sequences.

The Default port parameter s section is further divided into Receive and Transmit areas. You
may edit these characteristics, which are;

Data rate (Mbits/sec)

Receive buffer size

Receive threshold

Transmit buffer size

L ow water mark

High water mark

I nter packet gap (nsec)

Specifies the rate at which data is taken from the network and inserted
into the port’sreceive (Rx) buffer and therate at which dataistaken from
the port’s transmit (Tx) buffer and put onto the network.

Specifies the number of bytesin the receive buffer. The receive buffer
holds the data received from the network until the Network Processor
reads it from the port.

Specifies number of bytes that must be in the port’s receive buffer in
order for the port to signal the Network Processor that it can select the
port and request data from it.

Specifies the number of bytesin the transmit buffer. The transmit buffer
holds the data transmitted by the Network Processor until it is
transmitted onto the network.

See High water mark, below.

If flow control isenabled, the high water mark isused to determineif the
deviceis“Hungry” or “ Satisfied”. If the number of bytesinthe Tx buffer
is between the low and high water marks, then the device tells the
network processor that it is Hungry. If the number of bytesis above the
high water mark, then the device tells the network processor that it is
Satisfied.

Specifies the amount of time between packets when receiving packets
from and transmitting packets to the network.

Number of bytesthe device stripsfrom end of packet

Specifies the number of bytes that the device must strip from the end of
each received packet before the packet is passed to the Network
Processor. For example, for POS | P packets, thetrailing checksum bytes
are normally stripped.

Number of bytes of zerosthe device appends to packet

Number of extra bytes

Specifiesthe number of bytes of zeroesthe device appendsto the packet
beforeit istransmitted by the Network Processor.

Specifiesthe number of bytesthat are stripped from the beginning of the
packet beforeit reaches the device and appended to the beginning of the
packet after it leaves the device, for example the Ethernet preamble.

Development Tools User’s Manual

IXP2400/IXP2800 Network Processors
Developer Workbench

Note that no bytes are actually stripped or appended to the packet data.
Instead, the number of extra bytes are added into the calculation of data
rate at the network.

Device Removal:

To remove a device from the project:
1. Onthe Simulation menu, click System Configuration, then click the M SF Devices tab.

The M SF Devices property sheet appears.

2. Select adevice that you want to remove. Previously created devices appear in the list box
under the Create button. You can select one by clicking anywhere in the row listing.

3. Click Delete Device.
Port Characteristics Edit:

To edit anindividual port’s characteristics:

1. Onthe Simulation menu, click System Configuration, then click the M SF Devices tab.
The M SF Devices property sheet appears.

2. Inthe Port section of the property sheet, select the port that you want to modify, click the Edit
Port ... button, and the Edit Port dialog opens (see Figure 19).

3. When you have finished editing the port, click OK.

Any changes that you have made now appear in the corresponding column of the edited port.

Figure 19. Port Characteristics Edit Port Dialog Box

Edit Port 0 on Device 0 x|
Pratocal Ei Fl4 'I
— Receive r Tranzmit

Iw [ata rate [Mbitz/zec) Iw [ata rate [Mbitsdzec)
Iﬁ Receive buffer size Iﬁ Tranzmit buffer size
I—Bq' Receive threshold I—B*‘r Low vaater mark
I—D Interpacket gap [in neecs] Im High water mark: [7]
I—D SNtﬁgstlD;f;_:lée;ftgzcdkee\;ice I—D Interpacket gap [in nsecs]
I—D Mumber of bytes of zeros the

device appends to packet
I 0 Mumber of extra bytes [[7] Used only if flow contral iz enabled

[*] The number of bytes that are stipped from the packet before it reaches the device and
added after it leaves the device, e.g, the Ethernet preamble.

Ok I Cancel

Development Tools User’s Manual 75

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.10.4 IXP2800 Network Connections

After you have configured the packet simulation with devices and ports and created or imported
data streams, you need to specify the connections to the media/switch fabric for each chip in your
project.

1. Onthe Simulation menu, click System Configuration, then click the Network Connections
tab.

The Networ k Connections property page appears. The pageis divided into two sections:
Receive side connection and Transmit side connection.

2. Select the chip to which you want to make connections in the Specify connections for chip
combo box.

3. When you have finished click OK.

Figure 20 displays the property page for the IXP2800.
Figure 20. Network Connections Property Page - IXP2800

System Configuration il

Clack Frequenciesl Memc-ryl MSF Devices Metwork Connections | CBUS Connections

Mate: the same device cannat be

Specify connections for chip (TR
connected to both transmit and receive

— Receive ztide connection(z]
Media Bus Rx Devices

' Wo connection

" Connect to transmit side of chip I j LEing ISF'I4 j protocal
¢ Connect to devicefs] Select device
|ID 0(5PI4) =l

— Tranzmit zide connection(z)
Media Bus Tx Devices

= Mo connection

 Connect to receive side of chip I j Lgitig |SPI4 j protocal
¢ Connect to devicefs) Select device
fID 1 (Cs1%) =l

[].4 I Cancel |

If No Connection is selected, then the simulation runs without anything connected to that side of
the MSF.

In multi-chip projects, the receive side can be connected to the transmit side of another chip in the
project by selecting Connect to transmit side of chip. The user must select which chip and what
protocol to use for the connection. For I XP2800 chips, the only supported protocol is SPI4.

76 Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors
In ® Developer Workbench

Similarly, the transmit side can be connected to the receive side of another chip in the project by
selecting Connect to receive side of chip.

To connect adevice to either side, the user selects Connect to device then selects the desired
devicein the combo box. Note that because a device can only be connected once, if it is selected
for a connection then the Workbench removes it as a choice for al other connections.

2.10.5 IXP2800 CBUS Connections

After you have configured the packet simulation with devices and ports and created or imported
data streams, you need to specify the connections to the media/switch fabric for each chip in your
project. Figure 21 displays the CBUS Connections property page for the I XP2800.

1. Onthe Simulation menu, click System Configuration, then click the CBUS Connections
tab.

The CBUS Connections property page appears. The page contains a check box to enable
connections using the CBUS. When you select Connect using the CBUS the receive (ingress)
and transmit (egress) pull down boxes are active.

2. Select the chip to which you want to make connectionsin the pull down boxes.
3. When you have finished click OK.

Figure 21. CBUS Connections Property Page - IXP2800

System Configuration il

Clack Frequenciesl Memoryl MSF Devices | Netwark Connections CBUS Connections

¥ Connect chips using the CBUS

Receive side [ingress] chip |CAMQEE= ek

Transmit side [egress] chip |<unnamed> j

ak. I Cancel

Development Tools User’s Manual 77

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.11 Packet Simulation

The Workbench provides packet simulation of Media bus devices as well as simulation of network
traffic. To simulate devices and network traffic you need to:

1. Configure the devices on the media bus using the System Configuration menu (or busses if
you have multiple Network Processor chips).
Thisinvolves specifying how many devices are on the bus aswell as the characteristics of each
device.

2. Create one or more data streams (see Section 2.12).
These streams can consist of, but are not limited to, Ethernet frames or ATM cells.

3. Assign one or more data streams or anetwork traffic DLL to each device port that you want to
receive network traffic.

4. Specify the options under which you want the traffic simulation to operate using the Packet
Simulation Options ... menu.
The Packet Simulation Options dialog box has four tabs:
General - (see Section 2.11.1).
Traffic Interface Logging - (see Section 2.11.2).
Stop Control - (see Section 2.11.3).
Traffic Assignment - (see Section 2.11.4).
Manage NTS Plug-ins - (see Section 2.11.5).

While you are running your simulation, you can observe the connections you have assigned to the
devicesthat you have created.

Packets won't be received until you execute the command line function
ps_start _packet _recei ve(). Thiscan be donein several ways:

— Go to the Command Line window and type the command
ps_start_packet_receive();
or

— Add the command

ps_start_packet_receive();
to one of your startup scripts at the point where you want packet reception to begin, or

Create a command script (see Section 2.13.7) with the command ps_start_packet_receive();, add

the command script’s button to the toolbar, then click the button when you want to start receiving
packets.

78 Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors
In ® Developer Workbench

Figure 22. Packet Simulation Options Property Sheet- General Tab

Packet Simulation Options x|

General | Traffic Interface Logging | Stop Cottrol | Traffic Azzignment | Manage MTS Plug-ins

v Fiun unbounded [full media bus speed, bypassing device bufers)

Select unitz for tranzmit/receive rates
¢ Megahitz per second [Mbps) at netwark, interface
" Megahits per second [Mbps) at media Bus
" Frames per second

" Media bus cycles per frame

[Update status window every IEDD microenging cycles

™ Use this seed for random selection: |1 OE2434732 Previous seed value: 1062434732

ak. I Cancel

2.11.1 General Options

In the Packet Simulation Options property sheet (see Figure 22), Under the General tab:

¢ Run unbounded (infinite wire speed).

Enable Run unbounded (infinite wire speed) to have data always ready to be received by the
Network Processor and to have the ports always ready to receive data from the Network
Processor.

This makes the simulation act asif datais coming from and going to the network at full
media bus speed, bypassing the receive and transmit buffer and ignoring the data rate and
interpacket gap values set for the port.

If this option is cleared, datais received from and transmitted to the network at the
specified data rate with an interpacket gap.

* The Select unitsfor transmit/receive rates section of the dialog box displays receive and
transmit rate data.

— Megabitsper seconds (M bps) at the network interface—this calculation includes extra
bits and bits that would have been processed in an interpacket gap.

— Megabits per seconds (M bps) at media Bus.

— Frames per second (fps).

Development Tools User’s Manual 79

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.11.2

80

— Media buscycles per frame—this represents the average number of cycles between
frames.

For ATM streams, a cell is considered to be aframe. For each port, the Workbench starts
counting cyclesfor the receiverate cal cul ation when the port asserts start-of-packet (SOP)
for the first packet received by the Network Processor after the user starts debugging or
resets statistics. For the transmit rate calculation, cycle counting starts when the port gets
start-of -packet (SOP) for the first packet transmitted by the Network Processor after the
user starts debugging or resets statistics.

* By selecting Update status window every xxx microengine cycles, the Workbench updates
the status at the specified interval while the simulation is running. By default, the Workbench
updates the data displayed in the window only when simulation stops.

* Usethisseed for random selection ... Previous value xxxxxxxxxx . You can force the
random selection generator to use the number used on the last simulation, or you can type a
new number. The number displayed isthe number last used. To keep the same seed value, click
the box.

When you have completed specifying all your options, click OK to apply your choices and dismiss
the dialog box or select another tab.

Traffic Interface Logging

Inthe Packet Simulation Options property sheet, click the Traffic I nterface L ogging tab in order
to specify whether and how the logging of received and transmitted packetsis to occur.

Logging is done on a per-port basis with receive and transmit logs being written to separate files.
Only complete packets are logged. This meansthat if you enable logging during simulation,
logging for aport will start when the next SOP occurs. Similarly, if you disable logging, any packet
that isin the process of being received or transmitted will not get logged. Packet simulation log
files are closed automatically when simulation stops. The log file is opened and appended to when
simulation resumes. Existing log files are automatically cleared when the first packet is logged
after debugging is started.

Development Tools User’s Manual

intel.

IXP2400/IXP2800 Network Processors
Developer Workbench

Figure 23. Packet Simulation Options Dialog Box (IXP2400 and IXP2800) - Traffic Interface
Logging

Packet Simulation Dptions x|

General Traffic Interface Logging | Stop Cc-ntrc-ll Traffic &ssignment I Manage MTS Plug-inz

General
[~ Enable logging [Log frame numbers [~ Logmedia bus cycle imes
for SOF and EQP
Select chip:
|<unnamed> j

Select traffic interface:
Device ID O [SPI4 Rx_«

Port 0
Puart 1
Part 2
Port 3
Part 4
Port 5
Port B
Part 7
Port 8
Part 9
Port 10
Part 11
Part12
Port 13

— Traffiz interface logging options
¥ Log the packets received by the chip thu this fraffic interface bo file:
IE:'\E:-:arane Designs<P200_B0\Devicel PortD_Rx.log |

[Logthe packets transmitted by the chip thnu this baffic interface to fils:

40 B

=

ak I Cancel |

If there is more than one chip in your system configuration, select the chip for which you want to
specify Traffic Interface Logging:

There are three general options available:

¢ Select or clear Enable L ogging to toggle whether packet logging occurs or not. Thisisa

global setting which determines whether the individual logging settings are in effect.

Select or clear L og frame number s to toggle whether or not frame numbers are logged along
with the packet data. If enabled, the frame number appears as the first item on aline. Frame
numbering starts when debugging is started, with the first packet received on a port and first
packet transmitted to a port being number 1. The numbers continue to increment regardless of
whether logging is enabled or not. So if you enable logging, disableit, then enableit again you
will see agap in the logged frame numbers.

Select or clear Log media bus cycletimesfor SOP and EOP to toggle whether or not to log
the cycle times at which the first byte and last byte of a packet are received or transmitted. If
enabled, the cycles times appear before the packet data on the line but after the frame number,
if Log frame numbersisalso selected.

If logging of both frame numbers and cycle times are enabled, the logged data looks like:
25 4387 4395 01010101010202020202...

Development Tools User’s Manual 81

IXP2400/IXP2800 Network Processors
Developer Workbench

2.11.3

82

To specify port-specific options, select a port from the list of devices and ports.

The options are:

intel.

¢ |If you want to get alog of packets received by the Network Processor to a port, select the port
and then select L og packetsreceived by the chip from thisport to file: and type afile path
in the box. You can browse to afile by clicking the [:] button to the right of the box. The
packet dataiswritten to the file in hexadecimal format with one packet per line.

¢ |f youwant to get alog of packetstransmitted by the Network Processor to aport, select, select
the port and then select L og packets transmitted by the chip to thisport tofile: and type a
file path in the box. You can browse to afile by clicking the [.-] button to the right of the box.
The packet datais written to the file in hexadecimal format with one packet per line.

When you have completed specifying all your options, click OK to apply your choices and dismiss
the dialog box or select another tab.

Stop Control

In the Packet Simulation Options property sheet, click the Stop Control tab in order to specify
whether and when you want simulation or packet reception to stop.

If there is more than one chip in your system configuration, select the chip for which you want to
specify stop control.

Figure 24. Packet Simulation Options (IXP2400 1XP2800) - Stop Control Tab

Packet simulation Options

General I Traffic Interface Logging Stop Control | Traffic Azzignment | Manage MTS Plug-ins

General

[Stop simulation if a receive overflow occurs

[Stop simulstion if a ransmit underflow occurs

Select chip:

Select traffic

Device ID O [SPI4 Fx

Part 0
Puart 1
Part 2
Port 3
Port 4
Part 5
Port &
Part 7
Port 8
Port 3
Part 10
Part 11
Part12
Port 13

— Device options

[Stop the simulation after the chip receives the nest I'I a packets thiu this device

[" Stop the simulation after the chip transmits e nest I packets thiu this device

— Traffic interface options

v Send packets to the chip thiu this traffic interface
[~ After the chip receives the next |1D packets thiu this traffic interface:

% Stop sending packets thiu this raffic interface to the chip
) Stap the simulation

(0] i s el s s st I— packets thru thiz traffic interface, stop the
7 it atiot

]

o]

Cancel

Development Tools User’s Manual

intel.

2114

IXP2400/IXP2800 Network Processors
Developer Workbench

There are two genera options. The options are:

* Enable Sop simulation if areceive overflow occur sto control whether or not the Workbench
stops the simulation when a receive overflow occurs.

¢ Enable Sop simulation if atransmit underflow occursto control whether or not the
Workbench stops the simulation when a transmit underflow occurs.

To specify device-specific options, select a device from the list of devices and ports. The options
are

¢ |f you want to stop the simulation after a specific number of packets are received by the
Network Processor from the selected chip, select Sop the simulation after the chip receives
the next nnn packets from this device and type the number of packetsin the box.

When the specified number of packets are received, the ssmulation stops and a message box is
displayed. If you continue the simulation from that point, it will again stop after the next nnn
packets are received.

¢ If you want to stop the simulation after a specific number of packets are transmitted by the
Network Processor to the selected device, select Sop the simulation after the chip transmits
the next nnn packetsto the device and type the number of packetsin the box.

To specify port-specific options, select a port from the list of devices and ports. The options are:

¢ If you want to enable the port to receive packets from the network, select Send packetsto the
chip from this port. Ports are always enabled to accept packets transmitted by the Network
Processor.

¢ |f you want to take action after a specified number of packets are received by the Network
Processor from the port, select After the chip receivesthe next nnn packetsfrom thisport:,
type the number of packetsin the box, then click Stop sending packetsfrom thisport to the
chip or click Sop the simulation.

¢ If you want to take action after a specified number of packets are transmitted from the
Network Processor to the port, select After the chip transmitsthe next nnn packetsto this
port:, click Stop the simulation and type the number of packetsin the box.

When you have completed specifying all your options, click OK to apply your choices and dismiss
the dialog box or select another tab.

Traffic Assignment

To assign traffic (formerly called Port Connections) select Packet Simulation Options and then
select the Traffic Assignment tab.

Receive side port connections:

If you connect adeviceto the receive side of achip, you can specify the datato be received by each
port in that device. A port is connected to the network processor on one side and to the 'network’ on
the other. Data comes into the port from the network and is placed into the port's receive buffer. To
effectively simulate a port's operation, network traffic must also be simulated. Input from the
network can either be simulated by the Workbench using data from streams or you can provide a
Network Traffic DLL that supplies the input data.

Development Tools User’s Manual 83

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

In the receive ports list, the Workbench displays the input that is assigned to each port configured
for the connected device. It shows either the name of the DLL that is to supply input datato the
port or the data streams assigned to supply input data. In the latter case, the method by which
packets are selected from the streams is shown in brackets after the stream names. If no input is
assigned, the areais blank.

Figure 25. Packet Simulation Options (IXP2400 and IXP2800) - The Traffic Assignment Tab

Packet Simulation Options) 5'

General I Traffic Interface Loggingl Stop Control - Traffic Assignment | Manage MTS FPlug-ins

Select chip: |<unnamed> 'l

— Receive devices r— Transmit device:

Azzign [nput... | Azzigh Dutput.. |

Traffic Interface Caonfiguration Traffic Interface Caonfiguration

Device D 0 [SPI4) Device D1 [C51)
Port 0 Port 0
Part 1
Port 2
Part 3
Port 4
Port &
Part B
Port 7
Part 8
Port 3
Fort 10

Part 11
Pt 17 hd

| »

Select template or agzign traffic manually abowve:

j ImpoltTempIate...l Create Template...l [elete Template |

ar. | Cancel

To assign the port input:
1. Select the port in the Receive Ports area of the Traffic Assignment property page.

2. Click the Assign Input... button.
The Assign Input to Port dialog box appears (see Figure 26).

84 Development Tools User’s Manual

IXP2400/IXP2800 Network Processors
In ® Developer Workbench

Figure 26. Assign Input to Port - DataStreams

Assign Input To Port 0 on Device O

" Noinput

& Get data from Mebwork Traffic Simulator: IDataStreams j

List of all data streams: Aszsigned streams:

Stream Mame | Stream Type | Stream Mame | Stream Type
D atastream | Ethemet IP Azsign - I D atastream | Ethemet IP
MetworkTraffic

| Ethemet TCPAP
Remaove |

Hows to zelect packets from stream(z]):

% Sequential, starting at packet |1

 Fandom

 Interleaved, starting at packet |1
oK I Cancel |

Figure 27. Assign Input to Port - Network Traffic

Assign Input To Pork 1 on Device O

" Nainput

& [Get data from Metwork Traffic Simulatar:

Part Configuration String
[optional, DLL-specific)

Ok, I Cancel

Select one of the radio buttons to set how you want to supply input datafor the port’s receive
buffer:

No input If you don’t want the port to receive any data.

Get data from Network Traffic Simulator

If you want the Workbench to get datafrom datastreams or your network
traffic simulator DLL.

If Datastreamsis selected (see Figure 26):

Development Tools User’s Manual 85

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

86

* All data streams associated with the project along with their type
aredisplayed in the List of all data streamslist box.

* The streamsthat are assigned to the port are displayed in the list
box labeled Assigned streams.

If auser-defined Network Traffic Simulator is selected (see Figure 27),
then an optional configuration string may be supplied.

To assign adatastream to the port:
1. Select thestreamintheList of all data streamslist box.

2. Click Assign.

The selected stream is added at the end of the assigned streams list. If a stream is already
assigned, it is not assigned again.

To deassign a stream:
1. Select the stream in the Assigned streamslist.

2. Click Remove.

In the How to select... area at the bottom right of the dialog box are controls that allow you to
specify the method by which packets are selected from the assigned streams to be received by the
port. When multiple streams are assigned, the Workbench treats them as one continuous sequence
of packets.

Click Sequential, Sarting at packet
If you want the packets to be selected sequentially from the stream(s).
You can specify which packet you want to be the first packet received by
the port. After the port receivesthelast packet in thelast assigned stream,
the Workbench wraps to the first packet in the first assigned stream.

Click Random If you want packetsto be selected at random from the assigned streams.
For ATM streams, the PDUs are selected at random but the ordering of
cellswithin the PDU is always maintained. For example, assume a
stream has five PDUs. If PDU#2 is selected, itsfirst cell will then be
placed into the receive buffer. The next time PDU#2 is selected, its
second cell is placed in the buffer, and so on, until al cellsin the PDU
are selected. Then thefirst cell is selected again

Click Interleaved, starting at packet
If you want interleaved cell selection for ATM streams. PDUs are
selected sequentially but only onecell inaPDU is selected at atime. For
example, assume an ATM stream has three PDUs, with PDU#1 having
one cell, PDU#2 having three cells and PDU#3 having two cells.

The packet selection sequence will be;
PDU#1 Cell#1
PDU#2 Cell#1
PDU#3 Cell#1
PDU#1 Cell#1
PDU#2 Cell#2
PDU#3 Cédll#2
PDU#1 Cell#1

Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors
In ® Developer Workbench

PDU#2 Cell#3
PDU#3 Cell#1
For non-ATM streams, the sequential and interleaved choices are identical.

When you have completed assigning streams and specifying the packet sel ection method, click
OK to apply your choices and return to the Traffic Assignment dialog box.

Transmit side port connections:

If you connect a device to the transmit side of a chip, you can specify what is to be done with
the data sent to the network by each port in that device. Output to the network can be thrown
away or you can provide a Network Traffic Simulator DLL that receives the transmitted data.

In the transmit portslist, the Workbench shows the name of the DLL that is assigned to receive
output from the port. If no DLL isassigned, the areais blank.

To assign port outpult:
1. Click the port in the Transmit Ports area of the Traffic Assignment property page.

2. Click the Assign Output... button.
The Assign Output from Port dialog box appears (see Figure 28).

Select how you want to process data taken out of the port’s transmit buffer:

¢ No output - If you don’t want to processit.

* Send datato Network Traffic Simulator - If you want the data passed to your network traffic
simulator.

Figure 28. Assign Output from Port

Assign Output From Port 0 on Device 1 ﬂ

' No output
% Send data to Mebwork Traffic Simulator | Metwork Traffic j

Part Configuration Sting | optional_part_configuration_string
[optional, DLL-specific]

oK I Cancel

Development Tools User’s Manual 87

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.11.5

Manage NTS Plug-ins

The Manage NTS Plug-instab is for managing Network Traffic Simulation plug-ins (see
Figure 29). You can create, edit, or delete a Network Traffic Simulator plug-in. A Network Traffic
Simulator consists of aunique name and aDLL file name for sending and/or receiving port traffic.

On the Simulation menu, click Packet Simulation, then click the Manage NT S Plug-ins tab and
the Manage NT S Plug-ins property page appears. This page contains the:
— Select Network Traffic Simulator Plug-in

A pulldown box that lists al know plug-ins, a Delete button for deleting an existing plug-
in, and an associated New... button that allows the user to add new plug-ins.

— RuntimeDLL (required)
The filename of the NTS Run-time DLL.

Figure 29. Manage NTS Plug-ins Property Page

Packet Simulation Options

General | Traffic Interface Logging | Stop Cortrol | Traffic Assignment Manage NTS Plug-ins |

Select Network Traffic: (e Delete | New... |
Sirmulatar Plug-in
Fiun-time DLL [-.A_SDK_3.1\me_tooks\bin'D ataStieams.d |

Configuration GUI DLL | |nitia|ize___|

[required)

[optional]

ar. I Cancel

88

Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors
In ® Developer Workbench

1. Toadd anew Network Traffic Simulator Plug-in click

the New... button and the Manage NT S Plug-in pop New NTS Plug=in x|
up appears. Specify the name and click OK. The Enter NTS o |
name then appearsin the Select Network Traffic |

DLL pulldown box. Cancel |

2. To specify the Run Time DLL, enter the path. or

click the [button to Browse for the filename.

The Network Traffic Simulator has now been plugged into the Workbench project and is available
for selection on the Traffic Assignment page.

2.115.1 Network Traffic Simulation DLLS

To simulate supplying datato a port or taking data from the port, you can provide a dynamic-link
library (DLL) called aNetwork Traffic Simulator Run-time DLL. You assign thisDLL to the input
and/or output side of a media bus device port (see Section 2.11.5).

A network traffic smulation (NTS) Run-time DLL must provide the following functions:
Initialize

Close

Reset

If the DLL is assigned to supply datato a port, then it must also have the following functions:
InitializeRxPort

GetNextByte

GetlnterpacketTime

GetReturnStatus

CloseRxPort

If the DLL is assigned to take data from a port, then it must also have the following functions:
InitializeTxPort

SendNextByte

CloseTxPort

If the DLL supports a port configuration string, then it must also have the following functions:

ConfigureRxPort
ConfigureTxPort

When you Start Debugging, if an NTSDLL isassigned to a port and the NTS DLL is not aready
loaded due to a previous assignment to another port, the PacketSim DLL loadsthe NTSDLL and
calsitsinitialize() function. Thisisthe only timethat thisfunction iscaled. In the
Initialize() functionthe NTSDLL can register console functions with the Transactor. You can
then call these functions from a script in order to configure your traffic simulation.

When the device model is connected to a chip model when debug is started, the NTSDLL iscalled
toinitialize each port. The PacketSim DLL iteratesthrough al the ports on every mediabus device.
If theNTSDLL isconnected to thereceive side of the port, thefunction i ni ti al i zeRxPort () is
called. If the NTSDLL is connected to the transmit side of the port, the function
InitializeTxPort() iscalled. The ConfigureRxPort and ConfigureTxPort functions
are called, if provided, to send the port configuration string into the NTSDLL.

Development Tools User’s Manual 89

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

Note: SeethefilePort Confi gDat a. h for the contents of the port configuration data structures that are
passed to these initialization functions.

Asthe simulation progresses, the PacketSim DLL callsfunction Get Next Byt e() whenever abyte
of datais required on areceive port. In addition to the byte of data, the NTS DLL must also return
aflag indicating whether the byte is the last byte (EOP) in the frame/cell. When the PacketSim
DLL receivesthelast byte, it will call the Get Ret ur nSt at us() function if you have provided
one. It also callsthe Get | nt er packet Ti me() function in order to determine how long it waits
before asking for thefirst byte of the next frame/cell. Thisallowsthe DLL to randomize the arrival
of frameg/cells.

On the transmit side, the PacketSim DLL callsthe function SendNext Byt e() when it takesabyte
of data out of the transmit buffer to be sent over the network. An EOP flag is asserted along with
the last bytein the frame/cell.

When the user presses Sop Debugging in the Workbench, or if thesi m reset command is
executed directly, the functions G oseRxPort () and d oseTxPort () arecalled for each
connected receive and transmit port, respectively. The Reset () functionisaso caled.

When the user closes the project or exits the Workbench, the function d ose() iscalledjust
beforethe NTSDLL isfreed.

A Visua C++ project which is an example of a network traffic simulation DLL can be found at:

... VI XA_SDK_3. 1\ ne_t ool s\ Sanpl es\ Net wor kTraf fic.

2.12 Data Streams

Data streams are used to simulate network traffic. To create and edit data streams:

1. Onthe Simulation menu, click Data Sreams....
The Data Sreams dialog box appears (see Figure 30).

2. Click the Create Sream ... button.
The Create Stream pop-up appears (see Figure 31).

You can create and edit the following data streams (see the following):

POSIP (see Section 2.12.1)
ATM AAL5 (see Section 2.12.2).
Custom Ethernet |P (see Section 2.12.3).
Ethernet IP (see Section 2.12.4).
Ethernet TCP/IP (see Section 2.12.5).
PPP TCP/IP (see Section 2.12.6

90 Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors
In ® Developer Workbench

Figure 30. Define Network Traffic - Data Stream Dialog Box

Define Metwork Traffic - Data Streams x|
Stream Mame # Frames | Type I Create Stream. .. I
D atastream 1 Ethernet IP :
Metwork Traffic 7 Ethemet TCP/IP Edit Stream... |

Drelete Stream |
Import Stream(s]... |
Copy Stream... |

Traffic Azsignment. .. |

Close |

Figure 31. Create Stream Pop-up

Create Stream ll

Shieam name ||

Stream wpe IF'DS IP j

Cantinue... I Cancel |

Data Stream Deletion:

To delete a data stream:

1. Onthe Simulation menu, click Data Streams....
The Data Streams dialog box appears (see Figure 30).

2. Click the data stream that you want to delete.
3. Click Delete Stream.

Note: The Workbench only deletes the data stream from the project, not from the folder. If you deletein
error, click Import Stream(s) to retrieve it.

Data Stream Import:

To import a data stream from a previously saved file:

1. Onthe Simulation menu, click Data Sreams....
The Data Streams dialog box appears.

2. Click Import Stream(s).

Development Tools User’s Manual 91

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

The Import Stream dialog box appears.
3. Browseto the desired folder and select one or more stream files (.strm).
4. Click OK to import the selected files.

Data Stream Copy:

Copying a data stream then editing the copy gives you aquick way to create anew data stream that
issimilar to an existing data stream.

To copy an existing data stream:

1. Onthe Simulation menu, click Data Sreams....
The Data Sreams dialog box appears.

2. Click the data stream that you want to copy.

3. Click Copy Stream.
The Sream Name dialog box appears.

4. Typethe name of the new data stream.

5. Click OK.
The Specify file... dialog box appears.

6. Select the folder where you want to save the stream.

7. Click OK.

The stream appears (or reappearsif you did not change the name) in the Data Streams dialog
box. It has all the characteristics of the stream copied.

Media Bus Device Port Assignment:

To assign data streams to configured Media Bus device ports:

1. Onthe Simulation menu, click Data Sreams....
The Data Sreams dialog box appears.

2. Click the data stream that you want to assign.

3. Click Port Connections...
The Connections tab of the Packet Simulation Configuration dialog box appears.
See Section 2.11 for more detailed information.

2.12.1 Creating and Editing a POS IP Data Stream

Create:

1. Onthe Simulation menu, click Data Sreams....
The Data Sreams dialog box appears.

2. Click Create Stream.
The Create Stream dialog box appears.

3. Typethe name of the stream in the Stream name box.
4. Select POSIP from the Stream type list.

92 Development Tools User’s Manual

IXP2400/IXP2800 Network Processors
Developer Workbench

Click Continue.
The Custom Header Size dialog box appears.

6. Typethe number of bytesto bein the custom header.
7. Click OK.

8.

The POS | P dialog box appears.
Type anew name in the Sream name box if you want to change it.

To create one or more frames:

© N o gk~ W DN

10.

11.
12.
13.
14.

Click Create Frame(s).

Click Custom Header.

Type the data for the custom header in the Custom header box.

Click IP Header (go to Section 2.12.9).

Click Data Payload (go to Section 2.12.11).

Specify the frame size in the Frame size (in bytes) area (see Section 2.12.12).
Type the number of frames you want to create in the Number of new... box.
Click Create.

The number of frames you specified are created and added to the data stream. The dialog box
remains active so you can change settings and create additional frames.

When you are finished creating frames click Close.

When you are finished creating the data stream, click OK.
The Save dialog box appears.

Type in the file name if you want to change it.
Browse to the folder where you want to save thefile.
Click Save.

In the Data Sreams dialog box, click OK.

Edit:

To edit a POS I P data stream:

1

On the Simulation menu, click Data Streams....
The Data Streams dialog box appears.

2. Select stream that you want to edit.
3. Click Edit Stream.

The POS P Data Stream dialog box appears.

4. Click Create Frame(s) to create a new frame.
5. Click Edit Frame(s) to edit the:

— PPP Header
— IP Header (go to Section 2.12.9)
— Data Payload (go to Section 2.12.11)

Development Tools User’s Manual 93

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.12.2

94

6.
7.
8.

Click Delete Frame to delete the selected frame.
Click the Up and Down arrows to change the order of the frames.
Click OK when done.

Creating and Editing an ATM Data Stream

An ATM Protocol Data Unit (PDU) comprises the unsegmented components of ATM data:

The ATM Header

e AnAALS5trailer

An optional LLC/SNAP header
An | P packet payload

Creation:

To create an ATM stream:

1

On the Simulation menu, click Data Sreams....
The Data Sreams dialog box appears.

Click Create Stream....
The Create Steam dialog box appears.

3. Typethe name of the ATM stream in the Stream name box.
4. Select ATM from the Stream typelist.

5. Click Continue.

The ATM Sream dialog box appears.

To create aPDU:

1

Click Create PDU(s).
The Create AALS5 PDU dialog box appears.

Type the values you want for the ATM header.

This header is prepended to each segmented ATM cell. If you select Automatic for PTI, then
the box will contain zero for all cells except for the last one, in which the box will contain a
one.

For RFC1483 options, you can select L L C/SNAP, which prepends a header to the packet
data, or VCMUX, which does not prepend a header. The optional header plus the packet data
constitute a CS-DSU information box. Currently, an AALS trailer is always appended to the
CS-DSU information box.

If you want to encapsulate asingle IP packet, click the Single Packet option.
— Click IP Header to specify the fields of the |P header (see Section 2.12.9),
— Click Data Payload to specify the data payload for the IP packet (see Section 2.12.11).

If you want to encapsulate a pool of packets, click the M ultiple packets from pool option.
Select a packet pool from the list of available pools.

6. Toimport apreviously created packet pool, click Import Pool.

To create anew pool, click Create Pool.

Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors
In ® Developer Workbench

The I P Packet Pool dialog box appears. Go to Section 2.12.7 to create the | P packet pool.
8. Click Create Packet(s) to create a PDU(s) for each packet in the selected pool.

9. Click IP Header to specify IP Header information (see Section 2.12.9).

The created PDUs are added to the ATM data stream. The dialog box remains active so you
can change settings and create additional PDUs.

10. Specify the frame size in the Frame size (in bytes) area (see Section 2.12.12).
11. When you are finished creating PDUSs, click Close.
12. When you are finished creating the data stream, click OK.

Edit:

To edit an ATM stream:

1. Onthe Simulation menu, click Data Streams....
The Data Streams dialog box appears.

2. Select an ATM stream that you want to edit.

3. Click Edit Stream.
The ATM Stream dialog box appears.

4. Hereyou can:
— Edit PDUs (similar to creating—see previous section).
— Delete aPDU by selecting the PDU and clicking Delete PDU.
— Change the order of the PDUs using the Up or Down arrows.
5. Click OK when done.

2.12.3 Creating and Editing a Custom Ethernet TCP/IP Data
Stream

Create:

1. Onthe Simulation menu, click Data Streams....
The Data Sreams dialog box appears.

2. Click Create Stream.
The Create Stream dialog box appears.

3. Type the name of the stream in the Sream name box.
4. Select Custom Ethernet TCP/IP from the Stream type list.

5. Click Continue.
The Custom Header Size dialog box appears.

6. Type the number of bytesto bein the custom header.

7. Click OK.
The Custom Ethernet TCP/IP Data Stream dialog box appears.

8. Type anew name in the Sream name box if you want to changeit.

Development Tools User’s Manual 95

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

96

To create one or more frames:

1

© © N o g s~ W D

10.
11.

12.
13.
14.
15.

Click Create Frame(s).

Click Custom Header.

Type the data for the custom header in the Custom header box.

Click Ethernet Header (go to Section 2.12.8).

Click I P Header (go to Section 2.12.9).

Click Data Payload (go to Section 2.12.11).

Specify the frame size in the Frame size (in bytes) area (see Section 2.12.12).
Type the number of frames you want to create in the Number of new... box.
Click Create.

The number of frames you specified are created and added to the data stream. The dialog box
remains active so you can change settings and create additional frames.

When you are finished creating frames click Close.

When you are finished creating the data stream, click OK.
The Save dialog box appears.

Typein the file name if you want to changeit.
Browse to the folder where you want to save thefile.
Click Save.

In the Data Sreamsdialog box, click OK.

Edit:

To edit a Custom Ethernet TCP/IP data stream:

1

On the Simulation menu, click Data Sreams....
The Data Sreams dialog box appears.

2. Select stream that you want to edit.
3. Click Edit Stream.

The Custom Ethernet TCP/IP Data Stream dialog box appears.
Click Create Frame(s) to create a new frame.

5. Click Edit Frame(s) to edit the:

— Custom Header

— Ethernet Header (go to Section 2.12.8)
— IP Header (go to Section 2.12.9)

— DataPayload (go to Section 2.12.11)

6. Click Delete Frame to delete the selected frame.
7. Click the Up and Down arrows to change the order of the frames.
8. Click OK when done.

Development Tools User’s Manual

intel.

IXP2400/IXP2800 Network Processors
Developer Workbench

2.12.4 Creating and Editing an Ethernet IP Data Stream

Create:

1

On the Simulation menu, click Data Streams....
The Data Streams dialog box appears.

Click Create Stream.
The Create Stream dialog box appears.

3. Type the name of the stream in the Stream name box.
4. Select Ethernet | P from the Stream typelist.

5. Click Continue.

6.

The Ethernet | P Data Stream dialog box appears.
Type anew namein the Sream name box if you want to changeit.

To create one or more frames:

N o gk~ D

Click Create Frame(s).

Click Ethernet Header (go to Section 2.12.8).

Click IP Header (go to Section 2.12.9).

Click Data Payload (go to Section 2.12.11).

Specify the frame size in the Frame size (in bytes) area (see Section 2.12.12).
Type the number of frames you want to create in the Number of new... box.
Click Create.

The number of frames you specified are created and added to the data stream. The dialog box
remains active so you can change settings and create additional frames.

8. When you are finished creating frames click Close.
9. When you are finished creating the data stream, click OK.

The Save dialog box appears.

10. Typein the file nameif you want to changeit.

11. Browseto the folder where you want to save thefile.
12. Click Save.
13. In the Data Streams dialog box, click OK.

Edit:

To edit an Ethernet | P data stream:

1

On the Simulation menu, click Data Sreams....
The Data Streams dialog box appears.

2. Select stream that you want to edit.

Click Edit Stream.
The Ethernet | P Data Stream dialog box appears.

Click Create Frame(s) to create a new frame.

Development Tools User’s Manual 97

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

5. Click Edit Frame(s) to edit the:
— Ethernet Header (go to Section 2.12.8)
— |IP Header (see Section 2.12.9)
— Data Payload (go to Section 2.12.11)
6. Click Delete Frame to delete the selected frame.
7. Click the Up and Down arrows to change the order of the frames.
8. Click OK when done.

Note: The Workbench puts afour byte CRC value at the end of each packet which isincluded in the byte
count.

2.12.5 Creating and Editing an Ethernet TCP/IP Data Stream

Create:

1. Onthe Simulation menu, click Data Sreams....
The Data Sreams dialog box appears.

2. Click Create Sream.
The Create Stream dialog box appears.

3. Typethe name of the stream in the Stream name box.
4. Select Ethernet TCP/IP from the Stream typelist.

5. Click Continue.
The Ethernet TCP/IP Data Stream dialog box appears.

6. Type anew name in the Stream name box if you want to change it.

To create one or more frames:
1. Click Create Frame(s).
Click Ethernet Header (go to Section 2.12.8).
Click IP Header (go to Section 2.12.9).
Click TCP Header (go to Section 2.12.10).
Click Data Payload (go to Section 2.12.11).
Specify the frame size in the Frame size (in bytes) area (see Section 2.12.12).
Type the number of frames you want to create in the Number of new... box.

Click Create.

The number of frames you specified are created and added to the data stream. The dialog box
remains active so you can change settings and create additional frames.

O N o g bk~ w DN

9. When you are finished creating frames click Close.

10. When you are finished creating the data stream, click OK.
The Save dialog box appears.

11. Typein the file nameif you want to change it.

98 Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors
In ® Developer Workbench

12. Browse to the folder where you want to save thefile.
13. Click Save.
14. In the Data Streams dialog box, click OK.

Edit:

To edit an Ethernet TCP/IP data stream:

1. Onthe Simulation menu, click Data Streams....
The Data Streams dialog box appears.

2. Select stream that you want to edit.

3. Click Edit Stream.
The Ethernet TCP/IP data Stream dialog box appears.

4. Click Create Frame(s) to create a new frame.
5. Click Edit Frame(s) to edit the:
— Ethernet Header (go to Section 2.12.8)
— TCP Header (go to Section 2.12.10)
— IP Header (go to Section 2.12.9)
— Data Payload (go to Section 2.12.11)
6. Click Delete Frame to delete the selected frame.
7. Click the Up and Down arrows to change the order of the frames.
8. Click OK when done.

2.12.6 Creating and Editing a PPP TCP/IP Data Stream

Create:

1. Onthe Simulation menu, click Data Streams....
The Data Streams dialog box appears.

2. Click Create Stream.
The Create Stream dialog box appears.

3. Type the name of the stream in the Sream name box.
4. Select PPP TCP/IP from the Sream typelist.

5. Click Continue.
The PPP TCP/IP Data Stream dialog box appears.

6. Type anew namein the Sream name box if you want to changeit.

To create one or more frames:
1. Click Create Frame(s).

2. Click PPP Header. Type the Protocol value and click either 8 bit protocol or 16 bit protocol.
Enable Include Address and Include Control fields

3. Click IP Header (go to Section 2.12.9).

Development Tools User’s Manual 99

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

© © N o g &

10.
11.

12.
13.
14.
15.

Click TCP Header (go to Section 2.12.10).

Click Data Payload (go to Section 2.12.11).

Click PPP Trailer

Specify the frame sizein the Frame size (in bytes) area (see Section 2.12.12).
Type the number of frames you want to create in the Number of new... box.

Click Create.

The number of frames you specified are created and added to the data stream. The dialog box
remains active so you can change settings and create additional frames.

When you are finished creating frames click Close.

When you are finished creating the data stream, click OK.
The Save dialog box appears.

Typein thefile name if you want to change it.
Browse to the folder where you want to save thefile.
Click Save.

In the Data Streams dialog box, click OK.

Edit:

To edit a PPP TCP/IP data stream:

1

On the Simulation menu, click Data Sreams....
The Data Sreams dialog box appears.

2. Select stream that you want to edit.
3. Click Edit Stream.

The PPP TCP/IP Data Stream dialog box appears.

4. Click Create Frame(s) to create a new frame.
5. Click Edit Frame(s) to edit the:

— PPP Header

— TCP Header (go to Section 2.12.10)
— |P Header (go to Section 2.12.9)

— Data Payload (go to Section 2.12.11)
— PPP Trailer

6. Click Delete Frame to delete the selected frame.

7. Click the Up and Down arrows to change the order of the frames.
8. Click OK when done.

100

Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors
In ® Developer Workbench

2.12.7 Creating an IP Packet Pool

Inthe ATM data stream, you can create |P Packet Pools. Do the following:
1. Create an ATM data stream.
2. CreateaPDU.

3. Inthe Create AALS5 PDU dialog box, click Multiple packets from pool in the lower-left
corner.

4. Click Create Pool.
The | P Packet Pool dialog box appears.

5. Click Create Packet(s).
The | P Packet dialog box appears.

6. Click IP Header (see Section 2.12.9).

7. Click Payload (see Section 2.12.11).

You can specify afixed packet size or, if you are creating multiple packets, asize which is
randomly selected from within a specified range or which isincremented within a specified
range.

8. Specify the number of packets you want to create
9. Click Create.

The created packets are added to the pool. The dialog box remains active so you can change
settings and create additional packets.

10. When you are finished creating packets, click Close.

To delete a packet:
1. Click the packet you want to delete.
2. Click Delete Packet.

To edit a packet:
1. Click the packet you want to edit.
2. Click Edit Packet.

To change the order of the packets:
1. Click a packet.
2. Click the up or down arrow buttons to move the frame up or down in the list.

When you are finished creating the packet pool:

1. Click OK.
The Specify File... dialog box appears.

2. Browseto the folder where you want to store the file.
3. Typethe name of the filein the File Name box.
4. Click Save.

The packet pool that you just created appearsin the Select packet pool... box.

Development Tools User’s Manual 101

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

5. Click on the name of the pool.
6. Click Create.

7. If done, click Close.
The ATM Stream dialog box appears.

8. Click OK.

2.12.8 Specifying an Ethernet Header
1. Create an Ethernet |P data stream (see Section 2.12.4) or an Ethernet TCP/IP data stream (see
Section 2.12.5).
2. Inthe Ethernet |P Data Sream dialog box, click Create Frames.
3. Click Ethernet Header.

4. Enter valuesdirectly into the boxes.

If you are creating multiple frames and want each frame to have a different value for the
destination or source MAC address, click Advanced next to the appropriate address box.

The Specify how you want... dialog box appears. It displays options for generating MAC
addresses.

— Click Fixed if you want al frames to have the same address.
— Click From within range if you want addresses chosen from a range which you specify.

— Click Sequential to have addresses chosen sequentially from within the range, starting
within the range’s lower bound.

— Click Random for random selection of addresses from within the range.
— Click From list if you want addresses chosen from alist that you specify.

— Click Sequential to have addresses chosen sequentially from the list, starting within the
first addressin the list.

— Click Random for random selection of addresses from the list.

— To add an address to the list either click the |22 button or double-click beneath the last
addressin the list, enter the address value and pressing ENTER.

— To delete an address from the list, select it, then click the [*] button.
— To move an address up or down in the list, select it and click the [#] or the [¥] button.

Thelist of addressesis saved in the Windows registry, so it is available during future Workbench
sessions.

2.12.9 Specifying an IP Header
1. Create an Ethernet |P data stream (see Section 2.12.4) or an Ethernet TCP/IP data stream (see
Section 2.12.5).

2. Inthe Ethernet |P Data Sream dialog box, click Create Frames.
The Create frame(s) dialog box appears.

3. Click |IP Header.

102 Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors
In ® Developer Workbench

4. Enter values directly into the boxes.

— If you want the packet length to be automatically computed based on the length of the
encapsulated payload, select Computed next to the Packet length box. Otherwise, the
value you enter will be used without modification.

— If you want the header checksum to be automatically computed, select Computed next to
the Header checksum box. Otherwise, the value you enter will be used without
modification.

— If you are creating multiple frames and want each frame to have a different value for the
Sourcel P address or Destination | P address, click Advanced next to the corresponding
address box.

The Specify how you want... dialog appears.
In the Frame size (in bytes) area:

— Click Singleif you want all frames to have the same address then specify the address.

— Click From within range if you want addresses chosen from a range which you specify.
To have addresses chosen sequentially from within the range, starting within the range’'s
lower bound, click Sequential. For random selection of addresses from within the range,
click Random.

— Click From list if you want
addresses chosen from alist
that you specify. dedr

— To add an addressto thelist,
enter the address in the box to the right of the list then click Add Address.

— To delete an address from the list, select it then click the 21 button.
— To move an address up or down in thelist, select it and click the [] or the[¥] button.

— To have addresses chosen sequentially from the list, starting within the first address in the
list, click Sequential.

— To have addresses chosen randomly from the list, click Random.

£ From list ist:
| x|+ Enter IP address to be added ta list:
| .2 04 7

2.12.10 Specifying a TCP Header
1. Create an Ethernet TCP/IP data stream (see Section 2.12.5) or a PPP TCP/IP data stream (see
Section 2.12.6).
Inthe Ethernet | P Data Stream dialog box, click Create Frames.
Click TCP Header.
Enter values directly into the boxes.

g > w DN

If you want the checksum to be automatically computed, select Computed next to the
Checksum box. Otherwise, the value you enter will be used without modification.

2.12.11 Specifying a Data Payload

1. Create or edit a data stream of any type containing frames.

2. Click the Data Payload button to display the options for specifying the data payload for a
frame.

Development Tools User’s Manual 103

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.12.12

2.13

104

3. Select apattern from the Fill pattern list.

4. If you select an incrementing or decrementing pattern, you can specify the starting value for
the fill operation in the Hex starting value box.

5. If you are creating multiple new frames you also have the option of having the incrementing or
decrementing span the set of frames being created. For example, if the first frame is created
with data 00 01 02... 4f, the second frame will have data 50 51 52..., and so on.

6. If you are editing an existing frame, you can choose to edit the data directly by clicking
Custom Data, then editing the data fields within the box.

Specifying Frame Size

Specify afixed frame size or, if you are creating multiple frames, a size which is randomly or
incrementally selected from within a specified range.

To do this:
1. Create or edit a data stream of any type containing frames.

2. Inthe Create Frame(s) dialog box, go to the Frame size (in bytes) area and do one of the
following:

— Click Fixed and type the frame size in the Fixed box.
— Click Random and type the from and to values in the boxesto theright.
— Click Increment and type the from and to values in the boxes to the right.

Debugging

Using the Workbench, you can debug microcode either in Simulation mode or in Har dware mode
(using the Devel opment platform or compatible hardware).

When in Simulation mode, the Transactor provides debugging support to the Workbench. In
Hardware mode, the Microengine Debug Library (debug_2000.a) running as part of an Intel
XScale® core application program communicates with the Workbench and relays debugging
operations between the Workbench and the Microengines. The application may either beonethat is
supplied with the Development Platform or one that is independently developed.

The Workbench menus and toolbar selections provide the following capabilities:
* Set breakpoints and control execution of the microcode.
* View source code on a per-thread basis.
¢ Display the status and history of Microengines, threads, and queues.

* View and set breakpoints on data, registers, and pins.
Some of the debugging operations are either disabled when debugging in Hardware mode or
available in alimited fashion. The descriptions in the sections that follow include any limitations

that apply in Hardware mode. Table 1 summarizes which debugging features are available in
Hardware and Simulation modes.

Development Tools User’s Manual

In

Table 1.

Note:

IXP2400/IXP2800 Network Processors

Simulation and Hardware Mode Features

Feature

Simulation

Hardware

System Configuration

Starting and Stopping Debug

Command Line Interface

Script Files

Command Scripts

X | X | X| X

Thread Windows

« Display Microword Address

¢ Instruction Markers

¢ View Instructions

Run Control

Xl

Breakpoints

xl

Examine Registers

X | X| X| X| X[X

Watch Data

¢ Enter New Data Watch

¢« Watch CSRs and Pins

Xl

¢ Watch GPRs and XFER

« Deposit Data

Xl

Watch Memory

« Break on Data Change

Performance Statistics

Execution Coverage

Thread History

Queue History

Queue Status

Thread Status

Packet Simulation Status

X | X| X[X| X[X| X|X|X]| X|X]|X|X

NOTES:1.With restrictions.

Developer Workbench

When debugging a mixed C and assembler microengine, the thread window and execution
coverage windows can toggle between source file view and list file view. When the source file
view is showing the user-written assembler code, the popup context menu for the thread window
does not contain the “ Set Data Watch for...” options, and datatips are not available. The user must
toggleto list file view in order to establish data watches and perform datatips. Thisrestrictionis
caused by the fact that the debug data generated for the user-written assembler code has no block
scope data; hence the debug data register names are mangled to make them unique within the

global scope

Development Tools User’s Manual

105

IXP2400/IXP2800 Network Processors

Developer Workbench

The Workbench supports debugging in four different configurations:

Mode

Foreign
Model

IXP2400 and IXP2800

Comments

Local Simulation

None

Default. No special setup necessary.

The Workbench and the simulator
(Transactor) both run on the Windows
platform.

Local Simulation

Local

See Section 2.13.1

The Workbench, the Transactor and
the foreign model Dynamic-Link
Libraries all run on the same Windows
platform.

Local Simulation

Remote

See Section 2.13.1

The Workbench and the Transactor
both run on the same Windows
platform and communicate over the
network with a foreign model running
on a remote system.

Hardware

None

N/A

The Workbench runs on a Windows
host and communicates over a network
or a serial port with a subsystem
containing an actual network
processor.

2.13.1

Local Simulation Debugging with a Local Foreign Model

The IXP2400 and | XP2800 Transactors support connecting multiple foreign model DLLs. The
Workbench allows you to specify an unlimited list of DLL file paths for foreign model DLLs. For
each DLL, you can specify an unlimited number of instantiations.

To specify the dynamic-link libraries that contain your foreign models:

1. Onthe Simulation menu,

click Options.

The Simulation Options

dialog box appears.

2. Click the Foreign Model

tab.

3. Click the [5-:
insert the path to your DLL.

4. Typeinthe complete path,

or

Click the [button to

browse for thefile.

When the path is set up, you

must specify at least one

instance.

button to

Specify the dynamic-link. libraries [DLL] that contain your foreign models:

| Fareign Model DLLs:

C:A\Casting\bin\Debug Foreignbodel dll

Specify one or more Instances for the selected foreign model

H| Instance Mame | Prority Inihialization Sting
1 | receive 1 receives]
2 | transmit 2 receive=0

5. Double-click the blank cell

under I nstance Name.

106

Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors
In ® Developer Workbench

Type the name of thefirst instance and press ENTER.The name distinguishes thisinstantiation
when executing commands from the command line from an instantiation executing from a
script.

6. Do the samefor Priority.
The priority can be any positive integer.
The priority determines the order in which the Network Processor model calls the
instantiations for the initialize, pre-simulation, post-simulation, and other callbacks. The
instantiation with the highest priority number is called first, the next highest is called next, and

so on. If more than one instantiation has the same priority number, the order among them is
arbitrary.

7. You may or may not need to type avalue under Initialization String. It depends on the
requirements of the DLL.

8. Specify as many instances as you wish for the DLL.

When you have finished specifying the DLL path and instances, you can then specify as many
additional DLLs asyou like. Just remember that each DLL must have at |east one instance.

2.13.1.1 Local Simulation Debugging with a Remote Foreign Model

Running 1XP2400 or I XP2800 network processors using a remote foreign model is the same as
running them with alocal foreign model because the DLL controls the location of the foreign
model. Use the procedure in Section 2.13.1 and make sure that the PortMapper is running (see
Section 2.13.1.3).

2.13.1.2 Hardware Debugging

To debug hardware, you must specify how to connect to the subsystem(s) containing the network
processor.
1. Onthe Debug menu, select Hardware.

2. On the Hardware menu, click Options.
The Hardwar e Options dialog box appears.

Hardware Options x

3. Click the Connections tab. Connections | Gaiun |
Select chip:
4. Select achip from the Select a chip list box.
5. Enable the type of connection to the selected
chip by clicking on the appropriate button:
3 . Select how pou want the Workbench to cannect to the chip:
— No Connection - If you have multiple & Ho Cannection

chipsin your project, you can specify that Connact using Wiworks WT

one or more not be connected. However,)

at least one must be connected @ BB

. Specify node name or [P address: I
— Connect using VxWorksWTX - You

must specify the name of the server where
the hardware is located.

— Connect via Ethernet - You must specify the name of the node (1P address) where the
hardware is located.

Development Tools User’s Manual 107

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.13.1.3

Note:

2.13.2

2.13.3

2.13.3.1

108

Note:

Portmapper

Portmapper is automatically installed as part of the IXA SDK installation process. To ensure that
Portmapper isinstalled and running:

1. Onthe Window’stask bar, click Sart, point to Settings, and then click Control Panel.
2. Double-click Administrative Tools, and then double-click Services.

3. Look for the IXP2000 Portmapper. It should indicate that it has been “ Started”.

4. If itisnot running, select I XP2000 Portmapper, right-click and then click Start.

The executableisinstaled as C:\I XA_Portmapper\portmapper.exe.

Starting and Stopping the Debugger
Starting:
To enter debug mode:

On the Debug menu, click Sart Debugging, or
PressF12, or

Click the E‘ button.

Once the debugger begins, you can interact with it through the command line window and by using
the Debug menu and toolbar selections that become activated. (See Table 9 and Table 11.)

Stopping:

To exit debug mode:

* On the Debug menu, click Stop Debugging, or
Press CTRL+F12, or

Click the button.

Project debug settings such as breakpoints are automatically saved in a debug options file (.dwo)
when you save a project.

Changing Simulation Options

Marking Instructions

You can select how instructions are marked in athread window when athread execution is stopped,
such as at a breakpoint (see Figure 32).

To modify the instruction marker:
1. Onthe Simulation menu, click Options.
2. Click the Markerstab.

For more information on thread windows, see Section 2.13.8.

Development Tools User’s Manual

intel.

By default, the stage 4 instruction is marked as the current instruction. It is highlighted by

IXP2400/IXP2800 Network Processors

Developer Workbench

horizontal black lines above and below it. The thread window is automatically scrolled so that the
current instruction marker is visible when execution stops.

If the line containing the current instruction is displayed, then the instruction marker pointstoit. If
the lineis hidden because it isin a collapsed macro, then the instruction marker pointsto the line

containing the collapsed macro.

You can optionally choose to have multiple instructions marked in addition to the current
instruction when thread execution stops. The Workbench marks any combination of instructions
that are in one of the 6 pipeline stages. To add the stages you want marked, click the appropriate

check boxes in the Markers tab.

Figure 32. Marking Instructions for the Network Processor

Simulation Options : x|
- selit:
Markers | Caolars I Startupl Foreign Modell Historyl 2 br [==1f#]
ills:
Select the pipeli hose i ons e :
ot wark ke n hrsad windowe, S 3 | ctx_arb[kill]. or
™ Stage O [Fetch instruction]
™ Stage 1 [Fetch instruction]
™ Stage 2 [Decode instruction] SEl f # .
™ Stage 3 [Fead operands] 2]:\I" [== l f #]
¥ | Stage 4 [Execute instuction] kl l l# .
™ Stage 5§ [white results] m § .
ctx_arb[kill]. or
Mote: The thread histary always treats stage 4 as containing
the ‘current’ instruction, so it is always marked.
oK I Cancel
For more information on instruction markers, see:
Section 2.13.3.2, “Changing the Colors for Execution State”
Section 2.13.8.9, “Instruction Markers’
Section 2.13.8.10, “Viewing Instruction Execution in the Thread Window”
109

Development Tools User’s Manual

IXP2400/IXP2800 Network Processors
Developer Workbench

2.13.3.2 Changing the Colors for Execution State

To customize the colors used to indicate the execution state:
1. Onthe Simulation menu, click Options.
The Simulation Options dialog box appears.
2. Click the Colorstab.

3. Sdlect the color for each execution state using the
corresponding list.
For more color options, click Other. Select the color you
want and click OK.

4, Click OK when done.

intel.

Instruction aborted

Thread stalled ---I_
Microengine |dle I_I_I_I_
N

Thesze colors are usec
the thread hiztory lines --I_I_

— Execution state colors
Instruction executing II!

inztiuction marker arc Other I

Note: The execution state colors are used for both the Pipe Stage markers and for the thread history lines.

2.13.3.3 Initializing Simulation Startup Options

When you are debugging in Simulation mode, the Transactor and its hardware model must be

initialized before you can run microcode.

1. Onthe Simulation menu, click Options.
The Simulation Options dialog box appears.

2. Click the Sartup tab.

This property page specifies how the Workbench behaves when you start debugging and when you

reset the simulation.
Startup Scripts:

To have the Workbench execute one or more scripts at

startup after initialization: Scripts to be ewecuted when debugging iz started:

x|+]

1. Onthe Sartup tab, click Add Script(s).
The Add Startup Scripts dialog box appears.

2. Select the script(s) that you want executed at
startup.

pfwd1B_bi_min_[212.ind

Add Scriphz)... |

110

Development Tools User’s Manual

intel.

2.13.34

IXP2400/IXP2800 Network Processors
Developer Workbench

Note that the scripts must be part of your
project (in the Script File folder) to appear in x|

thislist. Otherwise thelist is blank.
Select which zcrpts you want to be

3. Click OK when done. executed when debugging iz started:

init_all_fboxes.ind - Cancel |

mem_map.h
gen 1213.ind

The Workbench executes the scripts in the order
in which they appear in the Scriptsto be
executed when debugging is started box. You
can change the order in which scripts are
executed by selecting the script and using the Up
and Down arrow buttons. You can delete a script
from the list with the Delete button.

pfwd_perf.ind
pfwd16_bi 51Zind
pfuwdl6 bi Bd.in

ipfwd] B bimas.ind
plwd1E_bi_mir.ind LI

PN & I o T N £ T L TN |

Using Imported Variable Data

The user can defer the specification of integer values used by the microcode until load time by
using the .import_var directivein the assembler or the L oadTimeConstant() function in the
Microengine C compiler. These define avariable that can then be associated with an integer value
at load time. On hardware, this association is done by an Intel X Scale® application. In simulation,
this association is done through an imported variable data (.ivd) file that gets processed by the
loader.

The user specifies the path for the .ivd file using the consol e function, loadl mportVar Data(),
which is defined by the loader. This function must be called before the load _uof() console function
iscalled

The Workbench allows the user to specify the .ivd file as one of the simulation startup options. If
the user selects Options from the Simulation menu then selects the Startup tab, the property page
shown in Figure 33 appears. If the user specifies an ivd file, the Workbench automatically invokes
the loadlmportVarData() console function at the appropriate time in the startup sequence.

The Workbench also allows the user to specify the .ivd file as one of the hardware startup options.
If the user selects Options from the Har dwar e menu then selects the Startup tab, the property
page shown in Figure 34 appears. When the user clicks Start Debugging in hardware mode, the
Workbench opensthe .ivd file. Asit isloading microcode into achip, it parses the .ivd file and
sends the lines that pertain to that chip to the loader. Note that if the user selects the Hardware
option to assume that the microcode is aready |oaded, then the imported variable datais not sent to
the loader.

The .ivd fileisan ASCII file with one variable defined per line. The format of each lineis
chip_nameimage_name symbol value
Wherethe values are:

¢ chip_name isthe name of the chip and must not contain any whitespace. An empty chip name
must be specified by two double quotes ("").

¢ image _nameisthe name of the UOF image, by default the list-file without directory or type.
The string must be enclosed within double quotesif it contains any whitespace.

¢ symbol isthe name of the imported variable. No embedded whitespace is allowed.
¢ valueistheinteger valueto assign to theimported variable.

Development Tools User’s Manual 111

IXP2400/IXP2800 Network Processors u
Developer Workbench In

Figure 33. Using Imported Variable Data at Startup in Simulation Mode

Simulation Options x|

Markers | Colors Startup | Foreign Madel | Histam |

Select scripts to be erecuted when debugging is started:

| RdEIET

Add Script(z]...

¥ Define values for imported variables using the this fils [%):

| -

[¥] optional, only required if wariables are being imported using
the .impaort_war directive or the __LoadTimelConstant(] function.

Ok, | Cancel

Figure 34. Using Imported Variable Data at Startup in Hardware Mode

Hardware Options x|

Connections Startup |

Select which action you want the ' orkbench to take when it
cohnects o the hardware:
* Reset the microengines and load the microcode.

€ Azsume microcode is alieady loaded and microengines are running.
[Don't rezet the microengines and don't load the microcode. |

v Define values for imported variables using the this file [;

I.\impolted\r"ars.ivd _I

[¥] optional, only required if vanables are being imported uzing
the .impart_twar directive or the _LoadTimeConstant]] function.

ak. I Cancel

112 Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors

In ® Developer Workbench

2.13.4 Exporting the Startup Script
To create atext file containing all the commands that the Workbench sends to the Transactor during
simulation startup:

1. Onthe Simulation menu, click Export Startup Script.
The Export Simulation Start Script dialog box appears.

2. Browseto the folder to save thefile.
3. Typethe name of the script file in the File name box.
4. Click Save.

The default .ind file extension for script filesis added to the name that you typed. See
Section 2.5.9.1 to insert the script file into the project.

2.13.5 Changing Hardware Options

2.135.1 Specifying Hardware Startup Options

To specify whether or not the Workbench loads microcode when hardware debugging is started:

1. Onthe Hardware menu, click Options.
The Hardwar e Options dialog box appears.

2. Click the Startup tab (see Figure 34).

3. Select or clear the action that you want the Workbench to take when it connects to the
hardware:
— Reset the microengines and load the microcode

This option causes the Workbench to reset the Microengines and then load microcode into
all the assigned Microengines. The Microengines are left in a paused state from which you
can start or step them.

— Assume microcode is already loaded and microenginesare running. (Don’t reset the
microengines and don’'t load the microcode.)

This option causes the Workbench to connect only to the debug library on the Intel
XScale® core. The M icroengines are not affected in any way. Thiswould be useful if you
want to connect to arunning system to examine its state.

4. Click OK.

If you choose not to have the Workbench load microcode automatically at startup, you can:
¢ | oad microcode manually by selecting L oad Microcode on the Debug menu.

(You can aso click the button. This button is not on the default Build menu. To put this
button there, see Section 2.2.3.4.)

Development Tools User’s Manual 113

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.13.6

2.13.7

114

The Command Line Interface

The command line interface (CLI) comprises:

A read-only scrollable text area Command Line]
for reporting the results of the :
command. tc0 PLTO_T CLK:910> goto 930]

tcO PLTO_T CLK: 930> goto 950
tcO PLTO_T CLE 9503 goto 1000
tcO PLTO_T_CLE 10003 goto 1050

A prompt indicating command-
line status.

.20.PLTO_T_CLK:1050> |

A single-line text edit control
for entering commands.

Simulation Mode:

If you are debugging in Simulation mode, the command lineis an interface to the Transactor
command line. Commands entered on the command line are passed to the Transactor. The
command and the Transactor responses are logged into the command line output area. Also, when
you perform a simulation operation using GUI controls, the Workbench sends the appropriate
command to the Transactor, asif you had typed in on the command line.

CLI implementation

£l
The CLI is a dockable window. PR BN o
. . #ifdef #ifndef
Toview it: bank analy=sis chip
. . conhect debug
1. Onthe View menu, click Debug exanine exit
i go_cllk_domain goto
Windows. ln:lad__lj:_st_f ile load_uc -
2. Select Command Line, or T e v
. .
Click the [*=] button on the View fhox: &> |Enter command line here |
toolbar.

This makes the Command Line window
visible. To hide the Command line window, clear the Command Line check box.

Command Scripts

The Workbench supports the creation of command scripts for frequent execution of a set of
Transactor or hardware commands. Command scripts are numbered 1 through 10.

To create acommand script:

1. Onthe Tools menu, click Customize.
The Customize dialog box appears.

2. Click the Command Scripts tab.

3. From the list on the left, select the command script number that you want assigned to the
script.

Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors
In ® Developer Workbench

4. Inthe box on theright, enter the Transactor commands you wish to have executed, just as you
would enter them on the Transactor command line.

5. Inthe Script name box, enter the name you want associated with the command script. This
name will be displayed in the tool tip and fly-by text when you position the mouse cursor over
the corresponding command script toolbar button.

6. Click Assign. This assigns the commands and name to the selected command script number.

7. Repeat steps 3 through 6 for as many command scripts as you wish to assign (up to atotal of
10).

8. Click OK.
Each command script (1-10) has an associated debug toolbar button . To place a command
script button in atoolbar, see Section 2.2.3.4.

2.13.8 Thread Windows

Thread windows differ from normal document windows in that they have atoolbar across the top
(see Figure 35 and Figure 36). Setting and clearing breakpoints (see Section 2.13.10), displaying
register or variable contents (see Section 2.13.11), and viewing the instruction(s) currently being
executed (see Section 2.13.8.10) are al done in thread windows.

2.13.8.1 Controlling Thread Window Activation

You can control how the thread windows r———— o
are activated using the Thread Window
Options dlalog bOX. —Salact how you went thisads activated

& Use anby onz lhread sandoe

To do this: ™ Use ane hresd wirdow per chip

£ Use one traad window per Micioegine

1. Onthe Debug menu, click Thread " Use 3 eeparate thead window for each thiead
Window Options, or

. . ' Track active trresd in nev fhicad vindows
Click the bu!:ton in the toolbar of [Erpand tac reterenoss when an ‘sssemtled thisad 1s acteat=d
an open thread window. - for the firs: tme
. . . e Showy st view i e ‘Compild" eead windoss
The Thread Window Options dialog
box appears. ' Dizpiaw insinchion addresscs
2. Select how you want threads activated. ok | Canesl |

Select one of the following:

a. Useonly onethread window.
Always reuse the currently open thread window and bring it to the top.

b. Useonethread window per chip.
Reuse a currently open thread window only if it displays athread in the same chip asthe
thread being activated.

¢. Useonethread window per Microengine.
Reuse a currently open thread window only if it displays athread in the same Microengine
as the thread being activated.

d. Usea separatethread window for each thread.
Always open a new thread window unless one is aready open for the thread being
activated, in which case the open window is brought to the top.

Development Tools User’s Manual 115

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

Whether or not you can select an option depends on the current thread window configuration. For
example:

¢ |f you have one or no thread window open, then al options are allowed.
¢ |f you have two thread windows open, you cannot select option (a).

¢ |f you have two or more thread windows open for different Microenginesin the same chip, you
cannot select option (a) or (b).

* |If you have two or more thread windows open for different threads in the same Microengine,
you cannot select option (a), (b) or (c).

¢ |f you select aninvalid option and click OK, the following message box appears:

x

The option you hawve selected cannot be applied unkil all currently opened
thread windows that do not conform to the selected option are closed.

Da viou wank thread windows automatically dosed to confarm ko the selected option?

— If you click No the option reverts to the previous selection.
— If you click Yes the Workbench closes the appropriate thread windows.

The activation option you select determines the behavior of the thread-sel ection toolbar.
¢ |f you select option (d), all combo boxes are disabled.

* |f you select option (c), the chip and Microengine combo boxes are disabled, allowing you to
select a different thread.

* If you select option (b), the chip combo box is disabled, allowing you to select a different
Microengine and thread.

¢ |f you select option (a), all combo boxes are selected, allowing you to select a different chip,
Microengine and thread.

¢ |f the open project has only one chip, the chip combo box is hidden in order to save toolbar
space.
In the next area of the Thread Window Options dialog box:

3. Select Track activethread in new thread windowsif desired (not availableif you selected to
view each thread in its own window).

4. Select Expand macro references when an ‘assembled’ thread is activated for thefirst
time if desired.

5. Select Show list view in new ‘compiled’ thread windowsiif desired.
6. Select Display instruction addressesif desired (in list view only).
7. Click OK when done.

116 Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors

In ® Developer Workbench

2.13.8.2 Thread Window Controls
Assembled Thread Windows:

If athread isin aMicroengine whoselist file is generated by the Assembler, then its thread window
displaysa'list' view. This represents flattened code for the entire microstore, as contained in the
Jlistfile.

Note: Setting and clearing breakpoints (see Section 2.13.10), displaying register contents (see
Section 2.13.11), and viewing the instruction(s) currently being executed are also donein
assembled thread windows.

Figure 35. The Assembler Thread Window

| chipo =] [Microenginen =] |Rec il 10s100,0 =] 55;'%' 'ﬁ1|*{}| E'EI

261 sran[pop, $1008 lpop_=ferl. $1008lpop =fer0, 0O, Q7. sig_j
cendif =
b d port_r=rdy_chk({@rdreadv _inflight. rec _reqg):
local 51009 rec rdy |
critsect_enter[@®rdreadw_inflight] : block othes
lool_o1lx:
1001 _end:

mll13_checlk_port#:
ml1l3 check port_begink:

27 alu[-——., —. b, @rdready_inflight]
[28 br«<0[m013_check port_end#]. gusess branch

25 ct® _arb[woluntary]

0K br[m0l13 check port begint]

mll3_check port_end#:
31 cer[read, %1009 rec_rdw. rov_xrdy_lo]. defer[l]. ct=z_swap £
;o BRANCH LATENCY FILL OFTIMIZATION: +the uword below was "pushed" dot
32 immed [@rdresady inflight. 0]
= critsect_exit[@rdready_inf light] o allow chert=g

| _'IJ
T RecFil 10/1..

When athread is being displayed in an assembled thread window, the toolbar contains the
following controls:

* The Chip list box. This control is not visible if your project has only one chip.

* The Microengine list box. This control is disabled if you are using one thread window per
Microengine or you are using a separate thread window for each thread.

* The Thread list box. This control is disabled if you are using a separate thread window for
each thread.

The toolbar contains following buttons:

Track Active Thread (see Section 2.13.8.3).
Display the Thread Window Options dialog box (see Section 2.13.8.1).

Sep Over (see Section 2.13.9.3).
Run to Cursor (see Section 2.13.8.4).
Expand macr os (see Section 2.13.8.7).

HIEIERENE

Development Tools User’s Manual 117

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

= Collapse macros (see Section 2.13.8.7).

Note: Not all buttons are available in hardware mode.
Compiled Thread Windows:

Compiler thread windows look the same as Assembler thread windows but have some differences.
Display options are similar (see Section 2.13.8.1).

Note: Setting and clearing breakpoints (see Section 2.13.10), displaying register contents
(see Section 2.13.11), and viewing the instruction(s) currently being executed are also donein
Compiler thread windows. They cannot be performed in the source file windows.

Figure 36. The Compiled Thread Window

| chipo =] [Microengine0 x| |fec Fil 0M00,0 =] gjﬂ%hﬁﬂ Tl}l{’il|ﬁl|-'{}| [r_sthertiome ¥

39 while(1) ZI
i

47 1f (packet_buf_addr == {(dram_ba=se %) UTHALLOCATED)

419 buf popiépop mfer FREELIST ID, ctx =wap): <7 1f no buffer —
42 port_rxrdy_chk{rdready_inflight. rec req): < check for ds
61 critsect_enter{reg inflight); <« block other

BR port_r¥ requesti{rec _req): < get mpacket

B port_rxE receivel(exception,rec =tate, ETHER_100HM) < get mpaclet

sompacket receiwved#
Th if (packet_buf_addr == (dram_base =) UNALLOCATED)
{

#if (FEEELIST_ID == 0)
#define BASE_ADDRE SEAM_BUFF_DESCRIPTOERE_BASE
tel=e
#define HALF BUFFEE COUHT (BUFFEE_COUHT - 2)
‘#@efine BASE_ADDE (SEAM BUFF_DESCEIPTOE_BASE + (HAIF_BUFFEE:J

NN " 2

“F RecFil10/1...

When athread is being displayed in a compiled thread window, the toolbar contains the following
controls:

* The Chip list box. This control is not visible if your project has only one chip.

* The Microengine list box. This control is disabled if you are using one thread window per
Microengine or you are using a separate thread window for each thread.

* The Thread list box. This control is disabled if you are using a separate thread window for
each thread.

* The Sourcelist box (if in source view). Here you can view any of the *.c files used to generate
the .list file. When Microengine execution starts then stops, the Workbench changes the
displayed source file to the one that generated the current instruction.

The toolbar contains following buttons:

i Track the active thread (see Section 2.13.8.3).
Display the Thread Window Options dialog box (see Section 2.13.8.1).

118 Development Tools User’s Manual

Note:

Note:

2.13.8.3

2.13.8.4

2.13.8.5

IXP2400/IXP2800 Network Processors
Developer Workbench

Step Into (see Section 2.13.9.4).
Step Out (see Section 2.13.9.5).

Step Over (see Section 2.13.9.3).
Run to Cursor (see Section 2.13.8.4).

&2 2= 2=

Toggle View (see Section 2.13.8.5).

Unlike the assembled thread window, you cannot expand or collapse the display in a compiled
thread window in list view.

Not all buttons are available in hardware mode.

Tracking the Active Thread

You can specify that you want tracking of the active thread by clicking the button in the thread
window toolbar. Thisfeature is available only if you have specified that you want only one thread
window or one thread window per chip or per Microengine.

When Microengine execution is started then stopped and a different thread in the same
Microengine becomes active, the thread window is automatically changed to display the active
thread.

In the Thread Windows Options dialog box, specify whether new thread windows are opened
with active thread tracking enabled by selecting or clearing Track active thread in new thread
windows.

Running to Cursor

If you are debugging in Simulation mode, you can place the cursor at a point in the code and then
you can Run to Cursor.

To do this:
1. Placethe cursor on alinein athread window by clicking in that line.
2. Onthe Debug menu, click Run Control, then click Run To Cur sor, or

Click the button in the Thread window.

Or:

Right-click in the line to which you want to run, then select Run To Cur sor from the shortcut
menu.

If thelineisin the source view of acompiled thread or if it contains a collapsed macro referencein
an assembled thread, then the simulation runs until the first generated instruction is reached.

Run to Cursor can be performed only on lines that generated instructions.

Toggle View

When debugging a mixed C and assembler microengine project, the thread window can toggle
between the source file view and list file view.

Development Tools User’s Manual 119

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.13.8.6

120

To dothis:
1. Click the 1 button in the Thread window.

Activating Thread Windows

Once microcode is loaded, you can directly access the execution state of all the threadsin the
project.

To explicitly activate a thread window, do this:

1. Double-click the thread name in the ThreadView or the Thread Satus window, or

Right-click the desired thread in the ThreadView or the Thread Satus window and click
Open Thread Window, or

Change the selection(s) in the thread-selection toolbar in the thread window.

The thread window isimplicitly activated by:
* Sopping at a breakpoint. The thread in which this occurred is activated.

* Selecting Go To Instruction from the shortcut menu in either the thread history or queue
status window. The thread in which the instruction was executed is activated.

When Microengine execution stops for any reason other than alocation breakpoint—such as, a
break-on-change occurs, or you click Stop, or a packet count limit was reached by the bus device
simul ation—the Workbench determines the active thread for each Microengine and does one of the
following:

¢ |f the activethread is already activated in athread window, the window is simply scrolled to
display the current instruction or source line.

¢ If theactive thread isn't already activated and there is a thread window in which a different
thread in the same Microengine is activated, then the active thread is activated in that window
if you have specified that you want tracking of the active thread. (A toolbar button in the
thread window allows you to enable or disable this feature.)

¢ |f theactivethread isn't already activated and there are no thread windows in which a different
thread in the same Microengine is activated, then the active thread is not activated.

Thread Window Title Bar:

K& (0:3) Thread26 - PC: 48 (Active)

The title displayed on the thread window shows the Microengine address and thread name. Also
displayed is the currently executing PC and whether the thread is active or swapped out.

Thread Window Contents:

A thread window displays the output of the Assembler as opposed to original source code. The
Assembler output differs from source code in that:

* Symbols are replaced with actual values.
¢ |nstructions may be reordered due to optimization.
* Names of local register are adorned by a prefix, etc.

¢ |f you built a Microengine image from multiple source files by using the #include directive,
then the associated thread window displays the modified output from the combined sources.

Development Tools User’s Manual

In

2.13.8.7

®

IXP2400/IXP2800 Network Processors
Developer Workbench

Displaying, Expanding, and Collapsing Macros (Assembled Threads
Only)

By default, all macros are collapsed. A green triangle to the left of the instruction indicates that the
instruction is afully collapsed macro (see Figure 37).

First Time Thread Activation:

You can specify whether macro references are fully expanded or collapsed when an assembled
thread is activated for the first time. To do this:

1. On the Debug menu, click Thread Window Options.
The Thread Window Options dialog box appears.

2. Enable or clear the Expand macro
referenceswhen an 'assembled' thread [Track active Bresd v new thiead windows:
IS Opened for the flrﬁ time. [+ Erpand macm references when an ‘sssembled’ thead is activated

When you re-activate an assembled thread,
the Workbench restores the state of macro ¥ Disglay inslction addvesses
expansion that existed when the thread was
deactivated. However, when you stop

debugging, the macro expansion state is no longer remembered.

Figure 37. Expanding Macros

165= 156 _=ran_opl(write, %1017!1
170 159 local 10260 _temp_addr
1e0 _=ram_op_addr_a
Collapsed wbuf_find[
Expanded One Level zbuf_ps
_=ramn_op =b
local 1027
_=ramn_w

164+ E T sran_write($1l017 linit_

1000_end#:

48 =ra
cendlocal
d .endlocal

Fully Expanded

Macro Marker Display:
If you don’t see the macro markers you may have to enable them.

To display macro markers:
1. Right-click the thread window.
2. Click Display Macro Marker s on the shortcut menu.

Development Tools User’s Manual 121

IXP2400/IXP2800 Network Processors u

Developer Workbench Intel®

2.13.8.8

122

Macro Expansion:
To expand a collapsed macro:

1. Right-click on thetriangle or anywhere on the instruction line.

2. Click Expand Macro OneLeve, or,
Click Expand Macro Fully.

Macro Collapse:
You can only fully collapse an expanded macro, not one level at atime. To do this:
1. Right-click anywhere on the instruction line.
2. Click Collapse Macro.
Expand and Collapse of all Macros at Once (Assembled Threads Only):
You can expand and collapse all macros at the same time. Do the following:

* To expand all macros one level, click the E button.

* To collapse all macros one level, click th button.

Note that thisisthe only way to collapse a macro one level at atime.

Go to Source:

To go to the source line corresponding to aline in athread window:

1. Placetheinsertion cursor on theline.

2. On the Debug menu, click Go To Source.
The Workbench:

— Opens adocument window with the sourcefile,
— Placesthe insertion cursor at the beginning of the requested line, and

— Scrollsthe line into view.

You can also right-click the thread window line and click Go To Sour ce from the shortcut menu.

Displaying and Hiding Instruction Addresses

To display or hide the microstore address at which each instruction in athread window islocated:
1. Right-click in the thread window.

2. Select or clear Display Instruction Addresses on the shortcut menu.

Thistoggles displaying of the addresses of the microstore instructions. You can also do this using
the Thread Window Options dialog box.

If macro references are expanded, instruction addresses are displayed on the generated instruction
lines. If references are collapsed, addresses are displayed on the macro reference lines, with the
address being that of the first instruction generated by that reference.

Development Tools User’s Manual

intel.

2.13.8.9

Table 2.

2.13.8.10

IXP2400/IXP2800 Network Processors
Developer Workbench

The displaying of instruction addresses affects all thread windows and is saved as a global option
which isin effect across all projects.

Instruction Markers

During atypical debugging session, thread windows display several types of instruction markers.
An instruction marker displays on the |eft side of the thread window, in the same location as
bookmarks and breakpoints. The types are summarized in Table 2:

Instruction Markers

Marker Name Symbol Function

Marks the instruction to be executed when the thread's context is

Swapped Out 222 swapped back in.

Marks the instruction that was executing in pipe stage 4 at the cycle

History = associated with the thread history window's cycle marker.

Pipe Stage 558 Marks the instructions executing in each of the 6 pipeline stages.

Assembled Thread:

In an assembled thread, if line containing the current instruction is displayed, then the instruction
marker pointsto it. If thelineis hidden because it isin a collapsed macro, then the instruction
marker points to the line containing the collapsed macro.

Compiled Thread:

Inthelist view for acompiled thread, the instruction marker pointsto the current instruction. In the
source view for a compiled thread, the instruction marker points to the C source line that generates
the current instruction.

Viewing Instruction Execution in the Thread Window

During a simulation session, the Pipe Stage marker allows you to view which instruction isinside
each of the 6 stages of the pipeline. This marker contains up to 6 stacked arrowheads that
correspond to each of the 6 pipeline stages. The leftmost arrowhead represents stage 0, and the
rightmost arrowhead represents stage 5. The default is stage 4.

Colors:

The arrowheads are color-filled according to the state of the instruction in the pipeline stage. By
default, the Workbench uses:

¢ Black - for instruction executing.
* Yellow - for instruction aborted.
* Red - for thread stalled.

If athread has a different instruction in each of the pipe stages, then the thread window will have 6
Pipe Stage markers, one on each of the 6 instructions. Each marker will have a different arrowhead
filled with the appropriate color. For example, if an instruction is executing in stage 3, then its
marker will have the stage 3 arrowhead filled with black with all other arrowheads unfilled. If an
instruction is aborting in stage 2, then its marker will have the stage 2 arrowhead filled with yellow
with all other arrowheads unfilled. If an arrowhead is not color-filled, it means that the instruction
that the marker points to is not in the corresponding pipeline stage.

Development Tools User’s Manual 123

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.13.8.11

124

Same Instruction in More Than One Pipeline Stage:

It is possible, due to branching, for the same instruction to be in more than one pipeline stage. In
this case, the Pipe Stage marker on that instruction will have multiple arrowheadsfilled in, possibly
with different colors. This also means that there will be fewer than 6 markers in the thread window.

Context Swapping Issues:

When a context swap isin progress, the latter stages of the pipeline have instructions from the
context being swapped out and the early stages have instructions from the context being swapped
in. In this case, the thread windows for both contexts have Pipe Stage markers displayed. However,
the marker for each thread window will show arrowheads only for those stages in which the thread
has instructions.

For example, if athread only has an instruction in stage 4, then its marker will only show asingle
arrowhead, corresponding to stage 4. The other thread marker will show arrowheads for each of the
four stagesin which it hasinstructions.

When a context is completely swapped out, its thread window displays all five arrowheads unfilled
to mark the instruction at which execution will resume when the context is swapped back in.

Document and Thread Window History

The Workbench maintains a history of previously visited document and thread windows along with
their scrolled positions. When a project is opened the history is cleared. A window and its scrolled
position gets added to the history when any of the following events occur

* The user changes focus from one document window to another.
* The user opens a new thread window.

* The user opens afile.

* The user createsanew file.

* The user executes the Go To Macro command.

* The user executes the Go To Source command.

* The user executes the Go To Instruction command.

* The user selects adifferent chip, Microengine, or thread to be displayed in a thread window
using the combo boxes in the toolbar of the thread window. A breakpoint is hit, causing a
different thread window to get focus

To move backwards through the history, the user selects Back from the Window menu. To move
forward through the history, the user selects Forward from the Window menu. There are tool bar
buttons for these commands that can be added to the toolbar by selecting Customize from the
Tools menu.

If the user goes Back one or more times and then one of the events listed above occurs, all the
history that was forward of the window that was returned to will be deleted. For example, assume
the history containswindows A, B, C, D, E and F. If the user goes back to C then executesaGo To
M acro command, windows D, E and F are deleted from the history.

Development Tools User’s Manual

In

2.13.9

Note:

2.13.9.1

2.13.9.2

®

IXP2400/IXP2800 Network Processors
Developer Workbench

Run Control

Run Control lets you govern execution of the Microengines. Different control operations are
available from the Workbench depending on whether you are in Simulation or Hardware mode (see
Table 1).

In Simulation mode, the Workbench
provides the controls for running

n Cantral

microcode in adockable Run Control e I
window. i_l == T !
To display the Run Control window: T
1. Onthe View menu, click Debug
Windows.

2. Select or clear Run Controal to toggle visibility of the Run Control window, or

Click the button on the View toolbar.

The Run Control window is not supported when debugging hardware.

Single Stepping

Single stepping has four variations:

Microengine Step Performed on Microengines (see Section 2.13.9.2).

Sep Into Performed on a single thread in a compiled thread window only (see
Section 2.13.9.4).

Sep Over Performed on one thread (see Section 2.13.9.3).

Sep Out Performed on asingle thread in a compiled thread window only (see
Section 2.13.9.5).

Stepping Microengines

To single step one cycle:

1. Click Sep inthe Run Control window, or
On the Debug menu, click Run Control, then click Step Microengines, or
Press SHIFT+F10, or

Click the [button.
All Microengines:

To single step all Microengines, regardless of which threads are running:

¢ Select the All threads entry from the list under the Step

button in the Run Control window. Stepl ﬂ Go fDr" cycles

A Specific Thread: Al threads 7

To single step one cycle of a specific thread:

Development Tools User’s Manual 125

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

* Inthe Run Control window, select the thread's entry from the list under the Step button.

Note: Stepping microenginesis not supported when debugging hardware.

2.13.9.3 Stepping Over

Sep Over allows you to execute as many machine cycles asit takes complete the current linein
the thread window. To Step Over:

* Onthe Debug menu, click Run Control, then click Step Over, or

Click the button in the thread window’s toolbar, or
Right-click in the thread window and click Step Over from the shortcut menu, or
Press F10.

Note: When debugging hardware, only the thread in whose window the Step Over button is clicked gets
stepped. All other microengines remain paused. Also, due to instruction sequencing restrictions,
more than one instruction may get executed as part of the step operation.

2.13.9.4 Stepping Into (Compiled Threads Only)
Sep Into executes as many Microengine cycles asit takes to execute the current line in the thread
window, whether it isamicroinstruction linein alist view or a C source line in a source view.
Stepping into is supported only for compiled threads.

To Sep Into do the following:
* Onthe Debug menu, click Run Control, then click Step Into, or

Click the button in the thread window's tool bar, or
Right-click in the thread window and select Sep Into from the shortcut menu.

Note: Stepping into is not supported when debugging hardware.

2.13.9.5 Stepping Out (Compiled Threads Only)

Sep Out executes as many Microengine cycles asit takesto complete the thread's current function
and return to the calling function. Stepping out is supported only for compiled threads.

To step out, do the following:
* On the Debug menu, click Run Control, then click Sep Out, or

Click the button in the thread window's toolbar, or
Right-click in the thread window and select Step Out from the shortcut menu.

Note: Stepping out is not supported when debugging hardware.

126 Development Tools User’s Manual

In

2.13.9.6

Note:

2.13.9.7

Note:

2.13.9.8

Note:

2.13.9.9

®

IXP2400/IXP2800 Network Processors
Developer Workbench

Executing Multiple Cycles

All Microengines:

To run for a specified number of cyclesin al Microengines, regardless of which threads are

running:
1. Select All threadsin the list under the Go for button.
2. Type the number of cyclesin the box to the right of the El ﬂ m” cpeles
Go for button. [40 threads

3. Click Gofor.

All Microengines run until the specified thread has executed the specified number of cycles.

A Specific Thread:

To run for a specified number of cyclesin a specific thread:
1. Select the thread's entry from the list under the Go for button.
2. Typethe number of cyclesin the box to the right of the Go for button.
3. Click Gofor.

Executing multiple cyclesis not supported when debugging hardware.

Running to a Specific Cycle

To run until a specified cycle count is reached:
1. Typethe cycle count in the box under the Go to cycle button.

hd 15

2. Click Gotocycle.

Running to a specific cycle is not supported when debugging hardware.

Running to a Label or Microword Address

To run until a specific microcode label or microword address is reached by athread:
1. Enter the label(s) and/or address(es) into the appropriate boxes.
2. Click Goto label/address.

Running to alabel or microword address is not supported when debugging hardware.

Running Indefinitely

To run the microcode indefinitely:

On the Debug menu, click Run Control, then click Go, or
Click the button in the Run Control window, or

Click the E button on the Debug toolbar, or

Development Tools User’s Manual

127

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.13.9.10

2.13.9.11

128

Press F5.

Microcode execution stops only if a breakpoint is reached or if you manually stop execution (see
Section 2.13.9.10).

Stopping Execution

To stop microcode execution at any time:

On the Debug menu, click Run Contral, then click Stop, or
Click in the Run Control window, or

Click the Iil button on the Debug menu, or
Press SHIFT+F5.

When debugging hardware, if athread running on a microengine does not swap out, it will
continue to run. The Workbench displays a message indicating which microengines did not stop.

Resetting the Simulation

Reset executes a Transactor sim_reset command, which puts the simulation back to the state after
the original initialization was done. After the reset, the Workbench re-executes the options
specified by the Startup page of the Simulation Optionsdialog box. However, if you specified that
the Workbench should initialize the model, it doesn’t repeat the chip and memory definition
commands and the init command since they are unnecessary.

To reset the simulation:
1. On the Debug menu, click Run Control, then click Reset, or

Click the button on the Debug toolbar, or
Press CTRL+SHIFT+F12.

This executes a Transactor sim_reset command, which puts the simulation back to the state after
the original init was done. After the reset, the Workbench re-executes the options specified by the
Simulation Sartup page of the Simulation Options dialog box. However, if you specified that
the Workbench should initialize the model, it doesn’t repeat the chip and memory definition
commands and the init command since they are unnecessary.

Development Tools User’s Manual

In

2.13.10

Note:

®

IXP2400/IXP2800 Network Processors
Developer Workbench

About Breakpoints

In the source view, when you set a breakpoint on aline, a breakpoint marker appears on that lin

e

and a breakpoint is set on the first instruction that it generates. In the list view, it is possible to set
breakpoints on multiple lines that are generated by the same C source line. In this case, the marker
that isdisplayed on the source line in the source view depends on the state of the breakpoints on the

generated lines.

¢ |f al breakpoints have the same status, then the source line marker reflects that status. In this
situation, you can perform a breakpoint action on the source line and the action is performed

on all the breakpoints on the generated lines. For example, if al are disabled, then the

disabled-breakpoint marker is displayed on the source line. If you enabl e the breakpoint on the
source line, al breakpoints on generated lines are enabled.

If the breakpoints do not have the same status, then a distinct marker consisting of ared circle
filled with dark gray is displayed on the sourceline. In this situation, the only supported action

isto enable all the breakpoints by executing an I nsert/Remove Break point command.

In an assembled thread, when you set a breakpoint on aline containing a collapsed macro
reference, a breakpoint marker is displayed on that line and a breakpoint is set on the first
instruction that the macro generates. If you then expand that macro reference, the breakpoint
marker is displayed on the generated line.

For situations where there are breakpoints on multiple lines generated by a collapsed macro, the

breakpoint marker and supported actions are the same as described above for the C source line.

You cannot set a breakpoint while a simulation is running or when Microengines are running in
hardware.

Thread Window Action Taken:

When a breakpoint is reached during execution:
¢ The thread window that reached the breakpoint is activated.
* The appropriate instruction is displayed and marked.

* A message box appears (if set) indicating the breakpoint was reached.

To disable the display of this message box, on the Debug menu, select or clear the Report
Breakpoint Hit option.

All Contexts, Some Contexts and Conditional Breakpoints:

A breakpoint can be set for all contexts, some contexts, or conditionally.

¢ All context breakpoints halts execution when any context in the Microengine reaches that
instruction.

* Some context breakpoints halts execution when the context in the Microengine you have
assigned to the breakpoint reaches that instruction.

¢ Conditional breakpoints have an associated function that is executed when the breakpoin
instruction is reached. The function result determines whether to pause the simulation or
continue uninterrupted. Conditional breakpoints can be applied to all contexts or some
contexts.

Development Tools User’s Manual

t

129

IXP2400/IXP2800 Network Processors u

Developer Workbench In

130

Soft Breakpoint Support:

The Workbench supports soft breakpoints, which are inserted into assembler code using the
ctx_arb[bpt] instruction and into Microengine C code using the _assert macro, whichin turn
insertsactx_arb[bpt] instruction. When thisinstruction is executed, the Workbench is notified and
displays a message box indicating where the breakpoint occurred, i.e., the chip, Microengine,
thread, and instruction address. In simulation mode, the Workbench stops the simulation. In
hardware mode, the Workbench stops all the other Microengines. In either case, the user can
resume execution by clicking Go, Step Over, etc.

Inline- Function Breakpoint Support:

The Workbench supports inline-function breakpoints. Setting or clearing breakpointsin theinline
function on the source view causes al instances of the inline function in the list view to handle the
breakpoint (see Figure 38). All breakpoints can be enabled/disabled individually in the list view.

Sep Intowill correctly track the function microinstruction linein the list view or the C source line
in asource view.

Sep Out will cause the instruction to continue running until it either hits another breakpoint or the
end of the program.

Figure 38. Inline Function Breakpoints in Source and List Views

List View
Source View

[Microengine 00 =] [Thead = 23| W] | @] [0] B
falufal, bO, —

[Mircergine 00 =] [Theatl = 23| %] B3| TR[(P[0] B8] [sram /i el 35 My — 2 =

7alula0, BO. -, 2]
SEREERRS totalCandy = daddy + mommy + JJ + Terry:

#include <izmp.h>

wvolatile _ declspec(esport scratch

volatile _declepec{exzport or. galufal, al, + b0]

)
Tt tttl 9alu[b0, a0. +. b0]

10alu[=0, BO, +, =21]
1lalu[bl. all. - 3
int _ inline v(int candy) /**a[su*/ if (l}\yfamlly 1= 12343
& daddy. mommy, JJ, Terry. totalCandy: _ _
daddy = gasgv * % igiééh is?%' i
) zonny = dadds - 1. cxxxxExs daddy = candy * 2
erry = l4alu_shflal, —, B, bl, <<1]
totalCandy = daddy T e : nmy = da -
turn totalCandy: i enmy daddy L
3 \)L. 15alufal. al. - 1]
suswzxes J] = daddy - 2,
7%\511’1() léalu(bl, al, -, 2]
SEXXERES family2 = DoCandy(myfamily).
Lal] 17alu[b0, bO, al]

19zlufa0, BO,
20aluf[az, al,

presoree

+,
18alu[b0, b0, +,
+. ab]
T

3
£ {family2 1= 1234)
1_16#
2limmed[b0, 1234, <<0]
alu[--, a2, - bi]
23beq[l_23#]
swxxx¥xs | daddy = candy * 2.

24alu_shi[b0, —, B, a2, «<1]
nonmy = daddy - 1:

28alufal, b0,

—. 11
susexwxs JJ = daddy - 2, B
4 »

Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors
In ® Developer Workbench

2.13.10.1 Breakpoint Properties Dialog Box

The Breakpoint Properties dialog box supports setting context and conditional breakpoints (see
Figure 39).

Figure 39. Breakpoint Properties Dialog Box

i Breakpoint Properties

Chip: <unhamad: LS

Microengine: Microengine 0:0
Inztruction address: 230
Thread window line number: 525

Cancel

Remove

K

¥ Enabled

&+ Applies to all contests in microengine
" Applies only to microengine contexts checked below

™ Contest 0 Threadi] I Contest 4 (Theadd]
[T Contest 1 [Threadi] [Contest & (Threads)
[T Contest 2 [Thread?) [~ Contest B [Tihreads]
[~ Contest 3 (Thread3] [T Contest 7 (Thiead?)

[Call console function to determine whether to break

™ Call existing function named below, defined in zcript or foreign model

int I [ztring chip_name, int me, int ok, int PC)

{* Call new breakpaint-specific function defined below
int __whb 0 230_funcsting chip_name, int me, int ctx, int PC)

B

" o

The Breakpoints Properties page is divided into three aress:

The top-most section includes information about the chip and Microengine thread you, and allows
you to enable or disable the breakpoint:

Chip The name of the chip containing the breakpoint being tested.

Microengine The number of the Microengine (that is, 0-15 for the I XP2800, 0-7 for
the 1 XP2400) where the breakpoint is assigned.

Instruction Address The PC address.

Thread window line number List view line number.

Development Tools User’s Manual 131

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.13.10.2

2.13.10.3

132

Enabled When this check box is selected all associated breakpoints are active.
When the box is not checked all breakpoints are disabled.

The mid-most section sets the context breakpoints.

Appliesto all contextsin microengine
When thisis selected then the breakpoint is associated with all contexts
in the Microengine.

Applies only to microengine contexts checked below
When thisis selected then the breakpoint is associated with some
contexts in the Microengine. To assign the contexts click in the check
boxes.

The bottom-most section sets the conditional breakpoints.

Call console function to deter mine whether to break
When this checkbox is selected it enables conditional breakpoints.

Call existing function named below, defined in script or foreign model
When selected this sets a conditional breakpoint which is defined in the
*.ind file, or is contained in a Foreign mode.

Call new breakpoint specific function defined below
When selected this sets a conditional breakpoint which is entered in the
text box.

Setting Breakpoints in Hardware Mode
Restrictions:

You can set breakpoints in Hardware mode with the following restrictions:

¢ Each breakpoint you insert causes the Debug library in the Intel X Scale®core to placea
breakpoint routine in unused Control Store space within the Microengines. Consequently, the
number of breakpoints you can insert will be limited by the size of your microcode image.

* You may be prevented from setting a breakpoint on certain instructions because processing the
breakpoint will adversely affect the thread's execution state or register contents.

If this occurs, you see the following message when you attempt to insert the breakpoint:
“Breakpoint can’t be set at line xx because of Microcode sequencing restrictions’.

If breakpoints are set in multiple Microengines, it is possible to hit more than one breakpoint before
al of the Microengines have paused.

Aswith step processing, if athread running on a Microengine does not swap out, it will continue to

run. You should check the Thread Statuswindow after a breakpoint has been reached to determine
if any threads are still active.

About Breakpoint Markers

When a breakpoint is set on a microword address, the Workbench displays a breakpoint marker in
the left-hand margin of the corresponding line in the thread window. The marker’s appearance
depends on the properties of the breakpoint.

The different markers and their meanings are described below:

Development Tools User’s Manual

all contexts breakpoint
al contexts breakpoint

some contexts breakpoint

some contexts breakpoint

some contexts breakpoint

some contexts breakpoint

Conditional breakpoint
Conditional breakpoint

@ -® © 0 0 @0U®

Conditional breakpoint

(@)

Conditional breakpoint

©

Conditional breakpoint

@

Conditional breakpoint

@

Special breakpoint

Development Tools User’s Manual

IXP2400/IXP2800 Network Processors
Developer Workbench

Enabled in all threadsin Microengine.
Disabled in all threads in Microengine.

Set and enabled in this thread but not set in all threads in the
Microengine.

Set but disabled in this thread but not set in all threadsin the
Microengine.

Not set in thisthread but set and enabled in other threads in the
Microengine.

Not set in thisthread but set and disabled in other threadsin the
Microengine.

Enabled in all threadsin Microengine.
Disabled in all threads in Microengine

Set and enabled in this thread but not set in al threads in the
Microengine.

Set but disabled in this thread but not set in all threadsin the
Microengine.

Not set in thisthread but set and enabled in other threadsin the
Microengine.

Not set in this thread and set and disabled in other threads in
the Microengine.

The states of two or more breakpointsin the generated code are
different, so the corresponding line in the source code gets a
special breakpoint marker. In this situation, the only supported
action isto enable all the breakpoints by executing and

I nsert/Remove Breakpoint command.

133

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.13.10.4

134

Inserting and Removing Breakpoints

To insert a breakpoint in a Microengine:
1. Open athread window for one of the threads in the Microengine.
2. Place the insertion cursor on the line where you wish to insert the breakpoint.
3. On the Debug menu, click Breakpoint, then click I nsert/Remove, or
Click the @ button on the Debug tool bar, or
Press F9.
Or:
1. Right-click theline at which you wish to insert the breakpoint.
2. Click Insert/Remove Breakpoint from the shortcut menu.

Hardware Mode Restrictions:

When debugging in Hardware mode, you cannot set breakpoints on instructions that:
* Arein defer shadows, or

* Areindirect branches.
Breakpoint Removal:

To remove a breakpoint in a Microengine:
1. Open athread window for one of the threadsin the Microengine in which the breakpoint is set.
2. Place the insertion cursor on the line at which you wish to remove the breakpoint.
3. On the Debug menu, click Breakpoint, then click I nsert/Remove, or
Click the button on the Debug tool bar.

Press F9.
or

1. Right-click the line at which you wish to remove the breakpoint.
2. Click Insert/Remove Breakpoint from the shortcut menu.

The breakpoint is removed in all contexts, regardless of whether it was conditional or
unconditional.

Removal of all Breakpoints:

To remove al breakpointsin all Microengines:

* On the Debug menu, click Breakpoint, then click Remove All, or

Click the B button on the Debug toolbar.

Development Tools User’s Manual

intel.

2.13.10.5

2.13.10.6

2.13.10.7

IXP2400/IXP2800 Network Processors
Developer Workbench

Enabling and Disabling Breakpoints

To enable or disable breakpoints on code locations, do the following:
1. Placetheinsertion cursor on the line at which you wish to enable/disable a breakpoint.
2. On the Debug menu, click Breakpoint, then click Enable/Disable, or

Click the ™ button on the Debug toolbar. (This button is not on the default Debug menu. To
put this button there, see Section 2.2.3.4.), or

Press CNTRL+F9.
Or:
1. Right-click the line at which you wish to enable/disable a breakpoint.
2. Click Enable/Disable Breakpoint from the shortcut menu.

To disable all breakpoints:
¢ On the Debug menu, click Breakpoint, then click Disable All, or

Click the @M button on the Debug toolbar. (This button is not on the default Debug menu. To
put this button there, see Section 2.2.3.4.).

To enable all breakpoints:
* Onthe Debug menu, click Breakpoint, then click Enable All, or

Click the 4 button on the Debug toolbar. (This button is not on the default Debug menu. To
put this button there, see Section 2.2.3.4.).

Changing Breakpoint Properties

To change the breakpoint properties,
1. Open athread window for one of the threads in the Microengine where the breakpoint is set.
2. Placetheinsertion cursor on the line where you want to change breakpoint properties.
3. On the Debug menu, click Breakpoint, then click Properties.
The Breakpoint Properties dialog box appears (see Figure 39). T
In this dialog box you can:
* Select or clear Enabled to enable or disable the breakpoint.
* Select the functions you wish to change and then click OK.
* Click Removein the Breakpoint Properties dialog box to remove the breakpoint.

About Multi-Microengine Breakpoint Support

Support for the ability to manipulate a breakpoint in multiple Microengines simultaneously has
been added to the Workbench. When the user right-clicks on a code line in athread window, the
context menu that gets displayed contains a new item labeled M ulti-Microengine Breakpoint. If
the user selects thisitem, the Workbench displays the dialog box shown in Figure 40.

Development Tools User’s Manual 135

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

136

A list box displays the Microengines that meet the following criteria:

* The Microengine isin the same chip as the Microengine that contains the thread whose
window was clicked in.

* The Microengine has code loaded in it and the code was generated using the same source file
that generated the line of code that was clicked on.

Next to each ME isthe name of thelist file that isloaded into that ME. If an ME aready has a
breakpoint set at the line that was clicked on, then the appropriate breakpoint marker is displayed
next toit. A solid red marker indicates the breakpoint is unconditional and is enabled in all threads
inthe ME. A gray marker indicates the breakpoint is unconditional and isdisabled in all threadsin
the ME. A red marker with awhite dot inside indicates the breakpoint is conditional (not set in all
contexts) and is enabled in one or more contextsin the ME. A gray marker with awhite dot inside
indicates the breakpoint is conditional (not set in al contexts) and is disabled in one or more
contextsin the ME. A marker with ared border and gray interior indicates a‘ special’ breakpoint is
set. This means that the line generates multiple lines of code, e.g., amacro or a C source line, and
more than one generated line has a breakpoint but they are not all in the same state (see

Section 2.13.10.3).

The user selects one or more MEs from the list and clicks on the appropriate button to perform the
desired operation. The operation is performed on al contextsin those MEsin the selected group for
which the operation makes sense. For example, if three MEs are selected and two of them have
disabled breakpoints and the user clicks Enable Breakpoint, then the two disabled breakpoints
become enabled but the ME without a breakpoint is unaffected.

Depending on the breakpoint status in the selected M Es, some of the buttons may be disabled. For
example, if none of the selected MEs have a breakpoint set, then Remove Breakpoint, Enable
Breakpoint and Disable Breakpoint are disabled

Also, thereisaMulti-Microengine Breakpoint item in the Breakpoint submenu in the Debug

menu in the main menu bar. It operates on the line at which the insertion cursor is located in the
active thread window. If no thread window is active, the item is disabled.

Development Tools User’s Manual

IXP2400/IXP2800 Network Processors
Developer Workbench

intel.

Figure 40. Multi-Microengine Breakpoint Dialog Box

Multl-Microengine Breakpoint E
Chip: Inagreas

Inshuchion addiess: 542

Insesi Bireakprint | Erable Breskpoint |
Reirowe Eleak.p:uirt| Dizahle Br=ak point |

@ hicroenginge 0:0
Microengine 0:1
% Microengine 0:2
Microangne 0:3
Microengne 1:0
& Microenging 1:1
hlicroengne 1:2
Microengines 1:5

recehe_ppeined iz
receive_ppeinel i=l
receive_phcine fzt
recera_ppeined. izt
recehe_ppelned ist
recehe_soreduier iz
tran=mit_pip=1 =

tran=mi_pips2 i=

Cloze |

2.13.11 Displaying Register Contents

When program execution is stopped, you can display register contents directly from instruction
context in athread window.

To do this:
1. Position the cursor over the register symbol.

2. Wait for amoment.

The Workbench displays the contents of the register assigned to that symbol as a pop-up
window beneath the cursor.

273 ctx_arb[voluntarvy]. defer[1l]
274 alu shf_ri_ [¥0. 0. +. 1. 0]
275 brctxad_43#%]

. Te=t Block #27 [0x00000001 (b, rel]

Hex or Decimal Display:

To control whether the datais displayed in decimal or hexadecimal format:
1. Right-click in the thread window.

2. Select or clear Hexadecimal Data on the shortcut menu.

Development Tools User’s Manual 137

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.13.12

138

Note:

Register History:

To go aong with the thread history, the Workbench will record register history. The values for all
GPRs, transfer registers and neighbor registers in each Microengine will be remembered for the
same cycle extents as thread history. The information displayed in athread window datatip (the
“pop-up” window described in the previous section) for aregister or a C variable will be based on
the register’s value at the cycle that is currently active in the history window. Similarly, a data
watch for aregister or aC variable that is stored in aregister will display the register’'s value at the
active cycle. The active cycle can be changed by

¢ Clicking on the left or right arrows in the history window or data watch window.
* Dragging the cycle marker to the desired cycle count.
* Double-clicking in the history window at the desired cycle count.

* Right-clicking in the history window and selecting Go To I nstruction from the context menu
Whenever simulation stops the active cycle is automatically set to be the most recently simulated
cycle. This means that datatips and data watches will display the current register values. The
history PC marker in al thread windows is hidden at thistime.

When the active cycle is changed a non-current cycle, data watches and datatips of non-register

states and variables will display an appropriate message to indicate that the historical value is not
available.

Data Watch

In debug mode, you can monitor the values of simulation states using the Data Watch window.

To do this:

* Onthe View menu, click Debug Windows, then click Data Watch, or
Click the button on the View toolbar.

Thistoggles visibility of

the Data Watch = S P
window. The window 5 e L [P T
contains a list with three o kb | 51 - Thareic1
columns: nt dni i o i eyerone 1
i pecho_ten agm o 178 I e s Miceegiee 1

NameContains the name

of the state being watched.
Value Displaysthe state's value.
Description Containsinformation such as which chip, Microengine or thread the

watch pertainsto.

GPR names cannot be entered directly into the data watch window.
Values Updates:

Watch values are updated whenever microcode execution stops. To force updating the values at
other times, click Refresh.

Development Tools User’s Manual

intel.

2.13.12.1

Note:

2.13.12.2

IXP2400/IXP2800 Network Processors
Developer Workbench

Data Watches in C Thread Windows

In C thread windows, data watches can be set for C variables by right-clicking on the variable in
the thread window and selecting Set Data Watch for:<variable name>.

If the Data Watch window is not visible, go to Section 2.13.12.
* When the variableisin scope its value appearsin the Data Watch window.

* When the variableis out of scope, the phrase Out of scope appearsin the Value field for the
watched variable.

¢ Variablesthat contain C structures are displayed hierarchically, with the member variables
displayed on separate lines in the watch window. You can expand and collapse the display of
the member variables.

Not all variables can have data watches set. Many variables are optimized away by the Compiler
and the Compiler does not provide any debug data for those variables. The workbench doesn't
know that the text you select isavariableif it doesn't have any debug data. If thisisthe case, the
Set Data Watch option on the shortcut menu is unavailable.

Entering a New Data Watch

To enter anew datawatch:
1. Right-click anywhere in the Data Watch window.

2. Click New Watch from the shortcut menu, or
Double-click the blank entry at the bottom of the data watch list.

3. Typethe name of the state you want to watch.
Array States:

For states that are arrays, such aslocal memory, you must enter arange of array locations to be
watched. The format for the range is the same as that for the Transactor:

[m] to watch asingle location of an array. For example, local_mem[1]
watches |ocation onein local memory.

[m:n] to watch locations m through ninclusive. For example, local_mem[0:3]
watches locations O through 3 in local memory. And since a data watch
range can be specified in ascending or descending order, you could
specify this watch aslocal_mem[3:0].

[m:+n] to watch location m plus the n locations following it. For example,
local_mem[5:+3] watches locations 5 through 8.

Bit Range:

You can specify ahit range to be watched. The format for abit rangeis:

<m> to watch only bit m of astate. For example, fO.ctl.p0_addr<12> watches
only bit 12 of the stage O address.
<m:n> to watch bits m through n of a state, with m being greater than n. For

example: local_mem[0:3]<12:10> watches bits 12 through 10 of local
memory locations 0 through 3.

Development Tools User’s Manual 139

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.13.12.3

140

Note:

Segments:

Data watch values are broken into 32-bit segments. For example:
A 64-bit value displays as Oxcaf ecafe Oxcafecafe.

Save:

Data watches are saved with project debug settings.

Watching Control and Status Registers and Pins

The Workbench recognizes the control and status register (CSR) and pin names described in the
Intel ®1XP2400 /IXP2800 Network Processor Programmer’s Reference Manual. If your project
contains multiple chips, you are prompted to select which chip’sregister to watch. Similarly, if the
register is Microengine-based, you are prompted to select which Microengine register to watch.

The Workbench now supports setting data watches on the PCI CSRs, but only in hardware
debugging mode.

The CSR categories are:
* CAP
* Microengine
* Memory
* MSF
* PCI (only in hardware debugging mode)
* Intel XScale® core
* Microengine Memory
* MSF Buffers

The Workbench also collects history for:

* Loca Memory

* CAM

* Microengine CSRs
— T_INDEX
— NN_PUT
— NN_GET
— ACTIVE_LM_ADDR_0_BYTE_INDEX
— ACTIVE_LM_ADDR_1 BYTE_INDEX
— CTX_ENABLES

Named Elements:

To add a datawatch by selecting a named element from alist:

Development Tools User’s Manual

intel.

1

2.

3.

IXP2400/IXP2800 Network Processors
Developer Workbench

Click Add Watch or right-click in the Data Watch window and click Add Watch from the
shortcut menu.

The Add Data Watch dialog box appears.

Click the category of named element that you want listed.
A list of recognized element names appears on the right.

In thelist, select one or more elements you want to watch.

Note: Usetheleft mouse button in combination with the SHIFT or the CTRL keysto select multiple
elements.

4.

5.

Click Add Watch to have awatch added for each selected element.

If you select from the list of MicroEngine CSRs, you are prompted with a dialog box to select
in which Microengine you want the watch to be done. Similarly, if you select from alist of
chip-specific elements, such as the Memory CSRs, and your project contains multiple chips,
you are prompted to select a chip.

When you are finished adding your watches, click Close.

2.13.12.4 Watching General Purpose and Transfer Registers

To watch general purpose registers (GPRs) and transfer registers whose symbols are defined in
your microcode;

1
2.
3.

Open the thread window containing the microcode.
Right-click the register name.
Click Set Data Watch for: from the shortcut menu.

Alternatively, you can add awatch by selecting aregister name from alist:

1

o~ DN

7.

Click Add Watch or right-click in the Data Watch window and click Add Watch from the
shortcut menu.

The Add Data Watch dialog box appears.

Select the chip and Microengine in which you want to watch registers.

Select whether you want GPRs listed by selecting or clearing List GPRSs.

Select whether you want transfer registers listed by selecting or clearing List Transfer Regs

Select whether you want Next Neighbor registerslisted by selecting or clearing List Neighbor
Regs.

Based on your selections, the relative registers are listed in the Relative registerslist box and
the absolute registers are listed in the Absolute registerslist box.

Select one or more registers from either or both lists and click Add Watch to add watches for
the selected registers.

If you select relative registers, then you must specify which threads you want to watch by
selecting or clearing the four check boxes beneath the relative registerslist.

When you are finished adding your watches, click Close.

Note: GPR names cannot be directly typed into the data watch window.

Development Tools User’s Manual 141

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

Note:

2.13.12.5

142

The Workbench will only display a data value for aregister being watched when it isin range. If
the physical register associated with a symbolic register gets re-used and goes out of range, the
Workbench will display a datavalue along with (?). If the register is not assigned to a physical
register at the currently executing instruction, the symbolic register cannot be read and the message
“out of liverange” will appear.

Aggregate Register Support:

The Assembler supports the declaration and use of registers using array notation. The Workbench
handles the square brackets in register names:

* Theuser can establish adatawatch on asingle register or onthe entire“array” of registersthat
share the same aggregate name. When the watch isfor a single register, the only change is that
the array index notation now appears as part of the register name. When the watch is for the
entire“array” of registers, then an expandabl e item with the aggregate name (e.g. “a") isadded
aong with some number of register sub-items with indexed names (e.g. “a[0]”). Sub-items are
added for register array elements zero through the highest referenced register name. In the
above example, there would be three sub-items created (0, 1, 2), not four sub-items, since the
register named “a[3]” was never referenced in the source code. And since “a[0]” was aso
never referenced in the source code, it's data watch value always shows “out of scope”.

* When the user hovers (using mouse in the thread window list view) over aregister name with
array notation, the resultant datatip always shows the value of the individual register. If the
user hovers over the register declaration, no valueis shown since the declaration itself does not
match avalid register name (i.e. “&[3]" isthe highest valid indexed register for the declaration

“reg a4]").

* When the user right clicks the mouse on aregister name with array notation, there are two data
watch options shown; one to add a data watch on the individual register and another to add a
datawatch on the entire “array” of registers that share the same aggregate name (e.g. “a’) as
described initem 1 above.

* The Add Data Watch dialog's Microengine Registers page shows all referenced registers that
use array notation (e.g. “a[1]”, “a[2]") aswell as an entry that represents the entire register
array (e.g. “a@’). The user can add a data watch on the individual registers and on the entire
array of registers that share the same aggregate name as described in item 1 above.

The above description uses relative GPRs in the examples. The description applies equally to
absolute GPRs and neighbor registers. Although transfer registers can also include array notation in
their names, there is no support for adding a data watch on an array of transfer registers. Instead,
the transfer order directive establishes the relationship between transfer registers, whether or not
their namesinclude array notation. A data watch added on atransfer register that isa member of a
transfer order shows the associated registersin the transfer order as an expandable sub-item of the
read and/or write side of the transfer register.

Deleting a Data Watch

To delete a data watch:
* Right-click the watch to be deleted in the Data Watch window, and click Delete Watch from
the shortcut menu, or

Select the watch to be del eted, then, on the Debug menu, click Data Watch, then click Delete,
or

Select the watch to be deleted and press DELETE.

Development Tools User’s Manual

intel.

2.13.12.6

2.13.12.7

2.13.12.8

Note:

2.13.12.9

Note:

IXP2400/IXP2800 Network Processors
Developer Workbench

Changing a Data Watch

To change a data watch:

1. Right-click the watch to be changed in the Data Watch window and select Edit Name on the
shortcut menu, or

Select the data watch whose name you want to change, then, on the Debug menu, click Data
Watch, then click Edit Name, or

Double-click the name to be changed.
2. Typethe state name.
3. PressENTER.

Changing the Data Watch Radix

To select whether watch values are displayed in decimal or hexadecimal:
1. Right-click anywhere in the Data Watch window.

2. Click Hexadecimal Data on the shortcut menu to display values in hexadecimal format or
clear it to display in decimal format.

Depositing Data

To change the value of asimulation state in the Data Watch window:

1. Right-click the value to be changed and click Edit VValue on the shortcut menu, or

Select the data watch whose value you want to change, then, on the Debug menu, click Data
Watch, then click Edit Value, or

Double-click the value to be changed.

2. Typethe new value in either hexadecimal or decimal format and press ENTER. Hexadecimal
values must be preceded by a‘0x’.

In Hardware mode, you cannot change the contents of the FIFO elements and certain CSRs.

Breaking on Data Changes

In Simulation mode, you can halt microcode execution when a state’s value changes.

A red dot (the breakpoint symbol) appears before each state on which a break-on-changeis set.
You can set and remove a break-on-change on aggregate state (an array) or on its individual
elements. Setting or removing a break-on-change on an aggregate state affects all its elements. If

some but not all of an aggregate state’s elements have break-on-change set, then a half-filled
breakpoint symbol is displayed on the aggregate state.

When the value changes for a state on which a break-on-change is set, microcode execution halts
and amessage box is displayed containing the state name along with its old and new values.

Breaking on data changes is not supported in Hardware mode.

Development Tools User’s Manual 143

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.13.13

144

Set:

To break execution on a changed data value:

1. Right-click the name or value of the state and click Set Break On Change on the shortcut
menu, or click the name or value of the state.

2. On the Debug menu, click Data Watch, then click Set Break On Change.
Remove:

To remove a break-on-change:

1. Right-click the name or value of the state and click Remove Break On Change on the
shortcut menu, or click the name or value of the state.

2. On the Debug menu, click Data Watch, then click Remove Break On Change.

Memory Watch

In debug mode, you can)
monitor the values of Cunnamedy +| Felest | AddWach.. |F Sden |[F Sram|[F Scimchead | ¥ Diplaybiz erdiznlengaards
DRAM, SRAM, and Sdkerm | Ve | Ve | voure <]
Scratchpad memory = SORSMTA
. . SDRAMIT AL 0x0000L234 0x00005673 Ox0000L234 0x00005673 [x000012354 0x0000567E w
locationsusing the Memory
. Sram | wiaus | Vel | Vaius | Yahia | Valua [
Watch window. SRAMT] |
The IXP2nnn Network Eoratchpad | Value | wakie | Walue | ae | Walie |
SCAATCHRAD[Z0] 00001234 Ox0000L234 | Oe00001234 | Ox00001234 |
Processors address memory

in bytes, thus the Memory
Watch window interprets the address to be watched as a byte-aligned. An SRAM or scratchpad
byte address will be rounded to the next lower longword and the data will be displayed in
longwords. A DRAM byte address will be rounded to the next lower quadword and the datawill be
displayed in quadwords. For example, if the user specifies awatch of dram[3:8], the watch is
shown as dram[0:15]

When the user enters the addressin the Add Memory
Watch window and clicks the Add watch button, the
following message box pops up to inform the user of

15 pevcloper warkbench i

the byte alignment adjustment. You may disable the
message box by clicking the Don’t show this
message in the future.

Visibility:

To toggle visibility of the Memory Watch window:

Thix bwte atdressas wou enbened hava bean madiied
ta r=llect quadwerd shgnment af the dsplaped wabies

[Dot e thie messzaein tha fuiue

¢ Onthe View menu, click Debug Windows, then click Memory Watch, or

Click the button on the View toolbar.

Chip Selection:

You select which chip’s memory iswatched using the list in the upper | eft
corner of the Memory Watch window. Chip selection is synchronized with
chip selection in the History, Thread Satus and Queue Status windows.

|<unnamed> VI

Development Tools User’s Manual

2.13.13.1

Note:

IXP2400/IXP2800 Network Processors
Developer Workbench

Subwindows:

The Memory Watch window comprises three subwindows,
one for each memory type. Each memory type has a check box ‘F Scham || Sram |[¥ Soratchpad ||
at the top of the Memory Watch window to control visibility
of the subwindow.

Each subwindow contains a multicolumn tree. The first column contains the range of the
location(s) being watched, e.g. DRAM[0:3]. The values of the locations are displayed in columns 1
through n. The number of value columns varies with the width of the Memory Watch window,
with aminimum of one value column.

Endianness:

The Display big endian longwor ds check box enables DRAM
guadword values to be displayed with the longwords swapped. | ¥ Display big endian longwords

Values Updates:

Watch values are updated whenever microcode execution stops. To force an update of

the values at other times, click Refresh at the top of the M emory Watch window.
Entering a New Memory Watch

To enter anew memory watch:

1. Right-click anywherein the name or value column of the %

Memory Watch subwindow (either SRAM. DRAM, or

Scratchpad) and click New Watch on the shortcut menu, or :Bxajecima: gdtdresses
Double-click the blank entry at the bottom of the data watch list v Hexaceamabate
for that subwindow. v Allov Dacking
Hid
2. Type the range of memory locations you would like to watch. =

The format for the range is the same as that for the Transactor:

[m] To watch asingle location. For example, sram[1] watches |ocation one

in SRAM.
[m:n] To watch locations m through n inclusive. For example, dram[0:3]

watches locations O through 3 in DRAM. And since arange can be
specified in ascending or descending order, you could specify thiswatch
asdram[3:0].

[m:+n] To watch location m plus the n locations following it. For example,
dram[5:+3] watches locations 5 through 8.

3. Optionally, you can specify abit range to be watched. The format for a bit rangeis:

<m> To watch only bit m of astate. For example, dram[0]<12> watches only
bit 12 of the dram location 0.

<m:n> To watch bits m through n of a state, with m being greater than n. For
example, dram[0:3]<12:10> watches bits 12 through 10 of dram
locations O through 3.

SRAM and Scratchpad locations are 32-bit values, while DRAM locations are 64-bit values.

Development Tools User’s Manual 145

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.13.13.2 Adding a Memory Watch

To add a memory watch:
1. Click Add Watch at the top of the M emory Watch window,

or Aol Memory Watch
Right-click in the name or value column window and click 5::5;‘;.; e
Add Watch on the shortcut menu. Lo - e
The Add Memory Watch dialog box appears. L e

ol frrmats see vk, metn. o jusk i

2. Select Sram, Dram, or Scratchpad under Select the type |
of memory. Spmcilp he 1ange of bilc: o be walchad. Vaid

Ioimats: are men [with mirm] mom Leswe blark
Io waich al bils:

3. Typethe range of addresses to be watched in the Select the
range... box.

You can specify arange of bits to be watched in the Specify
therange of bits... box. By default, the entire location is watched.

4. Click Add Watch.
When you are finished adding your watches,

5. Click Close.

2.13.13.3 Deleting a Memory Watch

To delete amemory watch:
1. Right-click the watch to be deleted in the Memory Watch window.

2. Click Delete Watch on the shortcut menu.
or

1. Select the watch to be deleted.
2. PressDELETE.

2.13.13.4 Changing a Memory Watch

To change a memory watch:

1. Right-click the watch to be changed in the Memory Watch window and click Edit Address
on the shortcut menu, or

Double-click the mouse button on the watch to be changed.
2. Edit the address range (and bit range, if applicable).
3. PresseNTER.

2.13.13.5 Changing the Memory Watch Address Radix

To select whether memory addresses are displayed in decimal or hexadecimal:
1. Right-click anywherein the Memory Watch window.

2. Click Hexadecimal Addresses on the shortcut menu to display addresses in hexadecimal
format or clear it to display in decimal format.

146 Development Tools User’s Manual

intel.

2.13.13.6

2.13.13.7

2.13.14

IXP2400/IXP2800 Network Processors
Developer Workbench

Changing the Memory Watch Value Radix

To select whether memory values are displayed in decimal or hexadecimal:
1. Right-click anywhere in the Memory Watch window.

2. Click Hexadecimal Data on the shortcut menu to display values in hexadecimal format or
clear it to display in decimal format.

Depositing Memory Data

Simulation Mode:

In Simulation mode, you can change the value of any entry in the M emory Watch window.
Hardware Mode Restrictions:

In Hardware mode, you can change only those entries that were added as a single memory location.
You cannot change any value that is displayed as aresult of adding arange of memory locations.

Values Changes:
To change the value of a memory location that you are watching:

Breaking on Memory Changes:

1. Right-click the value to be changed and click Edit Value on the shortcut menu, or
Double-click the value to be changed.

2. Typethe new value in either hexadecimal or decimal format. (Hexadecimal values must be
preceded by a‘0x’.)

Execution Coverage

The code window in the Execution Coverage dialog box mimics the display in athread window.
That is, for aMicroengine that contains C code, you can select a source view or alist view. In the
source view you can select which source to display. In the source view, source lines show the sum
of the number of times each generated instruction was executed. For example, if a source line
generates three instructions and each instruction was executed 10 times, then the execution count
displayed on that source line would be 30. Similarly, for assembled threads, the execution count for
a collapsed macro reference isthe sum of the execution counts for all instructions generated by the
macro. The units for the horizontal axis on the bar graph remain instruction addresses.

To display the Execution Coverage dialog box (see Figure 41):

1 III Stop simulation (if necessary).

2. On the Simulation menu, click Execution Coverage.
The Execution Cover age dialog box appears.

3. If your project contains multiple chips, select the chip whose coverage data you wish to view
from Select a chip list in the upper left corner of the dialog box.

4. Select aMicroengine from the Select a Microenginelist.

Development Tools User’s Manual 147

IXP2400/IXP2800 Network Processors
Developer Workbench

intel.

The microcode that is loaded in that Microengine appears in the code window. This display isthe
same as is shown in the thread window.

Figure 41. The Execution Coverage Window

Execution Coverage

NextDl Frey Dl

x|

Select chip:

- LINNAr

Next>D| Frey >D| j,_=§|f_=§| "_.‘I lﬁ

Select microengine:

Select the threads for which you

want o see coverage: m

[V Contest 0[Threadd)
[V Cortest 1 [Threadt)
[V Contest 2 [Thread2)
[V Contest 3 [Thread3)
[V Contest 4 [Threadd)
[V Cortest 5 [Threads)
[V Contest B [Threads)
¥ Cortest 7 (Thread?) [

Reset Counts Customize...

|

Walues were collected starting at cycle 0

; When a thread has reached the end of the network table, it ;:J

local @100010idx main $510001 Inetwork_addr main $510001 Inetma
; specify the transfer order of the DRAM zfer register for use
; with the get_ip network_from_table[] macro.
; For the table element. we use (32bit) word 0 and word 2, =o
; registers for word 1 and 3 are called foo, the values these
o oaren't used.
cmZfer order $$10001 ! network_addr main $$10001!fool SSlDDDl!net_J
; Allow only thread 0 to initalize; all other threads wait
; to wake them up before starting the searches
brl=ct=z[0, start_main#]
; Thread 0 will initalize all shared registers others will
; Signal all threads in this HE with =ignal #1. =o they oc
; The initalizing thread will al=o =s=lesp to. =0 we signal
initalize[@10001!id=x main]:
; Initalize
immed_wl[@10001!idx_main, O0=xffff]
immed_wl[@10001!idx_main, O=xffff]
; Signal all threads that initalization is conplete
.local 10002'foo
immed[100021foo, 8]

B

Instruction address coverage: 0.0%

3

e bels ¥

f f f f f
50 B0 T a0 a0 100 10 120 130 140 150

f
160 -
3

Horizontal axis = instruction address;

Wertical axiz = # of times instruction was executed;

Hatched-filled area = unused microstore

Execution Count:

The number to the |eft of each instruction displays the number of times each instruction was
executed. The background is color-coded to indicate a range of execution counts. (see

Section 2.13.14.1).
Bar Graph

o ==
At the bottom of | =- =
thedialog box is | % k]
abar graph that g : JE——T ||||||||||| ol A

H 1} a2l Al 40 0 &l 7l &l 40 ol il izh ian 0 150 60 -

showsthe || | A
execution
coverage. The

instruction addresses are represented along the horizontal axis, and the execution counts are
represented by the vertical axis. The bars are color-coded using the same colors and ranges asin the

code window.

148

Development Tools User’s Manual

2.13.14.1

2.13.14.2

2.13.14.3

IXP2400/IXP2800 Network Processors
Developer Workbench

By default, the execution counts are the total for
all contextsin the Microengine. You can see the
execution counts for any subset of contexts by
selecting or clearing the check boxes beneath the
Microenginelist.

—— Execution count (10<>50)

——Address

. T~ i
The execution count for a collapsed macro Execution count (>50)

referenceisthe sum of the execution counts of all
instructions generated by the macro.

_—Macro expansion

—— Execution count (<10)

Changing Execution Count Ranges and Colors

By default, the colors and ranges for execution counts are:
Blue - Instruction was executed less than 10 times.
Black - Instruction was executed between 10 and 50 times, inclusive.
Red - Instruction was executed more than 50 times.

To change the colors and ranges, in the Execution Coverage window, click Customize.

Displaying and Hiding Instruction Addresses

To toggle displaying and hiding instruction addresses in the code window:
1. Right-click in the microcode window.

2. Select Display Instruction Addresses on the shortcut menu to display the addresses or clear
to hide the addresses.

Instruction Markers

To synchronize viewing between the code window and the bar
graph, the Workbench displays an instruction marker. The m imgg%ggi—g ﬂﬂ 2%
“current’ instruction is marked in the code window by a = .
horizontal green arrow in the leftmost gutter.

In the bar graph window, it is marked by a black vertical marker on the
horizontal axis.

Marker Movement:
Above the code window are four buttons that move the instruction marker:

et 0 Moves the marker to the next instruction that has an execution count of O.

Frev Movesthe marker to the previousinstruction that has an execution count

of 0.

Moves the marker to the next instruction that has an execution count that
isgreater than 0.

Mest =0

Development Tools User’s Manual 149

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.13.14.4

2.13.14.5

2.13.14.6

2.13.15

150

Movesthe marker to the previousinstruction that has an execution count
that is greater than 0.

You can also double-click an instruction in the code window or an address in the bar graph window
and the marker moves to that instruction.

Miscellaneous Controls

Other controlsin the Execution Cover age dialog box are:
= Expand macros (see Section 2.13.8.7).

= Collapse macros (see Section 2.13.8.7).

Ir:-:_ether1 00m.c j |

Select the source file to view.

Scaling the Bar Graph

To theright of the bar graph window are four buttons for scaling. They are:

Horizontal zoom out.
E Horizontal zoom in.
Vertical zoom out.

Vertical zoom in.

Resetting Execution Counts

By default, execution counting starts at the first simulation cycle. If you have initialization code
that you don’t want included in the counts:

1. Runthe simulation until it completes the initialization.

2. Onthe Simulation menu, click Execution Coverage.
The Execution Cover age dialog box appears.

3. Click Reset Counts.

Execution counting restarts from the cycle at which you clicked Reset.

Performance Statistics

The Workbench provides the ahility to gather and display statistics on simulation performance.
Statistics gathering is available only in Simulation mode.

Development Tools User’s Manual

u
intel.
2.13.15.1 Displaying Statistics

To display Performance Satistics:

1 m Stop debugging (if necessary).

2. On the Simulation menu, click Satistics.

The Perfor mance Satistics information box appears.

3. Click the Summary tab.

IXP2400/IXP2800 Network Processors

Developer Workbench

The Summary page shows the percentage of time that each Microengine and memory unit is
active and the rate that this activity represents.

Figure 42. Performance Statistics - Summary Tab

Performance Statistics

Summary | Microengine I Al

Statisticz were gathered starting at cycle 355,

Achive Rate
[=1- Chip [<unnarmed>]

-~ Microengine 0.0 BB1TE 214,44 Mips
- Microengine 01 0.00% 0.00 Mips
- Microengine 012 0.00% 0.00 Mips
- Microengine 0.3 0.00% 0.00 Mips
- Microengine 04 0.00% 0.00 Mips
- Microengine 0.5 0.00% 0.00 Mips
- Microengine 06 0.00% 0.00 Mips
- Microengine 017 0.00% 0.00 Mips
- Microengine 1:0 0.00% 0.00 Mips
= Microengine 1:1 0.00% 0.00 Mips
- Microengine 1:2 0.00% 0.00 Mips
- Microengine 1:3 0.00% 0.00 Mips
- Microengine 1:4 0.00% 0.00 Mips
- Microengine 1:5 0.00% 0.00 Mips
= Microengine 1.6 0.00% 0.00 Mips
- Microengine 1:7 0.00% 0.00 Mips

24,44 Mipz

- Tatal

<

Sawve simulation performance stats to a .cev formatted

Save Stats to File. .

Cloze |

Development Tools User’s Manual

151

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

4. To print the statistics to a .csv file, click the Save Satsto File button.

The Performance Simulation Stats Dialog box displays (see Figure 43). Enter the filename and
press OK to save the statistics. The datawill be output to a .csv file that can be read by a text
editor or imported to Microsoft* Excel spreadsheet.

Figure 43. Save Packet Simulation Stats to a File

Simulation Performance Stats Filegz 5'

Stares simulation perfarmance stats inta a
comma separated file [[C5V)

Simulation Performance Stats File

" Dvenwrite file if it alieady exists, elze create new file

' Append to file if already exists, else create new file

)4 I Cancel |

5. Click the Microenginetab.

The Microengine statistics page contains a multicolumn hierarchical tree displaying the
statistics. The first column identifies the component for which the statistics apply. The next
four columns show the percentage of time that the component was executing, aborted, stalled,
idle, and swapped out. You can expand and collapse the tree by clicking on the + sign to the
right of a component, or by double-clicking on the component.

152 Development Tools User’s Manual

Figure 44. Performance Statistics - MicroengineTab

Performance Statistics

IXP2400/IXP2800 Network Processors
Developer Workbench

Summary Microengine |g||

Statistics were gathered starting at cycle 355,

(¢ Show percentage

" Show absalute cycles

Erecuting | Aborked | Stalled Idle Swapped out
[=1- Chip [<unnamed:]
[Microengine 0:0 RRITE 2R.29% | 000% | 1554%
- Microenging 01 000z 000z 0.00% 000z
- Microengine 0.2 0.00% 0.00% 0.00% 0.00%
- Microengine 0.3 000 000 0.00% 0.00%
= Microengine 04 0.00% 0.00% 0.00% 0.00%
- Microengine 0.5 000 000 0.00% 0.00%
= Microengine 16 000z 000z 0.00% 000z
- Microengine 0.7 0.00% 0.00% 0.00% 0.00%
- Microengine 1:0 000 000 0.00% 0.00%
- Microengine 1:1 0.00% 0.00% 0.00% 0.00%
- Microengine 1:2 000 000 0.00% 0.00%
= Microengine 1.3 000z 000z 0.00% 000z
- Microengine 1:4 0.00% 0.00% 0.00% 0.00%
- Microengine 1:5 000 000 0.00% 0.00%
- Microengine 1:6 0.00% 0.00% 0.00% 0.00%
- Microengine 1:7 000 000 0.00% 0.00%

Close

6. Click the All tab.

The All statistics page displays as shown in Figure 45.

The All statistics page allows you to look at all of the statistics gathered by the Transactors. By

default, all available statisticstitlesare listed in the top list box. Click atitle to have the associated

statistics displayed in the bottom list box. The Chip list box allows you to select which chip’s

statistics are displayed. You can create a customized list of statisticstitles by selecting thetitle and

clicking Add to Customized List.

¢ Todisplay your customized list, click Show customized list.

* Todeeteatitle from your list, click Remove.

The Workbench saves your customized list along with the project debug settings.

Development Tools User’s Manual

153

IXP2400/IXP2800 Network Processors
Developer Workbench

Figure 45. Performance Statistics - All Tab

Performance Statistics

Summary | Micioengine &1

Statistics were gathered starting at cycle 355

& Show complete list ¢ Show customized list

Select statistic:

ChD Bus Arbiter for Cluster #0, NOMN-SRAM Requestbreak,

Chip: | cunnamed:

ﬂ

Add o Customize List |

CMD Buz Aubiter for Cluster 80, SRAM Request (break-do i

CHD Buz Arbiter for Cluster #1, HOM-SRAM Request(break-down version)
CRD Bus Arbiter for Cluster #1, SRAM Request(break-down version)

CHD Bus Arbiter for MOM-SRAM Request
ChD Buz Arbiter for SRAM Request

DRARM CHAMMEL #0 BANE UTILIZATION LI
CMD Bug Arbiter for Cluster #0, NOM-SRAM Requestibreak-down version)
Total samples: 7038
FER P CLOCK, Percent =
bus uzed: 236 335
request from t0: 236 335
request from t1: 0 0.00
request from t2: 0 0.00
request from t3; 0 0.00
request from td: 0 0.00
request from th: 0 0.00
request from te: 0 0.00
request from tF: 0 0.00
request from szcale: 0 0.00
buz idle due to no-request ar arbiter restriction: BAEE 9329
busz idle due to target crd queue full [total): 0 0.00
s 0 oo T
bz idle due to dram cmd gueue full: 0 0.00
bz idle due to rmsf cmd queue full: 0 0.00
boie idla dus bochac crad cnsns Bl n non .~

Close

2.13.15.2 Resetting Statistics

By default, statistics are gathered starting at cycle 1 of asimulation. However, you can reset the

statistics at any time. The statistics are then gathered from the current cycle forward.

* Toreset statistics, on the Simulation menu, click Reset Satistics.

2.13.16 Thread and Queue History

Thread and queue history enables you to look at the status of all threads and numerous queuesin a
chip at the sametime. It provides a high level view of how your microcode is executing, enabling

you to quickly locate performance bottlenecks.

154

Development Tools User’s Manual

intel.

IXP2400/IXP2800 Network Processors

Figure 46. History Window

Note:

Hisko

| LLnhaned:

J F Thraadt| '— Dueuee|

a5« | =T

Developer Workbench

B

Cuzlamize..
T-“IIZI T-“I

-I:I -5 T-‘I:IE] ?2I:I ?25 ?3EI

Microenghe 0:0 || |

?35 ?-lEI

[

L

Mr.ro:ngncl]'l _I_ !_ I—I— I— —_— I

i

[hr=a

Microanghe 1.0 I'.

Meengne 1.3

A

The History window does not display each thread on a separate line by default. It displays all
threads in a Microengine on the same line. To display the threads separately:

1. Right-click the Microengine whose threads you want to display.

2. Click Expand Threadsfor Microengine n, where n isthe Microengine you clicked on, or

double click on a Microengine name.

Only Microengines that have microcode loaded appear in the left-hand column.

To display dl the threadsin a Microengine on asingle line:
1. Right-click on any of the thread in the Microengine.

2. Click Collapse Threadsfor Microengine n, or double click on a Thread name.

Threads (and queues) appear on atimeline that represents the number
of cycles executed. A thread's history is depicted by line segments
that change color depending on whether an instruction is executing
(black); aborted (yellow); stalled (red); its Microengineisidle (blue);
its Microengineis disabled (dotted blue).

You select which chip’s history is displayed using the box in the
upper left corner of the History window. Chip selection is

Thread state

w— T hiead executing
Thread aborted

e T hiead stalled

— 1 icroengine idle

Microengine dizabled

synchronized with chip selection in the Thread Satus, Queue Status and M emory Watch

windows.

Development Tools User’s Manual

155

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.13.16.1

2.13.16.2

Displaying the History Window
* Onthe View menu, click Debug Windows, then select History, or
Click the button on the View toolbar.

Thistoggles visibility of the History window. You must be in debug mode to view history.

Displaying Queues in the History Window

The Queue Display tab on the Customize History property sheet of the History Window alows
for the hiding and showing of queues in the queue history section of the History Window. There
are five queue groups - DRAM, SRAM, Microengines, SHaC and M SF - corresponding to major
unitsin the chip. Each group expands to display the individual queuesin that group. Checking or
unchecking a group box checks or unchecks the boxes for all queuesin that group. If al queuesin
aMicroengine have their boxes checked for a given item, then the group’s box is also checked.
Conversely, if they are al unchecked then the group’s box is unchecked. If some are checked and
some are unchecked, then the group’s box is shown as checked but grayed. If the user clicks on a
grayed group box, it and all the contained queue’s boxes become checked.

Figure 47. Queue Display Property Sheet

2.13.16.3

2.13.16.4

156

Loz e Hislor B

Threac Dispey Bhmen Digglay | Cokes | Cooe Lebeis |

Sedas senp \chip |

Seec I Fe e b m send dalaed

= [# rmas

[+ Dl 0 Comererd | et
=

SR 0 Commend| nied Al

[V 5Pl 1 Comrerend] e &
[@ SRk 1 Commard| ned A0
¥ SRl 1 Commernd| it &'
o i e
= [# GHaC
[V SHaC Conmesrn ks
= & Wit
[¥ M9 F Comrsend st

[] _crent

Hardware Debugging Restrictions

When debugging in the hardware configuration, thread and queue history is not supported.

Scaling the Display

To control the horizontal scale for the history display, use the zoom in [%s] and zoom out
buttons.

Development Tools User’s Manual

intel.

2.13.16.5

IXP2400/IXP2800 Network Processors
Developer Workbench

Thread Display Property Page

The Thread Display property page allows for convenient hiding/showing of threads, code |abels
and references from the Customize Thread History property sheet.

A checked box next to an item means that item gets displayed. An unchecked box means that the
item is hidden. Checking or unchecking a box for a Microengine affects all the threads in that
Microengine. If all threadsin a Microengine have their boxes checked for a given item, then the
Microengine's box is also checked. Conversely, if they are all unchecked then the Microengine's
box is unchecked. If some are checked and some are unchecked, then the Microengine’s box is
shown as checked but grayed. If the user clicks on a grayed Microengine box, it and all the
contained thread’s boxes become checked.

Regardless of the state of the individual thread settings, the user can hide all references by
unchecking the Enable display of references box. Similarly, al code labels can be hidden by
unchecking the Enable display of code labels box.

Figure 48. Display Threads Property Page

2.13.16.6

Fsamor ey x
Threar iy | Crogus Dispelap | Cefers | Code Labele |
Ealact a hp [cho =| F Erable dedkas of idaees [+ Enathz gsploy ol coos |adch

S el e tkems st you st displaped

l I I
E_mj B Hkow: | ¥ Code labek T Falearcen
Tremadl W Hitoy | & Codelsbe = Felmsros
Trpsad] [Hitay T Codelands [Felasroe:
Thesads ¥ Hitkoop T Cods s = Fabazroms
Trsads W Hiigom & T Lty F Fuleistis
Tregadh [Heszop T Codelaaeds = Folaarog
ThesadS [+ Hitkop T Cods laus [+ F sbmimros
Trisades: ¥ Kbty T Codelanes [Fekieroe:
Thrasad? R Hitkay T Cods e I Falairom
[P Wiciosgine 01 B ko, T ok Laheke [Ptz
B Wicosngins k2 | [Histose | [T Cade lebels [Refmerces
B Wicmangine 03 B Hkop I Code libels W Fafatences
o Wicoengine 10 [F Rivowy [Cade label ¥ Fafesrces
I Wicmengins 1.3 Higow T Ciode lsbels W Fisfesross

e

To get details about athread's history, position the cursor over the history line and wait for a
moment. The Workbench displays the cycle count, PC, and the instruction state in a pop-up
window beneath the cursor.

70 7a 80 85 1
1 1 1 1

Displaying Code Labels

The thread history window supports the viewing of microcode labels along athread’s history line.
This helps in determining what code is being executed during a certain cycle.

To specify which code labels to displayed, do the following:

Development Tools User’s Manual 157

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.13.16.7

158

1. Inthe History window, click Customize.
The Customize Thread History dialog box appears.

2. Click the Code L abelstab.

3. Inthe Select Microengine box isalist of al the Microenginesin the project. Click a
Microengineto display all the labels in the microcode associated with that Microengine.

4. Inthe All labelsin MicroEngine's microcode box, select the labelsto be displayed in the
History window by clicking the label, and then clicking Add.

The L abelsto bedisplayed in thread history box lists all the code labels you have selected to
be displayed on the selected Microengine's history lines.

5. Continue this procedure for each Microengine for which you want code |abels displayed.
6. Todelete alabel from the display list, select the label in the rightmost list box and then click
the] button.

7. Click OK to close the Customize Thread History dialog box.
Code labelsfor athread

Whether or not code labels are displayed on a particular thread's history lineis controlled via
shortcut menusin the History window or by the Thread Display property page (see Figure 48).

* Todisplay code labels for athread, right-click on the thread name or on its history line and
check Display Code Labelsfor ‘threadname’ on the shortcut menu, where ‘threadname’ is
the name of the thread you clicked on.

* To hide code labels for athread, right-click and uncheck Display Code L abels for
<threadname>.

Displaying Reference History

The Thread History window supports the viewing of reference history lines underneath the
history lines of the thread issuing the reference.

References to the following components are displayed:
* DRAM

* SRAM

* Hash

® Scratchpad

* MSF

* CAP

Interthread references are displayed in two sections:

* The reference creation section is displayed underneath the signalling thread, with the name of
the signalled thread shown above the reference line.

* Thereference consumption section is displayed underneath the signalled thread, with the name
of the signalling thread shown above the reference line.

Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors
In ® Developer Workbench

There are five instances when reference history is displayed:

1. A thread issues acommand and no signaling occurs.

deratch
—_—

2. A thread issues a command and gets signaled. The reference line under the issuing thread
shows the referenced component and displays the markers for al the reference events that
occurred. For example,.

iJderatch e i
e kM- --- ----

3. A thread issues a command but a different thread gets signaled. The reference line under the
issuing thread shows the referenced component and the number of the thread getting signal ed.
None of the events are indicated on the reference line. The reference line under the thread
being signaled shows the referenced component and the number of the thread that issued the
command. It aso displaysthe markersfor all the reference events that occurred. For example,
if thread 30 issuesa DRAM command and specifies that thread 62 gets signaled, then the
reference line under thread 30's history looks like:

‘Dram

And the reference line under thread 62's history looks like:.

4. A thread issues acommand and a different thread and the issuing thread both get signaled.

5. A thread signals another thread directly. For example, if thread 63 signals thread, then the
reference line under thread 63's history looks like:

:M:adﬁ

And the reference line under thread 15's history looks like:

To get details about a reference:

¢ Position the cursor over the reference line and wait for a moment.

The Workbench displays the reference command, the address it is accessing, and the number
of longwords being referenced in a pop-up window beneath the cursor.

The color in which each of these types of referencesis displayed can be customized as outlined in
the section, “ Changing Thread History Colors”.

On areference line, the Workbench displays markers at the cycles when reference events occur.

—— Putinto queus Displayed at the cyclewhen thereferenceis put into the queue of the unit
being referenced.

Displayed at the cycle when the unit removes the reference from the
gueue.

—+— FRemaoved from queue

~— Processing done Displayed at the cycle when the unit finishes processing the reference.

Development Tools User’s Manual 159

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

Displayed at the cycle when the unit signal s the thread that the reference
iscompleted. For DRAM references, there are two signals. If they occur
simultaneously, the arrow isfilled grey.

-k-- Thread zighalled

Signal consumed Shown from the reference line to the thread's history line at the cycle
 f7zeTE when the thread consumes the signal.

Displaying References:

Whether or not references are displayed on a particular thread’s history lineis controlled via
shortcut menusin the History window or via the customize property sheet.

To display references for athread:
1. Right-click the thread name or its history line.

2. Click Display References for ‘threadname’ on the shortcut menu, where ‘threadname’ isthe
name of the thread you clicked on.

The user controlsthe display of reference history by clicking the Customize button in the History
window then clicking the Thread Display tab. The property page shown in Figure 49 appears.
Display of all referencesis enabled or disabled by checking or unchecking the Enable display of
references button. If this button is checked, then references for individual Microengines or threads
can be displayed or hidden using the check boxes in the fourth column of the list box.

To hide all references for a Microengine, the user unchecks the box corresponding to that
Microengine, as was done for Microengine 0:2 in Figure 49.

To display all references for a Microengine, the user checks the box corresponding to that
Microengine, as was done for Microengine 0:1 in Figure 49.

To hide references for athread, the user unchecks the box corresponding to that thread, as was done
for Thread 2 in Figure 49. To display referencesfor athread, the user checks the box corresponding
to that thread, as was done for Thread O in Figure 49. If some threads in a Microengine have

references displayed and others don’t, then the box for the Microengineis displayed as checked but

grayed.

Checking or unchecking a Microengine's box a so checks or unchecks the boxes for all thread in
that Microengine.

Hiding or displaying references for athread can also be done directly within the History window.
If athread's references are hidden, the user displays them by right-clicking on the thread's history
line and selecting Display Referencesfor Threadn. If athread’s references are displayed, the user
hides them by right clicking on the thread’s history line and selecting Hide References for
Threadn.

160 Development Tools User’s Manual

intel.

IXP2400/IXP2800 Network Processors
Developer Workbench

Figure 49. Customize History

2.13.16.8

Thread Display | Queue Display | Colors | Code Labels |
Select chip: ||:hip 'I ¥ Enable display of code labels W Enable display of references

Select the Rems that you want displayed:

| 1 I
w_ [¥ History | [¥ Codelabel: | [F References
Threadd | B History | [~ Codelshels | [References
Threadl | B History | W Codelsbels | [References
Thiead? | W History | [Codelabel: | [References
Thread3 I History | W Code labels ¥ Refererces
Thiead4d W Higtory | W Code abels [~ References

|

Thireads ¥ Higtory ¥ Code |abels ¥ References:
Thieadt ¥ Histary ¥ Code labels ¥ References
Thiead? | WHistory | I¥iCodelsbels | [References
Microengine 0:1 | [¥ Histary | [T Code labels | ¥ References
Meksrgne 12 | ity [LICuchibie L LIneasnce;
Micioengine 0:3 | [History | [T Codelabels | ¥ References
Micioengine 1:0 | [History | [T Codelabels | ¥ References
Microengine 1:3 | [¥ Histary | [~ Code labels | I¥ Retererces

H =+ F FH FH

! K. | Carcel

Queue History

You can control whether or not a specific queue’s history is displayed. This allows you to limit the
display to only those queues that you are interested in. By default, all queues are displayed.

Queue’s Contents:

To get information about a queue’s contents:
1. Position the cursor over avertical bar and wait for a second.

2. The Workbench displays the number of entriesin the queue and the size of the queue in a pop-
up window beneath the cursor.

Queue’s Contents in Detail:

To get detailed information about the contents of the queues:

¢ Right-click and click Show Queue Satus on the shortcut menu.

The Queue Status window appears showing details of al the queues. (See Section 2.13.17 for more
information on the Queue Status window.)

Development Tools User’s Manual 161

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.13.17 Queue Status

The queue status window provides current and historical information on the contents of the five
queue groups: DRAM, SRAM, MSF Interface, SHAC and Microengines.

* To display the Queue Status window, on the View menu, click Debug Windows, then click
Queue Satus, or
Click the button on the View toolbar.
The Queue Status window appears (see Figure 2-17).

Figure 50. Queue Status Window

omemann
fae_ Tl ioere e [R] e] .

S | T irmae | Cereroedt | A Tinammct L Lk i Lnord: | 5i
- DREM |
= R L e e | i
TR LR | THGTR_DAwsA_aH [Teaizn L Tz T
T ET] |
[= =Pl O Corrrvanad | i A0 | T |
il IHETAR_EAAM_FD | DeEETR Teazawal L= a3 1 H
IRAH D Coanmard lmle 21 | D
THAM | Convromed | wled AL | T
SFLAN 1 Covvrmsrad il 21 |0
Moot |
-r ST g 000 rane | |
HMrwasne W Lenend | .
i apmag e 07 Command | 2 |
a HETR_ECRATCH_AD | Oakkm Taamedlc. |@ | 203 1 [
1 THETR_ECRATTH W | a3 Thecai T 0| 9 C ol
rd iwresn gies 073 Crmmnd | 3 |
[re v g 19 1 v i
W Mremesgien 0= Comrand | O
* e gy 05 Comrpand |
[Mistsag i 0 Lodiand | 0
sl
HC Gurwmarad Inks |
o IHETA_&CFAT OH_ Wil | SETH Thaaordl& = 21 1 "
i |
= HEF Carmare nks [1]
rr-

Select which chip’s queue statusis displayed using the list in the upper left corner. Chip selectionis
synchronized with chip selection in the Memory Watch, Thread Status and History windows.

The number of entriesin the queue is displayed for each queue in the DRAM, SRAM, MSF
Interface, SHAC and Microengines.

To examine the references that are in a queue, expand the queue’s tree item by clicking on the +
symbol or double-clicking on the item. For each reference in the queue, the Workbench displays:

* Thetype of reference.

* The address being referenced.

¢ Which thread made the reference.

* The PC of theinstruction which made the reference.

* The cycle count at which the reference was made.

* The number of longwords being referenced.

* Whether asignal will be generated when the reference is completed.

162 Development Tools User’s Manual

intel.

2.13.17.1

2.13.17.2

IXP2400/IXP2800 Network Processors
Developer Workbench

Instruction Cross-reference:

If you right-click areference and click Go To I nstruction on the shortcut menu, the Workbench
opens the appropriate thread window and displays the microcode instruction that issued the
reference. A purple marker in the left margin of the thread window marks the instruction. The
reference is a so highlighted with the same marker in the queue status window.

Queue Status History

When the simulation stops, the queue status window is automatically updated to show the current
gueue contents. You can also review the contents of the queues for previously executed cycles.

To do this:
¢ Click theright and |eft arrows at the top of the queue status window.

The number between the arrows shows the cycle count at which the queue contents occurred. This
historical cycle count is synchronized with the corresponding cycle count in the History window.
Changing either one also changes the other. This allows you to move the graphical cycle marker in
the History window to a specific cycle and view the queue contents in relation to the thread
history.

Setting Queue Breakpoints

You can set a breakpoint on a queue to have simulation stop when the queue risesto or falls below
a specified threshold.

To do this:

1. Right-click the queue name and click I nsert/Remove Breakpoint on the shortcut menu.
The Queue Breakpoint dialog box appears.

2. By default, the breakpoint is enabled and triggers when the queue rises to the default threshold
for the queue. You can change the trigger threshold by changing the number in the Threshold
box.

3. By selecting or clearing the check boxes, you can change the breakpoint properties.

When a breakpoint is set and enabled on a queue, a solid red breakpoint symbol is displayed to the
right of the queue name.

To disable a breskpoint:
1. Right-click the queue name.
2. Click Enable/Disable Breakpoint on the shortcut menu.
A disabled breakpoint isindicated by an unfilled breakpoint symbol.
To enable a breakpoint:
1. Right-click the queue name.
2. Click Enable/Disable Breakpoint or | nsert/Remove Breakpoint on the shortcut menu.

To remove an enabled breakpoint:
1. Right-click the queue name.

Development Tools User’s Manual 163

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

2.13.17.3

Note:

164

2. Click Insert/Remove Breakpoint on the shortcut menu.

To change a breakpoint’s properties:
1. Right-click the queue name.

2. Click Breakpoint Properties on the shortcut menu.

The Queue Breakpoint dialog box reappears where you can change properties or click
Remove to remove the breakpoint.

Changing Thread History Colors

By default, the Workbench displays a thread history linein:

... if aninstruction is executing
f it isaborted
1| if thethread is stalled
(- if the Microengineisidle
By default, the reference line colors are:
SRAM white
DRAM black
Scratchpad purple
CAP green
Hash bright blue
M SF yellow

To change the colors for the thread history and reference lines, do the following:

=

In the thread history window, click Customize, or
On the Simulation menu, click Simulation Options.

Click the Color s tab.
Click the color button next to the item whose color you want to change.

Select the new color.

a > w DN

Click OK after specifying the colors you want.

For consistency, the execution state colors also apply to the instruction markers that are displayed
in the thread windows.

Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors
In ® Developer Workbench

2.13.17.4 Displaying the History Legend

To see alegend of the thread history colors and the reference event markers,
click the L egend button in the History window. The Thread History L egend
dialog box appears.

Thislegend displays information about the following:
* Thread Sate
* Reference Types

* Reference Events

NOTE: History shows pineline
stage 4 execution

Clase

2.13.17.5 Tracing Instruction Execution

To view the instruction that a thread was executing at a given cycle count:
1. Right-click the thread's history line at the cycle count in which you are interested.

2. Click Go To Instruction on the shortcut menu.

This opens or activates the thread's code window and scrolls it to show the requested instruction.

* If the requested instruction is displayed, the history instruction marker appears on the
appropriate instruction line, color coded for the execution state.

¢ |f the requested instruction is not displayed because it isin a collapsed macro reference, the
history instruction marker is displayed on the line with the macro reference.

¢ |f thethread is compiled and the source view is being displayed, the history instruction marker
is displayed on the line that generates the instruction.

¢ If thethread is compiled and the list view is being displayed, the history instruction marker is
displayed on the appropriate instruction line.

Development Tools User’s Manual 165

IXP2400/IXP2800 Network Processors
Developer Workbench

The thread history window contains a cycle marker which marks a
particular cycle count using a vertical dashed line cutting across all
displayed history lines (see image at left). The cycle count at the cycle
marker’s position is reported in the box |ocated between the right and
left green arrow buttons in the History window.

There are several ways to move the cycle marker:

* Toimmediately move the cycle marker to a given cycle count,
double-click the History window at the cycle where you want the
marker.

* To drag the cycle marker, press the left mouse button on the marker,
drag to the desired cycle and release the mouse button. Asyou drag,
the marker snaps to cycle count positions and the cycle count is
displayed.

* To movethe cycle marker to the next cycle, click the button labeled
with the green right arrow.

* To move the cycle marker to the previous cycle, click the button
labeled with the green left arrow.

If athread's code window is opened, movement of the cycle marker
scrolls the window to show the instruction being executed by the thread

intel.

el 9]
360 1370 1380
1 1 1

| —p——

|
: T

1 Id 1
Sram !

— _—
M dram

-
"

at that cycle count. The instruction is marked with a color-coded arrow in the window's gutter, with
the color indicating the execution state - executing, aborted, stalled, or swapped out. This enables
you to trace past program flow by going to a specific cycle and incrementing the cycle marker.

2.13.17.6 History Collecting

You enable or disable History collecting through the History dialog box (see Figure 51).

Enable:

To collect history:

1. Onthe Simulation menu, click Options.
The Simulation Options dialog box appears.

2. Click the History tab.
3. Select Enable history collecting.
4. Select:
a. Collect thread history, or
b. Collect reference history
c. Collect queue history, or
d. Any combination, depending on what history you want collected.

Note: You cannot select Collect reference history if Collect thread history is not selected.

166

5. Specify how many cycles of history you want collected by typing a number in the

corresponding box. The maximum number of cycles that can be collected is 1,000,000.
However at 1 million cycles significant Workbench process virtual memory is required for a

Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors
In ® Developer Workbench

typical reference design. For low performance hosts, a more reasonabl e setting is 100,000
cycles.

Note: These options must be specified before you start debugging. If you are already in debug mode,
these selections are disabled.

Disable:

To disable history collecting:

1. Onthe Simulation menu, click Options.
The Simulation Options dialog box appears.

2. Click the History tab.
3. Clear Enable history collecting.

Figure 51. History Dialog Box

Simulation Dptions x|

Markersl CDIDISI Staltupl Foreign Model Histary

[+ Enable histary collecting
v Collect thread history
¥ Collect reference history

v Collect queue history

Specify how many cucles of histar pou want collected: I'I 0ooooo

Ok I Caticel

2.13.18 Thread Status

The Thread Status window provides static or snapshot information on the status of each thread in
aselected chip in your project. For each thread, the following information is displayed:

— Current instruction address.
— Thelist of events for which the thread is waiting.
— Thelist of events which have been signaled to the thread.

Development Tools User’s Manual 167

IXP2400/IXP2800 Network Processors u
Developer Workbench In o

168

* Todisplay the Thread Satus window, on the View menu, click Debug Windows, then click
Thread Satus (see Figure 52), or

Click the button on the View toolbar.

Figure 52. The Thread Status Window

Note:

Thread Status =

<unnamed? ~| [Enable Poling

PC Condition Codes Signalled Events | “Wakeup Events
Microengine 0 | 28 [0] 1=0, <0, No cany
Microenaine 1 | 24 [0] 1=0, »=0, Mo camy
Microengine 2 | 28 [0] =00, »=0, No camy
Microengine 3 | 28 [0] 1=00, »=0, Mo camy
Microengine 4 | 65 [0] 1=0, >=0, Mo camy
Microengine & | 57 [0] =0, »=0, No camy

| | | F| B =

In each Microengine, an arrow appearsto the left of the thread that is currently executing or that is
scheduled to resume execution when the Microengine resumes execution.

Select which chip's statusis displayed using the box in the upper |eft corner of the Thread Status
window. Chip selection is synchronized with chip selection in the memory watch, queue status and
history windows.

View:

You can control which threads are displayed by expanding and collapsing the Microengine entries
in the status tree. You can expand the tree so that all threads of the selected chip are displayed by
right-clicking and selecting Expand All on the shortcut menu.

Update:

The status display is updated whenever Microengine execution stops—when you stop execution or
when you hit a breakpoint.

Polling:
You can aso have the Workbench poll the threads and update the status at regular intervals. To
enable or disable thread status polling and to change the polling interval:

1. On the Debug menu, click Satus Polling, or
Right-click within the Thread Status window and click Status Polling on the shortcut menu.
The Satus Polling dialog box appears.

2. Select Poll thread statusto enable polling or clear it to disable polling.

You can also enable and disable polling in the Thread Satus dialog box by selecting or clearing
Enable Polling.

Polling Interval:

If you enable polling, specify the polling interval by:

* Typing the number of seconds between pollsin the Polling interval (sec) box. You can also use
the spin controls to increment or decrement the number in the box.

Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors
In ® Developer Workbench

The value that you type in must be an integer.

2.13.19 Packet Simulation Status

The Packet Simulation Status window provides static or snapshot information on the status of
packet traffic in your project. (see Figure 53).

Enable:

To collect packet simulation status:
1. Open aproject and on the Simulation menu click Enable Packet Simulation.
2. Start debugging.

3. On the View menu, select Debug Windows, Packet Simulation Status.
(Or optionally, select the Packet Simulation Satus icon on the toolbar IE].)

The Packet Simulation Status debug window displays. Thiswindow providesinformation on
the traffic interface configured, the status of the receive and transmit buffers, protocols, and
packets.

4. Click the Options button to display the Traffic Interface Logging property sheet.

5. Click the Save Satsto File button to save the packet simulation datato afile (see Figure 54).
The datawill be output to a.csv file that can be read by atext editor or imported to Microsoft*

Excel spreadsheet.
Figure 53. Packet Simulation Status Debug Window
Chip | <unnamed: - Options... | Save Statz To File... |

Packets received | B03460 Feceive rate | 13263 Mbpz [at network]

Packets transmitted | 494259 Tranzmit rate | 8347.00 Mbps [at network]
Traffic R« buifer T buiffer Packets Receive Packets Transmit
Interface fullness fullness received rate sent rate
Device D O [CS1= RAx) 503460 13263 n'a n'a
® Port0 19348 [30%] n'a 503460 13263 n'a n'a
Device ID 1 [SPI4 Tx) n'a n'a 434253 594E.995
® Port0 n'a 34 [0%] n'a n'a 434253 594E.995

Development Tools User’s Manual 169

IXP2400/IXP2800 Network Processors
Developer Workbench

Figure 54. Save Packet Simulation Stats to a File

Packet Simulation Stats File Select

Stores packet simulation stats into a
comma separated file [.C5Y)

Packet Simulation Stats File

" Dvensrite file if it alieady existz, elze create new file

% Append to file if already exists. elze create new file

[u]4 I Cancel |

2.14

Workbench Batch Files:

A Workbench batch fileisan ASCII text file.

Running in Batch Mode

* Thefirst line must contain the complete path for a Workbench project file, for example,

c:\mydir\router.dwp.

* The Workbench opens the specified project and performs a build operation.

* The second line must contain the keyword hardware or simulation to specify the debug

configuration.

* The Workbench starts debugging in the specified configuration.

¢ All subsequent lines are executed by the command line interface.

* To have the Workbench exit when it completes executing the batch file, place an exit

command as the last line in the batch file.

Here is an example of abatch file:

c:\nydir\router.dw
simul ation
sfoobar.ind

go 100

exit

Batch Mode:

You can run the Workbench in batch mode
by specifying a Workbench batch file
preceded by an @ as a program argument
when starting the Workbench.

For example:

1. Onthe Windows task bar, click Start,

and then click Run.

170

COEE— 11
Tupe the reve of aproman, foklen, doooment, o
[rienat resar e, and Windoss il ooan Elor o .

Comn: |2 AEpETO0 briDe cdorcbench mosDites bat| x|

jn 3 I Canc=l Frome= .. |

Development Tools User’s Manual

u IXP2400/IXP2800 Network Processors
In ® Developer Workbench

2. Typec:\i xp2800\ bi n\ DevWor kbench. exe @ est . bat inthe Open box.
3. Click OK.

Windows launches the Workbench and executes the batch filet est . bat .

Development Tools User’s Manual 171

intel.

Performance Monitoring Unit 3

3.1

3.2

3.3

Note:

Introduction

The performance monitoring unit (PMU) in the IXP2400 and | X P2800 network processors contain
anumber of counters that can be configured to measure/count some number of eventsthat are
generated by the various functional units on the processors. The software support for the PMU
provides away to select the events of interest, configure the counters, and sample the results.

Theinterface to the PMU support uses the notion of "event" and "macro”. An "event" isasignal
generated by the hardware denoting something of potential interest. For example, one such signal
is generated whenever amicroengineisidle. A "macro" is an abstraction of one or more
performance monitoring counters. The macro and its associated parameters define how the PMU
counters are configurd.

The PMU interface is adapted from an existing Intel software tool, so some of the controls and
concepts do not apply to the I XP2400/1 X P2800 network processors.

An "experiment" consists of a number of sampling macros along with other datato fully specify
how the sampling isto be done. When an experiment is run, the macros are first "compiled” into a
set of primitive reads and writes, and these are sent to a driver on the remote system (i.e. the
network processor). On the network processor, the PMU counters are configured and then started.
An interrupt-controlled driver samples and resets the counters and sends the resulting sampled data
back to the Workbench, where it is written to the disk. After the run is completed, the user can
examine the resulting file using a variety of tools (e.g. a spreadsheet) to view the results.

PMU Limitations

There are afixed number of PMU counters available (currently six). Additionally, due to the
topology of the connections between the various functional units and the PMU, not all
combinations of events may be monitored at the same time. For example, one cannot monitor
events from two different Microengines within the same cluster at the same time. Also, one cannot
look at more than six events from the same functional block at the same time.

Some of the functional units (e.g. the Microengines) run at twice the clock speed as the PMU.
These events are denoted as"2X" events (since they operate at 2 timesthe PMU clock rate). These
events use twice as many hardware resources as non-2X events (e.g. one can only use three 2X
events from a given ME, rather than the normal six). Additionally, one cannot use 2X eventsin
certain contexts (e.g. asthe trigger for a macro).

Sampling Modes

This section describes the sampling:
* Time Based Sampling (see Section 3.3.1)
¢ Random Based Sampling (see Section 3.3.2)

Development Tools User’s Guide 173

Intel® IXP2400/1XP2800 Network Processors u
Performance Monitoring Unit In o

3.3.1

3.3.1.1

The Performance Monitoring Unit (PMU) supports time and random based sampling for the
I XP2400 and I XP2800 network processors. The sampling modes describe the method by which
the supported performance counters are read (or sampled).

Time based sampling (TBYS) is the most understood and therefore, most common sampling
method in use today. TBSis also known as periodic sampling since sampling istriggered by a
periodic timer. TBSis supported in both point sampling mode and windowed mode. Point
sampling simply reads the performance counters on a periodic basis, while window mode enables
performance counters for a small window of time on a periodic basis.

Random based sampling (RBS) represents an important enhancement over TBS window mode.
By randomizing the period between sampling windows, a statistical model of performanceis
generated. This method generally exposes system phenomena that the period method can miss or
dlias.

Both RBS and TBS are only supported using "high-speed” sampling (i.e. where the sampling is
driven by an interrupt on the network processor's Intel XScale® core). The so called "normal
sampling”, where the sampling is driven by the workbench is not supported as it offer decreased
performance over "high-speed" sampling.

Time Based Sampling

Time based sampling (TBS) is the most common sampling method used for data collection. Two
forms of TBS exist and are both useful dependent upon workload and data type being collected. In
either case, the sampling (or reading of performance counters) is done on afixed, periodic nature.

Point Sampling

Time based, point sampling is the simplest method of collecting performance counter data. On a
periodic basis, the performance counters are read, reset and re-enabled. The sampling period is
generally set to alarge value (>100us) in order to not cause excess overhead on the system due to
sampling. Because of this, the data is generally average over the sampling period. Asthe period is
stretched out over time, peaks and valleys can be lost due to the averaging effect, and therefore, this
method is not recommended when instantaneous bandwidth analysisis desired. This method is
more suited to following transaction oriented data analysis.

Figure 55. TBS Point Sampling

174

Sample, Reset,

is Sample Point F s Fixed Delay
F F F F F ce

>
>

Time

B2739-01

Development Tools User’s Guide

In

3.3.1.2

®

Intel® IXP2400/1XP2800 Network Processors
Performance Monitoring Unit

Window Sampling

Window sampling is used to circumvent sampling overhead cost when small sampling windows
are required when high-resolution datais desired, as is normally the case for instantaneous
bandwidth measurements. The sampling window programmed small (<100us), and then a period
rateis set in order to space the samples out over the workload. At the beginning of the programmed
window, the performance counters are started. At the end of the window, the performance counters
are sampled, and then reset. Some fixed periodic time later, the cycle repeats. This methodology is
generaly used for homogeneous workloads.

Figure 56. TBS Window Sampling

3.3.2

Sample, Reset

Counters
Start is Sample Window F is Fixed Delay
F F F F F .
Time g

B2740-01

Random Based, or Statistical Sampling

Random based sampling (RBS) is generally more desirable for analysis of hon-homogeneous
workloads, where the periodic nature of TBS may miss transactions. Rather than programming a
period, arandom range is programmed, which bounds the average amount of time between
windows. Aswith windowed TBS, the performance counters are started at the beginning of a
window, and then sampled and reset at the end of the window.

Figure 57. Random Based Sampling

Sample, Reset

Counters
Start is Sample Window R is Random Delay
R R R R .
Time

B2741-01

Development Tools User’s Guide 175

Intel® IXP2400/1XP2800 Network Processors u
Performance Monitoring Unit In o

3.4

176

The random number generator used in RBSisa 16-bit Linear Feedback Shift Registers (LFSR).
The equation used for determining the average period produced is as follows:

Period = ¥ (2% 2R)/F + W

where:
R = Random Range
F = CPU Frequency
W = Programmed Window

PMU Graphical User Interface (GUI)

The PMU is started from the Developer’s Workbench and appears as a series of property pages.
These property pages are used for selecting apreviously created canned analysis or for configuring
anew test. Each property page has its own notion of what the experiment is. Pressing the Run
button activates the experiment from whichever property pagetab is currently selected (i.e., on top)
on the GUI.

On the Canned Analysis property sheet, pressing the L oad button or "loading” an experiment
copies that experiment to the appropriate other sheet (e.g. TBS or RBS). Of primary significance
hereisthat if you load an experiment, select the TBS tab (for example), change the experiment,
switch back to the Canned Analysis tab, and then press the Run button, you will run the "original"
experiment, not the modified one. You would have to have the TBS sheet active (i.e., on top) when
you press the Run button to use the modified parameters.

So in summation the Canned Analysis property page is used to run a previously-saved experiment
without modification, while the TBS and EBS property pages are used to create, modify, or run
experiments.

To run the PMU:
1. Go to the Developer’s Workbench and open a project and — :
begin Debugging. Hardware Tools ‘Window Help
2. Select Hardware -> Performance M onitoring. Options. ..

Performance Maonitoring. . .

3. The Performance Monitoring Unit GUI is displayed (see
Figure 58).

Development Tools User’s Guide

u Intel® IXP2400/1XP2800 Network Processors
In o Performance Monitoring Unit

3.4.1 Canned Analysis Property Sheet

The Canned Analysis property page is shown in Figure 58. Thistab is used for executing a
previously defined test. The experiment’s parameters are captured in a Canned Analysis Data
(.cad) file.

Figure 58. Canned Analysis Property Page

Performance Monitoring 5[

Canned Analyzis |TBS | RES |

Awailable Canned Analyzis Data Files:

G A00BD ane chiphidle] i=p240.cad

Browse...

Ik I

Load
Experiment Description:
I Diezcription...
Sampling Mode: Samples:
[Time biased 100
Frogrezs: Idle

E it | Run

Table 3. Canned Analysis Property Page Entries and Buttons

Type Description
Available
Canned Analysis | List of files containing descriptions of experiments.
Data Files
Experiment

Description User defined text description of the experiment selected.

Sampling Mode Either time based or random.

Samples Number of samples to be taken.
Progress Percentage of the experiment completed.
Buttons

Open a Browse window and display files to select. If you then select a single file and press
the Browse window Open button, that file is displayed in the Canned Analysis Data File list
Browse and automatically loaded.

If you select multiple files, and press the Browse window Open button, then all the files will
appear in the file list and you must then select a file and press the Load button.

Development Tools User’s Guide 177

Intel® IXP2400/1XP2800 Network Processors u
Performance Monitoring Unit In o

Table 3. Canned Analysis Property Page Entries and Buttons

Type Description

Load the Canned Analysis Data File.

When you load a CAD file, it modifies the Canned Analysis property page and the
associated sampling method tab (EBS or TBS). When you press the Run button, the test
uses the CAD file parameters.

If you go to the EBS or TBS pages and modify the parameters and press the Run button,
those changes will be used in the test.

However if you then return to the Canned Analysis property page the original CAD
parameters are still in effect.

Load

Display the Experiment Description dialog box. When you select a single file a pop-up

Description
appears

Exit Exit the Performance Monitoring Unit.

Run Run the experiment.

3.4.2 Sampling Method Property Pages

Each of the sampling method tabs contain like parameter fields. Others are unique to their
respective sampling methods. The sampling methods are:

* Time Based Sampling (TBS property page)
* Random Based Sampling (RBS property page)

3.4.2.1 Time Based Sampling (TBS)

The TBS tab (see Figure 59) is used to configure, save, and run time based sampling tests.

178 Development Tools User’s Guide

Intel® IXP2400/1XP2800 Network Processors
Performance Monitoring Unit

Figure 59. Time-Based Sampling Property Page

Performance Monitoring

Carned Analysis - TBS |HES |

x|

Output File:
IE:'\Puinc\B OB T4ixp2400b0_one_chipht.

Browse...

Selected Macros:

L

[Monitor] "TRUE" Macros. ..
Clear
Save fs..
YWindow [uz)] Perniod [uzs] Samples:
|50 |1 il |1 00000
Start Delay [=]: kax Bun Time [z]:

Sampling Mode

; o
T | = [Ring 0 Control

[Minimize

Progress: Sampling [37239/100000)

€ Momal
¢ High Speed

E it Run
Table 4. TBS Property Page Entries and Buttons
Type Description
Output File The Output File field is used to select where the sampled data file should be placed.

The Browse... button exposes available filters to supported file formats.

Selected Macros

The Selected Macros text box displays a list of sampling macros selected by the user.

A Window is used to specify the amount of time that performance counters are
enabled. The counters are issued START commands at the beginning of the window. A
STOP command is issued at the end of the window, where the value is then sampled.

Window (us) Point Sampling mode is enabled if the Window is set to zero. In this mode, samples are
taken every Period.
This value is expressed in microseconds.
) The Period is used to control the amount of time delay between samples, or STOP
Period (us) commands.
Samples Number of samples to be taken.

Start Delay (s)

A start delay value greater than zero has the same effect as waiting the given number
of seconds before pressing the Run button.

Max Run Time (s)

Sampling is concluded after the Max Run Time.

Ring 0 Control

Not supported.

Minimize

This will minimize the PMU window during the run.

Development Tools User’s Guide

179

Intel® IXP2400/1XP2800 Network Processors u
Performance Monitoring Unit

180

INlal.

Table 4. TBS Property Page Entries and Buttons

Type

Description

Sampling Mode

Selection of the Sampling Mode enables either Normal or High Speed sampling. Only
high-speed sampling is currently supported (see Section 3.3).

Progress Percentage of the experiment completed.
Buttons
Browse Browse through a list of files to select one.
Macros The Macros button pops up the Macros dialog box for selecting sampling macros.
Clear Clear will clear the currently selected sampling macros.
Save As An experiment is saved into a CAD file with the Save As button.

]

When pressed, an experiment in process is paused. Press the restart button to
continue testing.

=N

When pressed, a paused experiment continues.

Development Tools User’s Guide

u Intel® IXP2400/1XP2800 Network Processors
In o Performance Monitoring Unit

3.4.2.2 Random Based Sampling (RBS)

The RBS tab (see Figure 60.) is used to configure, save and run random based sampling tests.
Figure 60. Random Based Sampling Property Page

Performance Monitoring

Canned ﬁ-‘mal_l,lsisl TES RBS |

x|

Cutput File:
IE:'\Puinc\BDBT\i:-tp24ElDbD_c-ne_-:hip'\ril. Browse. ..

Selected Macrox

[Monitar] "TRLIE" Macros...
[Manitar] =PI =P_RD
[Manitar] =PI =P _wWR
[Maritar] =PI PMU_RD" Clear
[Maritar] =PI PRU_wWR"
[Maniter] =PI UART_RD" Save A

el I

Window [uz) Random Range: Samples:

|5u |2 |41n?5

Start Delay [z]: tax Fiun Time [s]:
; g
n | - ™ Ring I Earitral
[Minimize
Progress: Sampling [10184./41075)

Sampling Mode
€ Hirmal

£+ High Speed

E it Run
Table 5. RBS Property Page Entries and Buttons
Type Description
Output File The Output File field is used to select where the sampled data file should be placed.
P The Browse... button exposes available filters to supported file formats.
Selected Macros The Selected Macros text box displays a list of sampling macros selected by the user.
A Window is used to specify the amount of time that performance counters are

) enabled. The counters are issued START commands at the beginning of the window. A

Window (us)

STOP command is issued at the end of the window, where the value is then sampled.
This value is expressed in microseconds.

Random Range is used to vary the random time between sample Windows, as
Random Range described in Section 3.3.2. The default value is 2, which gives an average period (not
including the Window time) of approximately 430uS, for a 300MHz clock.

Samples Number of samples to be taken.

A start delay value greater than zero has the same effect as waiting the given number

Start Delay (s) of seconds before pressing the Run button.

Max Run Time (s) Sampling is concluded after the Max Run Time.

Development Tools User’s Guide 181

Intel® IXP2400/1XP2800 Network Processors u
Performance Monitoring Unit In

Table 5. RBS Property Page Entries and Buttons

Type Description
Ring 0 Control Not supported
Minimize This will minimize the PMU window during the run.

Selection of the Sampling Mode enables either Normal or High Speed sampling. Only

Sampling Mode high-speed sampling is currently supported (see Section 3.3).

Progress Percentage of the experiment complete
Buttons
Browse Browse through a list of files to select one.
Macros The Macros button pops up the Macros dialog box for selecting sampling macros.
Clear Clear will clear the currently selected sampling macros.
Save As An experiment is saved into a CAD file with the Save As button.

When pressed, an experiment in process is paused. Press the restart button to

1 | continue testing.

= When pressed, a paused experiment continues.

182 Development Tools User’s Guide

u Intel® IXP2400/I1XP2800 Network Processors

In o Performance Monitoring Unit

3.4.3 Sampling Macros Dialog

The Sampling Macro selection dialog is displayed by depressing the M acros... button on the TBS
or RBS property pages. The macro typeis selected with the Category: pull down menu. Two
sampling categories are supported:

* Monitor
* Threshold

The Selected Events box lists the current set of macros. After selecting amacro from thislist, right-
clicking will display a menu that allows the user to view, edit, or delete the selected macro (editing
is not supported for this release). Note that this applies to the currently selected macro and not the

macro being pointed at by the mouse when the right button is pressed.

Figure 61. Sampling Macros

tonitor |

Catagony: I ranitor j

Threshold
¥ Reset on Sample
Selected Events: Diwration:

v Ewvents... |

ak I Cancel

Development Tools User’s Guide 183

Intel® IXP2400/1XP2800 Network Processors u
Performance Monitoring Unit In o

3.4.3.1 Monitor Sampling Macro

The Monitor sampling macro (see Figure 62) is the simplest and most commonly used macro.
Monitors describe increment events. The monitor can either count the number of times that the
event occurs or the duration of the event, based on the Dur ation check box.

The Monitor macro is used to count the number of times or the duration that some event occurs. It
istypically reset after every sampling, so the count represents the count that occurred during the
sampling interval. Optionally, the counter can not be reset. In this case, it counts the cumulative
count since the experiment began. Note that doing this does not make much sense when thereisa
non-zero sampling window. In this case, the count is cumulative including both during the
sampling window and between sampling windows.

Figure 62. Monitor Sampling Macro

Sampling Macros x|

b onitor |

Catagorny: | tonitar j

¥ Reset on Sample
Clear |

Selected Events: Duration:

[u]4 I Cancel

Table 6. Monitor Sampling Macro Dialog Box

Type Description
Reset on Sample | Specifies whether the counter is reset between samples.
Duration The performance counter is incremented for each clock the event is active.
Buttons
Clear Clear will clear the currently selected events.
Events Open the Event Selection dialog box (see Figure 64).
OK Accept the current selections and close the Sampling Macros dialog box.
Cancel Close the Sampling Macros dialog box and cancel all changes.

184 Development Tools User’s Guide

u Intel® IXP2400/1XP2800 Network Processors
In o Performance Monitoring Unit

3.4.3.2 Threshold Sampling Macro

Threshold macros are closely related to Monitors. They are used to count the number of times or
the duration that a monitor met some specified condition (typically equal to a constant). Threshold
macros use two counters. Thefirst isamonitor. The value of this counter is compared with a
constant, and the result of this comparison becomes the input to a second counter (acting as a
monitor). So the second counter counts either the number of times or the duration that the first
counter satisfies the comparison.

Note: The Reset on Sample option applies to the second counter; i.e. the first counter (to which the
comparison function is being applied) is always reset when a sampleis taken.

Figure 63. Threshold Sampling Macro

Sampling Macros x|

Start Threshaold |

Catagon: |QEE

v Feset on Sample

Threshold: Dwration: Compare Function:
IU [IECIU5| vI Clear |
Selected Threzhaold Event: Diration:

I [v Events... |

ak. I Cancel

Table 7. Threshold Sampling Macro Dialog Box

Type Description

Reset on Sample | Specifies whether the counter is reset between samples.

Threshold Value that is compared to the first counter.

Specifies whether the second counter is incremented once for each occurrence of the
Duration compare function being satisfied or once for each cycle that the compare function is
satisfied. This should almost always be selected.

The comapre functions are:

Compare Function:

Equal - l

False
Comp,are Greater
Function

Greater | Equal
Less

Mot Equal
Less | Equal
True

Development Tools User’s Guide 185

Performance Monitoring Unit In

Intel® IXP2400/I1XP2800 Network Processors u t9I
®

Table 7.

3.4.3.3

3.4.4

186

Note:

Threshold Sampling Macro Dialog Box

Type Description
'Sl'ﬁll'zts:thegld Event Event that causes the first counter to increment.
Duration Spec_if_ies whether the first counter is incremented_once for each occurrence of the
specified event or one for each clock cycle for which the event is active.
Buttons
Clear Clear will clear the currently selected events.
Events Open the Event Selection dialog box (see Figure 64).
OK Accept the current selections and close the Sampling Macros dialog box.
Cancel Close the Sampling Macros dialog box and cancel all changes.

Sampling Considerations

The PMU logic in the IXP2400 and 1 XP2800 causes the counting of the number of occurrences of
2X events (see Section 3.2) to behave in anon-intuitive fashion. In particular, if the event lasts only
one cycle, then it is counted as one occurrence. If the event lasts for two or more cycles, it is
counted as two occurrences. Depending on when the event occurs, the PMU counter may
increment twice in arow, or it may count by two in asingle cycle.

If aPMU counter is reset at the same time that the event that it is counting is active, it will reset to
anon-zero value. Conceptually, it isasif the counter was reset to zero and then it counted the
event.

Event Selection Dialog Box

The Event Selection dialog box (see Figure 64) is used to specify macro events. It is presented by
depressing the Events... button on the TBS and RBS property pages.

When selecting events for the Monitor macro, one can check multiple events. In this case, you end
up with several monitor macros, one for each selected event. For other times when you are
selecting an event, only one event should be checked. If more than one is checked, the first event
checked is used.

Development Tools User’s Guide

u Intel® IXP2400/1XP2800 Network Processors
In o Performance Monitoring Unit

Figure 64. Event Selection Dialog Box

I Event Selection |

E..

[I¥P2400
i []"TRUE"
=+ [#] "ME_CLUSTER_O"

+ "hWED:O"

-] P

- []"sHac"
-] s
-- ["*Scale"
m-[]Per

- []"sRaM"
- []"DRAM"

K1 o
Cancel | Ok I

3.5 Output Formats

The PMU output file format isimplied by the output file extension selected on the TBS and RBS
property pages. For example, selecting .csv gives you a Comma-Separated Value format output
file, while selecting .pcd gives you araw Performance Counter Data format output file. You can't
have an output file with a".txt" extension, for example, because the PMU wouldn't know what
format to output the datain.

Development Tools User’s Guide 187

Intel® IXP2400/1XP2800 Network Processors u
Performance Monitoring Unit In o

188

CSV output format:

Thisformat is atext output format that is particularly suited for being imported into a spreadsheet.
The output format is similar to:

$PLATFORMS$

CAD Filename filename

Target Sring describing target
Clock Period Timestamp Period

clock value timestamp period value
$HEADER$

header1 header2 header3
$DATAS

datal data2 data3

Thefirst two valuesin each datarow are timestamp values. For point sampling, thefirst isthe high-
order 32 bits of a 64-bit timestamp, and the second value is the low-order 32 bits. For window
sampling, the two values are the start and end of the window period (only the low-order 32-bit for
each).

Thefollowing dataitems are the sampled data for each macro. Note that some macros generate two
values. For example, the monitor macro only samples one counter, whereas the threshold macro
samples both counters (the first value is the raw count that is probably of not much interest. The
second value is the number of times/occurrences that the raw count satisfied the comparison
function. The second value is probably the one of more interest.).

PCD (Raw) output format:

Thisisabinary filewith just the dataitems (as described under the CSV output format) written into
thefile, as 4-bytes per value in alittle-endian format.

Development Tools User’s Guide

intel.

Assembler 4

4.1

4.1.1

Note:

This chapter provides information on running the Assembler. Background information on the
Assembler functions appears in the Intel® 1XP2400 /1XP2800 Network Processor Programmer’s
Reference Manual.

Assembly Process

This section describes how to invoke the Assembler and the stepsthat it goes through in processing
amicrocode file.

Command Line Arguments

The Assembler isinvoked from the command line:
uca [options] mcrocode_file microcode_file...

where the options consist of:

-ixp2400 Targets assembly to the IXP2400
-ixp2800 Targets assembly to the 1XP2800.
-iXP2XXX Targets assembly to all Microengine version 2 (MEV2) processors.

Multiple processor types can be targeted by specifying multiple options; for example:
-ixp2800 -ixp2400

-Im start Define the start of local memory allocation in bytes.
-Im start:size Define the start and size of local memory allocation in bytes.
-Ir file Dumps the register lifetime information into afile with a.lri extension.

If the register allocation fails, the .uci file may not be created so the
information will be available for viewing in the .Iri file.

-mfile L oads the microword definitions from the specified file rather than the
default.

-pfile L oads the ucc parse definitions from the specified file rather than the
default.

-ofile Usefile asthe generated list file. Thisisonly valid if thereis one
microcode file.

-0 Enables optimization.

-Of Triesto automatically fix A/B Bank conflicts. Default is disabled.

Development Tools User’s Guide 189

Assembler

Intel® IXP2400/I1XP2800 Network Processors intel
®

190

Note:

Note that the two optimization options are independent of each other; in other words any
combination can be specified The default, disabled, avoids having the assembler add code that the
programmer did not specify.

-Os Triesto automatically spill GPRsinto local memory. Default is disabled.
-g Adds debugging info to output file.

-V Prints the version number of the Assembler.

-h Prints a usage message (same as-?).

-? Prints a usage message (same as -h).

-r Register declarations are not required.

-Wn Set Warning Level (n=0-4)

-w Disable warnings (sames as -WO0)

-WX Report error on any warning

Thefollowing version arguments allow assembly to be targeted for a specific chip version or range
of versions, overriding the default values. The predefined Preprocessor symbols
__REVISION_MIN and __REVISION_MAX will reflect the specified version range. In addition,
the version range is also written to the .list filein a'.cpu_version' directive.

For the following arguments, rev is an upper or lower case letter (A-P) followed by a decimal
number (0-15), for example -REVISION_MIN=A1 or -REVISION_MIN=BO, or an eight-bit
number where bits <7:4> indicate the major stepping and bits <3:0> indicate the minor stepping,
for example, -REVISION_MIN=1 or -REVISION_MIN=0x10

-REVISION=rev Targetsassembly to chip versionrev. Thisisequivalent to setting options
“REVISION_MIN=rev' and '-REVISION_MAX=rev' with the same
value.

-REVISION_MIN=rev Targets assembly to the minimum chip version rev. (The default is 0.)

-REVISION_MAX=rev Targets assembly to the maximum chip version rev. (The default is 15,
no limit.)

The following options are passed to the preprocessor, UCP:

-P Preprocess only into afile: microcode_file.ucp

-E Preprocess only into stdout

-Ifolder Add the folder to the end of the list of directories to search for included files
-Dname Define name as if the contained “#define name 1”

-Dname=def Define name as if the contained “#define name def”

-N Disable the pre-processor

The microcode_file names may contain an explicit suffix, or if the suffix is missing, .ucis
assumed. Assembling several filesin one command line is equivalent to assembling each
individually; the files are not associated with each other in any way.

If ucaisinvoked with no command line arguments, then a usage summary is printed.

Development Tools User’s Guide

u Intel® IXP2400/I1XP2800 Network Processors
o Assembler

In Windows environments, the Assembler may also be invoked through the Workbench (see
Section 2.6 for more information on running the assembler in the the Devel opers Workbench).

4.1.2 Assembler Steps

Asshown in Figure 65, invoking the Assembler resultsin atwo-step process composed of a
preprocessor step and an Assembler step. The preprocessor step takes a .uc file and creates a.ucp
filefor the Assembler. The Assembler takes a.ucp file and creates an intermediate file with the file
name extension of .uci. The .uci fileis used by the Assembler to create the .list file and provides
error information that may be used in resolving semantic problems (such as register conflicts) in
theinput file.

Figure 65. Assembly Process

source files > Linker
(.uc)

| B +

Microengine
output file (.uof)

— :

Preprocessor

Loader

T Y

i "=
Assembler 43—7/ .uci file / Microengine

intermediate /
file (list) /

A8824-02

Development Tools User’s Guide 191

Assembler

Intel® IXP2400/I1XP2800 Network Processors intel
®

4.1.3

4.1.4

4.1.5

192

The .uc file contains three types of elements: microwords, directives, and comments. Microwords
consist of an opcode and arguments and generate a microword in the .list file. Directives pass
information either to the preprocessor, Assembler, or to downstream components (e.g., the Linker)
and generally do not generate microwords. Comments are ignored in the assembly process.

The Assembler performs the following functionsin converting the .uc fileto a .list file:
® Checks microcode restrictions.
* Resolves symbolic register namesto physical locations.
¢ Performs optimizations (see Section 4.1.4).

Resolves label addresses.
* Trandates symbolic opcodes into bit patterns.

Case Sensitivity

The microcode file is case insensitive, while the command line arguments are case sensitive.

Assembler Optimizations

The assembler optimizer performs the following optimzations:

¢ |t will moveinstructions down to fill defer shadows for instructions that support the defer
token.

* |t will remove unnecessary VNOPs.

¢ It will moveinstructions down to replace VNOPs that cannot be removed.

For more information, please see the Intel® 1XP2400 /1XP2800 Network Processor Programmer’s
Reference Manual.

Processor Type and Revision

Over time, network processors will be released in different types and revisions with different
features. Microcode written to take advantage of a particular processor type or revision will fail if it
iS run on the wrong processor.

To deal with thisissue, the user can specify atype and range of revisions for which they want their
microcode assembled. Thisisdoneusing the-i xp2400, -ixp2800, -i Xp2XXX,

-REVI SI ON_M N, and - REVI SI ON_MAX command line options. For simplicity, the -

REVI SI ON option can be used to set the minimum and maximum to the same value. These options
will target the assembly to a particular type and revision of processor. Several predefined
preprocessor symbols will be defined according to type and revision.

For more information on the predefined symbols and on writing version specific microcode, please
see the Intel® 1XP2400 /IXP2800 Network Processor Programmer’s Reference Manual.

Development Tools User’s Guide

intel.

Microengine C Compiler)

The Microengine supports microcode compiled from C language code to support the Microengines
and their threads. You can create the C code using the DWB GUI or any suitable text editor. You
can then compile and link the code using the GUI or the Compiler command line.

This chapter explains the subset of the C language supported by the Microengine C Compiler and
the extensions to the language to support the unique features of the processor.

For information on the Compiler functions refer to the Microengine C Compiler Language Support
Reference Manual.

51 The Command Line

You can invoke the command line from a command prompt window on your system. Do the
following:

1. Open acommand prompt window.
2. Gotothefolder containing the C Compiler files, typically:

C:\IXP 2000\bin>

3. Invoke the C Compiler using this command:

uccl [options] filenane [fil enane...]

5.2 Supported Compilations

Two kinds of compilations are supported:

* To compile one or more C source files (*.c, *.i) into object files (*.obj), use:
uccl -c filel.c file2.c ...

An object containing intermediate (ILO) code is created for each C sourcefile.

* To compile and link amicroengine program, use:
uccl filel.c file2.obj

Use any combination of .c source file and .obj object file pairs.

Note: Inthefirst case, you must use the -¢ switch in the command line.
Example: uccl -cfilel.cfile2.i

Note: In the second case, do not use the -c switch.

Development Tools User’s Guide 193

Microengine C Compiler

In

Intel® IXP2400/I1XP2800 Network Processors u t9I
®

5.3 Supported Option Switches

Table 4-1 lists and defines all the supported C Compiler command line switches. The CLI warns
and ignores unknown options. The CLI honorsthe last option if it conflicts with the previous one,

for example,

uccl -c -0L -2 file.c

generates the following warnings and proceeds:

uccl: Command line warning: overriding '-Ol' with '-Q2'

Options that do not take a value argument, such as -E, -c, etc., are off by default and are enabled
only if specified on the command line.

Table 8. Supported uccl CLI Option Switches (Sheet 1 of 4)

Switch Definition
7 Lists all the available opti
help ists all the available options.
-C Compiles each .c or .i file to a .obj file (rather than compile and link).

-Dname[=value]

Specifies a #define symbol. The value, if omitted is 1.

-DSDK_3_0_COMPATIBLE

Uses the IXA SDK 3.0 version of the hash intrinsics (with the read and
write parameters swapped) and removes error checking for generic
("void *") typecasts in intrinsics library parameters. If possible, SDK 3.0
code should be changed to work with the new versions of the hash
intrinsics and any generic typecasts should be changed to the correct

types.

Preprocess to stdout.
Preprocess to stdout, omitting #line directives.
Preprocess to file.

-Fa<filename>

Produces a .uc file containing the generated microcode intermixed with
the source program lines. The resulting assembly file is for reference
only; the compiler does not guarantee that the file will pass through the
assembler. If an assembler-compatible file is required, the -uc option
should be used instead. This may have a negative impact on
performance, however; certain optimizations cannot be performed
when compiling for the assembler.

-Fo<file> -Fo<Dir/>

Name of object file or directory for multiple files.

Base name of executable (.list, .ind) file. Defaults to the base name of

-Fe<file> the first file (source or object) specified on the command line followed
by the extension (.list).

-Fi<file> Overrides the base name of the .ind file.

-Fi<file> Forces inclusion of file.

gigggg Specifies the target processor: IXP2400 and IXP2800. IXP2800 is the

default. The compiler adds -DIXP2400 and -DIXP2800 respectively.

-1 path[;path2...]

Path(s) to include files, prepended before path(s) specified in
environment variable UCC_INCLUDE.

194

Development Tools User’s Guide

intel.

Intel® IXP2400/I1XP2800 Network Processors
Microengine C Compiler

Table 8. Supported uccl CLI Option Switches (Continued) (Sheet 2 of 4)

Switch

Definition

-link[linker options]

Calls the microengine image linker (ucld) after successful compilation,
passing any specified linker options. The default linker options are:

““u0

-s¢ 0x00000004:0x00003ff4
-dr 0x00000010:0x07fffffe8
-sr0 0x00000004:0x03fffffc
-srl 0x00000004:0x03fffffc
-sr2 0x00000004:0x03fffffc
-sr3 0x00000004:0x03fffffc”

Inlining control: n=0, none; n=1, explicit (inline functions declared with

-Obn __inline or __forceinline (default)); n=2, any (inline functions based on
compiler heuristics, and those declared with __inline or __forceinline)
-on Optimize for: n=1, size (default); n=2, speed; n=d, debug (turns off
optimizations and inlining, overriding -Obn below).
Compile big-endian byte order (default). Compiler adds -DBIGENDIAN,
-Qbigendian -ULITTELENDIAN. All other command line BIGENDIAN/

LITTLEENDIAN symbol definitions and undefinitions are ignored.

-Qdefault_sr_channel=<0...3>

Specify the SRAM channel that should be used when allocating
compiler-generated SRAM variables and variables that are specified as
__declspec(sram). The default is channel 0.

Report when the compiler-generated code triggers a known processor

-Qerrata erratum.
A - Turns off all inter-procedural inlining. Inter-procedural inlining is on by
Qip_no_inlining default.
Compiles little endian byte order. Compiler adds -DLITTLEENDIAN -
-Qlittleendian UGIBIGENDIAN. All other command line LITTLEENDIAN/BIGENDIAN
symbol definitions and undefinitions are ignored.
-Qliveinfo Same as "-Qliveinfo=all".

-Qliveinfo=gr,str,...

Print detailed liveness information for a given set of register classes:
gr: general purpose registers
sr: SRAM read registers
sw: SRAM write registers
srw: SRAM read/write registers
dr: DRAM read registers
dw: DRAM write registers
drw: DRAM read/write registers
nn: neighbor registers (only when -Qnn_mode=1)
sig: signals all: all of the above

-Qlm_start=<n>

Provides a means for user to reserve local memory address [0, n-1] (in
longwords) for direct use in inline assembly. Compiler does not allocate
any variables to this address range.

-QIm_unsafe_addr

Disables the compiler's use of local memory autoincrement addressing.
Used when user code writes local memory pointers with invalid values.

-QImpt_reserve

Reserve local memory base pointer I$index1 for user inline assembly
code.

-Qmapvr

In the assembly dump of list file or uc file, this flag prints out the virtual
register number for register operands. Should not be used with -uc.

Development Tools User’s Guide

195

Microengine C Compiler

In

Intel® IXP2400/I1XP2800 Network Processors u t9I
®

Table 8. Supported uccl CLI Option Switches (Continued) (Sheet 3 of 4)

Switch

Definition

-Qnctx=<1,2,3,4, 5, 6,7, 8>

Specifies the number of contexts compiled to run; defaults to 4, or 8 if -
Qnctx_mode=4.

-Qnctx_mode=<4, 8>

Specifies the context mode (either 4 context mode or 8 context mode).
Defaults to 4, or 8 if -Qnctx is set to larger than 4. If -Qnctx is set to 1,
defaults to 4.

-Qnn_mode=<0, 1>

Sets NN_MODE in CTX_ENABLE for setting up next neighbor access
mode. (See Next Neighbor Register section in Chapter 3). O=neighbor
(default), 1 = self).

-Qnolur=<func_name>

Turns off loop unrolling on specified functions. You can supply one or
more function names to the option. For example:

-Qnolur="_main"; turn off loop unrolling for main().
-Qnolur="_main,_foo"; turn off loop unrolling for main() and foo().

The supplied function name must have the preceding underscore (*_").

-Qold_revision_scheme

Generates hardware revision numbers that are compatible with I XA
SDK 3.0 and below.

-Qperfinfo=n

Prints performance information.

n=0 - no information (similar to not specifying)

n=1 - register candidates spilled (not allocated to registers) and the
spill type

n=2 - instruction-level symbol liveness and register allocation

n=4 - function-level symbol liveness and register allocation

n=8 - function sizes

n=16 - local memory allocation

n=32 - live range conflicts causing SRAM spills

n=64 - instruction scheduling statistics

n=128 - Warn if the compiler cannot determine the size of a memory
I/O transfer

n=256 - Display information for "restrict" pointer violations

n=512 - Print offsets of potential jump|] targets

-Qrevision_min=n
-Qrevision_max=m

The version arguments allow the compiler to generate code that works
on a range of processor versions (steppings).

0x00=A0 (default for -Qrevision_min)
0x01=Al1
0x10=BO
0x11=B1

The default revision range is 0x00 to Oxff (all possible processor
versions). The default for -Qrevision_max is Oxff. The compiler adds
-D__REVISION_MIN=n and -D__REVISION_MAX=m. Note: The IXP
program loader reports an error if a program compiled for a specific set
of processors is loaded onto the wrong processor.

196

Development Tools User’s Guide

intel.

Intel® IXP2400/I1XP2800 Network Processors
Microengine C Compiler

Table 8. Supported uccl CLI Option Switches (Continued) (Sheet 4 of 4)

Switch

Definition

-Qspill=<n>

Selects the alternative storage areas ("spill regions") chosen when
variables cannot be allocated to general-purpose or transfer registers:

(LM=local memory, NN=next neighbor registers)

: LM (most preferred) -> NN -> SRAM (least preferred)
: NN->LM->SRAM

: NN only; halt if not enough NN

: LM only; halt if not enough LM

: NN->LM; halt if not enough LM or NN

: LM->NN; halt if not enough LM or NN

: SRAM only

: No spill; halt if any spilling required

: LM->SRAM

3533333033333
TSI
ONOTRWNRO

Default is n=0. The user must set -Qnn_mode=1 to use the NN
registers as a spill region. If the NN registers are used by program
code, NN spilling will be automatically disabled.

Changes the behavior of -uc by not calling uca to assemble the

-S compiler produced assembly code. Only valid when combined with -uc
option.
Mixing C and microcode programming. Under this option, you can
compile one or more C files as well as one or more microcode files into
-uc one application. The compiler compiles all C files into one microcode

file, then sends this microcode file as well as other microcode files to
UCA to produce a list file.

-Wnn=0, 1, 2,3,4

Warning level.

O=print only errors

1, 2, 3=print only errors and warnings
4=print errors, warnings, and remarks.
Defaults to 1.

Produces debug information. The compiler generates a file with a .dbg
extension for each source.

Development Tools User’s Guide

197

Intel® IXP2400/I1XP2800 Network Processors
Microengine C Compiler

5.4

Compiler Steps

In

tel.

The .list file contains three types of elements: microwords, directives, and comments. Microwords
consist of an opcode and arguments and generate a microword in the .list file. Directives pass

information to the Linker and generally do not generate microwords. Comments are ignored in the
assembly process.

The Compiler performs the following functions in converting the .c fileto a list file:

Figure 66. Compilation Steps

Acceptsstandard C with __decl spec() for specifying memory segments and properties and
register usage { signal xfer nearest-neighbor remote} .

Accepts restricted assembly via__asnm{ }.

Optimizes program in “whole program mode” where each function is analyzed and ailored
according to its usage.

Generates .list file for execution on single MicroEngine.

Compiler
Driver

mcpcom

C Front-End

Y

Compiler
Options

source files
(.c, .obj)

Optimizer

Y

intermediate
files (.obj)

Intel®
IXP2000
Code Generator

Y

Y

intermediate
file (.uc)

intermediate

> Linker

file (list)

Y

Microengine

/output file (.uof)/

Y

Loader

Y

' =

Microengine

A9490-01

198

Development Tools User’s Guide

u Intel® IXP2400/I1XP2800 Network Processors
o Microengine C Compiler

55 Case Sensitivity

The C language code as well as the command line switches are case sensitive.

Development Tools User’s Guide 199

intel.

Linker 6

The Linker is used to link microcode images. Microcode images are generated by the microcode
complier or Assembler, whereas application objects are generated by a Intel® X Scale® C/C++
Compiler. The method is C/C++ Compiler independent. Shared address pointers are bound
between microcode and Intel® X Scale® core application objects:

This chapter describes how to use the microcode Linker, ucld. The task of ucld isto process one or
more microcode Compiler or Assembler, (uca) output files,* .list, and create an object file that can
be loaded by the microcode loader. The loader, UcL o, is alibrary of C functions that facilitate
external address pointer resolution and the loading of imagesto the appropriate Microengine. ucais
described in Chapter 8.

6.1 About the Linker

Memory is shared between the Intel® X Scale® core and the Microengines. A common mode of
design will have the Intel® X Scale® core generate and maintain data structures, while the
Microengine reads the data. Common address pointers will be used for these data structures. For
example, the base address of a route table will need to be shared. The solution will allow
microcode and Intel® X Scale® applications to be written and compiled that can accessthe common
address pointer.

6.1.1 Configuration and Data Accessed by the Linker
Various Microengine configuration data structures will exist in the Intel® X Scale® core. These are
used to hold information about Microengines. Key repositories are:

* Microcode object. Thisisthe binary object containing images that can be loaded into
microcode.

* Microcode page/functionality map, per Microengine. Association of microcode imageto
Microengines. Thisisalist of libraries currently loaded.

¢ Shared address importg/externslist, per microcode image. Linker uses thisto update the
microcode.

e ‘'C’ Compiler variables memory segments locations and sizes.

6.1.2 Shared Address Update (Flow)

1. From Assembler, get alist of externs. Get the microPC locations where these variables are
used as animmediate. Get the microword format to know the offset and size of the immediate.
Format this in the microcode “linked” object.

2. Inthe Intel® X Scale® application, load or map the microcode “linked” object.

3. Inthe Intel® X Scale® application, bind the external variable with avalue by calling the
appropriate function in the loader library.

Development Tools User’s Guide 201

Intel® IXP2400/I1XP2800 Network Processors u
Linker In
®

4. Theloader library updates the “immediates’ with the bind-value for al occurrences of the
variable in the microimage.

5. InIntel® XScale® application, load the images to appropriate Microengines via aloader
library function.

6.2 Microengine Image Linker (UCLD)

ucld is an executable that accepts alist of Microengine images (*.list) generated by the Assembler,
(uca), or by the Compiler (uC), and combines them into a single object that is loadable by the core
image, running on the Intel® X Scale® core processor, utilizing Microengine Loader Library
(UcL o) functions.

6.2.1 Usage

ucld [options ...] list_file

6.2.2 Command Line Options

The following table lists the Linker command line options.

Table 9. Linker Command Line Options

Option Definition
-h Print a description of the ucld commands.
< Creates a hexidecimal representation of the output object to a ‘C’ module. The filename

will be the name of the output object file but with a *.c’ file type.

-dr byteAddr:byteSize

Define DRAM data allocation region. Default is 0:0x80000000.
(IXP2400 and IXP2800)

-f [fill_pattern]

Fill the unused microstore with the hexidecimal constant specifier. If the -f option is not
specified, then only up to the last microword used will be output. The default fill_pattern
value is the ctx_arblkill] instruction.

-9

Include debugging information, to be used by the Workbench, in the output object file.

-0 outfile

The default output file is the name of the first .list input file with a file type of .uof.

-sc byteAddr:byteSize

Define SCRATCH data allocation region. Default is 0:0x4000.

-seq file

Creates a 'C' header file defining the variables memory segments.

-srn byteAddr:byteSize

Define SRAM data allocation region where ‘n’ is 0,1,2, or 3 for the specific memory bank.
Default is 0:0x04000000 for byteAddr:byteSize.

Associates a list of uEngines to subsequent uca_list_file, where 'n' is a list of uUEngine

-uninl.] numbers separated by space. All uEngines are assigned by default.

-V Print a message that provides information about the version of the Linker being used.

-map [file] Generate a linker .map file. The generated filename is the same as the .uof file but with

p the extension .map. The .map file contains the symbols and their addresses.

The —I switch is used to disambiguate between microengine number and *.list file path. In

) earlier versions, if a *.list file name started with a number, that number would be parsed as
a microengine number rather than as part of the *.list file name. Using the —I switch
permits *.list file names that begin with a number.

202 Development Tools User’s Guide

6.4

6.4.1

6.4.2

Intel® IXP2400/I1XP2800 Network Processors
Linker

Generating a Microengine Application

On development system:

% uca ueng0.uc -o uengO. i st

% uca uengl_5.uc -0 uengl_5.1li st

%ucld -u 0 uengO0.list -u 12 3 4 5 uengl _5.1ist -0 ueng. uof

Syntax Definitions

Image Name Definition

This definition associates a name to the content of the uca list_file in the output object file. This
provides the means of identifying the image within the object file, allowing referencing to
particular section of the object file by name - used by the loader link library. The image name must
be unique for all input files that are to be linked. The Image name is defined in the microcode
source file (*.uc) use of the .image_name keyword. If the image name is not specified, it isthe list
file name without the extension.

Format for uca source (*.uc), and output (*.list) files:
.i mage_nanme nane

Import Variable Definition

This scheme provisions the sharing of address pointers between Microengine images and the core
image.

An application is physically comprised of two parts: a Microengine image and a core image.
Microengine images are microinstructions that run on the Microengine and are created using the
uca and ucld tools. Coreimage runson the | ntel® X Scale® core processor and is created using the
ARM Compiler/Assembler and Linker tools.

Address sharing between the Microengine and core images is achieved by declaring the variables
as an imported/external variable using the .import_var keyword in the microcode source file (*.uc),
prior to the variables being used. The uca Assembler will create alist of microword addresses and
the field bit positions within the microword where the variables are used and provided the
information in its output file (*.list) in the format as described below. The ucld Linker will process
the uca output files (*.list), possible one for each Microengine, and store the information in a
format that is acceptable by the loader. Core application binds and resolves a value to the Import-
Variable, by using the functions provided in the Microcode Loader Library (uclo.a). The binding/
resolution of import variables must be performed prior to the loading of the micro image to the
Microengines.

Format for uca source (*.uc) file:
.import_var variabl e_nanme variabl e_nane ...

Format of uca output (*.list) files:
. % nport _var vari abl e_name page_i d uword_addr ess
<nsb:lsb:rtSht_val, ...nmsb:lsb:rtShf_val >

Where:

Development Tools User’s Guide 203

Linker

6.4.3

6.4.4

6.5

6.5.1

204

Intel® IXP2400/I1XP2800 Network Processors intel
®

vari abl e_nane String name of the external variable as declared in the uca source file
(*.uc).

hi ghLow f1l ag Aninteger 0 or 1 indicating the lower or upper respective 16 bits of the
external 32-bit address.

page_id String name of the page identifier

uwor d_addr ess Aninteger number between 0 and 1023 indicating the micro word
address.

<msb: |l sb:rtSht _val,...nsb:Isb:rtShf _val >

A list of amaximum of four integer triad representing the bit field most
and least significant bit positions, and the number of bit position to right
shift the source address value.

Microengine Assignment

Thisfeature allowsthe loading of Microengineimagesto the appropriate Microengine at load time.
Thisis achieved by the specifying the -u option on the command line indicating the number of
Microengine(s) to be associated with the subsequent uca-list-file. The -u option can be repeated for
subsequent input files, (all of the Microengines) if the option is not specified. An error will be
generated if aMicroengineisassigned to multiple input files.

Format of command line to associate Microengines 0, 1, and 2 to the input file test.list, and to
associate Microengines 3, 4, and 5 to the input file test2.list:
ucld -u 012 test.list -u3 45 test2.1ist

Code Entry Point Definition

Code entry point definition allows the user to specify the starting point of each Microengine image
instead of the default entry point of zero.

Format for uca source file (*.uc), and output (*.list) files:
.entry page_id uword_address

Examples

Uca Source File (*.uc) Example

.entry common_code 0

. i mge_nane test
.inport_var rbuf rswap
mensv_bcopyt #:

br [mensv_bcopysubr #]

mensv_bzer o#:
br [mensv_bzer osubr #]
nmensv_bcopy#:
br [mensv_bcopysubr #]

Development Tools User’s Guide

intel.

6.5.2 Uca Output File (*.list) Example

.entry common_code 0

.thread_type 0123 service

.i mage_nane test

. % nport _var rbuf comon_code 1 <16:0: 0>
. % nport _var rbuf common_code 2 <31:16: 16> 10<31: 16: 16> 21<31: 16: 16>
. % nport _var rswap comon_code 3 <16:0: 0>

. % nport _var rswap common_code 4 <31:16: 16>

mensv#:

mensv_bcopyt #:

br [mensv_bcopysubr #]

.44 F8001C07 common_code
mensv_bzer o#:

br [mensv_bzer osubr #]

.45 F8002707 common_code
mensv_bcopy#:

br [mensv_bcopysubr #]

.46 F8003E87 common_code

6.5.3 .map File Example

The following example shows a sample of the *.map file, which is generated when you use the

Intel® IXP2400/I1XP2800 Network Processors
Linker

-map [filename] option on the linker command line. The .map file shows the address of the symbol
aswell as the memory region in which it islocated along with its size in bytes. The symbols are
prefixed with the Microengine number in which the symbol resides followed by an exclamation

point.

Menmory Map file:

test_c. map

Date: Fri May 30 12:11:03 2003
UcLd version: 3.1, UOF: test_c. uof
Addr ess Regi on Byt eSi ze
0x00000040 SRAMB 64 2
0x00000080 SRAMZ 128 2
0x000000b0 SRAMD 176 2
0x00000020 SCRATCH 32 2
0x00000004 DRAM 4 2
0x000002c8 SRAMD 40 2
0x00000000 LMEM 16 2
0x00000200 SRAMD 160 2
0x00000000 LMEM 0 2
0x000002f 4 SRAMD 4 2
0x000002fc SRAMD 4 2
0x00000000 SRAMB 64 0
0x00000000 SRAM2 128 0
0x00000000 SRAMD 176 0
0x00000000 SCRATCH 32 0
0x00000000 DRAM 4 0

Development Tools User’s Guide

Synbol

IsranB$tl s
I'sram2$tl s
I'sranstls
I'scratch$tls
ldranstl s

| _power s$5

I _meNum

! _|'l power s$5

I _ctxNum

1?2?7_C@ 01A@6?$AA@
1 2?7_C@ 01A@57$AA@
I'sranB$tls
I'sram2$tl s
I'sran$tls
I'scratch$tls
ldran$tls

205

Intel® IXP2400/I1XP2800 Network Processors

Linker

6.6

206

0x000002a0 SRAMD 40
0x00000000 LMEM 16
0x00000160 SRAMD 160
0x00000000 LMEM 0
0x000002f0 SRAMD 4
0x000002f8 SRAMD 4

O O O O oo

I mage | npor t Var

| _power s$5

I _meNum

I || powers$5

I _ctxNum

12?7 _CQ@O01A@6?7$AA@
1?2?7_C@ 01A@5?$AA@

Uninitialized Val ue

test_c r buf

0x0

Memory Segment Usage

The following example shows a sample of the memory segment usage.

UcLd version: 3.1, UOF: test_c.uof, Date: Fri May 30 12:11:03 2003

*/

#ifndef _ TEST_C H__

#define TEST C H

#define SRAMO_DATASEG_BASE
#define SRAMO_DATASEG_SIZE
#define SRAM1_DATASEG_BASE
#define SRAM1_DATASEG SIZE
#define SRAM2_DATASEG_BASE
#define SRAM2_DATASEG_SIZE
#define SRAM3_DATASEG_BASE
#define SRAM3_DATASEG_SIZE
#define DRAM_DATASEG_BASE
#define DRAM_DATASEG_SIZE
#define DRAM1_DATASEG_BASE
#define DRAM1_DATASEG_SIZE
#define SCRATCH_DATASEG_BASE
#define SCRATCH_DATASEG_SIZE

#endif /¥ _TEST_C H_*

0x0
0x300
0x0
0x0
0x0
0x100
0x0
0x80
0x0
0x8
0x0
0x0
0x0

0x40

/* SRAMO data seg byteAddr */
/* SRAMO data seg byteSize */

[* SRAM1 data seg byteAddr */
/* SRAM1 data seg byteSize */

[* SRAM2 data seg byteAddr */
[* SRAM?2 data seg byteSize */

[* SRAM3 data seg byteAddr */
/* SRAM3 data seg byteSize */

/* DRAM data seg byteAddr */

/* DRAM data seg byteSize */

/* DRAM1 data seg byteAddr */
/* DRAM1 data seg byteSize */

/* SCRATCH data seg byteAddr */
[* SCRATCH data seg byteSize */

Development Tools User’s Guide

u Intel® IXP2400/I1XP2800 Network Processors
o Linker

6.7 Microcode Object File (UOF) Format

The Microcode Object File consists of afile-header and one of more sections called file-chunks.
Each fileChunk isidentified by aunique ID in the fileChunkHdr section of the fileHdr. A typical
UOF will consisted of a UOF_OBJS file-chunk, and an optional DBG_OBJS file-chunk. The UOF
data structures are described in uof.h, and dbg_uof.h.

6.7.1 File Header

The file header is mandatory and must be the first entry in the file. It is used to identify the file
format, and to locate file-chunks within the file. This header consists of afixed 18-byte section of
type uof_fileHdr_T, and avariable section of type uof_fileChunkHdr_T. The variable section must
consist of at least MaxChunks of uof_fileChunkHdr_T and immediately precedes the fixed section

inthefile.
fileld 2 bytes: File id and endian indicator.
reservedl 2 bytes: Reserved for future use.
minVer 1 byte: File format minor version.
majVer 1 byte: File format major version.
reserved?2 2 bytes: Reserved for future use.
maxChunks 2 byt_es: MaX|mL_Jm possible chunks that the file can contain—specify at the
creation of the file.
numChunks 2 bytes: Number of chunks currently being used.

6.7.2 File Chunk Header

chunkld 8 bytes: A unique value identifying the chunk. Currently the values are the literal
UOF_OBJS, or DBG_OBJS

checksum 4 bytes: CRC checksum of chunk.

offset 4 byte: Offset into the file where the chunk begins.

size 4 bytes: Size of the chunk.

6.7.2.1 UOF Object Header

This object header describes the | XP system that the UOF can execute on, and it contains the
locations of the object-chunks within the file. This header, of type uof_objHdr_T, must be at the
beginning of the object and precedes at least MaxChunks of obj ect - chunk- header

(uof _chunkHdr _T).

Development Tools User’s Guide 207

Linker

6.7.2.2

6.7.2.3

6.7.2.4

208

Intel® IXP2400/I1XP2800 Network Processors int9I
®

cpuType 4 bytes: CPU fa_mily type -- I_XP2400=2, IXP2800=4. This is a resolution of all the
cpu types from images (list files).

minCpuVers 2 bytes: The minimum CPU revision that the UOF will run on.

maxCpuVers 2 bytes: The maximum CPU revision that the UOF will run on.

maxChunks 2 bytes: The maximum of chunks that can be contained in an UOF chunk.

numChunks 2 bytes: Number of chunks currently being used.

reservedl 4 bytes: Reserved for future use.

reserved2 4 bytes: Reserved for future use.

UOF-object headers MaxChunks * sizeof(uof_ChunkHdr) contiguous bytes of uof object headers.

UOF Object Chunk Header

Thisisthe variable portion of the obj-header and it must immediately precede the fixed section
(uof_uof_objHdr_T) inthefile. This header, of type uof_chunkHdr_T, identifies and provides the
location of the object-chunks. The linker (UcLd) currently creates object-chunks that are identified
by the following literals: UOF_STRT, UOF_GTID, UOF_IMAG UOF_MSEG, UOF_IMEM.

chunkld 8 bytes: A unique value identifying the chunk.
offset 4 byte: Offset of the chunk relative to the begining of the object.
size 4 bytes: Size of the chunk in bytes.

UOF_STRT

This object-chunk identifies the string table within the object and contains al the strings that are
used by the other object-chunks. The strings are NULL terminated, and referenced by a value that
islessthant abl eLengt h as an of fset intothistable. The strings in this table should not be
atered. This object isrepresented by the uof_strTab_T datatype.

tableLength 4 bytes: Total length of the table in bytes.
*strings tableLength of bytes: NULL terminated strings.
UOF_IMEM

This object-chunk, of type uof_initMem_T, contains the memory initialization values and
locations. The values are stored and written to memory as a sequence of bytes, therefore, the
attributes are only used when the byte-order of the values needs to be switched

symName 4 bytes: Symbol name string table offset.
region 1 byte: Memory region -- uof_MemRegion.
scope 8 bytes: 0 = global, 1 - local

reservedl 2 bytes: Reserved for future use.

Development Tools User’s Guide

6.7.2.5

6.7.2.6

6.7.2.7

Intel® IXP2400/I1XP2800 Network Processors
Linker

addr 4 bytes: The start address of memory to initialize with the byte-values.
numBytes 4 bytes; Number of bytes of consisting of the values.
numValAttr 4 bytes: The number of value attributes

Memory Initialization Value Attributes

This object-chunk, of type uof_memValAttr_T, describes the attributes of memory initialization
values.

byteOffset 4 bytes: Byte offset from allocated memory.

value 4 bytes: data value.

uof_initRegSym

This object-chunk contains register or symbol initialization information. The value could be an
integer constant, postfix-expression, or aregister standard value.

symName 4 bytes: Symbol name string table offset.

initType 1 byte: O=symbol, 1=register.

valueType 1 byte: EXPR_VAL, STRTAB_VAL.

regType 1 bytes: The register type -- ixp_RegType_T.

reservedl 1 byte: Reserved for future use.

regAddrOrOffset 4 bytes: The register address, or the offset from the symbol.
value 4 bytes: integer value, or expression string table offset.
UOF_MSEG

This object-chunk, of type uof_varMemSeg_T, contains the starting address and the byte size of the
allocated memory region.

sram0OBase 4 bytes: uC variables SRAMO memory segment base address.
sram0Size 4 bytes: uC variables SRAMO segment size bytes.

sramlBase 4 bytes: uC variables SRAM1 memory segment base address

sraml1Size 4 bytes: uC variables SRAM1 segment size bytes.

sram2Base 4 bytes: uC variables SRAM2 memory segment base address

sram2Size 4 bytes: uC variables SRAM2 segment size bytes

sram3Base 4 bytes: uC variables SRAM3 memory segment base address

sram3Size 4 bytes: uC variables SRAM3 segment size bytes

sdramBase 4 bytes: uC variables SDRAM memory segment base address.

Development Tools User’s Guide 209

Intel® IXP2400/I1XP2800 Network Processors u

Linker In o

sdramSize 4 bytes: uC variables SDRAM segment size bytes.
scratchBase 4 bytes: uC variables SCRATCH memory segment base address.
scratchSize 4 bytes: uC variables SCRATCH segment size bytes.

6.7.2.8 UOF _GTID

This object-chunk, of type uof_GTID_T, contains information from the tool that created the object.

toolld 8 bytes: The tool name string table offset.
toolVersion 4 bytes: The tool version.

reservedl 4 bytes: Reserved for future use.
reserved?2 4 bytes: Reserved for future use.

6.7.2.9 UOF_IMAG

This object-chunk, of type uof_Image T, contains uof image information. A uof image typicaly
correspondsto theinformation derived from thelist file. Therefore, thereisoneimagefor every list

filethat islinked
imageName 4 bytes: Image name string table offset.
meAssigned 4 bytes: The bit mask of the microengines assigned to this image.
) 8 bytes: The unused microstore fill pattern -- only the lower five bytes of the
fillPattern ;
pattern will be used.
sensitivity 1 byte: Indicates the case sensativity of the image (O=insensative; 1=sensative).
reserved 1 byte: Reserved for future use.

2 bytes: Indicates the microengine modes local-memory, and context modes;
unused<15:10>, locMem1<9>, locMem0<8>, unused<7:4>, ctx<3:0>. A 1 in the
meMode locMemX field indicates global addressing, and 0 indicates context relative
addressinjg. The cxt field will be either 4, or 8 to indicate the context mode. All
other fields are unsued.

cpuType 4 bytes: CPU family type -- IXP2400=2, IXP2800=4

maxVer 2 bytes: The maximum cpu version on which the image can run.

minVer 2 bytes: The minimum cpu version on which the image can run.

imageAtrib 2 bytes: unused<15-13_>, patternFiII_<12>, _unuse‘d<11:0?. If the patternFill bit is
set, then the unused micro stores will be filled with the fillPattern.

entryPage 2 bytes: Page number entry point.

entryAddress 2 bytes: uPC entry point into the code.

numOfPage 2 bytes: The number of ustore pages associated with the image.

regTabOffset 4 bytes: Offset from the object to the register table (uof_meRegTab_T).

210 Development Tools User’s Guide

Intel® IXP2400/I1XP2800 Network Processors

Linker

initRegSymTab

4 bytes: Offset from the object to the register/symbol initialization table
(uof_initRegSymTab_T).

reserved2

4 bytes: Reserved for future use.

micro store pages = NumOfPages * sizeof(uof_codePage_T) contiguous bytes of code pages.

6.7.2.10 uof_codePage

This structure, of typeuof _codePage_T, isacontainer of related items.

neighRegTabOffset 4 bytes: Offset to neighbor-register table.
reservedl 4 bytes: Reserved for future use.
ucVarTabOffset 4 bytes: Offset to uC variables table
impVarTabOffset 4 bytes: Offset to import-variable table.
impExprTabOffset 4 bytes: Offset to import-expression table.
codeAreaOffset 4 bytes: Offset to microwords.

reserved?2 4 bytes: Reserved for future use.

6.7.2.11 uof_meRegTab

Thistable, of type uof _nmeRegTab_T, contains nunEntries of the register
definitions uof_nmeReg_T. The register definitions nust inmediately follow
this table in the file.

numEntries

‘ 4 bytes: Number of table entries.

Table entries = NumEntries * sizeof(uof_meReg_T) contiguous bytes of objects

6.7.2.12 uof_meReg

This data type describes microengine register definitions.

name 4 bytes: Register name string-table offset
visName 4 bytes: Register visible name string-table offset.
type 2 bytes: Register type -- ixp_RegType_T

addr 2 bytes: The register address

accessMode 2 bytes: uof_RegAccess_T: read/write/both/undef
visible 1 byte: Register visibility, 1=visible, 0=not visible.
reservedl 1 byte: Reserved for future use.

refCount 2 bytes: Number of continguous registers allocated
reserved?2 2 bytes: Reserved for future use

xold 4 bytes: Xfer order identification

Development Tools User’s Guide

211

Linker

6.7.2.13

6.7.2.14

6.7.2.15

6.7.2.16

6.7.2.17

6.7.2.18

6.7.2.19

212

In

Intel® IXP2400/I1XP2800 Network Processors u t9I
®

uof_neighReg

Structure is same format as uof _uwordFixup_T.

uof_neighRegTab

Thistable, of typeuof _nei ghRegTab_ T, contains numEntries for the fixup-register definitions
uof _nmeReg_T. Theregister definitions must immediately follow thistablein thefile.

numEntries 4 bytes: Number of table entries.

Table entries = NumEntries * sizeof(uof_neighReg_T) contiguous bytes of objects

uof_importExpr
Structure is same format as uof _uwordFixup_T.

uof _impExprTabTab

Thistable, of typeuof _i nExpr TabTab_T, contains objects of typeuof _i nport Expr _T.

numEntries ‘ 4 bytes: Number of table entries

Table entries = NumEntries * sizeof(uof_importExpr_T) contiguous bytes of objects.

uof_xferReflectTab

Thistable, of type uof_xferReflectTab_T contains objects of type uof xferReflect T.

numEntries ‘ 4 bytes: Number of table entries

Table entries = NumEntries * sizeof(uof_xferReflect_T) contiguous bytes of objects.

uof_UcVar

Structure is same format as uof _uwordFixup_T

uof ucVarTab

Thistable of typeuof _ucVar Tab_T contains numEntries of objects of type uof _ucVar _T.

numEntries ‘ 4 bytes: Number of table entries.

Table entries = NumEntries * sizeof(uof_ucVar_T) contiguous bytes of objects.

Development Tools User’s Guide

INlal.

6.7.2.20

6.7.2.21

6.7.2.22

6.8

6.8.1

Intel® IXP2400/I1XP2800 Network Processors
Linker

uof_initRegSymTab

Thistable, of type uof _i ni t RegSyniTab_T, contains nunEntries of the register/
synbol initializations uof_initRegSymT. The register/synbol
initialization nmust imediately followthis table in the file.

numEntries ‘ 4 bytes: Number of table entries.

Table entries = NumEntries * sizeof(uof_initRegSym_T) contiguous bytes of objects.

uof _uwordFixup

This data structure contains microword fixup information. The fixup value can be a constant or a
postfix expression

name 4 bytes: Name string-table offset.

uwordAddress 4 bytes: Micro word address(bytes 0 &1), unused (bytes 2 & 3).
exprValue 4 bytes: Postfix expression string-table.

valType 1 byte: VALUE UNDEF, VALUE NUM, VALUE EXPR

valueAttrs 1 byte: bit<0> (Scope: 0=global, 1=local), bit<1> (init: 0=no, 1=yes)
reservedl 2 bytes: Reserved for future use

fieldAttrs 12 bytes: Field pos, size, and right shift value.

uof _codeArea

This structure table contains the microwords. The microwords are stored as 5-byte values directly
following thistable. Therefore, this sturucture should be followed by at least numM cr oWor ds *
5 bytes

numMicroWords 4 bytes: Number of microwords.
reserved 4 bytes: reserved for future use.

This object is stored in the UOF as afile-chunk with the DBG_OBJS identification. This object
contains sub-sections, chunks, that contain all the neccessary information pertaining to the
debugging of the micro-code for all microengines. The offsets within the sub-sections, are relative
to the beginning of this object and are not relative to the beginning of the file. The format of this
objectissimilar to the file-header, in that it consists of afixed header sectionimmediately followed
by variable header sections.

Debug Objects Header

This header, of type uof_objHdr_T, must be at the begining of the object and precedes at |east
MaxChunks of debug chunk-header (dbg_chunkHdr_T).

Development Tools User’s Guide 213

Linker

6.8.2

6.8.3

6.8.4

6.8.5

214

In

Intel® IXP2400/I1XP2800 Network Processors u t9I
®

cpuType 4 bytes: Alway zero

minCpuVers 4 bytes: Always zero

maxCpuVers 4 bytes: Always zero

MaxChunks 2 bytes: maximum objects that can be contained in a DBG_OBJ chunk.
NumChunks 2 bytes: number of chunks currently being used.

reservedl 4 bytes: Reserved for future use.

reserved?2 4 bytes: Reserved for future use.

Debug-object headers MaxChunks * sizeof(DbgChunkHdr) contiguous bytes of debug object headers.

Debug Object Chunk Header

Thisisthe variable portion of the debug-object header and must immediately precede the fixed
section (uof_objHdr_T) in the file. This header, of type dbg_chunkHdr_T, identifies and provides
the location of the object-chunks. The linker (UcLd) currently creates object-chunks that are
identified by the following literals: DBG_STRT, DBG_IMAG, DBG_SYMB

chunkld 8 bytes: A unique value identifying the chunk.

offset 4 byte: Offset of the chunk relative to the beginning of the object.
size 4 bytes: Size of the chunk.

DBG_STRT

This debug-object chunk identifies the string table within the debug object and contains all the
strings that are used by the other debug-object chunks. The strings are NULL terminated, and
referenced by avaluethat islessthant abl eLengt h as an of f set intothistable. The strings
in this table should not be altered. This object is represented by the dbg_strTab_T data type.

TableLength 4 bytes: total length of the table in bytes
Strings NULL terminated strings
dbg_RegTab

This debug-object chunk of type dbg_RegTab_T contains objects of typeuof _neReg_T.

numEntries ‘ 2 bytes: The number of objects in the table.

Table entries = NumEntries * sizeof(me_Reg_T) contiguous bytes of objects.

dbg_ LblTab

This debug-object chunk of typedbg_Lbl Tab_T contains objects of typedbg_Label _T.

numEntries ‘ 2 bytes: The number of objects in the table.

Table entries = NumEntries * sizeof(dbg_Label_T) contiguous bytes of objects.

Development Tools User’s Guide

INlal.

6.8.6

6.8.7

6.8.8

6.8.9

6.8.10

Intel® IXP2400/I1XP2800 Network Processors
Linker

dbg SymTab

Thisdebut_object chunk of typedbg_Synirab_ T contains objects of typedbg_Synb_T.

numEntries ‘ 2 bytes: The number of objects in the table.

Table entries = NumEntries * sizeof(dbg_Symb_T) contiguous bytes of objects.

dbg_ SrcTab

This debug object chunk of type dbg_Sr cTab_T contains objects of type dbg_Sour ce_T.

numEntries ‘ 2 bytes: The number of objects in the table.

Table entries = NumEntries * sizeof(dbg_Source_T) contiguous bytes of objects.

dbg TypTab

This debug object chunk of typedbg_TypTab_T contains objectsof typedbg_Type_T.

numEntries ‘ 2 bytes: The number of objects in the table.

Table entries = NumEntries * sizeof(dbg_Type_T) contiguous bytes of objects.

dbg_ScopeTab

This debug object chunk of type dbg_ScopeTab_T contains objects of typedbg_Scope_T

numEntries ‘ 2 bytes: The number of objects in the table.

Table entries = NumEntries * sizeof(dbg_Scope_T) contiguous bytes of objects.

dbg Image

This debug-object chunk, of type dbg_Image T, contains the debug information related to a set of
microengines.

IstFileName 4 bytes: List-file name string-table offset.

meAssigned 4 bytes: bit values of assigned MEs

IstFileCreatedBy 1 byte: The tool that created the list file (uca/uC)-- Ucld_LstFileToolType.
reservedl 1 byte: Reserved for future use.

ctxMode 4 bytes: The number number of contexts -- 4 or 8

endianMode 1 byte: endian: little=0, big=1

scopeTabOffset 4 bytes: Offset to the scope table

regTabSize 4 bytes: Byte size of the register table

IbITabSize 4 bytes: Byte size of the Label table.

Development Tools User’s Guide 215

Intel® IXP2400/I1XP2800 Network Processors u

Linker

6.8.11

6.8.12

6.8.13

216

INlal.

srcTabSize 4 bytes: Byte size of the Source-line table.

regTabOffset 4 bytes: Register table offset from beginning of the debug object.
IbITabOffset 4 bytes: Label table offset from the beginning of the debug object.
srcTabOffset 4 bytes: Source table offset from the beginning of the debug object.
typTabSize 4 bytes: Variable types table byte size.

scopeTabSize

4 bytes: Scope table size.

typTabOffset 4 bytes: Variable types table offset.

instOprndTabsize 4 bytes: Instruction operands table size.

instOprnTabOffset 4 bytes: Instruction operands table offset.

reserved2 4 bytes: Reserved for future use.
dbg_Label

This structure defines the labels of type dbg_Label T.

name 4 bytes: Label name debug string table offset.

addr 2 bytes: Uword address of the label.

unusedl 2 bytes: Reserved for future use
dbg_Source

This structure defines the source code information of type dog_Source T.

fileName 4 bytes: Source filename debug string table offset.
lines 4 bytes: Source lines offset into the debug string table.
lineNum 4 bytes: Source file line number.
addr 4 bytes: The associated uword address.
validBkPt 1 byte: Indicates whether a breakpoint can occur at the uword.
ctxArbKill 1 Byte: This instruction is a ctx_arb[Kkill]
brAddr 2 bytes: Branch label address.
regAddr 2 bytes: Register address.
regType 2 bytes: Register type.
deferCount 2 bytes: this instructions’s defer count.
reservedl 2 bytes: Reserved for future use.
dbg_Symb

This structure contains information about symbol in the debug object.

Development Tools User’s Guide

6.8.14

6.8.15

6.8.16

6.8.17

Intel® IXP2400/I1XP2800 Network Processors

Linker

name 4 bytes: Symbol name string-table offset.
scope 1 byte: Scope -- global=0, local=1.
region é gyte: uof_ValLocTyp: SRAM_MEM_ADDR, DRAM_MEM_ADDR,
RATCH_MEM_ADDR.
reserved 2 bytes: Reserved for future use.
addr 4 bytes: Symbol memory location.
byteSize 4 bytes: Size of the symbol.
dbg_Type

Contains information regarding variable type.

name 4 bytes: Symbol name debug string-table offset.

typeld 2 bytes: Id of type -- Ucld_TypeType.

type 2 bytes: Type referenced -- could be itself.

size 4 bytes: Size/bound of the type.

defOffset 4 bytes: Offset to dbg_StructDef_T or dbg_EnumDef_T.

dbg_StructDef

This structure defines data structure in the debug object. This structure must immediately precede
nunti el d of dbg_StructField T in the debug object

numFields 2 bytes: Number of fields in the structure.
reserved 2 bytes: Reserved for future use.
fieldOffset 4 bytes: Offset to dbg_StructField_T relative to the beginning of the debug object.

dbg_StructField

This structure describes the fields of dbg_StructDef T.

name 4 bytes: Field name debug string-table offset.
offset 4 bytes: This field's offset from beginning of struct.
type 2 bytes: Field type.

bitOffset 1 byte: BitOffset.

bitSize 1 byte: BitSize.

dbg_EnumDef

Describes an enumeration definition.

Development Tools User’s Guide

217

Intel® IXP2400/I1XP2800 Network Processors u

Linker I n
®
numValues 2 bytes: Number of values.
reserved 2 bytes: Reserved for future use.
valueOffset 4 bytes: Offset to dbg_EnumValue_T.
6.8.18 dbg_EnumValue
Describes the enumeration value.
name 4 bytes: Enum value name debug string-table offset.
value 4 bytes: Enum value.
reserved 4 bytes: Reserved for future use.
6.8.19 dbg_Scope
This structure contains the variables and functions scope information.
name 4 bytes: Scope name debug string-table offset.
fileName 4 bytes: File name debug string-table offset.
type 2 bytes: Ucld_ScopeType—qglobal, file, funct, ect...
lineBeg 2 bytes: Scope in effect at source line.
lineEnd 2 bytes: Scope stops at source line.
uwordBeg 2 bytes: Scope in effect at uword.
uworkEnd 2 bytes: Scope stops at uword.
numScopes 2 bytes: Number of dbg_Scope_T within this scope.
numVars 2 bytes: Number of variables in this scope.
scopeOffest 4 bytes: Offset to dbg_Scope_T within this scope.
varOffset 4 bytes: Offset to dbg_Variable_T within this scope.
funcRetOffset 4 bytes: Func return value offset to dbg_ValueLoc_T.
6.8.20 dbg_ValuelLoc
This structure contains the location of the variable of type dbg_VauelLoc T.
locld 4 bytes: Ucld_ValLocTyp -- reg, mem, or spill.
symbName 4 bytes: Symbol name offset to string-table.
location 4 bytes: MemAddr, regNum, or spill-offset.
multiplier 4 bytes: Spill multiplier.
6.8.21 dbg_Variable
This structure defines the variable of type dbg_Variable T.
218 Development Tools User’s Guide

Intel® IXP2400/I1XP2800 Network Processors
Linker

name 4 bytes: Variable name offset to string-table.
type 2 bytes: Type to refe.
reserved 1 byte: Reserved for future use.
locType 1 byte: Location type:- Ucld VarLocType
locOffest 4 bytes: Offset to dbg_Sloc_T, dbg_Tloc_T, dbg_RlocTab_T, or dbg_Lmloc_T
6.8.22 dbg_Sloc
This structure contains the symbol association of the variable of typedbg_Sloc T.
‘ symbName 4 bytes: Symbol name offset to string-table.
6.8.23 dbg_Tloc
This structure defines the variables that are local to the context of type dbg_Tloc T.
symbName 4 bytes: Symbol name offset to string-table.
offset 4 bytes: Local mem offset.
multiplier 4 bytes: Local mem multiplier.
6.8.24 dbg_RlocTab
This structure defines variables of type dbg_Rloc T that are located in the Register.
numEntries 2 bytes: Number of live ranges.
reserved 2 bytes: Reserved for future use.
6.8.25 dbg_Lmloc
This structure defines variables of type dbg_Lmloc_T located in local memory.
‘ offset I 4 bytes: localmemory offset
6.8.26 dbg_Liverange

This structure defines where in the range the variables of type dbg_Liverange T are alive.

offset 4 bytes: Byte offset from var.
locld 4 bytes: Reg, or spill.
regNumOrOffset 4 bytes: Reg-num, or spill-offset.
multiplier 4 bytes: Spill multiplier.

Development Tools User’s Guide

219

Intel® IXP2400/I1XP2800 Network Processors u

Linker In o

symName 4 bytes: Spill—symbol name (sram$tls).

numRanges 2 bytes: Number of ranges.

ambiguous 1 byte: the location may or many not contain valid value
reserved 1 byte: Reserved for future use.

rangeOffset 4 bytes: Offset to dbg_Range_T.

6.8.27 dbg_Range

This structure defines the uword range where the variable of type dbg_Range T isalive.

start 4 bytes.

stop 4 bytes.

6.8.28 dbg_InstOprnd

addr 4 bytes: Micro address of the instruction.

srclName 4 bytes: Source operand 1 register name offset in the string table.
src1Addr 4 bytes: Source operand 1 register address offset in the string table.
src2Name 4 bytes: Source operand 2 register name offset in the string table.
src2Addr 4 bytes: Source operand 2 register address offset in the string table.
destName 4 bytes: Destination register name offset in the string table.
destAddr 4 bytes: Destination register address offset in the string table.
xferName 4 bytes: xfer register name offset in the string table.

xferAddr 4 bytes: xfer register address offset in the string table.

mask 4 bytes: <31:3> unused. <2> /O indirect. <1> I/O read. <0> I/O write.
refCount 1 byte: I/O reference count (1 to 16)

deferCount 1 byte: Branch defer count (0-3).

reservedl 2 bytes: Reserved for future use.

reserved2 4 bytes: Reserved for future use.

220 Development Tools User’s Guide

intel.

Foreign Model Simulation Extensions 7

7.1

Foreign Model simulation extensions are useful toolsfor simulating external hardware devices, and
for devel oping software. They extend the Transactor capabilities, which are cycle and data accurate
software models of the network processors.

Section 7.1 provides an overview of how foreign models are used. Section 7.2 describes how to
integrate foreign model swith Transactors. Details of simulating mediabus devices are discussed in
Section 7.4. Section 7.5.1 contains some sampl e code.

Overview

Reasons to use Foreign Model simulation:
1. To interface hardware device models, and

2. To generate traffic on external busses,

These are illustrated in Figure 67.

Figure 67. Example of Foreign Model Usage

Development Tools User’s Guide

Transactor Transactor
Running Custom Running Custom
Microcode Microcode
A A
Media Bus
y Y

Foreign Model Foreign Mode

Generating
Media Bus
A Transactions
Verilog PLI
Custom Verilog
Model
Interfacing Generating Traffic On
Hardware Device External Busses of the
Model Network Processors

B0222-02

* Interfacing har dware device models. Foreign modeling allows integration of models of
external hardware such asaMAC device or custom chip that is connected to the Media Bus.
This could be a software model of the external device or adesign in ahardware simulator such
as Verilog. Thisincludes the ability to interface with hardware models (such as a Verilog
model) which could reside on aremote machine.

221

Intel® 1XP2400/IXP2800 Network Processors u
Foreign Model Simulation Extensions In o

* Generating traffic on external busses. Microengine software designers can use aforeign
model to assist in the design and debugging of Microengine software modules by producing
generic transactions of the Media Bus. This way, hardware residing on the Media Bus such as
aMAC device or some custom chip can be simulated. Once the software is designed, the same
foreign model interface can be used to produce the traffic typical for the application. This
assists in estimating the performance of software.

* Intel® X Scale™ Software Module Prototyping. The Foreign model interface can aso be
used to develop the software that will run on the Intel® X Scale™ core. Even though | ntel®
XScale™ core software executes on a development machine, once it interfaces to the
Transactor through the Transactor API, execution is cycle accurate. This reduces the
simulation time and allows accurate verification of interactions between Intel® X Scale™ and
Microengine software.

7.2 Integrating Foreign Models with the Transactor

A foreign model provides a mechanism by which the network processor software model
(Transactors) can be extended to include additional software models of hardware that interface
with the network processor. The way to integrate aforeign model with the appropriate Transactor is
by creating a Foreign Model Dynamic-link Library (DLL).

To activate a Foreign Model DLL, you executethef or ei gn_nodel command at the
Transactor’s command prompt (see Section 8 for more information about the Transactor).

If you are running the Developer’s Workbench, you specify your foreign model by selecting
Simulation->Options then selecting the Foreign M odéel tab. The Workbench automatically
executes the appropriate f or ei gn_nodel command for you.

When the Transactor executesthe f or ei gn_nodel command, it loads the Foreign Model DLL.
It then searchesfor the XACT_Proxy_Initialize function in the Foreign Model DLL. If the function
is found, the Transactor callsit to initialize a data structure that is used to dynamically bind
functions exported by the Transactor to the Foreign Model DLL. The first time the Foreign Model
DLL accesses afunction that is exported by the Transactor, the data structure is modified to
dynamically bind the function to the Foreign Model DLL.

If the XACT_Proxy_Initialize function is not found, the Transactor assumes the Foreign Model
DLL was statically linked to the Transactor DLL. After the Transactor determines the type of
binding being used, it and callsthe Get For ei gnModel Functi ons() function intheforeign
model to get the pointersto six foreign model functions.

The Transactor callsthese functionsto notify the foreign model whenever the following simulation
events occur:

* The modd isinitialized.

* Before asimulation step occurs (preSim),

¢ After asimulation step has completed (postSim),

* Thesimulationisreset (i.e.,, asim_reset command is executed),

* The modd isdeleted (i.e., asim_delete command is executed), and

* When the Transactor exits.

The foreign model interacts with the Transactor using the Transactor API.

222 Development Tools User’s Guide

7.4

7.5

Intel® 1XP2400/IXP2800 Network Processors
Foreign Model Simulation Extensions

Foreign Model Dynamic-Link Library (DLL)

The foreign model DLL must provide the exported function
GetForeignModelFunctions(), that the Transactor calls to get the addresses of the six
functions to interact with the foreign model.

The foreign model DLL runsin conjunction with the DLL version of the Transactor, so
Xactvmod.h must be included in the foreign model DLL sourcefiles, if needed, and it must be
linked against 1XP2400.1ib or 1 XP2800.lib.

To have the Transactor load aforeign model DLL, use the “foreign_model” command.

Simulating Media Devices

Simulating of devicesinvolves the following:
¢ Getting states of pins,
* Determining appropriate action based on the pin states, and
* Setting the appropriate pin states

The Workbench provides media device foreign models as described in Section 2.11, “ Packet
Simulation. These foreign models support several protocol types for each network processor.

For streaming packets through the Transactor, refer to Section 2.11 before developing your own
foreign model.

Appendix A, “Transactor States’ documents the Transactor state names and a brief description of
the states for various device pinsincluding QDR and M SF devices.

Creating A Foreign Model DLL

This section contains sample code demonstrating how to create adynamic-link library (DLL) for a
foreign model. Itisalso availablein\ ne_t ool s\ sanpl es\ For ei gnMbdel DLL onthe
distribution CD.

Inyour DLL you must provide the exported function Get For ei gnModel Functi ons(),
which the Transactor calls to get the addresses of the six functionsthat it calls to interact with your
foreign model. Of the six functions, thef or ei gn_nodel _initialize() functionis
required but the other five are optional. If you do not need to be notified for an event, return azero
as the pointer to the function associated with that event.

If you want to call the Transactor API from your foreign model, you must include xact_vmod.hin
your source files. If and you want to statically bind your foreign model to a specific Transactor
DLL, you must link against the appropriate Transactor library file (e.g., IXP2400.lib or
IXP2800.lib), depending on which

network processor you will be simulateing. If you want to dynamically bind your Foreign Model
DLL to aTransactor at run-time, you must include the file foreign_model_main.cpp in your
project, and you must compile and link it with your other source filesto create your Foreign Model

Development Tools User’s Guide 223

Intel® 1XP2400/IXP2800 Network Processors u
Foreign Model Simulation Extensions In o

7.5.1

224

DLL. Theforeign_model_main.cpp file provides the data structures and functions (including
XACT_Proxy_lInitialize) needed to dynamically bind your Foreign Model DLL to any Transactor
that loads it using the “foreign_model” command.

DLL Sample Code.
/* Forei gnModel DLL. cpp

This file contains sanple code denpnstrating how to create a dynam c-1ink
library (DLL) for a sinulation extension to be used in conjunction with the
transactor DLL. A foreign nodel DLL is activated using the 'foreign_nodel
transactor conmand. The Workbench autonatically executes this command for you
if you specify the foreign nodel through the Wrkbench GUI. To do this select
Options fromthe Sinulation nenu then sel ect the Foreign Mdel tab. In your DLL
you nust provide the exported function GetVnodForei gnMbdel Functions(), which
the transactor calls to get the addresses of the six functions that the
transactor calls to interact with your foreign nodel

I'n your foreign nodel code you can access any of the transactor APl functions
that are defined in xact_vnod.h. To do this, you nust include xact_vnod.h in
your source files and you nust |ink against |XP2800.1ib or |XP2400.!i b,
dependi ng on which chip type you will be sinulating

* | NTEL PROPRI ETARY
*

* COPYRI GHT (c) 1998-2002 BY |NTEL CORPORATION. ALL RIGHTS

* RESERVED. ~ NO PART OF THI'S PROGRAM OR PUBLI CATION MAY

* BE REPRODUCED, = TRANSM TTED, TRANSCRIBED, STORED IN A

* RETRI EVAL SYSTEM OR TRANSLATED | NTO ANY LANGUAGE OR COVPUTER

* LANGUAGE | N ANY FORM OR BY ANY MEANS, ELECTRONIC, MECHANI CAL,

* MAGNETI C, OPTICAL, CHEM CAL, MANUAL, OR OTHERW SE, W THOUT

* THE PRI OR WRI TTEN PERM SSI ON OF :

*

* INTEL CORPORATI ON

*

* 2200 M SSI ON COLLEGE BLVD

*

* SANTA CLARA, CALIFORNIA 95052- 8119

*

K e e e e e e e e e e e e e e e e e e m e e e m e m e m e m e m e m e m e —— -
*

*]

/1 You nust include xact_vnod.h in order to link correctly agai nst
/1 the DLL version of the transactor.

/1

#i ncl ude "xact_vnod. h"

#i nclude <stdlib. h>

#i ncl ude <string. h>

/1 for testing purposes only
/1 remenber the init_str fromthe foreign_nodel _initialize so it can be used

Development Tools User’s Guide

Intel® 1XP2400/IXP2800 Network Processors
Foreign Model Simulation Extensions

/1 by each function so the instance generating the consol e nessages i s uniquely

identifiable

/1 allow roomfor up to 255 foreign nodel s!
static char *I NI T_STRI NG 255] = {0};
static char *MODEL_NAME[255] = {0};

% o e e e e e e e e e e e e e eiieeaaa-
foreign_nodel _initialize
This function will be called to initialize the foreign nodel after
the transactor "init" comrand has successfully executed. Returning O
will result in a transactor error.
returns:

uses:

nmodi fi es:

*/

int foreign_nodel _initialize(int nodel _i nstance_num const char *nopdel _nanme, const

char *init_str)
{
/1 though we are al ocating nenmory here, it is not deleted |ater
int len = 1;
if (init_str !'= NULL)
len = strlen(init_str)+1;

MODEL_NAME[nodel _i nstance_nun] = new char[len];
if (init_str !'= NULL)

st rcpy(MODEL_NAME[nodel _i nstance_nuni, nodel _nane);
el se

MODEL _NAME[nodel _i nst ance_nuni = O;

I' NI T_STRI NG nodel _i nstance_nunj = new char[len];
if (init_str !'= NULL)

strcpy(I NI T_STRI NG nodel _i nstance_nuni, init_str);
el se

I Nl T_STRI NG nodel _i nst ance_nuni = O;

XACT_printf("(instance_num = %) (i nstance_nanme = %) (init_str = %)
foreign_nodel _initialize called\n",
nmodel _i nstance_num
MODEL _NAME[nodel _i nst ance_nuni,
I NI T_STRI NG nodel _i nst ance_nunj

return(l);

foreign_nodel _pre_sim

This function will be called prior to each transactor sinulation event.
It can be used to deposit state values into the transactor nodel prior

to simulating the next event. Returning O results in an error.

returns:

Development Tools User’s Guide

225

Intel® IXP2400/IXP2800 Network Processors u

Foreign Model Simulation Extensions In
uses:
nodi fi es:
*/
int foreign_nodel _pre_sin{ int nodel _i nstance_num)
{

226

XACT_printf("(instance_num = %) (i nstance_name = %) foreign_nodel _pre_sim
cal l ed\n",
nmodel _i nst ance_num
MODEL _NAME[npdel _i nst ance_nuni

)

/1 Exanpl e showing how to get the handle to a nbdel state and exami ne its val ue.
XACT_HANDLE Si nli neHandl e = XACT_get _handl e("simtinme", -1);
if (SinTimeHandl e != | NVALI D_XACT_HANDLE)
{
unsi gned int Sini neVal ue[2] ;
XACT_get _state_val ue(Si nTi neHandl e , &Si nili neVal ue[0]);
XACT_del et e_handl e(Si nli neHandl e) ;

}
return(l);
}
¥ o o e e e e e e e eeiieeeaao-
forei gn_nodel _post_sim
This function will be called subsequent to each transactor sinulation event.
It can be used to query transactor sinulation state, in order to copy it
into the foreign nodel sinulator.
returns:
uses:
modi fi es:
*/
int foreign_nodel _post_sin{ int nbdel _instance_num
{

XACT_printf("(instance_num = %) (instance_name = %) foreign_nodel _post_sim
cal l ed\n",

nodel _i nst ance_num
MODEL _NAME[nodel _i nst ance_nunj
)

return(l);

This function will be called just prior to exiting the simulator.
The routine allows the foreign nodel to clean up, close files, etc
bef ore shutting down the program

returns:

uses:
nmodi fi es:

Development Tools User’s Guide

Intel® 1XP2400/IXP2800 Network Processors
Foreign Model Simulation Extensions

*/
int foreign_nodel _exit(int nmodel _i nstance_num)
{
XACT _printf("(instance_num = %) (instance_nanme = %) foreign_nodel _exit
cal l ed\ n",
nodel _i nstance_num
MODEL _NAME[nodel _i nst ance_nuni

)
return(l);
}
% o o e e e e e e e e e e e e eiieeaaa-
forei gn_nodel _reset
This function will be called just prior to the sinulator executing
a simreset command. The routine allows the foreign nodel to perform
required reset actions.
returns:
uses:
nmodi fi es:
*/
int
forei gn_nodel _reset(int nodel _i nstance_num)
{

XACT_printf("(instance_num = %) (i nstance_name = %) foreign_nodel _reset
cal l ed\n",

nodel _i nst ance_num
MODEL _NAME[nodel _i nst ance_nuni

)
return(l);
}
| % o o o e e eeeeeaaaos
forei gn_nodel _del ete
this routine will be called just after the sinmulator deletes all of
its nodel state via the "simdelete" conmand.
The routine allows the foreign nmobdel to reset itself to stay
in sync with the simulator.
returns:
uses:
nodi fi es:
*/
int
forei gn_nodel _del ete(int nodel _i nstance_num)
{

XACT printf("(instance_num = %) (i nstance_nane = %) forei gn_nodel _delete
cal l ed\n",

nodel _i nstance_num
MODEL_NAME[nodel _i nst ance_nuni

Development Tools User’s Guide 227

Intel® 1XP2400/IXP2800 Network Processors u
Foreign Model Simulation Extensions In

)

delete [] I NIT_STRI NG nodel _i nstance_nunj;
I NI T_STRI NG nodel _i nstance_nuni = O;

return(l);
}
% o e e e e e e eiiieeeaa-
Get VnodFor ei gnMbdel Funct i ons
This function is exported as the sole entry point into the DLL version
of this package. The transactor calls it in order to get the
foreign nodel entry points.
returns:
uses:
nodi fi es:
*/
extern "C' __decl spec(dllexport) void __cdecl

Get VnmodFor ei gnMbdel Funct i ons(

int (**ForeignMdel Initialize)(int nodel _instance_num const char *nodel _nane,
const char *init_str),

int (**ForeignhMdel PreSim (int nodel _instance_num,

int (**ForeignMdel PostSin)(int nmodel _i nstance_num,

int (**ForeignMdel Exit) (int nodel _i nstance_nunj,

int (**ForeignMdel Reset) (i nt nodel _i nstance_num,

int (**ForeignMdel Del ete)(int nodel _instance_num))

{
*Forei gnMbdel I nitialize = foreign_nodel _initialize;
*For ei gnMbdel PreSi m = forei gn_nodel _pre_sim
*For ei gnvbdel Post Si m = forei gn_nodel _post_sim
*For ei gnvbdel Exi t = forei gn_nodel _exit;
*For ei gnMbdel Reset = forei gn_nodel _reset;
*For ei gnModel Del et e = forei gn_nodel _del ete;

228 Development Tools User’s Guide

intel.

Transactor 8

8.1

This chapter describes the Transactor and its command line interface. The Workbench graphical
user interface to the Transactor is described in Chapter 2. This chapter contains the following
sections:

* Overview (see Section 8.1).

* |nvoking the Transactor (see Section 8.2).
¢ Transactor Commands (see Section 8.3).

¢ ClInterpreter (see Section 8.4

¢ Simulation Switches (see Section 8.5)

¢ Pre-Defined C Functions (see Section 8.6)
¢ Error Handling (see Section 8.7)

Overview

The C++ simulator is a cycle-based (as opposed to event-driven) 2 and 3 state simulator. 1t
demonstrates the functional behavior and performance characteristics of a system design based on
the IXP2400 and 1XP2800 network processors without relying on the hardware.

Z stateis not explicitly modeled; instead tristate nodes automatically flag floating error when 1 or
more bus bits float for a period greater than the user-specified float threshold.

Two simulation modes are supported:

e "2.1" state simulation:
Tristate nodes are 3-state (0,1,X)
All other nodes are 2-state (0,1)

e "4" state simulation:
All nodes are 4-state (0, 1, X, High Z)

Several commands are required at the simulator console before executing cycles. This sequence
can be entered line-by-line or encapsulated inside of atext based instruction file. The example
instruction file below illustrates the command sequence. The"@" symbol instructs the simulator to
open and begin executing linesin the file name that follows.

/1 File: run_fifo_test.ind
/'l I nvoke from console pronpt by typing: @ \Vnodel\run_fifo_test.ind

/1 Instantiate the nodel
inst fifo_test

/1 Init the nodel
init

Development Tools User’s Guide 229

Intel® IXP2400/I1XP2800 Network Processors u

Transactor In
®

/1 Set the clocks. Note that the paraneters vary for the | XP2400
/1 and | XP2800

/1 Uncomment one of the follow ng function calls dependi ng on
/1 the network processor. Use of both will not work in the
/'l Transactor.

/1 Following are the defaults for the |XP2800
|/ set_clocks(sr_chi p_name, 2800, Ox73E7777, 66, 0x1d301d3, 0x1d3);

/1 Following are the defaults for the | XP2400
//set_clocks("", 1200, 0x00040033, 66, O0x00ff0000);
//

/1 Optional - log all conmrands and responses to a file.
log fifo_result.log

/'l Your command sequences here. (go cycles, deposit, exam ne, watch, etc.)

/Il Close the log file
close fifo_result.log

/1 Exit the sinmulator. This will close the sinulator w ndow.
exit

Before running thefirst cycle, clocks need to be setup. If amodel supports multiple clocks, then the
phase relationship and duty cycle need to be configured. Theset _cl ocks command sets al
normal transactor clocks. Usetheset _cl ock command to set additional clocksif needed. You
may enter "hel p set _cl ock" at the simulator console for additional information.

The ellipses in the listing above indicate where other instructions are be inserted. Thisiswherea
deposi t oranexam ne of model state elements takes place.

8.2 Invoking the Transactor

You invoke the Transactor by specifying the appropriate executable to run:

| XP2400.exe [/h] [/b] [script_file_namel script_file_name2 ...]
or
| XP2800. exe [/h] [/b] [script_file_namel script_file_name2 ...]
or

The optional fields take the following form:

230 Development Tools User’s Guide

Table 10. Transactor Optional Switches

8.3

Table 11.

Intel® IXP2400/I1XP2800 Network Processors
Transactor

/h

Prints basic help information then exits the program.

/b script_file_nanmel ...

Indicates that the program is intended to run in batch
mode. Using this option means that one or more script
files are expected to be specified. The program will
execute each script file in left to right order, then will
automatically exit.

script_file_namel script_file_nane2 ...

Specifying script file names without the /b option tells
the program to assume an interactive session. The
program will execute each specified script file, but will
then sit and wait for console input from the user
instead of exiting automatically.

Transactor Commands

Transactor commandsfall into four functional categories: initialization, simulation, debugging, and
miscellaneous. The sections that follow list the Transactor commands in alphabetical order. Each
command description can include:

¢ The symbolic command name (e.g., examine).

¢ A short description of what the command does.

¢ Theformat of the command.

¢ Command parameter descriptions, and where appropriate, definitions of predefined

parameters.

* One or more examplesillustrating the use of the command.
¢ Optional input strings delimited by bracket characters ({}).

The table that follows is a quick reference to the Transactor commands:

Transactor Command (Sheet 1 of 2)

Command Name Command Type Section

#define Debugging 8.3.1
#undef Debugging 8.3.2
@ Miscellaneous 8.3.3
benchmark 8.3.4
cd 8.3.3
close Debugging 8.3.6
connect Miscellaneous 8.3.7
deposit Debugging 8.3.8
dir 8.3.9
examine Debugging 8.3.10
exit Miscellaneous 8.3.11
force 8.3.12
foreign_model 8.3.13

Development Tools User’s Guide

231

Intel® IXP2400/I1XP2800 Network Processors u

Transactor In
®

Table 11. Transactor Command (Sheet 2 of 2)

Command Name Command Type Section

go Simulation 8.3.14
go_thread 8.3.15
gop 8.3.16
goto Simulation 8.3.17
goto_addr 8.3.18
help Miscellaneous 8.3.19
init Initialization 8.3.20
inst 8.3.21
load_ixc 8.3.22
log Debugging 8.3.23
logical 8.3.24
path Debugging 8.3.25
pwd 8.3.26
remove 8.3.27
root_init Initialization 8.3.28
set_clock Initialization 8.3.29
set_default_go_clk 8.3.30
set_default_goto_filter 8.3.31
set_float_threshold 8.3.32
show_clocks 8.3.33
sim_delete 8.3.34
sim_reset Simulation 8.3.35
time Miscellaneous 8.3.36
trace Debugging 8.3.37
type 8.3.38
ubreak Debugging 8.3.39
unforce 8.3.40
version Miscellaneous 8.3.41
watch Debugging 8.3.42

8.3.1 #define

Format:

#defi ne macro_nane | (comua_separated_nacro_argunments) | nmacro_text
Definition:

Implements the text substitution function of the C preprocessor. It allows a user to specify text that

is automatically substituted into every command line before the line is interpreted. This function
alows users to customize the command interface.

232 Development Tools User’s Guide

u Intel® IXP2400/I1XP2800 Network Processors
o Transactor

macro_name If themacr o_nane hasargumentsassociated with it, theargumentsare
substituted into the macro_text whenever the corresponding formal
argument name matches a token of the macro_text.

coma_separ at ed_nacr o_ar gunent s

When amacro has substitutabl e arguments, three preprocessor operators
may be applied to modify the resulting string. They are;

H Can beinserted between two tokens in the macro_text to cause the two
adjacent tokens to be concatenated.

Can be prepended onto amacro_text token causing the following token
to be quoted.

HHHt Can be prepended causing the following token to be de-quoted if quote

characters exist as the first and last characters of the token.

Whenever apreprocessor operator is applied, the one or two tokens associated with the operator are
not expanded. In all other cases, every token in the macro_text isrecursively expanded (if possible)
based on other existing macro definitions. If the recursive expansion of a macro nameyields a
token of the same name, no further expansion occurs.

Example: #define RESULT _LOW ERROR “M smatch of Resul t Low
<31: 0> with expected return value. \n”

Related commands:
#undef

8.3.2 #undef

Format:
#undef macro_nane

Definition:
Deletes a previously defined preprocessor macro name.

Related commands:
#def i ne

8.3.3 @

Format:
@nd _file _name

Definition:
Executes a series of simulation commands in a specified command script file name.

Notes:

cnd_file_name usesanextension of “.ind’

Development Tools User’s Guide 233

Transactor In

Intel® IXP2400/I1XP2800 Network Processors u tel
®

8.3.4 benchmark

Format:
benchmar k
Definition:
Prints the current CPU and sets aflag thefirst timeit is called. On the subsequent invocation it
prints the end CPU time and the total time elapsed.
Example:
>benchmar k
Benchmark | ast: 4.466 secend: 4.466 secdelta: 0.000 sec
VWal Il cl ock start: 14.43:29end: 14:43:29delta; 00.00.00

8.3.5 cd

Format:
cd |file_spec|

Definition:
Changes the work directory. Analogous to the DOS “cd” command.

If the simulation is run from the vmod tool environment, avmod logical namethat prefixesthe
file_spec (starting with’$') will be automatically translated. If no parameters are entered, cd
prints the current working directory.

Examples:

C:\ Castl e\ Proj ect s\ Snal |
>cd C:\Castle\Projects\Snall
C.\ Cast | e\ Proj ect s\ Smal |
>cd
C.\ Castl e\ Proj ect s\ Snal |

8.3.6 close

Format:
close log_or_trace_file_name
closel/all

Definition:

Closes a previously opened log or tracefile. “cl ose/ al | " closes all open log and trace files.
Exiting the smulator will automatically close al open log or trace files.

8.3.7 connect

Format:

234 Development Tools User’s Guide

intel.

8.3.8

Intel® IXP2400/I1XP2800 Network Processors
Transactor

connect top_l evel _net_nane top_l evel _instantiated_pin name

[top_level instantiated_pin_nanme ...]

Definition:
Permits a dynamic connection between instances by the creation of nets and assigning names
to these nets.

Example:

The following snippet of simulator code creates two instantiations (InstA and InstB), and sets
up severa port connections and an instantiation-to-instantiation connection:

int MSB = 191,

int MD _MSB = 96;

int MD LSB = 95;

int LSB = 0;

inst connect_test_insta InstA
inst connect_test_instb InstB

connect NEW Qut put 1<MSB: M D LSB> | nst A. AQutputl// note 1
connect NEW At oB<M D_MSB: LSB> | nst A. ACut put 2 | nst B. Bi nput//note 2
connect NEW CQut put 1<M D_MSB: LSB> | nst B. Bout put//note 3

TEEEEEEEEE i rrrrrrrrrrrrd
Note 1: Net NEW Qutput 1<MSB: M D _LSB> connects to port InstA Aoutputl

Note 2: Net NEW At oB<M d_MBSB: LSB> connects | nstA Aoutput2 to InstB.Binput
Note 3: Net NEW Qutput1l<M D MSB: LSB> connects to port |nstB. Bout put

deposit
Format:

dep| osit| |deposit_qualifiers]|

state_spec| [index_range] ||<bit_range> = deposit_expr
Definition:

Evaluates the C numeric expression, deposit_expr, and deposits the resulting number into the
specified state. The wildcard character, “*” can be used to avoid specifying the entire state
name, however, unless the “/multiple” qualifier is specified, the wildcard specification must
unambiguously address only one state value.

i ndex_range Theindex_range specification is only relevant for arrays and can be a
single C numeric expression or 2 numeric expressions separated by a“:”
to indicate the inclusive range formed between the two numbers.

bit_range The bit_range spec has the same form as the index_range; if it is not
specified the whole field is assumed.

qualifiers
/sil ent Inhibits reporting the deposit action.

/multiple Allows awildcarded name to deposit to multiple states.

Development Tools User’s Guide 235

Transactor

Intel® IXP2400/I1XP2800 Network Processors intel
®

8.3.9

8.3.10

236

[force[=n[:prim.clk_nane]] Appliesaforce to the state after depositing the value. “n”
represents the number of clock cycles for which the force remainsin
effect; if not specified, thenit isforced indefinitely until it isremoved by
an “unforce” command or another force operation. “prim_clk” name”
specifies the primary clock period which n refersto; it defaults to the
clock specified in the command prompt.

Example:
> dep/s AEnabl e5<* ENABLE LSB> = 0

dir

Format:
dir |file_spec|
Definition:
Analogous to the DOS “dir” command. Displays alist of files and sub-directoriesin a

directory. If asimulation is run from the Vmod tool environment, aVVmod logical name that
prefixesthefile_spec (starting with '$') will be automatically translated

examine

Format:
ex|am ne| |qualifier_list| state_spec|
[i ndex_range] | <bit_range>|

Definition:

Examines the current state of one or more simulation states or user-defined variables. The wildcard
asterisk character (*) can be used in the state_spec to specify multiple states to be examined.

i ndex_range The index_range specification is only relevant for arrays and can be a
single C numeric expression or two numeric expressions separated by a
period (.) to indicate the inclusive range formed between the two
numbers, or a“:+" to indicate the inclusive range formed by treating the
second number as an offset from the first.

qualifier_list Optional qualifiers may be applied to constrain the examination of
multiple variables to specific state types defined by the qualifiers. Any
number of qualifiers may be applied. They are:

larray — Data array.

[artifact — Model artifact state (does not model real hardware).
/delay — Bustransfer delay element.

/fifo — Queue structure.

/function — User-defined C function.

[register — Flip-flop or latch hardware state element of 32 bits or less.
/signal — Combinatorial hardware state element of 32 bits or less.
[/statistic — Performance data collection and display facility.
[struct — User-defined C struct definition.

/ustore — Microcode control store.

/variable — User-defined C variable.

/watch — User-defined watch function.

Development Tools User’s Guide

intel.

8.3.11

8.3.12

Intel® IXP2400/I1XP2800 Network Processors

Transactor
state_spec Any predefined simulation state or user defined state that holds a
numeric value. See Appendix A for more details on states.
bit_range The bit_range spec has the same form asthe index_range. If it is not
specified, the whole field is assumed.
Example: In the following simulator code snippet, a user-defined variable called

"pass' is created and assigned avalue of "1", and then examined using
the examine command.

>>> jnt pass;

>>> pass = 1,

1

>>> exani ne pass

pass<31: 0> = 00000001 (1) (C interpreter variable)
>>>

exit
Format:
exit
Definition:
Closes all open log files and then exits the simulator. The Transactor main routine return status

returns the last recorded value of sim.error_count (the number of recorded errors that have
occurred).

force

Format:
force [expiration_cycles[:primary_clk]]
[state_nanel[state _nane2...]]
Definition:
Sets the data contents of specified state(s) to be unchangeable by any means. Non-model states
and states that behave as unconditional clock nodes cannot be forced.
expiration_cycl es

If “expiration_cycles’ is specified, theforced state will be automatically
removed after the specified number of cycles of the specified primary
clock issimulated; otherwise the force will be held indefinitely until itis
manually removed or re-forced.

Primary_clk If no primary clock is specified, the default clock shown at the prompt is
used. Wildcards may be used to specify multiple states.

stat e_namne If no stateis specified, theforce command listsall statethat are currently
forced. use “unforce” to remove the force from the state.

Example:

Development Tools User’s Guide 237

Transactor

Intel® IXP2400/I1XP2800 Network Processors intel
®

8.3.13

238

In the example below, a state variable isfirst examined, and its value is subsequently changed.
Then the variable is forced, after which another state change is attempted --- unsuccessfully.
Finally, the variable is unforced, and subsequently its value is successfully changed.

>>> exam ne inl

i n1<31: 0> = 00000000 (0) (signal:primry_input)
>>> dep/s inl = 0x11111111

>>> exani ne inl

inl<31:0> = 11111111 (286331153)(signal :primary_input)

>>> force inl

tate, "inl" is forced
State, "inl" is no longer forced
State, "inl" is forced

FORCES=1>>> dep/s inl = 0x00000000
FORCES=1>>> exani ne inl

inl<31:0> = 11111111 (286331153) ======(signal : primary_i nput:forced_state)
FORCES=1>>> unforce inl
WARNI NG Unforcing state, "inl", has no effect because it ===was not previously
f orced

>>> exam ne inl

inl<31:0> = 11111111 (286331153) ======(signal:primary_input)
>>> dep/s inl = 0x00000000

>>> exanine inl

i n1<31: 0> = 00000000 (0) (signal:prinmary_input

foreign_model

Format:
forei gn_nodel

| /del ete| dIl _name nodel _inst_name

[model _init_str] [call_priority]

Definition:

Registers aforeign model instance with the simulator so that it will be ssmulated in lock step

with this simulation.

/dl'l _name

/ model _i nst_nane

nodel i nst_str

[call _priority

/del ete

The specified dll is assumed to adhere to the properties required for
supporting foreign model simulation (see xact_vmod.h for more details)

The model_inst_name must be a unique name among all names of
instantiated foreign models.

the model_inst_str is a user-specified string that will be passed to the
foreign model initialization routine; this enables user-specified
initialization information to be passed to the foreign model.

The call_priority argument is an integer value that specifies the priority
inwhich thisforeign model is called relativeto all other foreign models.
the higher the number the earlier it is called. Thisargument defaultsto O.

If the “/delete” qualifier is specified, this command deletes the
previously instantiated foreign model.

Development Tools User’s Guide

intel.

8.3.14

8.3.15

8.3.16

8.3.17

Intel® IXP2400/I1XP2800 Network Processors
Transactor

go
Format:

go |/silent| |/clk_domain| |cycle_count|
Definition:

Simulates the number of clock cyclesin agiven clock domain specified by “cycle count”. If
no cycle_count isgiven, “cycle_count” defaultsto 1. If the cycle _count is specified as-1,
simulation will continue indefinitely until a simulation break event occurs due to an error or
assertion of the sim.halt variable.

/sil ent Suppresses debug information during the simulation.

/cl k_domai n Replace “/clk_domain” with any top-level primary clock node nameto
specify the clock domain used when simulating acycle count. Otherwise
the domain defaults to the domain specified in the “set_default_go_clk”
command.

cycl e_count If “next” is specified in place of the clock name, then the simulator will
simulate the next x scheduled simulation events (rather than clock
cycles), where x is specified by the “cycle_count” value.

go_thread

Format:
go_thread |/silent| |/max_cycle count| |goto filter]|
| cycl e_count |
Definition:
Simulates the specified number of instructions in the specified thread of the specified micro-

sequencer instance name. The actual number of cycles simulated may be larger than the
instruction count due to context swaps.

/sil ent If the“/silent” qualifier is specified, debug information is suppressed
during the simulation.

/goto_filter If “goto_filter” is not specified, the default goto filter will be used (see
“set_default_goto filter” for the goto filter syntax).

cycl e_count If no cycle_count is given, the count defaultsto 1.

gop

Format:

gop |/clk _domain| |/silent]| |phase_count|
Definition:

Simulates the specified number of clock phases (where 2 clock phases equal 1 clock cycle). If
the clk_domain is not explicitly specified, the current default clock is used.

goto

Format:

Development Tools User’s Guide 239

Transactor

Intel® IXP2400/I1XP2800 Network Processors u tel
®

8.3.18

8.3.19

240

In

goto |clk| |/silent| cycle_target

Definition:
The goto command simulates up until the specified target cycle number has been reached. You
can specify what primary clock input to use to measure the target cycle number; otherwise the

goto command will use the current default clock (set by the set_default_go_clock command)
to determine the target cycle.

/sil ent If the“/silent” qualifier is specified, debug information is suppressed.

goto_addr

Format:

goto_addr |/silent| |/nmax_cycle count| |goto filter|
uaddr _or _| abel

Definition:
The goto_addr command halts the simulator when one of the specified microaddresses has
been reached in one of the microsequencer units specified by the goto_filter.

/silent If the“/silent” qualifier is specified, debug information is suppressed
during simulation.

/ max_cycl e_count If max_cycle count is specified, smulation will unconditionally stop
oncethe cycle count hasbeen reached. Themax_cycle _count isassumed
to be specified in the clock domain that is currently the default clock (see
“set_default_go_clock” for more information).

goto filter If goto_filter is not specified, the default goto filter will be used (see
“set_default_goto_filter” for the goto filter syntax).

uaddr _or _| abel One or more uaddr_or_label specifications may be entered. A
microaddressis specified by the decimal addressimmediately followed
by “#"; alabel is specified by the a phanumeric label name immediately

followed by “#".

help
Format:

hel p | topi c_or_command|
Definition:

Displays helpful information about a topic or command. Help is available for the following

commands:
#defi ne #undef @ benchnar k
cd cl ose connect debug
def _stat def _stat_condition deposit diff_trace
dir exam ne exit
force f or ei gn_nodel go go_t hread
gop goto got o_addr init

Development Tools User’s Guide

i nst

| ogi cal

renove
set _cl ock

set _float_threshold
tine

unforce

Example:

8.3.20 init

Format:
init
Definition:

Intel® IXP2400/I1XP2800 Network Processors

| oad_i xc
pat h
root _init

set _defaul t _go_cl k
show_cl ocks
trace

ver sion

> hel p exam ne

Transactor

| oad_neta | og

profile pwd

set _bus_stats

set _default_goto_filter
simdel ete simreset
type ubr eak

wat ch

Get help on the examine command.

This command should be executed once all cells have been instantiated using the “inst”
command. “init” initializes the model for simulation. It schedules the clocks and ties all cell
hierarchy together by linking port states between all parent and child instances.

8.3.21 inst

Format:
i nst cell _nane

Definition:

[i nst _nane]

Instantiates the specified cell using the specified instance name. all descendent cells are also
instantiated. Note that multiple instantiations must all have unique instance names.

i nst_nane

Examples:

Development Tools User’s Guide

Theinst_name can be omitted during exactly oneinstantiation in which
case the instance name is an empty string.

Simulation states are automatically created to connect to the port
connections of the instantiated cell. The names of these states are of the
formi nst _nane. port _name (unlessthe instance nameisthe
empty string in which case the nameissimply port _nane).

inst test2 (instantiate cell "test2")
inst test2 foo (instantiatecell “test2” as“foo”)

241

Transactor

In

Intel® IXP2400/I1XP2800 Network Processors u tel
®

8.3.22

8.3.23

8.3.24

242

load _ixc
Format:

| oad_i xc [useq_spec | ustore_stats_nane] ucode_file_name
Definition:

“load_ixc" loads and validates all microcode in the control store. The control store can either
be specified directly by name, or by using the chip/useq format used in other commands such
as“set_default_goto filter”. If thisformat is used, | XP code will beloaded into all control
stores that map to the specification.

log

Format:
log file_name | cormands| |responses|

Definition:
Opensalog file of the specified name to log various simulation information. A log file may be
closed using the “close” command All log files are automatically closed when the simulator

exits.
file_name If thefile_nameis not specified, thelog command displaysall currently
open log files.
commands Logsal simulator commands typed by the user.
responses Logsal general simulator output. If no optional switch is specified the
default assumes both “commands’ and “responses’.
logical
Format:
| ogi cal [l ogical _name] [= |ogical _definition]
Definition:

If both optional parameters are specified, the specified logical name is defined to be the
specified logical definition string

If no definition string follows the “=", then the logical_name is deleted from the list of
logicals. Thislogical definition is saved in the Win32 registry.

If only thelogical_namefield is specified, the current definition for thisfield is displayed.
If neither field is specified, all logical definitions are listed.

Examples:
(1) Thefollowing Simulator call illustrates how to list existing logicals:

>>> | ogi ca

Logi cal : $nodel _dir = "c:\vnod_nodel s"
Logical: testdir = "c:\test"

Logi cal : newworkingdir = "c:\test\subtest"
Logi cal : newworkdir = "c:\test\subtest"

Development Tools User’s Guide

intel.

8.3.25

8.3.26

8.3.27

Intel® IXP2400/I1XP2800 Network Processors
Transactor

(2) Thefollowing Simulator callsillustrate how to define alogical, list it, and delete it:

>>> | ogi cal newmestdir = "c:\test\subtest”
>>> | ogi cal newtestdir
Logical: newtestdir = ""c:\test\subtest""

>>> | ogi cal newestdir =
>>> | ogi cal newtestdir

No | ogical, "newtestdir", exists.
path
Format:
path |; || path_spec|\;path_spec|]|...]|
Definition:

Analogous to the DOS path command. Allows the user to specify the search list of folders
which isused to open filesin the Transactor. Typing the command with no arguments displays
the current path setting. Typing the command followed by a semicolon resets the path list to
look only in the current folder area. Typing the command followed by alist of folder paths
(separated by semicolons) specifiesthe list of folder paths that are searched in left to right
order. The specia keyword % path% specifies the previously existing search list.

Example:
>>> path c:\test;c:\vnod

Path search list for finding files (use "path" cmd to change this):
1: c:\test
2: c:\vnod

pwd

Format:
pwd
Definition:
Displays the current working directory.

remove

Format:
renove [/silent] state_namel [state_nane2...]
Definition:
Removes the specified simulation state(s). Note that this command will only remove user-

defined states; states that are defined by the hardware model cannot be removed. Wildcard
specifications may be used with this command.

/sil ent Suppresses informational messages resulting from this command.

Development Tools User’s Guide 243

Transactor In

Intel® IXP2400/I1XP2800 Network Processors u tel
®

8.3.28 root_init

Format:
root _init

Definition:
This command instantiates, and then initializes, the root cell. this command works only when
no previous cell has been instantiated.

8.3.29 set_clock

Format:
set _clock |/silent]| primary_clk _nane high tinme low tine
[starting offset]

Definition:
Sets the characteristics of the specified primary clock input provided that the clock was

designated as automatically driven by the simulator (i.e. it was not marked as “undriven” in the
built model). Specify the number of time units of the high and low clock levels.

/silent If set, the new clock configuration is not echoed back.
primary_cl k_name high_time [ow_tine

If no clocks are specified in the ssimulation, all clocksare setto a
common clock waveform of 1 high time unit, 1 low time unit and a
starting offset of 0. All unspecified clocks assume the waveform
characteristics of the first clock to be specified.

starting of fset By default the starting point of the clock at t=0 will be at itsrising edge
transition. You can alter this point by specifying a starting offset value
relative to the rising edge of the clock

If, for example you specify an offset of 2, then the starting point of the
clock at t=0 is 2 time units after its rising edge.

Note: Thiscommand can only be executed prior to model simulation; the clock
frequencies cannot be changed once the simulation time has advanced
past t=0.

8.3.30 set_default_go_clk

Format:
set _default _go _clk|primary_cl k_naneg|
Definition:
Sets the default clock domain default used by the “go” and “gop” commands when simulating

acycle count. If no clock name is specified, the clock chosen by the simulator at initialization
timeis assumed.

8.3.31 set_default_goto_filter

Format:

244 Development Tools User’s Guide

intel.

8.3.32

8.3.33

8.3.34

Intel® IXP2400/I1XP2800 Network Processors
Transactor

set _default_goto filter chip_inst_name (useq_thrd_spec ...)
Definition:
Specifies the default combination of microsequencers and threads that will apply to the

“goto_addr” and “ubreak” commands if this specification is not explicitly included with these
commands.

useg_t hrd_spec One or more useq_thrd _spec specifications may be included within the
parentheses delimited by spaces. The useq_thrd_spec consists of a
comma-separated list of microsequencer numbers followed by a colon,
followed by a comma-separated list of thread numbers. The colon and
thread specification can beleft out inwhich case all threads are assumed.
Additionally, arange of microsequencer or thread numbers can be
specified by 2 numbers delimited by a*“-"; all microsequencers or all
threads can be specified by “*”.

set_float_threshold

Format:
set _float_threshold [[clock nane:]cycle num| 0] -1]
tristate_name [tristate_nane...]

Definition:
Sets the tri-state floating threshold on one or more tri-state states. The tri-state floating
threshold is the minimum acceptable time that can pass while atri-state node is not driven. If

thisthreshold is reached, an error is generated indicating that the tri-state node has been
undriven too long.

Specified states that are not tri-state states are ignored.

A vaue of 0 impliesthat the state must always be driven in order to avoid an error message. A
value of -1 disables the threshold check so that no error will ever be generated. A value other
than 0 or -1 specifies the threshold time in terms of the clock periods of the specified clock.

If no clock is specified, the default clock shown in the prompt is used.

Wildcards:
Wildcards may be used to specify multiple tri-state nodes more efficiently.

show_clocks

Format:
show cl ocks

Definition:
Shows the waveform characteristics of al primary clock inputs which are automatically driven
by the ssmulator. Useset _cl ock to set the waveform characteristics of individual clocks.

sim_delete

Format:
simdel ete

Definition:

Development Tools User’s Guide 245

Intel® IXP2400/I1XP2800 Network Processors u
Transactor In
®

Deletes the entire instantiated simulation model and all associated model states. Memory for
all simulation statesis freed by this command. A new model maybeinstantiated (viathei nst
command) and initialized (viathei ni t command) after executing this command.

8.3.35 sim_reset

Format:
simreset

Definition:
Resets the state of the model to the point just after the model wasfirst initialized. Therefore, all
states predefined by the logic model are reset and all user-defined states are deleted. User-

defined statesinclude all int's, strings, vectors, watches, breakpoints, and functions. All open
trace files are closed. Previously loaded foreign models remain in effect.

8.3.36 time

Format:
tinme
Definition:
Prints the current wallclock time.

Example:
>>> tine
time: 14:20:30 date: 05/16/02

8.3.37 trace

Format:
trace |[/dino|/vcd|vcd+]|file_nane nane_|ist
Definition:
Opens atrace file to log simulation data over time for subsequent use by a waveform editor.
/dino specifies the binary template format for “dinotrace”.
/vcd Specifiesthe ASCII Verilog trace format.
/vcd+ specifies the Verilog binary trace format.
file_name Specifies the name of the file that contains the trace logging data.
name_|i st A list of simulation states (separated by blanks). If “@” is prepended to
aname, the name then refers to afile from which additional names will
be derived.
Wildcards The wildcard character, “*”, may be used as a shorthand method of

specifying one or more state names.

Arrays If asignal isan array, an index range specification must be applied to
address particular elements within the array.

246 Development Tools User’s Guide

i ndex_r ange

Closing

8.3.38 type

Format:

type file_spec

Definition:

Intel® IXP2400/I1XP2800 Network Processors
Transactor

Theindex_range specification (delimited by []) can beasingle C
numeric expression or 2 numeric expressions separated by a“:” to
indicate the inclusive range formed between the two numbers.

A tracefile may be closed using the“close” command. All tracefilesare
automatically closed when the ssimulator is exited, or when the restore
command is executed. Trace files are automatically reopened whenever
arestore operation is executed which restores simulator state to thetime
point when that trace was first opened.

Prints the contents of the specified file to the console.

8.3.39 ubreak

Format:

ubreak break nane | quoted cal |l back _function||goto filter|
| uaddr _or _| abel |

Definition:

Creates amicrocode breakpoint state. A ubreak breakpoint will unconditionally cause the
simulator to stop when that micro-PC address is reached by athread that is enabled to respond

to that breakpoint.

The breakpoint is enabled upon creation. The breakpoint can be disabled or re-enabled by
depositing a 0 or 1 respectively via the deposit command.

uaddr _or _| abel

goto filter

Any number of breakpoint addresses can be related to the breakpoint
state by specifying 1 or more micro-addresses in the form of either
number# or |abel#.

Thegoto_filter specification isused to designate which threads of which
micro-sequencers the breakpoint specification should apply to. If the
goto_filter is not specified, the configuration set from the
"set_default_goto filter" is applied by default.

Seeset _default_goto_filter forthesyntax of the goto filter.

quot ed_cal | back_functi on

Development Tools User’s Guide

The quoted_callback function_nameis an optional argument. If itis
specified it is used to conditionalize the ubreak event. It must bea
guoted string specifying the name of a pre-existing C-interpreted
function name or pre-existing imported function name (do not specify
parenthesis, argument types, or return types). When a potential
ubreakpoint is reached this function is called with the current ubreak
state information. If the return value from the function is non-zero, the
ubreak isactivated causing the simulation to halt; otherwiseit isignored.
The absence of the quoted_callback_function_name argument causes

247

Intel® IXP2400/I1XP2800 Network Processors u
Transactor In
®

the ubreakpoint to unconditionally stop simulation. The typedef
designation for the C-interpreted callback function must be:

int func_name(string chip_nanme, int me_num int ctx_num int PC);
The typedef designation for the imported callback function must be:
int func_name(char *chip_nane, int me_num int ctx _num int PC);

If afunction is associated with a ubreak and is then subsequently
removed, the ubreak will automatically be removed sinceit can no
longer operate as it was defined.

8.3.40 unforce

Format:
unforce state_namel [state_name2 ...]

Definition:
Sets the data contents of specified state(s) to no longer be forcible (see f or ce command for
related information.)

Wildcards Wildcards may be used to specify multiple states.

8.3.41 version

Format:
version
Definition:
Displays the software version and build data for the simulator.

8.3.42 watch

Format 1:
wat ch [/cl k=cl k_ref_name | /clear] state_namel [state_name2...]
Definition:
The above format is constructed as a simulator command that takes 1 or more state names. Itis
used to automatically print all state transitions of the specified states. The optional
clk_ref _name switch allows a primary clock name to be related to the watch. By doing so,
each transition will be timestamped relative to the cycle of the specified clock. If no
clk_ref_nameis specified, the current default clock (set by the “set_default_go clock”
command) is used.

/cl ear Disables a pre-existing watch; if it is not specified, it is assumed a new
watch is being set.
Format 2:
wat ch (watch_nanme, state nanel, state nane2, ..., state_nanen)
C_st at enent
Definition:

248 Development Tools User’s Guide

8.4

Intel® IXP2400/I1XP2800 Network Processors
Transactor

The second watch format is recognized as a C function call. It is designed to allow the user to
specify some arbitrarily complex action to occur on some arbitrarily complex set of
conditions. The watch defines awatch state of the specified name that looks for state
transitions for each of the specified state names after each simulation event completes.

If 1 or more states are found to have transitioned, then the specified C statement associated
with the watch is executed; otherwise, no activity takes place.

C st at enent The user can specify a C code block as the C_statement and thus, can
further specify the exact watch trigger condition and watch function
through a set of C statementsthat reference specified states, or any other
simulation state.

Enabling Watches are automatically enabled when defined. Watches can be
disabled and re-enabled by depositing a zero or non-zero value to the
watch_name state (e.g. “dep watch_name = 0").

C Interpreter

The C++ simulator contains a built-in C interpreter for scripting capability. This enables script files
to run a sequence of native simulator and C Interpreter commands for regression testing a model.
This help topic is designed to give a brief overview of the C Interpreter. Detailed information
regarding all of the commands supported can be found in the simulator console help. Simply enter
the word "help" at the transactor consol e to bring up the ssmulator on-line help system

The C interpreter supports:

¢ if, while, for, break, continue, user-defined C functions and many built-in predefined C
functions (see on-line help for complete list)

¢ al unary and binary operators
The C interpreter does not support "do {} while()" or "expr ? exprl : expr2".

Data types supported
¢ int: 32-bit integer defined by user in normal was (e.g. "int foo;")

¢ vectors: user-defined unsigned word whose width is defined by the user.

A vector is defined by the following built-in C function:
def _vector(name, width)

Arbitrary bit fields of avector can be referenced by the following syntax:
vector_nane(bit_position) //references the specified bit

vector_nane(hi _bit,lo_bit) //references the field bounded by hi_bit and lo_bit
inclusive

Arbitrary precision Verilog arithmetic is supported by the vector data type.

Simulation states: all model simulation states are implicitly defined as an unsigned word of width
specified by the state:

Arbitrary bit fields can be referenced in same manner asis supported by vectors. In addition, athird
argument can specify aword index, if the corresponding stateis an array (e.g. "foo(3, 2, 1)"
references bit range [3:2] of "foo[1]").

Development Tools User’s Guide 249

Intel® IXP2400/I1XP2800 Network Processors u
Transactor In
®

All multi-line C statements such as if, while, for, #if, and #ifndef must contain only C statements.
Consider the following script files (a.ind and b.ind):

Contents of a.ind:
#ifndef A

@b.ind
printf("a.ind\n");
#endif

Contents of b.ind:
printf("b.ind\n");

Pre-processor statements - statements prefixed by '# characters - are C statements. Statements
prefixed by a'@' characters are not C statements, but rather, Transactor commands. Thus this
script file will fail with a Transactor error. However, replacing the statement '@b.ind' with
‘cmd("@b.ind");' makes the example work fine.

8.4.1 C macros supported

Other non-C extensions supported by interpreter:
* Verilog constants can be specified: (e.g. 44'hdeadbeef or 8'b0x11 xx11)
¢ define (tic define) values defined in the model can be referenced

8.4.2 Supported Data Types

The Vmod C interpreter supports the following datatypes:
* int: The standard 32-bit signed datatype. They are defined in the normal way by "int foo;"

* model states: Any model simulation variable defined by the compiled hardware model can be
referenced in a C expression simply by specifying the pre-existing state name (e.g
"i.c0.cmd_req = 1;"). In addition, bit fields specifications for amodel state can be specified by
appending a function argument list to the end of the state name. For non-arrayed states, the
argument listis: "(int msb, int Isb)". The "lsb" argument is optional and defaults to the "msb"”
value. Additionally, asingle colon-separated argument of the form "msb:Isb” is also supported
for specifying bit ranges. For arrayed states, the argument list is

"(int array_index, int nsb, int Isb)"

If neither "msb" nor "Isb” is specified, the entire state width is assumed. If only "Isb" is not
specified, it defaultsto the "msh” value. Here are some examples

i.cO.cnd_req(3); /1 bit extracts bit 3 of ti.cO.cnd_req

i.cO.cmd_req(5, 3) =5; // field inserts 5 into ti.cO.cnd_req[5:3]
i.cO.cmd_req(5: 3) =5; // identical to above form

i.ustore(23); [/ references whole word of i.ustore[23]

i.ustore(23, 11:6) = 12; // field inserts 12 into i.ustore[23]<11: 6>
i.ustore(23, 7); I/l extracts bit 7 of i.ustore[23]

¢ vectX: A user-specified unsigned vector datatype whose bit width is specified by X (where X
isapositive integer). The interpreter supports al logical, equivalence, bit-wise and arithmetic
binary operators on the specified bit precision of the vector (e.g. two 100-bit vectors can be
added to produce a 100-hit result). A vector declaration has two forms: "vect128 foo;" defines

250 Development Tools User’s Guide

8.5

Intel® IXP2400/I1XP2800 Network Processors
Transactor

a128-bit vector called foo; "vect(expr) foo;" defines avector, foo, of width specified by the C
expression. Like model states, bit field specifications may be made by appending a one or two-
argument function list.

* synonym states: A synonym state can be defined in order to map another state or a particular
bit field of a state to a preferred name. The synonym state name can then be used in place of
the former state to reference the former state. Creation of asynonym state with its defined state
mapping is done by calling the "def_syn" C function. See topic "Built-In C Functions" for
more information on "def_syn".

¢ string: The keyword "string" defines a variable length text string container (e.g. "string foo;"
declares a string called foo). Text can be assigned to a string viathe "=" operator (foo =
"abcd";). Text can be appended viathe "+" or "+=" operators (foo = "abcd" + "xyz";). The
relational operators, "==","1=","<", "<="">" and">=" can be applied to 2 strings to produce
aboolean result. In addition, many built-in string functions can be applied using the syntax
"string_var_name.string_function_name(...)". The following string functions exist:

| engt h(): returns the number of charactersin the string
empty(): resets the string to the null string

i sempty(): returns 1 if it contains the null string or O otherwise
left(int n): returns the left-most n characters of the string
right(int n): returns the right-most n characters of the string

md(int n, int |en):returnsthesubstring starting at index n, and whose length islimited
to no more than len characters. If len <0, or if len is not supplied, the
entire substring starting at nis returned.

find(string s): returnsthezero-based startingindex of theleft-most occurrence of string
sinthestring. If sisnot found in the string, -1 is returned.

reverse_find(string s):returnsthe zero-based starting index of the right-most
occurrence of string sin the string. If sisnot found in the string, -1 is
returned.

format (format_str, ...):Formatsthe contentsof the string, according to the "printf"
variable argument list

Simulation Switches

Several pre-defined simulation states exist that act as user setable simulation switches/parameters.
All such states exist under the "sim." hierarchy. The following is a description of the states:

* sim error_count : Indicatesthe number of unexpected errorsthat were flagged during the
session.

* sim error_handl e_node: Indicates what action should be taken when the error occurs.
Thevalid values are:

— O suppress and ignore error message

— 10 print the error but ignore its occurrence (i.e. the sim.error_count is not incremented and
the simulation continues)

— 20 turn model errors into warnings

Development Tools User’s Guide 251

Transactor

Intel® IXP2400/I1XP2800 Network Processors intel
®

8.6

252

— 40 print the error, increment sim.error_count and halt simulation and command line/script
file execution if any isin progress

— 100 print the error, increment sim.error_count, halt all execution and then exit the
simulator. The default value is 40

* sim hal t: Thisstateisnormally 0. If the user setsit to 1, the model halts (if running) at the
end of the current cycle. Thisis useful in watch statements when it is desired for the model to
be halted when a specific condition has been met. This state must be reset to 0 in order to
continue running the model.

* simshow _hi dden_st at es: Thisstateis normally 0. Enable this state to see internal
simulation states that are not usually useful/relevant to user simulation.

* simti me: Represents current ssmulation time. Thisvariable is read-only.

Predefined C Functions

The Vmod Simulation Console has a number of predefined C functions, which may prove useful
when performing simulations

cnd(quoted_cnd_string) Executesthequoted cmd_string asasimulation command. This
allows non-C commands to be embedded inside C commands

def _syn(syn_var, mappi ng_st at e) : Declaresasynonym state that isassociated to the
specified mapping state name. The mapping state specification may
include a C bit specification so that the synonym maps to a subset bit
field of the mapping state. For example:

— all synonyns "cnd_bus" to entire state, "chip.i.cnd _bus"
def _syn(cnd_bus, chip.i.cnd_bus);

— b.// synonyns "xfer_reg" to "chip.i.cnmd_bus[53:48]" def_syn(
xfer_reg, cnd_bus(53:48));

env_var (char *environnent _vari abl e): Returns1if the specified environment
variable exists; otherwise it returns 0.

expect _err(error_code, error_cnt, conpare_cnt):Thisfunctionisfor
automated QA testing andisnot intended for general use. If compare_cnt
=0, the function records error_cnt as the current outstanding expected
error count for the specified error code. If compare_cnt = 1, the function
comparesthe current outstanding error count for the specified error code
against the specified error_cnt value. If the comparison fails, an error is
generated.

field(state_nane, field _nsb, field_|sb):Returnsthevalue of thedatafield
defined by the input arguments. This function is provided for backward
compatibility only. The preferred method isto append a"(int msb, int
Isb)" function argument list to the state name.

field insert(state_name, insertion_data, field _nsb, field Isb):
Insertstheinsertion_datainto the specified state at the specified bit field.
Theinsertion_data must be <= 32 bits. The function returns 1 if
successful, otherwise 0. This function is provided for backward
compatibility only. The preferred method isto append a”(int msb, int
Ish)" function argument list to the state name you're assigning to.

Development Tools User’s Guide

In Transactor

u U Intel® IXP2400/I1XP2800 Network Processors
®

fprintf(file_name, fm, ...): AnaogoustotheCcommandfprintf, except that the
first argument is a file name, not afile pointer. If the log file
corresponding to the file name was not previously open, itis
automatically opened by this call.

hex_str(state_name): returnsahexidecima string representing the current state value

is_valid state(state_name): Returnslif the specified state_name currently exists
otherwise it returns O

log2(int): Returns the base 2 log of the specified number. Fractional amounts are
rounded up to the next whole number.

printf(fnt, ...):AnaogoustotheC printf command.

project _dir(): Returns astring representing the directory where the .vmp file existed to

create this simul ation model

rand(boundl, bound2): Returnsarandom integer between the two specified bounds
(inclusive). If bound2 is not specified, it defaultsto 0. If neither boundis
specified, arandom 32-bit result is returned

read_only val (var_nane): Some system variables (e.g. sim.time) are defined with
"read-only" protection. Asaresult, they can't be directly embedded in a
Cexpression. Theread_only_val function enablesread-only variablesto
be read by returning the variable value.

rec_error(fmt, ...): Anaogoustothe"printf" function, but aso registersasimulation
error.

seed(): Returns the current seed for random number generation.

sprintf(format_string, ...): AnaogoustotheC"sprintf" function, exceptthat the

format_string argument expects a variable of type "string".
srand(nunber): Setsthe seed for random number generation.

state(string): Returnsthe predefined mode state value that mapsto the specified text
string. If no mapping is found, an error is flagged.

state_type(var_name): Returnsthenumerically specified state typeif the specified state
name was previously defined. It returns O if the state is undefined. The
argument may be either a quoted or unquoted name. The numeric values
for the state types are as follow

* Signa =1

* Flip-Flop=2

e Latch=3

¢ Tristate Node=4
* Array=5

* FIFO=6

¢ Control Store=7
¢ Ucode Register=8
¢ Delay Element=9
* System State=10

Development Tools User’s Guide 253

Transactor

Intel® IXP2400/I1XP2800 Network Processors u tel
®

8.7

254

e C'int" =11

* User-Defined=12
¢ Vector=13

* User-Defined Function=14
¢ Macro=15

* Internal=24

* Statistic=16

e Watch=17

* Model Artifact=18
* Constant=19

¢ |mported=20

* Ubreak=21

* Statistic=22

* String=23

system(char *shell _cnd): Implementsthe C"system" function which passes a shell
command to the OS or executing shell. The return status resulting from
the execution of the command is returned by this function

uaddr (control store_state, |abel nane): Returnsthe micro-address value of
the specified label name within the specified control_store state. If the
label isnot found, it returns -1

uninitialized(): Returnslifthemodel isnot yetinitiaized; otherwiseit returnsO.

val id_el enents(array_state_name): Returnsthe number of valid elementsin the
specified array. If an array index isincluded inthe array_state_name, the
function returns a boolean value reflecting the validity of only the
specified array element.

valid file(file_nanme): Indicatesif the specified file_nameexists. If it does, the entire
path and file nameisreturned; otherwise an empty string isreturned. The
specified file name can have an absolute or relative path included, or it
can assume the default path specified by the current working directory.
The file specification can include awildcard name which will return a
matched file name only if the specification matches exactly one (1) file.

Error Handling

When an error is generated, it is printed to the console and to any log files that have been
configured to record simulator responses. Additionally, the built-in simulation state

"si m error_count" isincremented. The built-in simulation state,

"si merror_handl e_npde", can be used to ater this default error handling behavior. See
Section 8.5 for the error handling values and their corresponding modes.

The default error handle mode value is 40.

Development Tools User’s Guide

8.8

8.8.1

8.8.2

Intel® IXP2400/I1XP2800 Network Processors
Transactor

The user can write his’/her own error handler that allows some user control over the handling of
specific error messages. If the user defines the function:
int on_error(string str); // in the interpreter

or
int on_error(char *str); // as an inported function

then this function will be called with the error message as its input argument. The function should
return one of the predefined si m er r or _handl e_node values which will be used to handle
this error event. For example, on_er r or would return O to suppressthe error. If theon_er r or
function does not take 1 string argument or does not return an int or a predefined

error _handl e_npde value, theon_er r or function will be ignored for the purpose of error
handling.

Printing Statistics from the Transactor

The following consol e functions are associated with printing Transactor performance statistics:

perf_stat set()

This function enables or disables performance statistics collection.
int perf_stat_set(char *chip_name, char *stat_name_str, int stat_type, int enable)
chip_name chip instance name

stat_name_str name string of statistic object, use NULL for the entire set. For
example, if stat_byteis set to 0x100, then entire sram stastistic object
will be disabled/enabled accordingly

stat_type 1: for all statistic objects
0x100: for sram statistic objects
0x200: for dram statistic objects
0x300: for shac statistic objects
0x400: for msf statistic objects
0x500: for pci statistic objects
0x600: for gasket statistic objects
0x700: for me statistic object
enable 1: for enable
0: for disable

perf_stat_print()

This console function prints the performance statistics.

int perf_stat_print(char *chip_name, int stat_type)

Development Tools User’s Guide 255

Transactor

Intel® IXP2400/I1XP2800 Network Processors u tel
®

256

chip_name

stat_type

chip instance name

1: for al statistic objects

0x100: for sram statistic objects
0x200: for dram statistic objects
0x300: for shac statistic objects
0x400: for msf statistic objects
0x500: for pci statistic objects
0x600: for gasket statistic objects
0x700: for me statistic object

Development Tools User’s Guide

intel.

Simulator APIs 9]

This section describes the information comprising the XACT API. If you plan to access this AP
viaaforeign model dil, include the header file xact_vmod.h.

9.1 Foreign Model API

The following 6 routines must be supplied in aforeign model dil. Note that they do not have to be
exported because the transactor obtains their addresses by calling
Get VnodFor ei gnMbdel Functions():

9.11 FOR_MOD_INITIALIZE

Thisroutinewill be called to initialize the foreign model after the transactor "i ni t " command has
successfully executed. It supplies amodel instance number, amodel hame that correspondsto it,
and an initialization string that will be passed to the foreign model at initialization time. The model
name was previously specified by the user when the foreign model was registered with the
simulator. The model instance number is a unique non-negative number that acts as ahandle to this
particular foreign model instance. The model instance number will be passed in to al foreign
model functions below. As aresult, multiple instances of a single foreign model dll can be
registered with the simulator because each call to aforeign model function specifies a particular
foreign model instance number. Thei ni t _st r argument may be NULL.

Function Prototype int for_nod_initialize(int nodel i nstance_num
const char *nobdel _nane, const char *init_str)
Returns TRUE if successful and FAL SE otherwise.

9.1.2 FOR_MOD_PRE_SIM

Thisroutine will be called prior to each transactor simulation event. It can be used to deposit state
values into the transactor model prior to simulating the next event. Returning O resultsin an error

Function Prototype int for_nmod_pre_sim int nodel _instance_num)

9.1.3 FOR_MOD_POST_SIM

Thisroutine will be called subsequent to each transactor simulation event. It can be used to query
transactor simulation state, in order to copy it into the foreign model simulator.

Function Prototype int for_nod_post_sim (int nodel _instance_num)

9.1.4 FOR_MOD_EXIT

Thisroutine will be called just prior to exiting the ssmulator. The routine allows the foreign model
to clean up, closefiles, etc before shutting down the program

Development Tools User’s Guide 257

Intel® IXP2400/I1XP2800 Network Processors u
Simulator APIs In
®

Function Prototype int for_mod_exit(int nodel _i nstance_num)

9.1.5 FOR_MOD_RESET
Thisroutinewill be called just after resetting the simulator. The routine allows the foreign model to
reset itself to stay in sync with the simulator

Function Prototype int for_nmod _reset(int nodel _instance_num)

9.1.6 FOR_MOD_DELETE

Thisroutine will be called just after the simulator deletes all of its model state viathe
"si m_del et e" command. The routine allows the foreign model to deleteitsinternal state to stay
in sync with the simulator.

Function Prototype int for_nod_delete (int nodel _instance_num)

9.2 Overview of XACT API Functions

The following table comprises single-threaded APIs. No interlocks have been designed in to allow
proper behavior for multiple simultaneous thread execution through this interface. If multiple
threads require access to this API, it is the responsibility of those threads to synchronize their
execution so that only one thread at atime is executing any of these routines. Violation of this
constraint may cause unpredictable and/or catastrophic behavior.

Table 12. XACT API Functions (Sheet 1 of 3)

Function Name Function Description

XACT _find_wildcard_state_name Returns all state names that match the wildcard name

spec.
XACT_get_handle Returns a handle to the transactor state
XACT_delete_handle Deletes the specified handle

Returns information about the state referenced by the

XACT_get_state_info specified handle

Gets the value of the state corresponding to the

XACT_get_state_value transactor handle

Returns the specified bit field of the state

XACT_get_state_field corresponding to the transactor handle.

Returns the value of an array state corresponding to

XACT_get_array_state_value the handle of the specified array state

Sets the value of the state corresponding to the

XACT_set_state_value transactor handle.

Sets the specified bit range of the state corresponding

XACT_set_state_field to the transactor handle

Sets the value of the array state corresponding to the

XACT_set_array_state_value transactor handle

XACT_add_sim_state Creates a 32-bit integer simulation state

258 Development Tools User’s Guide

Intel® IXP2400/I1XP2800 Network Processors

Simulator APIs

XACT API Functions (Continued) (Sheet 2 of 3)

Function Name

Function Description

XACT _alloc_user_sim_state

Creates a user-specified simulation state

XACT_start_of_cycle

Tests the current simulation time to see if it
corresponds to the time when the specified clock
domain starts a new cycle

XACT_full_cycle_simulated

Tests the current simulation time to see if it
corresponds to the time when the specified clock has
been fully simulated

XACT_clock_cycle

Returns the clock cycle number for the specified clock

XACT_clock_cycle_with_remainder

Returns the clock cycle number for the specified clock
and tests for error occurrences

XACT_get_top_level_inst

Gets the cell_name/inst_name pair names of all cells
instantiated at the top level by the “inst” command

XACT_Define_Callback_Create_Chip

Calls callback when a chip of the specified name has
been called

XACT_Define_Callback_Init_Sim

Calls callback when the simulation has been
instantiated and initialized via the “init” command

XACT_Define_Automatic_Sim_Halt

Calls callback when the simulator has prematurely
halted model for the reason specified by the input
argument

XACT_Define_Callback_Sim_Reset

Calls callback when the simulation has be reset via the
“sim_reset” command

XACT_Define_Callback_Sim_Delete

Calls callback when the simulation has been destroyed
via the “sim_delete_ command

XACT_Define_Callback_Sim_In_Progress

Defines callback that is invoked whenever the
simulator starts or stops a simulating step

XACT_Define_Callback_Default_Go_Clock_domain

Defines callback to be invoked whenever default clock
domain for “go” simulation changes

XACT_Define_Callback_State_Transition

Defines a callback to be invoked when a specified state
makes a transition

XACT_Define_Cancel_Callback_State_Transition

Defines the callback to cancel any further state
transition callbacks when the specified state changes

XACT_Cancel_State_Transition_Callback

Cancels the predefined state transition callback

XACT_Define_Handle_Invalidation_Callback

Notifies the user when a handle is about to become
invalidated

XACT_output_to_console

Prints string to transactor console output

XACT_printf

printf function which outputs to transactor console

XACT_printf_error

printf function which outputs transactor errors to
transactor console

XACT _register_console_function

Registers a foreign function with the transactor's C
interpreter

XACT _register_console_function_w_arrayed_args

Registers a foreign function with the transactor's C
interpreter

XACT _unregister_console_function

Unregisters a routine that has been previously
registered via the XACT register console function

XACT_ExecuteCommandStr

Executes the string as a console command

Development Tools User’s Guide

259

Intel® IXP2400/I1XP2800 Network Processors u
Simulator APIs In
®

Table 12. XACT API Functions (Continued) (Sheet 3 of 3)

Function Name Function Description

Initializes the command line parsing done by

XACT_init_gui_console XACT_gui_execute_command

Executes a command line in a gui (e.g. Developer

XACT__gui_execute_command Workbench) environment

XACT_Define_Callback_Output_Message Passes transactor output strings to callback function.

Registers the callback to pass the transactor prompt to

XACT_Define_Callback_Set Prompt .
- - - = an external command line

Registers the callback necessary for the transactor

XACT_Define_Callback_Get_Console_Input console function to fetch console input from an external
source
XACT _start_console Starts the transactor console

Initializes the transactor for operation when the

XACT_initialize transactor function is accessed via a library
XACT_CTRL_C_SWITCH Enables or disables the transactor CTRL-C function
XACT_stop_execution Stops simulation at the end of the next simulation cycle

Stops simulation at the end of the next simulation cycle

XACT _stop_execution_at_clk that aligns to the specified clock cycle

Forces termination of the transactor after the next input

XACT _exit_transactor
- = command

Returns TRUE if the GUI interface is connected to the

XACT_gui_interface
7= transactor

9.3 State Name Reference Routines

9.3.1 XACT _find_wildcard_state_name

This function can be iteratively called to return all state names that match the wildcard name spec
(“*" isthe wildcard character that can match O or more characters). A non-NULL wildcard name
spec indicates that a new wildcard name search isinitiated; a NULL wildcard name spec indicates
that the next name to match the previously initiated wildcard search should be returned. Each
matching state nameisreturnedinrt n_name_buf provided that the specified
rtn_name_buf | engt h islarge enough to hold the name.

Synopsis XACTAPI XACT find_w | dcard_state_nane(char
*Wwi | dcard_name_spec, char *rtn_name_buf,
unsi gned int rtn_nane_buf_| ength)

Returns 0 if no match isfound
1if match isfound

-1 if match isfound but not returned dueto size of rt n_name_buf

260 Development Tools User’s Guide

INlal.

9.3.2

9.3.3

9.3.4

Intel® IXP2400/I1XP2800 Network Processors
Simulator APIs

XACT _get_handle

This function returns a handle to a transactor state, based on atransactor state name. If ahandle
corresponding to the specified state exists and is currently valid, it will be returned; otherwise, a
unique handle will be created and returned. Note that the specified state name is case-sensitive.

For non-array states, the value of the array_index MUST be -1. For arrayed states, the array index
specifies the particular element in the array that will correspond to the handle. If avalue of -1is
specified for an array state, ahandleis returned corresponding to the array, but which is not
associated to a particular array element.

Synopsis XACTAPI _NORET XACT_HANDLE XACT_get handl e(char
*state_nane, int array_i ndex)
Returns INVALID XACT HANDLE if the function failed

XACT delete_handle

This function del etes the specified handle. This deletion operation disassociates the handle from
the previously specified state and invalidates the handle value thereby causing a subsequent
reference to that handle to fail. However, once deleted, the value of that handle may be reused
when a subsequent handleis generated by acall to XACT_get _handl e() .

Synopsis XACTAPI XACT_del et e_handl e(XACT_HANDLE handl e)
Returns TRUE if successful
FALSE if not successful

XACT _get_state_info

This function returns information about the state referenced by the specified handle

Synopsis XACTTAPI XACT _get _state_i nf o(XACT_HANDLE
state_handl e, char *state nane, int *width, int
*array_| ength)

Parameters st at e_nane: name of state

wi dt h: width of state (NOTE: awidth of Oimpliesthat the stateisnot
directly readable/writeable by the XACT API.)

array_| engt h: indicates the length of array ranging from O to
array_l ength - 1.Ifthisarray_| engt his-1, thestateisanon-
array state. If thisarray_| engt h is<-1, it indicates that the state
represents aFIFO object of length - arr ay_| engt h (this precludes
FIFOs from being defined with length 1).

Returning each of the 3 pieces of state information is suppressed when that argument isNULL.
Note that when using a handle corresponding to an array, the function returns information
corresponding to the whole array even if the handle corresponds to a particular element of an array.

Returns 1if function is successful

0 if function is unsuccessful

Development Tools User’s Guide 261

Simulator APIs In

Intel® IXP2400/I1XP2800 Network Processors u tel
®

9.3.5

9.3.6

9.3.7

262

XACT _get_state value

This function gets the value of the state corresponding to the transactor handle. Note that the value
pointer is assumed to point to an array of unsigned ints large enough to accommodate the val ue of
the state element. Thus, the array length must be equal to (st at e_wi dt h/ 32) +
((state_width %32) ? 1 : 0)

If the specified handle corresponds to an element of an array that is currently uninitialized (e.g. an
uninitialized memory location), or is currently invalid (e.g. the state of atristate node that was not
driven), the return statusis set to -1 and the returned value is unpredictable.

Synopsis XACTAPI XACT_get _state_val ue(XACT_HANDLE
state_handl e, unsigned int *val ue)

Returns 1if function is successful

0 if function is unsuccessful

XACT _get_state field

This function behaves analogously to XACT _get _st at e_val ue() except that it getsthe value
of the specified bit field rather than the value of the state.

Synopsis XACTAPI XACT get _state_ fiel d(XACT_HANDLE
state_handl e, unsigned int *value, int nmsb, int
lsb)

Returns 1if specified bit-field isvalid

0if specified bit-field isinvalid

XACT get_array_state value

This function behaves the same as XACT _get _st at e_val ue, except that the handle must
correspond to an array state, and avalid array index must be specified. If the specified handle
corresponds to an element of an array that is currently uninitialized (e.g. an uninitialized memory
location), the return status is set to -1 and the returned value is unpredictable. If the specified
handle was associated to a particular element of an array, its predefined array index isignored for
the purpose of this call.

Synopsis XACTAPI XACT_get _array_state_val ue(XACT_HANDLE
state_handl e, int array_index, unsigned int
*val ue)

Synopsis XACTAPI XACT get fifo_state_val ue(XACT_HANDLE
fifo_handle, int fifo_index, unsigned int *val ue
)

Returns 1if valid dataisreturned

-1 if the addressed entry containsinvalid data

0 indicating an access failure.

Development Tools User’s Guide

INlal.

9.3.8

9.3.9

9.3.10

9.3.11

Intel® IXP2400/I1XP2800 Network Processors
Simulator APIs

XACT _set_state value

This function sets the value of the state corresponding to the transactor handle. Note that the
"value" pointer is assumed to point to an array of unsigned ints large enough to accommodate the
value of the state element. Thus, the array length must be= (st at e_wi dt h/ 32) +
((state_width¥32) ? 1 : 0).If ahandletoan array state is specified that was not
associated to a specific array element, this function will fail.

Synopsis XACTAPI XACT set _state_val ue(XACT_HANDLE
state_handl e, unsigned int *val ue)

Returns 1if function is successful

0if function is unsuccessful

XACT_set_state field

This function behaves analogously to XACT_set st at e_val with the exception that the data
isfield inserted into the specified bit range.

Synopsis XACTAPI XACT set _state field(XACT_HANDLE
state_handl e, unsigned int *value, int nsb, int
I sb)

Returns 1if the bit rangeisvalid

0if the bit rangeisinvalid

XACT _set_array_state value

This function behaves the same as XACT_set _st at e_val ue, except that the handle must
correspond to an array state, and avalid array index must be specified. If the specified handle was
associated to a particular element of an array, its predefined array index isignored for the purpose
of thiscall.

Synopsis XACTAPI XACT _set _array_state_val ue(XACT_HANDLE
state_handle, int array_index, unsigned int
*val ue)

Returns 1if function is successful

0 if function is unsuccessful

Synopsis XACTAPI XACT set fifo_state_val ue(XACT_HANDLE
fifo_handle, int fifo_index, unsigned int *val ue
)

XACT_add_sim_state

This function creates a 32-bit integer smulation state. This state type is equivalent to that created
by defining aC integer at the transactor command line (e.g. "int foo;"). This stateis destroyed upon
executing a"sim_reset" command, unlessthe "/preserve" qualifier isappended to "sim_reset". This
*/

Synopsis XACTAPI XACT_add_si m state(char *state_nane)

Development Tools User’s Guide 263

Intel® IXP2400/I1XP2800 Network Processors u tel
®

Simulator APIs In

9.3.12

9.3.13

9.3.14

9.3.15

264

Returns 1if the state was created
0 if the state pre-existed as a non-integer, non-user-defined state

-1if the state pre-existed as a previously defined user-defined integer
state */

XACT _HANDLE XACT alloc_user_sim_state

This function creates a user-specified simulation state.

Synopsis XACTAPI _NORET XACT_HANDLE
XACT_al | oc_user_sim state(char *state_nane, int
width)

Returns ahandleto the created state if the function is successful

INVALID_XACT_HANDLE if the function is unsuccessful

XACT _start_of cycle

This function tests the current simulation time to see if it corresponds to the time when the
specified clock domain starts a new cycle.

Synopsis XACTAPI XACT _start_of cycl e(XACT_HANDLE
cl ock_handl e)

Returns 1if thereis acorrespondence

0 if the times do not correspond

XACT full_cycle_simulated

This function tests the current simulation time to seeif it corresponds to the time when the
specified clock has been fully simulated,

Synopsis XACTAPI XACT _full _cycle_sinul ated(XACT_HANDLE
cl ock_handl e)

Returns 1if thereis a correspondence

0 if the times do not correspond

XACT clock_cycle

Thisfunction returnsthe clock cycle number (starting at 0) for the specified clock It returns-1if an
error occurred during routine execution. If the simulation time does not fall on awhole multiple of
the specified clock, the remainder isignored.

Synopsis XACTAPI XACT_cl ock_cycl e(XACT_HANDLE
cl ock_handl e)

Development Tools User’s Guide

INlal.

9.3.16

9.3.17

9.4

9.4.1

9.4.2

9.4.3

Intel® IXP2400/I1XP2800 Network Processors
Simulator APIs

XACT _clock_cycle_with_remainder

This function returns the clock cycle number (starting at 0) for the specified clock. It returns -1 if
an error occurred during routine execution. If the simulation time does not fall on awhole multiple
of the specified clock, the percentage of the time into the partial clock cycle isreturned in

per cent _r emai nder ; otherwise this argument returns 0

Synopsis XACTAPI XACT_cl ock_cycl e_wi t h_remai nder (
XACT_HANDLE cl ock_handl e, doubl e
*percent _renmai nder)

XACT _get_top_level _inst

This function can be repeatedly called to get thecel | _nane/ i nst _nane pair names of all
cellsinstantiated at the top level by the "inst" command. The user supplied arguments arefilled in
with the string names on each successive call. Thefirst call must be madewith "**i nst _nane
== "\ 0'". Successive calls are made by supplying the strings returned from the previous call. It
is assumed that the supplied string storage is large enough to accommodate the returned string
names. Thecel | _name argument can be NULL in which case no cell name datais returned.

Synopsis XACTAPI XACT get _top_l evel _inst(char
**inst_name, char **cell _nane)

Returns TRUEwhenacel | _nane/i nst_name isreturned

FAL SE on an error or when no more name pairs can be returned

Callback Creation and Deletion Functions

XACT_Define_Callback _Create Chip

Calls callback when a chip of the specified name has been called

Synopsis XACTAPI XACT_Define_Cal | back_Creat e_Chi p(
void(*fp)(char *chip_nane))

XACT_Define_Callback_Init_Sim

Calls calback when the ssmulation has been instantiated and initialized via the "init" command

Synopsis XACTAPI XACT _Define_Cal |l back_Init_Sim
void(*fp)())

XACT_Define_Callback_Sim_Reset

Calls callback when the simulation has been reset viathe"si m r eset " command

Synopsis XACTAPI XACT _Define_Cal |l back_Si m Reset (
void(*fp)())

Development Tools User’s Guide 265

Simulator APIs In

Intel® IXP2400/I1XP2800 Network Processors u tel
®

9.4.4

9.4.5

9.4.6

9.4.7

9.4.8

266

XACT_Define_Callback_Sim_Delete

Calls callback when the simulation has been destroyed viathe "sim_delete" command

Synopsis XACTAPI XACT_Define_Cal |l back_Si m Del et g(
void(*fp)())

XACT_Define_Callback _Restore

Cadlls callback when the ssmulation state has been rel oaded via the "restore” command

Synopsis XACTAPI XACT _Define_Cal | back_Rest ore(
voi d(*fp)())

XACT_Define_Callback _Sim_In_Progress

Define callback that isinvoked whenever the simulator starts or stops a simulating step

Synopsis XACTAPI XACT Define_Cal |l back_SimIn_Progress(
void (*fp)(int currently_sinulating))

XACT_Define_Callback_Default_Go_Clock_Domain

Define callback to be invoked whenever default clock domain for "go" simulation changes

Synopsis XACTAPI
XACT_Define_Call back_Default_ Go_C ock_Domai n(
void (*fp)(char * clk_name))

XACT_Define_Callback_State Transition

Define a callback to be invoked when a specified state makes atransition. The callback priority
alows the user to specify the order in which al the defined callbacks are made in; the higher the
callback priority, the earlier the callback ismade. Theuser _cont ext argument allowsthe
caller of thisfunction to pass contextual information to the callback routine if required. Note that a
callback to cancel this callback must be defined prior to executing this routine in order for this
callback definition to be successful (see

XACT_Define_Cancel Cal |l back_State_Transition() below). If the specified
handle corresponds to an array state, the handle must also specify a particular valid element of the
array. Note that only 1 state transition callback may be defined per handle. If you desire 2 more
more callbacks for a particular state, acquire multiple handles to the state via

"XACT_get _handl e() " and assign 1 callback to each handle. Thisroutine returns 1 if
successful, 0 otherwise.

Synopsis XACTAPI XACT Define_ Call back_State Transition(
XACT_HANDLE transitioning_state, int
cal I back_priority, int(*fp)(XACT_HANDLE
transitioning_state, void *user_context, int
array_index),void *user_context)

Development Tools User’s Guide

INlal.

9.4.9

9.4.10

9.4.11

9.4.12

9.4.13

Intel® IXP2400/I1XP2800 Network Processors
Simulator APIs

XACT_Define_Cancel_Callback_State Transition

Define the callback to cancel any further state transition callbacks when the specified state
changes. NOTE: this callback must be defined prior to calling

XACT_Def i ne_Cal | back_State_Transition() above Thiscallback will be called if
the transactor deletes the state associated with the HANDLE. State deletion can occur if the state
element was a user-defined state (e.g. C variable, function, watch, etc.). A predefined hardware
state element will never be deleted, but for consistency, this cancel callback is still required to be
specified prior to defining a state transition callback. This routine returns 1 if successful, 0
otherwise

Synopsis XACTAPI
XACT_Define_Cancel _Cal | back_State_Transition(
XACT_HANDLE state,int (*fp)(XACT_HANDLE handl e,
voi d *user_data))

XACT Cancel State Transition_Callback

Calling this routine allows the caller to explicitly cancel the predefined state transition callback. It
returns 1 if successful, -1 if no callback was associated with this state or O otherwise

Synopsis XACTAPI XACT _Cancel _State_Transition_Cal | back(
XACT_HANDLE state)

XACT_Define_Handle_Invalidation_Callback

This function allows the user to be notified when ahandle is about to become invalidated. Handle
invalidations can occur when the user has acquired a handle to atemporary state (e.g. C variable,
function, watch, etc.). The handleis valid when the specified callback is called and becomes
invalid as soon as execution returns from the callback. Thisroutine returns 1 if successful; O
otherwise.

Synopsis XACTAPI
XACT_Define_Handl e_I nval i dati on_Cal | back(int
(*fp)(XACT_HANDLE handle))

XACT_Define_Callback _Output_Message

Passes transactor output strings to callback function. Note that the transactor will till print the
string to its own console output regardless of this callback.

Synopsis XACTAPI XACT_Define_Cal | back_Qut put _Message(
voi d(*fp) (OUTPUT_MSG_SEVERI TY severity, const
char *message))

XACT Define_Callback _Set Prompt

This function registers the callback to pass the transactor prompt to an external command line. It
must be called after the transactor has been initialized. It returns TRUE if successful, and FALSE
otherwise.

Development Tools User’s Guide 267

Intel® IXP2400/I1XP2800 Network Processors u
Simulator APIs In
®

Synopsis XACTAPI XACT_Define_Cal | back_Set Pronpt (
void(*fp)(char *pronpt_str))

9.4.14 XACT_Define_Callback_Get_Console_Input

This function registers the callback necessary for the transactor console function to fetch console
input from an external source. This callback should be defined prior to invoking
XACT _start_consol e()

Synopsis XACTAPI XACT _Define_Cal | back_Get Consol e_I nput (
char *(*console_input)())

9.5 Miscellaneous Functions

9.5.1 XACT_Define_Automatic_Sim_Halt

Calls callback when the simulator has prematurely halted model for the reason specified by the
input argument

Synopsis XACTAPI XACT Define_ Automatic_Sim Halt(
voi d(*fp)(HALT_STATUS halt_status))

9.5.2 XACT output_to_console

Prints string to transactor console output

Synopsis XACTAPI XACT out put _to_consol e(char *output_str
)

9.5.3 XACT_printf

printf function outputting to transactor console
Synopsis XACTAPI XACT printf(char *fnt, ...)

9.54 XACT _printf_error
printf function outputting to transactor console as a transactor error
Synopsis XACTAPI XACT printf_error(char *fmt, ...)

9.5.5 XACT register_console _function

This function registers aforeign function with the transactor's C interpreter. The argument list of
the specified function is assumed to have the following characteristics:
¢ only (char *) and (unsigned int) args are allowed

¢ all (char *) args precede al (unsigned int) args.

268 Development Tools User’s Guide

intel.

9.5.6

9.5.7

9.5.8

Intel® IXP2400/I1XP2800 Network Processors
Simulator APIs

* number of (char *) argsis<=3

number of (int) argsis <= 5SynopsisXACTAPI
XACT _regi ster_consol e_function_w _arrayed_args(
char *function_name,int (*function_ptr)(char
** unsigned int *),int numchar_ptr_args,int
num uint _args)

Returns 1if function is successful, O otherwise.

XACT register_console function_w_arrayed _args
Thisfunction registers aforeign function with the transactor's C interpreter. The argument list of the
specified function is assumed to have the following characteristics:

¢ only (char *) and (unsigned int) args are allowed

¢ al (char *) args precede all (unsigned int) args.

* Theimported function is referenced in the console as:int function_name(specified number of
char * args, specified number of unsigned int args)

¢ Theimported function_ptr isactualy calledas: i nt (*function_ptr)(char
**char _array, unsigned int *int_array) wherethechar argumentsare
placed inthechar _ar r ay from left to right starting at index O and the int arguments are
placed inthei nt _ar r ay from left to right starting at index O.

Synopsis XACTAPI XACT_regi ster_consol e_function(char
*function_nane, void *function_ptr,int
num char _ptr_args,int numuint_args)

Returns 1if function is successful, O otherwise.

Whilethef uncti on_ptr ispassedinasavoid*, it will be called by the simulator asint
(*function_ptr)(specified number of char * args, specified number of unsigned int args)

XACT _unregister_console_function

This function unregisters aroutine that has been previously registered via
XACT_r egi ster_consol e_function().

Synopsis XACTAPI XACT _unregi ster_consol e_function(char
*function_nane)

Returns 1if function is successful, O otherwise.

XACT_ExecuteCommandStr

Executes the str as a console command
Synopsis XACTAPI XACT_Execut eCommandStr(char *cnd_str)

Development Tools User’s Guide 269

Simulator APIs In

Intel® IXP2400/I1XP2800 Network Processors u tel
®

9.5.9

9.5.10

9.5.11

9.5.12

9.5.13

270

XACT _init_gui_console

Initializes the command line parsing done by XACT gui _execut e_conmand(), i.e, clears
outstanding line continuation, nested curly braces, nested conditional directives, etc.

Synopsis XACTAPI XACT_init_gui_consol e()

XACT_gui_execute_command

Executes acommand linein agui (e.g., Developer Workbench) environment. Command line
status, such as line continuation, conditional directives, etc., is maintained between calls. Use
XACT_ini t _gui _consol e() toinitialize status.

Synopsis XACTAPI XACT_gui _execut e_conmmand(char
*command_I i ne)

XACT _start_console()

Thisfunction starts the transactor console. Thisfunction returns only when an"exi t " command is
processed by the console. When an external program is to supply the actual console 1/O window,
the functions: XACT_Def i ne_Cal | back_Qut put _Message(),

XACT _Define_Call back_Set Pronpt (), and

XACT_Define_Cal |l back_Get Consol e_I nput () mustbecaled prior to invoking
XACT _start_consol e().

Synopsis XACTAPI XACT_start_consol e()
Returns TRUE if the console was successfully invoked or FAL SE otherwise

XACT _initialize()

This function initializes the transactor for operation when the transactor function is accessed viaa
library. This function must be the first transactor function called. Subsequent transactor functions
should only be called when this function returns with success status.

Synopsis XACTAPI XACT initialize()
Returns TRUE if the initialization was successful or FAL SE otherwise

XACT_stop_execution_at_clk

This function stops simulation at the end of the next simulation cycle that aligns to the specified
clock cycle. It aso stops script file execution as soon as possible by letting the current command
complete, and then unwinding the command stack.

Synopsis XACTAPI XACT_stop_execution_at_cl k(XACT_HANDLE
cl k_handl e)
Returns TRUE if successful; FAL SE otherwise

Development Tools User’s Guide

INlal.

9.5.14

9.5.15

9.5.16

9.5.17

Intel® IXP2400/I1XP2800 Network Processors
Simulator APIs

XACT _exit_transactor

This function forces termination of the transactor after the next input command has been received
Synopsis XACTAPI XACT exit_transactor()

XACT_CTRL_C_SWITCH

This function enables or disables the transactor CTRL-C function. By default, thisfunction is
enabled. Note that thisis anon-blocking cal (i.e. the smulation is not guaranteed to be stopped
when this function returns).

Synopsis XACTAPI XACT_CTRL_C SWTCH(int enable)
Returns TRUE if successful; FAL SE otherwise

XACT_stop_execution

This function stops simulation at the end of the next simulation cycle It also stops script file
execution as soon as possible by letting the current command complete, and then unwinding the
command stack.

Synopsis XACTAPI XACT_st op_execution()
Returns TRUE if successful; FALSE otherwise

XACT_gui_interface

This function returns TRUE if the Workbench is connected to the transactor; otherwise, it returns
FALSE

Synopsis XACTAPI XACT_gui _interface()

Development Tools User’s Guide 271

intel.

Transactor States A

A.l

Al1l

A.2

About States

The Transactor contains internal states that define the overall state of the model. The states
documented in this chapter can be accessed through the Workbench command line interface using
either built-in C functions or transactor access functions.

Hardware states, certain CSRs, and transactor states for QDR and M SF pins are availablein this
appendix.

State Definition Format
This section lists the Hardware Transactor states and describes each one. The state definition
contains:

* The state name

* A description of the state.

* Function primitives for functions used with the state.

Memory Setup

Thefollowing setup commands should only be run once, and they should be run before simulation.
It should be noted that these commands are called by the Devel opers Workbench and should only
be called when running from the command line.

init_sram_from_file(filename) Usetoinitialize SRAM content from file. Format is
hex_addr value pair on each line.

set_sram_channel_size(chip_name, channel number, number of partsper channel, size per
part)
On aper channel basis, used to set the number of parts per sram channel
and the size per part of the SRAM from the command line.

set_sram_size(chip_name, number of partsper channel, size per part)
On awhole chip basis, used to set the number of parts per sram channel
and the size per part of the SRAM from the command line.

get_sram_channel_size(chip_name, channel number)
Returns the total size of sram on a particular sram channel.

set_sram_channel_pipe_delay(chip_name, channel number, delay)
Adds a pipe delay to SRAM channel number on chip_name.

set_dram_size(chip_name, number of channels, size per channel)
Used to set the number of channels and the size per channel of the
DRAM in chip_name from the command line.

get_total_dram_size(chip_name) Returns the total size of the dram on chip_name.

Development Tools User’s Guide 273

Transactor States I n

Intel® IXP2400/I1XP2800 Network Processors u tel
®

A.3

A31

A.3.2

A.3.3

274

Hardware States

Chip Reference

This command allows you to assign the chip to the functions described in Appendix A.3.2 through
Appendix A.3.7.

set_default_chip(chip_name) Sets the default chip.

SRAM

SRAM memory. For al of the following functions, you must use address values that are 32-bit
aligned.

Functions:

set_sram(addr, data) Use to write to SRAM memory.
get_sram(addr) Useto read SRAM memory.
watch_sram(addr) Use to watch for SRAM content changes.

watch_sram_function({code} or function (),addr)
Use to watch for SRAM content changes, then execute
code or call function.
check_sram(addr, expect) Use to compare SRAM content with an expected value.
dump_sram(addr_lo, addr_hi) Useto display SRAM content.

init_sram(data, addr_lo, addr_hi) Usetoinitialize SRAM content.

Scratchpad

On-chip Scratchpad memory. For all of the following functions, you must use address values that
are 32-bit aligned.

Functions:

set_scratch(addr, data) Use to write to Scratchpad memory.
get_scratch(addr) Use to read Scratchpad memory.
watch_scratch(addr) Use to watch for Scratchpad content changes.

watch_scratch_function({code} or function(), addr)
Use to watch for Scratchpad content changes and then
execute code or call function.
check_scratch(addr, expect) Use to compare Scratchpad content with expected value.
dump_scratch(addr_lo, addr_hi) Use to display Scratchpad content.
init_scratch(data, addr_lo, addr_hi) Usetoinitialize Scratchpad content.

Development Tools User’s Guide

A.3.4

A.3.5

Intel® IXP2400/I1XP2800 Network Processors
Transactor States

init_scratch_from_file(filename) Useto initialize Scratchpad content from file. Format is

hex_addr value pair on each line.

DRAM

DRAM memory. For all of the following functions, you must use address values that are 32-bit
aligned.

Functions:

set_dram(addr, data) Use to write to DRAM memory.
get_dram(addr) Use to read DRAM memory.
watch_dram(addr) Use to watch for DRAM content changes.

watch_dram_function({code} or function(),addr)
Useto watch for DRAM content changes and then execute
code or call function.
check_dram(addr, expect) Use to compare DRAM content with an expected value.
dump_dram(addr_lo, addr_hi) Useto display DRAM content.
init_dram(data, addr_lo, addr_hi) Useto initialize DRAM content.
init_dram_from_file(filename) Useto initialize DRAM content from file. Format is

hex_addr value pair on each line.

RBUF

Media Switch Fabric interface Receive buffer.

Functions:

set_rbuf(addr, data) Use to write to RBUF memory.
get_rbuf(addr) Use to read RBUF memory.
watch_rbuf(addr) Use to watch for RBUF content changes.

watch_rbuf_function({code} or function(), addr)
Use to watch for RBUF content changes and then execute
code or call function.
check_rbuf(addr, expect) Use to compare RBUF content with an expected value.
dump_rbuf(addr_lo, addr_hi) Use to display RBUF content.
init_rbuf(data, addr_lo, addr_hi) Usetoinitialize RBUF content.
init_rbuf_from_file(filename) Useto initialize RBUF content from file. Format is

hex_addr value pair on each line.

Development Tools User’s Guide 275

Transactor States I n

Intel® IXP2400/I1XP2800 Network Processors u tel
®

A.3.6

A.3.7

276

TBUF

Media Switch Fabric interface Transmit buffer.

Functions:

set_tbuf(addr, data) Use to write to TBUF memory.
get_tbuf(addr) Useto read TBUF content changes.
watch_tbuf(addr) Use to watch for TBUF content changes.

watch_tbuf_function({code} or function(), addr)
Use to watch for TBUF content changes and then execute
code or call function.
check_tbuf(addr, expect) Use to compare TBUF content with an expected value.
dump_tbuf(addr_lo, addr_hi) Use to display TBUF content.
init_tbuf(data, addr_lo, addr_hi) Usetoinitialize TBUF content
init_tbuf_from_file(filename) Usetoinitialize TBUF content from file. Format is

hex_addr value pair on each line.

FIFO

Firstin first out (FIFO).
watch_fcefifo(index) Used to watch an index within the MSF FCE fifo.

watch_fcefifo(code or function, index)Used to call afunction when an index within the
MSF FCE fifo is modified.

get_feefifo(index) Used to retrieve a value from the MSF FCE fifo at
location index.

dump_fcefifo(low, high) Used to dump the contents of the MSF FCE fifo f

get_fcififo(index) Used to retrieve a value from the MSF FCI fifo at
location index.

dump_fcififo(low, high) Used to dump the contents of the MSF FCI fifo from a
low index to high index.

watch_fcififo(index) Used to watch an index within the MSF FCI fifo.

watch_fcififo(code or function, index) Used to call a function when an index within the
MSF FCI fifo is modified.

Development Tools User’s Guide

A4l

A.4.2

Intel® IXP2400/I1XP2800 Network Processors
Transactor States

Microengine Registers

For the following sections, Section A.4.1 through Section A.4.8, the parameter meisthe
Microengine number. Valid me numbers for the I XP2400 are: 0x00 - 0x03 and 0x10 - 0x13. Valid
me numbers for the I XP2800 are: 0x00 - 0x07 and 0x10 - 0x17. For the range of valid local
memory locations, refer to either the | XP2400/1XP2800 Programmer’s Reference Manual, as

appropriate.

Local Memory

Loca memory within a Microengine.

Functions:

set_Imem(me, addr, data) Use to write to local memory in the Microengine.
get_Imem(me, addr) Useto read local memory in the Microengine.
watch_Imem(me, addr) Use to watch for local memory content changes.

watch_Imem_function({code} or function(), me, addr)
Use to watch for local memory content changes and then

execute code or call function.

check_Imem(me, addr, expect) Use to compare local memory with an expected value.
dump_Imem(me) Use to display the Microengine's local memory content.
init_Imem(me, data) Useto initialize local memory content in the Microengine.
GPR A bank

A Bank Genera Purpose register within a Microengine.

Functions:

set_gpa(me, addr, data) Useto write to GPR A in the Microengine.

get_gpa(me, addr) Useto read GPR A in the Microengine.

watch_gpa(me, addr) Use to watch for GPR A content changes.

watch_gpra_function({code} or function(), me, addr)

Usetowatch for GPR A content changes and then execute
code or call function.

check _gpa(me, addr, expect) Use to compare GPR A memory with an expected value.
dump_gpa(me) Useto display the Microengine’'s GPR A content.
init_gpa(me, data) Usetoinitialize GPR A content in the Microengine.

Development Tools User’s Guide 277

Intel® IXP2400/I1XP2800 Network Processors u
Transactor States In ®

A.4.3

A4.4

A.4.5

278

GPR B bank

B Bank General Purpose register within a Microengine.

Functions:

set_gpb(me, addr, data) Useto write to GPR Bin the Microengine.
get_gpb(me, addr) Useto read GPR Bin the Microengine.
watch_gpb(me, addr) Use to watch for GPR B content changes.

watch_gprb_function({code} or function, me, addr)

Useto watch for GPR B content changes and then execute
code or call function..

check_gpb(me, addr, expect) Use to compare GPR B memory with an expected value.
dump_gpb(me) Use to display the Microengine’'s GPR B content.
init_gpb(me, data) Usetoinitialize GPR B content in the Microengine.

Transfer Register S In

S Transfer register In within a Microengine.

Functions:

set_srd(me, addr, data) Useto writeto S Transfer In register in the Microengine.
get_srd(me, addr) Usetoread S Transfer In register in the Microengine.
watch_srd(me, addr) Useto watch S Transfer In register content changes.

watch_srd_function({code} or function, me, addr)Usetowatch for S Transfer Inregister content
changes and then execute code or call function.

check_srd(me, addr, expect) Use to compare S Transfer In register with an expected
value.

dump_srd(me) Useto display the S Transfer In register’s content.

init_srd(me, data) Usetoinitialize S Transfer In register content.

Transfer Register S Out

S Transfer register Out within a Microengine.

Functions:

set_swr(me, addr, data) Useto writeto S Transfer Out register in the Microengine.
get_swr(me, addr) Usetoread S Transfer Out register in the Microengine.
watch_swr(me, addr) Useto watch S Transfer Out register content changes.

watch_swr_function({code} or function, me, addr)Use to watch for S Transfer Out register

Development Tools User’s Guide

A.4.6

A.4.7

Note:

Intel® IXP2400/I1XP2800 Network Processors
Transactor States

content changes and then execute code or call function.

check_swr(me, addr, expect) Use to compare S Transfer register Out with an expected
value,

dump_swr(me) Useto display the S Transfer Out register’s content.

init_swr(me, data) Useto initialize S Transfer Out register content.

To display all S Transfer registers of a particular Microengine, use dump_gprs(me)

Transfer Register D In

D Transfer register In within a Microengine.

Functions:

set_drd(me, addr, data) Useto writeto D Transfer In register in the Microengine.
get_drd(me, addr) Usetoread D Transfer In register in the Microengine.
watch_drd(me, addr) Useto watch D Transfer In register content changes.

watch_drd_function({code} or function, me, addr)Useto watch for D Transfer In register

content changes and then execute code or call function.

check_drd(me, addr, expect) Use to compare D Transfer In register with an expected
value,

dump_drd(me) Useto display the D Transfer In register’s content.

init_drd(me, data) Usetoinitialize D Transfer In register content.

Transfer Register D Out

D Transfer register Out within a Microengine.

Functions:

set_dwr(me, addr, data) Useto writeto D Transfer Out register in the Microengine.
get_dwr (me, addr) Useto read D Transfer Out register in the Microengine.
watch_dwr (me, addr) Use to watch D Transfer Out register content changes.

watch_dwr_function({code} or function, me, addr)Use to watch for D Transfer Out register

content changes and then execute code or call function.

check_dwr(me, addr, expect) Use to compare D Transfer register Out with an expected
value.

dump_dwr (me) Useto display the D Transfer Out register’s content.

init_dwr(me, data) Usetoinitialize D Transfer Out register content.

Development Tools User’s Guide 279

Transactor States I n

Intel® IXP2400/I1XP2800 Network Processors u tel
®

A.4.8

A.5

A.6

280

Note:

To display all D Transfer registers of aparticular Microengine, use dump_gprd(me)

Next Neighbor Registers

Next Neighbor register within a Microengine.

Functions:

set_nei(me, addr, data) Use to writeto Next Neighbor register in the Microengine.
get_nei(me, addr) Use to read Next Neighbor register in the Microengine.
watch_nei(me, addr) Use to watch Next Neighbor register content changes.

watch_nei_function({code} or function, me, addr)Use to watch for Next Neighbor register
content changes and then execute code or call function.
check_nei(me, addr, expect) Use to compare Next Neighbor register content with an

expected value.

dump_nei(me) Use to display the Next Neighbor register’s content.
init_nei(me, data) Usetoinitialize Next Neighbor register content.
CSRs

For the following registers, use the Developer’s Workbench user interface to access:

ME CSRs Microengine Control Status registers. SRAM CSRs

SRAM CSRs SRAM controller Control Status registers. DRAM CSRs

DRAM CSRs DRAM controller Control Status registers. CAP CSRs
CAPCSRs CAP unit Control Status registers. MSF CSRs

MSF CSRs Media Switch Fabric registers. Intel X Scal e® CSRs

Intel XScale® CSRs Intel XScale® registers.

Intel XScale® Memory Map Access

The following functions are used to access |ocations within the Intel X Scale® memory mapping of
the network processors. See the I XP2400/1XP2800 Programmer’s Reference Manual for detailed
information.

For the I XP2400 and | X P2800:

simRead(chip_name, addr) Returns value at the Intel XScale® addr in the
chip_name chip

simWrite(chip_name, addr, data); Writes data to the Intel X Scale® addr in the
chip_name chip.

Development Tools User’s Guide

intel.

A.7

Table 1.

Development Tools User’s Guide

Intel® IXP2400/I1XP2800 Network Processors
Transactor States

IXP2400 and IXP2800 Transactor States

In the following command and tables, chip_name is the name the user applies to the chip instance.
In other words, the user replaces chip_name with their own chip_name (if thereis one). If the
instance is unnamed, then the chip_name variable is omitted.

For the QDR interface, n isthe SRAM channel number, which can be either 0, 1, 2 or 3 (for the
I XP2800). For the I XP2400, n may be 0 or 1.

To connect aforeign model to the QDR interface, you must add the

set up_sram ext ernal _pi n_usage command to the setup script (this must be done for

each channel). The command is not necessary if you want to connect only to the MSF interface.
set up_sram ext er nal _pi n_usage(chi p_nanme, | ower_address, upper_address);

Thelower_address and upper_address denote the range in the sram memory map to use for an

external model.

IXP2400 Transactor States for QDR and MSF Pins (Sheet 1 of 3)

Datasheet S
Transactor State Names Signal Name 1/0 Description
QDR Interface

] Positive and negative clock outputs.
chip_name.QDRn_K_H[1:0] Sn_K{[1:0] Output | These differential clocks are used as a
chip_name.QDRn_K_L[1:0] Sn_K_L[1:0] Output | reference for Address, Data Out, and

Port Enable.
chip_name.QDRn_C_HJ[1:0] Sn_C[1:0] Output .)

) Positive and negative clock outputs.
chip_name.QDRn_C_L[1:0] Sn_C_LJ[1:0] Output

) Positive and negative clock inputs.
chip_name.QDRn_CIN_H[1:0] Sn_CIN[1:0] Input | These differential clocks are used as a
chip_name.QDRn_CIN_L[1:0] Sn_CIN_L[1:0] | Input reference for Data In. They are the

feedback of Sn_C & Sn_C_L.
chip_name.QDRn_D_HJ[7:0] Sn_D[7:0] Output | Data output bus
chip_name.QDRn_D_HJ[16:9] Sn_D[15:8] Output | Data output bus

. Byte parity for data out. D[0]
chip_name.QDRn_D_HI[8] Sn_DI[0] Output corresponds to D[7:0].

. Byte parity for data out. D[1]
chip_name.QDRn_D_H[17] Sn_DJ[1] Output corresponds to D[15:8].
chip_name.QDRn_Q_H][7:0] Sn_Q[7:0] Input Data output bus
chip_name.QDRn_Q_H[16:9] Sn_Q[15:8] Input Data output bus

. Byte parity for data in. Q[0]
chip_name.QDRn_Q_HI8] Sn_Q[0] Input corresponds to Q[7:0].

. Byte parity for data in. Q[1]
chip_name.QDRn_Q_HJ[17] Sn_Q[1] Input corresponds to Q[15:8].

Byte write enables. BW_L[1], BW_L][0]
chip_name.QDRn_BWS_L[1:0] Sn_BWE_LJ[1:0] | Output | corresponds to DO[15:8], DO[7:0]

respectively
chip_name.QDRn_RPS_L[1:0] Sn_RPE_L[1:0] | Output | Read Port Enable

281

Intel® IXP2400/I1XP2800 Network Processors u
Transactor States In ®

Table 1. IXP2400 Transactor States for QDR and MSF Pins (Continued) (Sheet 2 of 3)

Datasheet

Transactor State Names Signal Name

1/0 Description

chip_name.QDRn_WPS_L[1:0] Sn_WPE_L[1:0] | Output | Write Port Enable

Address. Depending on the operating
chip_name.QDRn_A_H[23:0] Sn_A[23:0] Output | mode, some of the address pins may
also be used for RPE_L/WPE_L.

chip_name.QDRn_ZQJ1:0] Sn_ZQJ1:0] Input Drive Strength/Compensation

MSF Interface

chip_name.PLMS_MR23_CLK RXCLK23 input | MSF Receive Clock for channel 2 and

3.
chip_name.PLMS_MRO1_CLK RXCLKO1 Input 2’_'SF Receive Clock for channel 0 and
chip_name.MSPA_RXENB_WMR23H | RXENB[3:2] Output '\Cﬂr?; nr'feelg?i"e Control Pins for up to 4
chip_name MSPA_RXENB_WMROIH | RXENB[1:0] | Output | por Recelve Control Pinsforupto 4
chip_name.PAMS_RXSOF_RMR23H RXSOF[3:2] Input
chip_name.PAMS_RXSOF_RMRO01H RXSOF[1:0] Input
chip_name.PAMS_RXEOF_RMR23H RXEOF[3:2] Input
chip_name.PAMS_RXEOF_RMRO1H RXEOF[1:0] Input
chip_name.PAMS_RXVAL_RMR23H RXVAL[3:2] Input
chip_name.PAMS_RXVAL_RMRO1H RXVAL[1:0] Input
chip_name.PAMS_RXERR_RMR23H RXERR[3:2] Input
chip_name.PAMS_RXERR_RMRO1H RXERR[1:0] Input

chip_name.PAMS_RXPRTY_RMR23H | RXPRTY[3:2] Input
chip_name.PAMS_RXPRTY_RMRO1H | RXPRTY[1:0] Input

chip_name.PAMS_RXFA_RMR23H RXFA[3:2] Input
chip_name.PAMS_RXFA_RMRO1H RXFA[1:0] Input
chip_name.MSPA_RXADDR_WMRO01H | RXADDR[3:0] Output
chip_name.PAMS_RXPFA_RMRO1H RXPFA Input
chip_name.PAMS_RXPADL1_RMR23H | RXPADL[1] Input
chip_name.PAMS_RXPADLO_RMRO1H | RXPADL[O] Input

chip_name.PAMS_RXDATA_RMRO1H RXDATA[15:0] Input MSF Receive Data Bus
chip_name.PAMS_RXDATA RMR23H RXDATA[31:16] | Input MSF Receive Data Bus

MSF Transmit Clock for channel 2 and

chip_name.PLMS_MT23_CLK TXCLK23 Input 3

chip_name.PLMS_MTO1_CLK TXCLKO1 input | YSF Transmit Clock for channel 0:and

chip_name.MSPA_TXENB_WMT23H | TXENB([3:2] Output | MSF Transmit Control Pins for up to 4
Channels.

chip_name.MSPA_TXENB_WMTO1H | TXENB[L:0] Output | MSF Transmit Control Pins for up to 4
Channels.

chip_name.MSPA_TXSOF_WMT23H TXSOF[3:2] Output

282 Development Tools User’s Guide

In

Table 1.

Table 2.

Intel® IXP2400/I1XP2800 Network Processors

Transactor States

IXP2400 Transactor States for QDR and MSF Pins (Continued) (Sheet 3 of 3)

Datasheet

Transactor State Names Signal Name 110 Description
chip_name.MSPA_TXSOF_WMTO1H TXSOF[1:0] Output
chip_name.MSPA_TXEOF_WMT23H TXEOF[3:2] Output
chip_name.MSPA_TXEOF_WMTO1H TXEOF[1:0] Output
chip_name.MSPA_TXERR_WMT23H TXERR[3:2] Output
chip_name.MSPA_TXERR_WMTO1H | TXERR[1:0] Output
chip_name.MSPA_TXPRTY_WMT23H | TXPRTY[3:2] Output
chip_name.MSPA_TXPRTY_WMTO1H | TXPRTY[1:0] Output
chip_name.PAMS_TXFA_RMT23H TXFA[3:2] Input
chip_name.PAMS_TXFA_RMTO1H TXFA[1:0] Input
chip_name.PAMS_TXPFA_RMTO1H TXPFA Input
chip_name.PAMS_TXSFA_RMTO1H TXSFA Input
chip_name.MSPA_TXADDR_WMTO1H | TXADDR[3:0] Output
chip_name.MSPA_TXPADL1_WMT23H | TXPADLI[1] Output
chip_name.MSPA_TXPADLO_WMTO01H | TXPADL[O] Output
chip_name.MSPA_TXDATA_WMT23H | TXDATA[31:16] | Output | MSF Transmit Data Bus
chip_name.MSPA_TXDATA_WMTO01H TXDATA[15:0] Output | MSF Transmit Data Bus
chip_name.MSPA_TXCDAT_WMRO1H | TXCDATA[3:0] Output | CBUS Transmit Data
chip_name.MSPA_TXCSOF_WMRO01H | TXCSOF Output | CBUS Transmit Start of Frame
chip_name.MSPA_TXCSRB_WMRO01H | TXCSRB Output | CBUS Transmit Serialized Ready Bus
chip_name.PAMS_TXCFC_RMROIH | TXCFC Input | S5 1S Transmit Flow Control - FIFO
chip_name.MSPA_TXCPAR_WMRO01H | TXCPAR Output | CBUS Transmit Parity
chip_name.PAMS_RXCDAT_RMTO1H RXCDATA[3:0] | Input CBUS Receive Data
chip_name.PAMS_RXCSOF_RMTO1H RXCSOF Input CBUS Receive Start of Frame
chip_name.PAMS_RXCSRB_RMTO01H | RXCSRB Input CBUS Receive Serialized Ready Bus
chip_name.MSPA_RXCFC_WMTOIH | RXCFC Output | S5 S Receive Flow Control - FIFO
chip_name.PAMS_RXCPAR_RMTO01H RXCPAR Input CBUS Receive Parity

IXP2800 Transactor States for QDR and MSF Pins (Sheet 1 of 3)

Datasheet

Transactor State Names . 1/0 Description
Signal Name
QDR Interface
) Positive and negative clock outputs.
chip_name.QDRn_K_H[1:0] Sn_K{[1:0] Outout | These differential clocks are used as a
chip_name.QDRn_K_L[1:0] Sn_K_L[1:0] p reference for Address, Data Out, and

Port Enable.

Development Tools User’s Guide

283

Intel® IXP2400/I1XP2800 Network Processors

Transactor States

284

Table 2.

intel.

IXP2800 Transactor States for QDR and MSF Pins (Continued) (Sheet 2 of 3)

Datasheet

Transactor State Names Signal Name 1/0 Description
chip_name.QDRn_C_H[1:0] Sn_C[1:0] Output Positive and negative output clocks to
chip_name.QDRn_C_L[1:0] Sn_C_L[1:0] SRAM.
chip_name.QDRn_CIN_H[1:0] Sn_CIN[L:0] _Echo clocks. Positive_ and Negative

) Input input clocks. Data In is referenced to
chip_name.QDRn_CIN_L[1:0] Sn_CIN_L[1:0] these clocks.

. . . Data In. Read data and parity from
chip_name.QDRn_Q_H[17:0] Sn_Q[17:0] Input SRAMs to chip.

. . . Data Out. Write data and parity from
chip_name.QDRn_D_H[17:0] Sn_D[17:0] Output chip to SRAMs.

) . . Byte Write Enables. Asserted to
chip_name.QDRn_BWS_L[1.0] Sn_BWE_L[1.0] | Output enable writing each byte during writes.
chip_name.QDRn_RPS_L[L:0] Sn_RPE_L[1:0] | Output | Read Port Enable. Asserted tostarta
chip_name.QDRn_WPS_L[1:0] Sn_WPE_L[1:0] | Output | \Viite Port Enable. Asserted to start a
chip_name.QDRn_A_H[23:0] Sn_A[23:0] Output | Address to SRAMSs.

MSF Interface
chip_name.SPI14_TCLK Output | SPI4 Tx Clock
chip_name.SPI14_RCLK Input SPI4 Rx Clock
chip_name.SPI14_TCLK_REF

) Input SPI14 Tx reference clock
chip_name.SPI4_TCLK_REF_L
chip_name.SPI4_RCLK_REF Output SPI4 Rx reference clock (buffer
chip_name.SPI4_RCLK_REF L version of SP14_RCLK)
chip_name.SPI14_TDAT

) Output | SPI4 Tx data
chip_name.SPI14_TDAT_L
chip_name.SP14_RDAT

) Input SPI4 Rx data
chip_name.SPI14_RDAT_L
chip_name.SPI14_TSTAT Input SPI4 Tx stat (flow control)
chip_name.SPI14_RSTAT Output | SPI4 Rx stat (flow control)
chip_name.SPI14_TCTL

) Output | SPI4 Tx control
chip_name.SPI14_TCTL_L
chip_name.SPI14_RCTL

) Input SPI4 Rx control
chip_name.SPI4_RCTL_L
chip_name.SPI14_TPROT

) Output | Tx Protocol type (SPI14 or CSIX)
chip_name.SPI4_TPROT_L
chip_name.SPI4_RPROT

) Input Rx Protocol type (SP14 or CSIX)
chip_name.SPI4_RPROT_L
chip_name.SPI14_TPAR)

) Output | Tx Parity
chip_name.SPI14_TPAR_L
chip_name.SPl4_RPAR .

Input Rx Parity

chip_name.SPI14_RPAR_L

Development Tools User’s Guide

INlal.

Intel® IXP2400/I1XP2800 Network Processors

Transactor States

Table 2. IXP2800 Transactor States for QDR and MSF Pins (Continued) (Sheet 3 of 3)

chip_name.FC_RXCFC_L

Datasheet N
Transactor State Names Signal Name 110 Description

chip_name.FC_TXCDAT

) Output | Flow Control Engress data
chip_name.FC_TXCDAT_L
chip_name.FC_RXCDAT

) Input Flow Control Ingress data
chip_name.FC_RXCDAT_L
chip_name.FC_TXCSOF Output Flow Control Engress SOF (Start Of
chip_name.FC_TXCSOF_L Frame)
chip_name.FC_RXCSOF

) Input Flow Control Ingress SOF
chip_name.FC_RXCSOF_L
chip_name.FC_TXCSRB Output Flow Control Engress SRB (Serialized
chip_name.FC_TXCSRB_L Ready Bits)
chip_name.FC_RXCSRB

) Input Flow Control Ingress SRB
chip_name.FC_RXCSRB_L
chip_name.FC_TXCPAR .

. Output | Flow Control Engress Parity
chip_name.FC_TXCPAR_L
chip_name.FC_RXCPAR)

) Input Flow Control Ingress Parity
chip_name.FC_RXCPAR_L
chip_name.FC_TXCFC

. Input Flow Control Engress FIFO full
chip_name.FC_TXCFC_L
chip_name.FC_RXCFC

Output | Flow Control Ingress FIFO full

A.8 Transactor States for PCI Pins

The transactor does not support tristate PCI pins. A pair of input and output signals are provided
for each corresponding PCI tristate pin to allow aforeign model to simulate the required
functionality of the PCI bus. A foreign model should deposit on the input pins using

XACT _set_state value() and sample on the output pins using XACT _get_state value() at the
appropriate cycles compliant to the PCI Specification. When an operation requires that any tristate
pin be no longer driven, the foreign model should deposit avalueto itsinput signal corresponding
to the inactive state. Otherwise, the network processor will consider any pin with a previously

deposited active value to be asserted.

Table 3. IXP2400 Transactor States for PCI PIns (Sheet 1 of 2)

Transactor State Name

Datasheet
Signal Name

110 Description

chip_name.PCI_CLK

PCI_CLK

Clock is being driven

input by the simulator

chip_name.pci_cluster.pci_pad_arch.bfm_read_PCI_ACK64_L

PCI_ACK64_L output

chip_name.pci_cluster.pci_pad_arch.bfm_write_ PCI_ACK64_L

PCI_ACK64 L | input

chip_name.pci_cluster.pci_pad_arch.bfm_read_PCI_AD_H

PCI_AD_H[63:0] | output

Development Tools User’s Guide

285

Intel® IXP2400/I1XP2800 Network Processors
Transactor States

Table 3. IXP2400 Transactor States for PCI PIns (Continued) (Sheet 2 of 2)

Transactor State Name s%itgmzi:e 1/0 Description
chip_name.pci_cluster.pci_pad_arch.bfm_write_PCI_AD_H PCI_AD_H[63:0] | input
chip_name.pci_cluster.pci_pad_arch.bfm_read_PCI_CBE_L PCI_CBE_L[7:0] | output
chip_name.pci_cluster.pci_pad_arch.bfm_write_PCI_CBE_L PCI_CBE_L[7:0] | input
chip_name.pci_cluster.pci_pad_arch.bfm_read_PCI_DSEL_L PCI_DSEL_L output
chip_name.pci_cluster.pci_pad_arch.bfm_write_PCI_DSEL_L PCI_DSEL_L input
chip_name.pci_cluster.pci_pad_arch.bfm_read_PCI_FRAME_L PCI_FRAME_L | output
chip_name.pci_cluster.pci_pad_arch.bfm_write_ PCI_FRAME_L PCI_FRAME_L | input
chip_name.pci_cluster.pci_pad_arch.bfm_read_PCI_GNT_L PCI_GNT_L[1:0] | output
chip_name.pci_cluster.pci_pad_arch.bfm_write_PCI_GNT_L PCI_GNT_L[1:0] | input
chip_name.pci_cluster.pci_pad_arch.bfm_read_PCI_IDSEL_H PCI_IDSEL_H output
chip_name.pci_cluster.pci_pad_arch.bfm_write_PCI_IDSEL_H PCI_IDSEL_H input
chip_name.pci_cluster.pci_pad_arch.bfm_read_PCI_INTA_L PCI_INTA_L output
chip_name.pci_cluster.pci_pad_arch.bfm_write_PCI_INTA_L PCI_INTA_L input
chip_name.pci_cluster.pci_pad_arch.bfm_read_PCI_INTB_L PCI_INTB_L output
chip_name.pci_cluster.pci_pad_arch.bfm_write_PCI_INTB_L PCI_INTB_L input
chip_name.pci_cluster.pci_pad_arch.bfm_read_PCI_IRDY_L PCI_IRDY_L output
chip_name.pci_cluster.pci_pad_arch.bfm_write_PCI_IRDY_L PCI_IRDY_L input
chip_name.pci_cluster.pci_pad_arch.bfm_read_PCI_PAR_H PCI_PAR_H output
chip_name.pci_cluster.pci_pad_arch.bfm_write_PCI_PAR_H PCI_PAR_H input
chip_name.pci_cluster.pci_pad_arch.bfm_read_PCI_PAR64_H PCI_PAR64_H output
chip_name.pci_cluster.pci_pad_arch.bfm_write_PCI_PAR64_H PCI_PAR64_H input
chip_name.pci_cluster.pci_pad_arch.bfm_read_PCI_PERR_L PCI_PERR_L output
chip_name.pci_cluster.pci_pad_arch.bfm_write_PCI_PERR_L PCI_PERR_L input
chip_name.pci_cluster.pci_pad_arch.bfm_read_PCI_REQ_L PCI_REQ_L[1:0] | output
chip_name.pci_cluster.pci_pad_arch.bfm_write_PCI_REQ_L PCI_REQ_L[1:0] | input
chip_name.pci_cluster.pci_pad_arch.bfm_read_PCI_REQ64_L PCI_REQ64_L output
chip_name.pci_cluster.pci_pad_arch.bfm_write_ PCI_REQ64_L PCI_REQ64_L input
chip_name.pci_cluster.pci_pad_arch.bfm_read_PCI_RST_L PCI_RST_L output
chip_name.pci_cluster.pci_pad_arch.bfm_write_ PCI_RST_L PCI_RST_L input
chip_name.pci_cluster.pci_pad_arch.bfm_read_PCI_SERR_L PCI_SERR_L output
chip_name.pci_cluster.pci_pad_arch.bfm_write_PCI_SERR_L PCI_SERR_L input
chip_name.pci_cluster.pci_pad_arch.bfm_read_PCI_STOP_L PCI_STOP_L output
chip_name.pci_cluster.pci_pad_arch.bfm_write_ PCI_STOP_L PCI_STOP_L input
chip_name.pci_cluster.pci_pad_arch.bfm_read_PCI_TRDY_L PCI_TRDY_L output
chip_name.pci_cluster.pci_pad_arch.bfm_write_PCI_TRDY_L PCI_TRDY_L input

286

Development Tools User’s Guide

INlal.

Intel® IXP2400/I1XP2800 Network Processors
Transactor States

Table 4. IXP2800 Transactor States for PCI PIns (Sheet 1 of 2)

Datasheet Signal

Transactor State Name Name 1/0 Description
chip_name.PCI_CLK PCI_CLK input
chip_name.pads.IXP_BFM_PCI_ACK64_L PCI_ACK64_L output
chip_name.pads.BFM_IXP_PCI_ACK64_L PCI_ACK64_L input

chip_name.pads.IXP_BFM_PCI_AD_H

PCI_AD_H[63:0] output

chip_name.pads.BFM_IXP_PCI_AD_H

PCI_AD_H[63:0] | input

chip_name.pads.IXP_BFM_PCI_CBE_L

PCI_CBE_L[7:0] output

chip_name.pads.BFM_IXP_PCI_CBE_L

PCI_CBE_L[7:0] | input

chip_name.pads.IXP_BFM_PCI_DSEL_L

PCI_DSEL_L output

chip_name.pads.BFM_IXP_PCI_DSEL_L

PCI_DSEL_L input

chip_name.pads.IXP_BFM_PCI_FRAME_L

PCI_FRAME_L output

chip_name.pads.BFM_IXP_PCI_FRAME_L

PCI_FRAME_L input

chip_name.pads.IXP_BFM_PCI_GNT_L

PCI_GNT_L[1:0] output

chip_name.pads.BFM_IXP_PCI_GNT_L

PCI_GNT_L[1:0] | input

chip_name.pads.IXP_BFM_PCI_IDSEL_H PCI_IDSEL_H output
chip_name.pads.BFM_IXP_PCI_IDSEL_H PCI_IDSEL_H input
chip_name.pads.IXP_BFM_PCI_INTA_L PCIL_INTA L output
chip_name.pads.BFM_IXP_PCI_INTA_L PCI_INTA_L input
chip_name.pads.IXP_BFM_PCI_INTB_L PCI_INTB_L output
chip_name.pads.BFM_IXP_PCI_INTB_L PCI_INTB_L input
chip_name.pads.IXP_BFM_PCI_IRDY_L PCI_IRDY_L output
chip_name.pads.BFM_IXP_PCI_IRDY_L PCI_IRDY_L input
chip_name.pads.IXP_BFM_PCI_PAR_H PCI_PAR_H output
chip_name.pads.BFM_IXP_PCI_PAR_H PCI_PAR_H input
chip_name.pads.IXP_BFM_PCI_PAR64_H PCI_PAR64_H output
chip_name.pads.BFM_IXP_PCI_PAR64_H PCI_PAR64_H input
chip_name.pads.IXP_BFM_PCI_PERR_L PCI_PERR_L output
chip_name.pads.BFM_IXP_PCI_PERR_L PCI_PERR_L input

chip_name.pads.IXP_BFM_PCI_REQ_L

PCI_REQ_L[1:0] output

chip_name.pads.BFM_IXP_PCI_REQ_L

PCI_REQ_L[1:0] |input

chip_name.pads.IXP_BFM_PCI_REQ64_L

PCI_REQ64_L output

chip_name.pads.BFM_IXP_PCI_REQ64_L PCI_REQ64_L input
chip_name.pads.IXP_BFM_PCI_RESET_L PCI_RST_L output
chip_name.pads.BFM_IXP_PCI_RESET_L PCI_RST_L input
chip_name.pads.IXP_BFM_PCI_SERR_L PCI_SERR_L output
chip_name.pads.BFM_IXP_PCI_SERR_L PCI_SERR_L input
chip_name.pads.IXP_BFM_PCI_STOP_L PCI_STOP_L output

Development Tools User’s Guide

287

Intel® IXP2400/I1XP2800 Network Processors u
Transactor States In

Table 4. IXP2800 Transactor States for PCI PIns (Continued) (Sheet 2 of 2)

Transactor State Name Datasplgre;gfignal I/0 Description
chip_name.pads.BFM_IXP_PCI_STOP_L PCI_STOP_L input
chip_name.pads.IXP_BFM_PCI_TRDY_L PCI_TRDY_L output
chip_name.pads.BFM_IXP_PCI_TRDY_L PCI_TRDY_L input

288 Development Tools User’s Guide

intel.

Developer Workbench Shortcuts

B

B.1

Table 5.

* A menu command
¢ A keyboard shortcut

Introduction

¢ A toolbar button

Developer Workbench Shortcuts—Files

The following tables summarize most these tools.

In the Developer Workbench there are at least three ways to initiate an action:

Button Keyboard Menu Action Reference
CTRL+N File, New Create new file. Section 2.5.1.
CTRL+O File, Open Open a file. Section 2.5.2.
CTRL+S File, Save Save a file. Section 2.5.4.

ALT+F+A File, Save As Save copy of file. Section 2.5.5.
ALT+F+L File, Save All Save all open files. Section 2.5.6.
ALT+F+U File, Print Setup Set up the printer Section 2.5.8.1.
properties.
CTRL+P File, Print Print file in active Section 2.5.8.2.
window.
: . Select from the four most .
ALT+F+F File, Recent Files recently opened files. Section 2.5.2.
File, Close, or .) .
ALT+F+C Close the active window. | Section 2.5.3.

Window, Close

ALT+SHIFT+B

Moves back to previous
window.

ALT+SHIFT+F

Moves forward one
window.

Development Tools User’s Guide

289

Intel® IXP2400/1XP2800 Network Processors
Developer Workbench Shortcuts

290

Table 6.

Table 7.

Developer Workbench Shortcuts—Projects

In

Button Keyboard Menu Action Reference
ALT+F+W File, New Project Create a new project. Section 2.3.1.
ALT+F+R File, Open Project Open a project. Section 2.3.2.
ALT+F+V File, Save Project Save project. Section 2.3.3
ALT+F+E File, Close Project Close a project. Section 2.3.4.
Project, Insert

ALT+P+I Assembler Source I_nser_t Assemb_ler SOUrce | section 2.5.9.1.

- files into a project.

Files
Project, Insert Insert Compiler source)
Compiler Source Files | files into a project. Section 2.5.9.1.
Project, Insert Script | Insert script files into a)

ALT+P+S Files project. Section 2.5.9.1.
Project, Update Update project)

ALT+P+U Dependencies dependencies. Section 2.6.1.
Project, System Specify system .

ALT+P+C Configuration configuration. Section 2.9.

Developer Workbench Shortcuts—Edit (Sheet 1 of 2)

Button Keyboard Menu Action Reference
CTRL+Z Edit, Undo Undo. Section 2.5.10.
CTRL+Y Edit, Redo Redo. Section 2.5.10.
CTRL+X Edit, Cut Cut. Section 2.5.10.
CTRL+C Edit, Copy Copy selected text. Section 2.5.10.
CTRL+V Edit, Paste Paste. Section 2.5.10.
DELETE DELETE key Delete. Section 2.5.10.

CTRL+A Edit, Select All Select all text in the file. | Section 2.5.10.
CTRL+F Edit, Find Find text in a text file. Section 2.5.10.

Z| |[3]

CTRL+SHIFT+F

Find next.

Section 2.5.10.

4]

CTRL+SHIFT+F

Find Previous

Same as Find Next only
you must click Up in the
Direction area first.

Development Tools User’s Guide

INlal.

Intel® IXP2400/1XP2800 Network Processors
Developer Workbench Shortcuts

Table 7. Developer Workbench Shortcuts—Edit (Sheet 2 of 2)
Button Keyboard Menu Action Reference
ALT+E+I Edit, Find in Files Find in text files. Section 2.5.12.
In the Replace dialog
box, replace the items
CTRL+H Edit, Replace currently selected in the | Section 2.5.10.
file with the text in the
Replace with box.
To search for text in the active file, type the text in the
Search box and press ENTER. The Workbench
highlights the next occurrence of the text in the file.
|Seamh text here v” Search Press ENTER again to go to the next occurrence of
the same text. This feature searches only the active
file. You can also select previously searched text to
search from the list by pressing the button on the right.
Table 8. Developer Workbench Shortcuts—Bookmarks
Button Keyboard Menu Action Reference
Edit, Bookmark, Insert/Remove :
CTRL+F2 Insert/Remove bookmark. Section 2.5.11.
F2 Edit, Bookmark, Go Go to the next bookmark. | Section 2.5.11.
To Next
SHIET+E2 Edit, Bo_okmark, Go Go to previous Section 2.5.11.
To Previous bookmark.
CTRL+SHIFT+F2 Eﬁ't’ Bookmark, Clear Clear all bookmarks. Section 2.5.11.
Table 9. Developer Workbench Shortcuts—Breakpoints
Button Keyboard Menu Action Reference
Debug, Breakpoint, Insert/Remove .
Fo Insert/Remove breakpoint. Section 2.13.10.4, .
Debug, Breakpoint, . .
@ CTRL+F9 Enable/Disable Toggle enable/disable. Section 2.13.10.5.
Debug, Breakpoint, . . .
@ ALT+D+B+D Disable All Disable all breakpoints. | Section 2.13.10.5.
Debug, Breakpoint, . .
. ALT+D+B+A Enable Al Enable all breakpoints. Section 2.13.10.5.
Debug, Breakpoint, . .
@ ALT+D+B+R Remove Al Remove all breakpoints. | Section 2.13.10.4.

Development Tools User’s Guide

291

Intel® IXP2400/1XP2800 Network Processors
Developer Workbench Shortcuts

292

Table 10. Developer Workbench Shortcuts—Builds

INlal.

Button Keyboard Menu Action Reference
||.‘|?f CTRL+F7 Build, Assemble Assemble. Section 2.6.3.
-3 CTRL+SHIFT+F7 | Build, Compile Compile. Section 2.7.3.
**+ |F7 Build, Build Link. Section 2.9.
IT1 | ALT+F7 Build, Rebuild Rebuild. Section 2.9.
Section 2.5.11,
—+ Section 2.5.12,
T F4 Go to next error/tag. Section 2.6.4,
Section 2.7.4.
Section 2.5.11,
*3 SHIFT+F4 Go to previous error/tag. | Section 2.6.4,
Section 2.7.4.
Table 11. Developer Workbench Shortcuts—Debug
Button Keyboard Menu Action Reference
Debug, Start . .
@ F12 Debugging Start debugging. Section 2.13.2.
Debug, Stop .)
CTRL+F12 Debugging Stop debugging. Section 2.13.2.

Table 12. Developer Workbench Shortcuts—Run Control (Sheet 1 of 2)

=

Run To Cursor

Button Keyboard Menu Action Reference
E F5 (Daibug, Run Control, Start simulation. Section 2.13.9.10, .
@ SHIFT+F5 gt%?)“g' Run Control, | 565 simulation. Section 2.13.9.10, .
F10 gtzk;ug’vzfn Control, Step over. Section 2.13.9.3.
F11 gg;“%tf“” Control, tsrffepahnfnf)?)‘.’mp"er Section 2.13.9.4.
SHIFT+F11 gt‘z:)“g'u?”” Control,] Step cut n(ls)o_mp”er Section 2.13.9.5.

CTRL+F10 Debug, Run Control, Run to cursor. Section 2.13.8.4.

Development Tools User’s Guide

u Intel® IXP2400/1XP2800 Network Processors
In o Developer Workbench Shortcuts

Table 12. Developer Workbench Shortcuts—Run Control (Sheet 2 of 2)

Button Keyboard Menu Action Reference
Debug, Run Control, . . .
@ SHIFT+F10 Step Microengines Step Microengines. Section 2.13.9.2.
CTRL+SHIFT+F12 | peoud: Run Control, - goger Section 2.13.9.11, .
%“j None Debug, Run Control | Toggle View Section 2.13.8.5

Table 13. Developer Workbench Shortcuts—View

Button Keyboard Menu Action Reference
CTRL+F6 Window, <filename> Ma_ke next window Section 2.2.2.
active.
)) Toggle visibility of Output :
@ ALT+V+O View, Output Window | -=7 " " Section 2.2.2.
View, Project Toggle visibility of the .
E ALT+V+P Workspace project workspace. Section 2.4.
- ALTAVAD+C View, Debug' Window, | Toggle VISIbI!Ity of_ Section 2.13.6.
Command Line Command Line window.
View, Debug Window, | Toggle visibility of Data .
ALT+V+D+D Data Watch Watah windown Section 2.13.12.
View, Debug Window, | Toggle visibility of .
ALT+V+DHM Memory Watch Memory Watch window. Section 2.13.13
ALT+V+D+H Vl_ew, Debug Window, Tc_)ggle visibility of History Section 2.13.16.
History window.
View, Debug Window, | Toggle visibility of Thread .
ALT+V+D+T Thread Status Status window. Section 2.13.18.
View, Debug Window, | Toggle visibility of Queue .
ALTHVFDHQ Queue Status Status window. Section 2.13.17.
= ALT+V+D+R View, Debug Window, | Toggle V|s_|b|I|ty of Run Section 2.13.9.
Run Control Control window.
View, Debug Window, | Toggle visibility of Packet
@ ALT+V+D+P Packet Simulation Simulation Status Section 2.13.19.
Status window.

Development Tools User’s Guide 293

intgl.
Intel XScale® Core Memory Bus
Functional Model C

This document describes two Application Program Interfaces (API): one is embedded in the

I XP2800/1XP2400 tranmctor and the other provided by a Bus Function Model (BFM) which
simulates the Intel X Scale® Core Memory Bus (CMB) through the transactor Foreign Model
Interface (FMI).

The CMB BFM isinvoked by the I XP2800/1X P2400 transactor through transactor command, and
synchronl zed with the same event control logic over the transactor. This feature enables the C-
model simulation environment to run Intel X Scale® native code through C/C++ API’s provided by
the I XP2800/1X P2400 transactor and CMB BFM.

The CMB BFM provides callsfor reading and writing Transactor memory and caJIbacksfor
Transactor to Intel X Scale® interrupt not|f|cat|0ns A user can develop an Intel XScale® C/C++
application, however the Intel X Scale® execution will not be timing accurate. Using the CBM
BFM, no Intel X Scale® instruction fetches occur on the Transactor. The only throttling of Intel

X Scale® execution is the number of outstanding memory operations that can be supported by the
Transactor’s Intel X Scale® Gasket, and the user must make all memory references to Transactor
memory using CMB BFM calls. Thisis very different than the real environment where all Intel

X Scale® instruction or data cache misses would generate a Transactor (CBM BFM) memory
reference, and no CBM BFM API callswould be necessary for accessing data on the Transactor,
because the Transactor memory would be directly accessible to the Intel X Scale® processor (i.e. it
resides on the CMB).

C.1 Summary of APIs

There are two sets of APIsthat were programmed to access Intel X Scale®-related transactor states:
oneisreferred to as XACT_1 O and the otherisCMB_10O.

The XACT_IO APl isaset of C functions that could be linked to emulate the Intel X Scale®
transactions through a non-simulation event, i.e. the API provides means to query/change
transactor state directly, without an% simulation cycles. In contrast, the CMB_10 API provides a
way of simulating the | nteI XScale™ transaction by depositing the CMB with | proper signalsto
trigger the Intel X Scale® transaction(s) through X P2800/1X P2400 gasket such as load or store
operation. The XACT _10 is embedded in each release of 1XP2800 Transactor. To access the
XACT_IO API, the user must link with aC header file, XT_WB_xactio_api.h, which includesthe
definition of XACT_10O API and this header file is part of transactor release.

The CMB_IO API is supported by the CMB BFM, cmb_bfm_ixp2800.dll /
cmb_bfm_ixp2400.dil. The BFM isimplemented as aWin32 DLL that supportsthe FMI that is
defined in the I XP2800/1 X P2400 transactor. To accessthe CMB_IO API, the program needs to be
linked with the header files, cmb_api.h and cmb_api_ex.h.

Development Tools User’s Guide 295

Intel XScale® Core Memory Bus Functional Model In

Intel® IXP2400/I1XP2800 Network Processors u tel
®

C.l1

C.1.2

C.1.3

296

XACT_IO API

There are ten API functions exported from the XACT_10. Among the ten API functions, two
functions are programmed to support write/read to the | X P2800/1 X P2400 Intel X Scale® 32-hit
address space, six functions are devised to support interface for handling interrupt requests, and
two functions are provided for sanity check.

simRead32 / simWrite32

These two functions are provided to read/write to any 32-bit address space. The address mapping is
programmed according to the I XP2400/1XP2400 Network Processor Programmer’s Reference
Manual.
int smRead32(char chip_name,
unsigned int addr,
unsigned int *data)

int smWrite32(char *chip_name,
unsigned int addr,
unsigned int data)

where:

chip_name: name of the instantiated | X P2800/I X P2400 instance,
addr: 32-bit Intel XScale® address,

data: write data or pointer to return read data (* data),
return value: 1 for success, -1 for fail

simIntConnect / simintEnable / simIntDisable
cmblintConnect/cmbintEnable/cmblintDisable

The simintXXX functions are XACT_IO API, embedded in the Transactor (both I XP2800 and
I XP2400), and the cmblntX XX functions are CMB_10 API which is supported by the Intel

X Scale®/gasket BFM. Both sets of AP are function calls that handle Intel X Scale®/gasket
interrupts. The difference isin the implementation.

The XACT_10O handles the interrupt service by registering a CSR watch state to transactor, which
in turn calls the service routine when the interrupt CSR state is changed.

In contrast, the CMB_ 1O implements the same set of routines by checking the IRQ/FIQ pinson
Intel XScale/CMB BFM. The service routines will be called when the BFM detects that the
respective pin is asserted.

simlntConnectl RQ/simIntConnectFI Q provide interface for user program to register a callback
function to be invoked once the interrupt status gets changed.

int simintConnectl RQ(char *chip_name,
unsigned int intVector,
void (*isrPtr)(unsigned int data),
unsigned int usr Data)

Development Tools User’s Guide

Cl4

C.15

where:
chip_name:

intVector:

isrPtr:
usrData:

return value:

Intel® IXP2400/1XP2800 Network Processors
Intel XScale® Core Memory Bus Functional Model

int simlntConnectFI Q(char *chip_name,
unsigned int intVector,
void (*isrPtr)(unsigned int data),
unsigned int user Data)

name of the instantiated | X P2800/1 X P2400 instance,

0..31 in correspond to the interrupt vector defined in the EAS(CSR
description, chapter 5, section 5.10),

pointer to the registered callback function,
data to be returned with the callback function,

1 for success, -1 for fail

simIntEnablelRQ / simIntEnableFIQ / simIntDisablelRQ /
simIntDisableFIQcmbiIntEnablelRQ / cmbintEnableFIQ /
cmbintDisablelRQ / cmbintDisableFIQ

These four functions provide the interface to enable/disable interrupt callback service.

where:
chip_name:

intVector:

return value:

int smintEnablel RQ(char *chip_name,
unsigned int intVector)

int simlntEnableFl Q(char *chip_name,
unsigned int intVector)

int simlntDisablel RQ(char *chip_name,
unsigned int intVector)

int ssimlntDisableFI Q(char *chip_name,
unsigned int intVector)

name of the instatiated 1XP2800/1X P2400 instance,

0..31 in correspond to the interrupt vector defined in the EAS(CSR
description, chapter 5, section 5.10),

1 for success, -1 for fail

IS_CMB_ADDR_RESERVED /IS_CMB_INT_RESERVED

These two functions, only defined in XACT _IO, provide away to verify if acalling routine will
access an unimplemented area. The result of such accessis considered as unpredictable.

intIS CMB_ADDR_RESERVED(unsigned int addr)
intIS CMB_INT_RESERVED(unsigned int intVector)

Development Tools User’s Guide 297

Intel XScale® Core Memory Bus Functional Model In

Intel® IXP2400/I1XP2800 Network Processors u tel
®

C.1.6

C.1.7

298

where:

addr: 32-bit Intel XScale® address,

intVector: 0..31in correspond to the interrupt vector defined in the EAS (chapter 2,
section 2.21),

return value: 1if the address/interrupt-vector is reserved, otherwise it returns 0

Additional CMB_IO API

The CMB_IO API aso provides several routines that emulate the Intel X Scal e® load, store, and
swap bus operations. The cmbRead32 and cmbWrite32 routines are similar to the smRead32 and
simWrite32 routines except that the cmbX XXX routines return a request-id and the operation is
completed when cmbSetCb callback occurs, after the appropriate simulation delay. If the operation
was aread then cmbSetCb will also return data.

These two sets of API functions are one-to-one mapping from one set to the other. The purpose of
providing two sets of API isto provide the basic functions that supports software group to develop
code for Intel XScale® related library file, in which all the accesses from the Intel X Scale® are 32-
bit, and to support for amore generic use. i.e. A more comprehensive transaction types, such as
long-burst transactions, atomic transactions, etc. are covered.

cmbRead32 / cmbWrite32

These two functions provide the interface for issuing a Intel X Scale® load/store of single long-
word (LW).

If the Intel X Scale® Gasket command FIFO isfull thenthe CMB_ERROR_QUEUE_FULL code
is returned.

If no callback isregistered then the CMB_ERROR_NO_CB_REGISTER codeis returned.
int cmbRead32(char *chip_name,

unsigned int addr)

int cmbWrite32(char *chip_name,
unsigned int addr,
unsigned int data)

where:

chip_name: name of the instantiated | XP2800/I XP2400 instance,

addr: 32-bit Intel XScale® address,

data: write data,

return value: request-id (positive value, 0-n), or error code (negative value). Such as:

-3: no callback function registered
CMB_ERROR_NO_CB_REGISTER,
-2: request queueisfull CMB_ERROR_QUEUE_FULL

Development Tools User’s Guide

In

C.1.8

C.1.9

®

Intel® IXP2400/1XP2800 Network Processors
Intel XScale® Core Memory Bus Functional Model

cmbSetCb

The cmbSetCb function provides interface to register a callback function once the CMB BFM
finishes the load transaction.

int cmbSetCb(char *chip_name,
void (*fnPtr)(int regld,
unsigned int *retData,
unsigned int outData),
unsigned int inData)

where:

chip_name: Name of the instantiated | XP2800/1X P2400 instance,

fnPtr: Pointer to the registered callback function which isinvoked by the BFM
when BFM received data valid signal from gasket,

Reqld: The reguest-id which was returned by cmbRead32/cmbWrite32,

retData: Pointer to returned read data,

outData: The data passed by callee which isthe same asinData

return vaue: 1 for success, <O for fail.

If an error is detected, bits 15-0 of the return value will contain the request 1D that failed, bits 30-16
of the return value will contain the error code, and bit 31 will be set (making the return value
negative).
Possible failure codes are

¢ CMB_ERROR_BUS ERROR —Bus Error asserted by the Intel X Scale® gasket

¢ CMB_ERROR _TIME_OUT - Timed out waiting for return data.

cmbSwapRead32 / cmbSwapWrite32

These two functions are used for atomic operations, which are programmed to support Intel
X Scale® SWP/SWPB instructions.

The cmbSwapWrite32 is used if no read back is needed for Atomic operation. Intel X Scale® can

send awrite(store) command with the alias address but without XSOCBI_L OCK asserted. In this

case the callback for the cmbSwapWrite32 will not wait for read data to be returned, but occur as
soon as the request is acknowledged.

The following rules are enforced by the Intel X Scale® Gasket for Atomic commandsin Transactor
1/O space:

* A swap operation to the SRAM/Scratch space and the Issue I/O Request signal is not asserted,
then the Gasket generates Atomic operation command to the Transactor.

* A swap operation to all addresses other than the SRAM/Scratch space will be treated as
Separate read and write commands, i.e. no Atomic command is generated.

¢ A swap operation to the SRAM/Scratch space and the Issue I/0O Request signal is asserted will
be treated as separate read and write commands. i.e. no Atomic command is generated.

Development Tools User’s Guide 299

Intel® IXP2400/1XP2800 Network Processors u
Intel XScale® Core Memory Bus Functional Model In o

Note: TheIssue /0O Request signal is asserted by the Intel X Scale® core when a data cache request is for
amemory region with C=0 and B=0 (Uncachable and Unbufferable). The CMB BFM API does not
provide a means of asserting Issue I/0 Request, so al swap commands to SRAM or Scratch
memory generate Atomic operations and references to any other address space will be treated as
separate read and write commands.

int cmbSwapRead32(char * chip_name,
unsigned int addr,
unsigned int byteEnable)

int cmbSwapWrite32(char *chip_name,
unsigned int addr,
unsigned int data,
unsigned int byteEnable)

where:

chip_name: name of the instantiated 1 XP2800/1 X P2400 instance,
addr: 32-bit Intel X Scale® address,

data: write data,

byteEnable: mask bit for each byte (1: byte enable, 0: byte masked),
return value: request-id or

-1: byteEnable invalid, Write only (CMB_FAIL)

-3: no callback function registered
(CMB_ERROR_NO_CB_REGISTER),

-2: request queueisfull (CMB_ERROR_QUEUE FULL)

The error codes are defined in Cmb_Client.h.

C.1.10 cmbBFMRead32 / cmbBFMWrite32

These two functions are provided to support a more generic load/store instructions —i.e. burst

transfers.
int cnbBFM Read32(char *chipName,
unsigned int addr,
unsigned int size)
int cnbBFMWrite32(char *chipName,
unsigned int addr,
unsigned int size,
unsigned int byteEnable,
unsigned int *data)
where:
chip_name: name of the instatiated 1XP2800/I X P2400 instance,
addr: 32-hit Intel X Scale® address,
size: size of the request (defined by enum CmbSize),
0: one-byte,
1: 2-byte,

300 Development Tools User’s Guide

C.2

C.3

Intel® IXP2400/1XP2800 Network Processors
Intel XScale® Core Memory Bus Functional Model

2: 4-byte,

3: 8-byte,

4. 12-byte,

5: 16-byte and

6 :32-byte,
byteEnable: mask hit for each byte (1: byte enable, 0: byte masked),
data: pointer to write data

return value: request-id or
-3: no callback function registered
(CMB_ERROR_NO_CB_REGISTER),
-2: request queueisfull (CMB_ERROR_QUEUE FULL)

ENUMSs

The following enum tranglates a size (byte count) into the CMB Size (cbiSize) encoding.
typedef enum __cmbSize{
byte=0,

word_half,
word,
word_x2,
word_x3,
word_x4,
word_x8,
invalid word
} CmbSize;

Defines

Completion codes:
#define CMB_SUCCESS 1 // Successful completion
#define CMB_FAIL -1 // Possible causes:
// Byte Enable invalid
or
// read access to Write
// only location
#define CMB_ERROR_NO_CB_REGISTER-3// No callback function
// registered
#define CMB_ERROR _QUEUE_FULL-2// Request queue is full
#define CMB_ERROR_BUS ERROR 1// Bus error asserted by
// the memory bus
interface
#define CMB_ERROR_TIME_OUT 2// Timeout on memory bus
// request

Development Tools User’s Guide 301

intel.

PCI Bus Functional Model D

D.1

D.2

D.3

The PCI Bus Functional Model allows simulation of the PCI unit in the network processor, as a
master issuing commands to a PCI slave devices modeled by the PCI BFM.

The PCI BFM functions like any other BFM: it is loaded through the “foreign_model” command
and it implements a set of console functions for access. This section will give an overview to the
usage of the PCI BFM—more information can be found in the pciconfx.h header file.

Loading the BFM

The PCI BFM can be loaded into the transactor via the Workbench Simulation Options — Foreign
Model tab. If the transactor is run on the command line without the Workbench, it can be loaded
manually on the command line or in an IND script.

To load the BFM from the transactor command line, use the foreign_model command:

forei gn_nodel pci_bfnm400.dl | <name>

The parameter name can be any valid identifier. Thislinewill load the DLL into the transactor; for
the IXP2800, simply substitute pci_bfm2800 for pci_bfm2400.

Initializing the BFM

The PCI BFM will initialize its console functions and internal variables during the transactor
initialization phase. When running under the Workbench, initialization is automatically performed
when a debugging session is started. When running on the command line console mode without the
Workbench, calling @init_I XP2400 or @init_|XP2800 on the command line will lead to the
initialization of the transactor and BFM. Thisinit sequence must be called before any of the
console functions are registered.

Creating a Device

The general procedure for instantiating a device consists of defining the device, setting its
attributes, and connecting the device. These are normally donein an IND script. In the following
example, MODE is defined as 1, indicating that the device is aslave—currently only slave devices
are supported.

pci _define_devi ce(i Devld, MODE);
pci _set_paran(i Devlid, MEM SPACE, i MenBase, i MenRange);
pci _connect _devi ce(sr_chi p_nane, iDevld);

Development Tools User’s Guide 303

Intel® IXP2400/I1XP2800 Network Processors u
PCI Bus Functional Model Ir] o

Of course, an additional set parameter line would be necessary for a device that supports both 10
and memory space. When the device is connected, the chip name must be passed to the function.
This specifies the name of the chip and binds the get and set signal functions to that chip name.
After at least one deviceisinitialized, the PCI BFM will respond to activity on the PCI bus.

D.4 Calling Console Functions from Another Foreign
Model

Another foreign model can call the PCI BFM console functions by including the header file
“pciconfx.h” and linking against the library “pci_bfm2X00.lib.” Thesefiles are located in
“me_toolg/include/” and “me_toolg/lib/”, respectively.

D.5 Setting a Callback Function

A foreign model, by calling the “pci_register_callback” function can register afunction of its
choice, one per device, for callback. Upon completion of atransaction, the PClI BFM will make a
call to any functions registered with the devices involved. Details of the transaction are passed
through the callback parameters.

D.6 Header file pciconfx.h

/** @ile pciconfx.h

The PCI Foreign Model Console Functions will allow users to test
microcode doing read, write and DMA to PCl slave devices attached
to the 1XP2000.

These console functions are to be executed on the transactor con-
sole command line interface. They can also be called via the
exported C-API by a C program in the form of another foreign model
DLL. The functions will have the following characteristics:

1. The functions can be called by IND scripts or by hand when the
simulator is in the standalone console mode or under the Work-
bench. Additional GUI can be added onto the Workbench to automate
the calling of these functions for configuration purpose in a sim
ilar fashion as the PacketSim configuration. These functions are
also exported from the DLL so that they can be called from yet
another DLL programmatically (C-callable).

2. The execution of these functions does not involve simulation
cycles. In other words, the execution of these functions does not
cause any clocks in the simulator to advance. They can be called at
the console command line or in a Watch function defined by IND

304 Development Tools User’s Guide

Intel® IXP2400/I1XP2800 Network Processors
PCI Bus Functional Model

script.

3. The return value of the console functions are normally zero as
they cannot be returned to the caller (Workbench). In cases where
there are return values, they are intended to be used by C-Inter-
preter expressions in an IND script or by a C program via the
exported C-API.

The following features will be supported by the console functions:

1. Ability to instantiate up to 2 slave devices that respond to
transactions in a specified address range.

2. Slave devices have distinct 1/0 and memory spaces. Each loca-
tion is initialized with its address. Simulation of 32-bit
devices.

3. Option to print details of transactions initiated by the
I1XP2000 to the PCI foreign model acting as a slave.

4. Ability to read and write slave memory locations by user
scripts.

5. Ability to check slave address contents against expected value.
This will be useful in verification.

6. Option to print details of initiator transactions issued by the
PCI foreign model as a master including the response from the
1XP2000.

7. Ability to interface with another DLL to provide transaction
notification.

*/

/> 111777777777/ 77777777/7777777/777777////77777////77/7/7////777/
/17777777777

PCI Foreign Model Console Functions
L117777777777777/777777777777777/77777/7///777//7///7777/7/7/77777/
/17777777 */

#ifndef _ PCICONFX_H
#define _ PCICONFX_H

Development Tools User’s Guide 305

PCI Bus Functional Model I']

Intel® IXP2400/I1XP2800 Network Processors u tel
®

306

#ifndef DLLIMPEX
#define DLLIMPEX _ declspec(dllimport)
#endif

/**
The pci_define_device function defines a PCl slave or master
device

@param device_id:
A unique integer used to identify the device in subse-

quent
function calls. This can take a value of 0 or 1.
@param mode:
1 = slave.
All other values are Reserved and should not be used.
@return 1 on succes, 0 on failure
*/
DLLIMPEX int pci_define_device(int device_id,
int mode);
/**
The pci_set _param function specifies various parameters in a
previously defined device.
Each slave device can respond to one 1/0 space address range
and
one memory space address range.
@param device_id The device_ id used in conjunction with
pci_define_device()
@param io_memory O = 1/0 space; 1 = memory space
@param start_addr Start address for the range. Though there
is
no restriction on alignment imposed by this function,
PCI
devices in practice must be aligned to a boundary
divisible

by their range. See the PCl Spec "Configuration
Space' for
more info.
@param size Size of address range in bytes
@return 1 on success, 0 on failure
*/

Development Tools User’s Guide

u Intel® IXP2400/I1XP2800 Network Processors
o PCI Bus Functional Model

DLLIMPEX int pci_set param(int device_id, int io_memory, int
start_addr, int size);

/**
The pci_connect_device function connects a device to the PCI
bus
on a specific chip.
The normal sequence of initialization is as follows.
-# pci_define_device()
-# pci_set _param(1/0 space) | pci_set_param(memory space)
-# pci_connect_device()
@param chip_name The name of the chip
@param device_id The device_id used with pci_define_device()
and pci_set_param(Q)
@return 1 on succes, 0 on failure
*/

DLLIMPEX int pci_connect_device(char *chip_name, int device_id);

/**

pci_remove_device disconnects a device and then deletes it.
Essentially,

the function performs the inverse operations of
pci_define_device

and pci_connect_device.

@param iDev The device ID of the device to be removed. The
device
will be disconnected from the PCl Bus and
then deleted.
The device ID can be re-used in new calls
to
pci_define_device
@return 1 on success, 0 on failure
*/
DLLIMPEX int pci_remove_device(int iDev);

/**
The pci_slave_read function reads a slave device"s memory.

Development Tools User’s Guide 307

Intel® IXP2400/I1XP2800 Network Processors u
PCI Bus Functional Model Ir] o

It provides a backdoor mechanism to read memory contents
from the device.

Address should fall on 32-bit dword boundaries. Those that
do not will be rounded to the corresponding dword. For
example, for address 2, dword O (bytes 0-3) will be

returned.

*/

@param io_space
0 = use 1/0 space,
1 = use memory space
@param address A 32-bit pci address within the device range.
This is the full PCl address, not the address
relative to the device"s base address.
@return The dword containing the specified address. See
the notes above.

DLLIMPEX int pci_slave_read(int device_id,

/**

error

do

*/

int io_space,
int address);

The pci_slave _check function reads a slave device®"s memory,
checks it against the expected data item, and prints an

message if the data compare fails.
Addresses should fall on 32-bit dword boundaries. If they

not, the dword line will be returned. Ex. for address 5, the
second dword (bytes 4-7) will be returned. The calling
function must use pci_slave read, and mask the returned
contents accordingly.

@param io_space
0 = use 1/0 space,
1 = use memory space
@param address The full PCl address, not the address
relative to the device"s base address.
@oaram data The expected data to be compared against
@return 1 on succes, 0 on failure

DLLIMPEX int pci_slave_check(int device_id,

308

int 1o_space,
int address,

Development Tools User’s Guide

u Intel® IXP2400/I1XP2800 Network Processors
o PCI Bus Functional Model

int data);

/**
The pci_slave write function writes to a slave device"s mem-
ory.

ONLY 32-bit data and address are supported.

It provides a backdoor mechanism to initialize memory loca-
tions

in the device.

@param i0_space
0 = use 1/0 space,
1 = use memory space
@param address The full PCl address, not the address
relative to the device"s base address.
@param data The data to be written
@param byte_en The Byte Enables bits [4::0] active low
@return 1 on succes, 0 on failure
*/
DLLIMPEX int pci_slave write(int device_id,
int i0_space,
int address,
int data,
int byte en);

/**

The pci_set_error_level function controls the verbosity of
debug

printout.

@param level Uses codes from [-1 .. 2]

<table>

<tr><td> (-1) prints everything including debug trace
information </td></tr>
<tr><td> (0) prints only informational, warning and
error messages.
Informational messages include all
PCI transaction details. </td></tr>
<tr><td> (1) prints only warning and error messages
</td></tr>
<tr><td> (2) prints only error messages </td></tr>
</table>
@return 1 on succes, 0 on failure
*/

Development Tools User’s Guide 309

Intel® IXP2400/I1XP2800 Network Processors u
PCI Bus Functional Model Ir] o

310

DLLIMPEX int pci_set _error_level(int level);

/**

DLL.

tion)

*/

Register a callback function from another DLL so that any
accesses to slave devices by the IXP can be notified.

Each PCI bus transaction will trigger one callback.
This function is to be called by a C program from another

Parameters for Callback are listed below

Cal lback(
- int dev_id (identifies which device)
- int rw (O=read, 1=write, 2=abnormal termina-
- int space (0=10, 1=Mem)
- int addr (starting address)
- int size (number of 32-bit dwords)
)

DLLIMPEX void pci_register_callback(

addr,
);

int device_id,
void (*fnCallback)(int dev_id, int rw, int space, int
int size)

#endif // __ PCICONFX_H

Development Tools User’s Guide

intel.

SPI4 Bus Functional Model E

E.1l

E.2

This chapter describes two Application Program Interfaces (APIs) supported through the I XP2800
SPI14 Bus Function Model (BFM) - which simulates the SPI14 protocol, Ol F-SP14-02.0, through the
transactor Foreign Model Interface (FMI).

Overview

The SPI4 BFM isinvoked by the I XP2800 transactor through the foreign_model transactor
command and synchronized with the same event control logic as the transactor.

The SPI4 BFM, spi4_bfm.dll, provides function callsfor usersto configure and access FIFO status
either through extended consol e functions or a C-API. The extended console functions are
recognized by the C-interpreter embedded in the transactor, such that the programmer can invoke
these functions through transactor scripts or by typing them into the transactor command line. The
C-API isused mainly for an external software component, such as the Developers Workbench, to
use the SPI4 BFM through C functions.

SP14 BFM Help

To access additional information about the SPI4 BFM:;

spid_help(); This command prints out all supported console functions. The
commands are:

spid_help, spi4_help_fn, spi4_define_device,

Spid_set_device rx_param, spi4_set_port_rx_param,
Spid_set_device tx_param, spi4_set_port_tx_param,
spi4_create_device, spi4_connect_device, spi4_enable device,
spi4_enable port, spi4_set_device_stop_control,
spid_set_port_stop_control, spi4_set_ sim_options, spi4_get_tx_stat
spid_version, spid_set_network_log, spi4_get_receive stats packet,
spid_get_receive stats byte, spi4 _get receive stats cycle,
Spid_get_transmit_stats packet, spi4_get transmit_stats byte,
spi4d_get_transmit_stats cycle, spid_get rx_buffer_byte,
spi4d_get_rx_buffer_int32, spi4_get tx_buffer_byte,

spid_get tx_buffer_int32, spi4_get rx_clock_cycle

spid_get tx_clock_cycle, spi4 reset_stat, spi4_debug_log

spid_help_fn(fn_name); Thiscommand prints out the argument list and a brief explanation of the
specified function. For example:
spid_help_fn("spi4_define _device");
spi4_define_device(string device type, int device id, int num_ports)
device_type: any string
device id: unique deviceid
num_ports: # of ports
1

Development Tools User’s Guide 311

SPI14 Bus Functional Model In

Intel® IXP2400/I1XP2800 Network Processors u tel
®

E.3

E3.1

E3.1.1

312

Console Functions

The SPI4 BFM supports the concept of a device/port as devised by the I XP2800 development tool
(WB). This concept alows for single instantiation of SPI4 BFM via a transactor command,
foreign_model, to handle multiple logical spi4 devicesin the simulation environment. Each spi4
deviceis dubbed with aunique deviceid; each device hasits own configuration. This configuration
information includes:

¢ Device/Port configuration
* Flow control configuration
* Simulation control

* Statistic information access

The following sections will describe how to use each of the console functions supported by the
latest spi4_bfm.dll.

Device/Port Configuration

The device/port configuration functions are;
* gpi4_define_device (see Section E.3.1.1)
* gpid set device rx_param (see Section E.3.1.2)
* gpid set port_rx_param (see Section E.3.1.2)
* gspi4_set_device tx_param (see Section E.3.1.2)
* gpid set port tx_param (see Section E.3.1.2)
* gpid create device (see Section E.3.1.3)
* gpi4_connect_device (see Section E.3.1.4)
* gpi4_enable device (see Section E.3.1.5)
* gpi4_enable port (see Section E.3.1.5)

spi4_define_device
Thespi4_define_device function defines a spi4 device for usein the simulation.
int spi4_define_device(char *device_type,

int device id,
int num_ports)

where:

device _type: N/A,

device id: unique device id for each device,
num_ports number of portsin the specified device

Development Tools User’s Guide

u Intel® IXP2400/I1XP2800 Network Processors
In o SPI14 Bus Functional Model

E.3.1.2 spi4_set_device_X_param/spi4_set_port_X_ param

Thespi4d_set_device X param/spi4d_set_port_X_ param setsthe value of the
specified parameter of the specified spi4 device/port.

int spi4_set_device rx_param(int device id,
int param_id,
int param_value)

int spi4_set_port_rx_param(int device id,
int port_num,
int param_id,
int param_value)

int spi4_set_device tx_param(int device id,
int param_id,
int param_value)

int spi4_set_port_tx_param(int device id,
int port_num,
int param_id,
int param_value)

where:
device id: unique deviceid for each device
port_num port in the specified device
param_id parameter 1D (see the table below)
param_value the value for the specified parameter
Parameter ID Parameter Description
1 Rx/Tx FIFO size (in byte)
2 Rx/Tx FIFO Low Water Mark (in byte)
3 Rx/Tx Line Rate (in Mb/s)
4 Rx/Tx Device/Port Physical address
5 Rx Maximum Burst Cycle (in 2-byte/unit)
6 Rx/Tx Inter-Packet Time (in nano-second)
7 Rx/Tx MSF Frequency (in MHz)
8 Rx/Tx Minimum Burst Size (in byte)
9 Rx/Tx SPI4 Flow Control MaxBurstl (16-byte/unit)
10 Tx SPI4 Flow Control time interval FIFO_MAX_T (msf cycle)
11 Tx SPI4 Flow Control time interval FIFO_MAX_T (msf cycle)
12 Rx/Tx High Water Mark (in byte)

Development Tools User’s Guide 313

SPI14 Bus Functional Model In

Intel® IXP2400/I1XP2800 Network Processors u tel
®

E.3.1.3

E3.14

E.3.1.5

314

spi4_create_device

Thespi4_create_device instantiates a new spi4 device with the assigned device id.
int spi4_create_device(int device id,

where:

device id: unique device id for the device

spi4_connect_device

Thespi4_connect_device setsthe connection between the specified spi4 device and the
specified chip (ixp2800).

int spi4_connect_device(char * ChipName,

int device id,

int direction)
where:
ChipName: the instance name string of the target I XP2800
device id: unique device id for the device direction
direction

* 1: dataflow from spi4_bfm to ixp/msf

* 2: dataflow from ixp/msf to spi4_bfm

* 3: connect data flow from both directions
spi4_enable_X
Thespi4_enable_X enables/disables the specified spi4 device/port. When a device/port is
disabled, there will be no data transferred from data stream to | X P/M SF nor passing data from I XP/
MSF to packet_sim.dll (thisis the interface between spi4_bfm.dIl and external data stream
generator).

int spi4_enable device(int device_id,
int state)

int spi4_enable port(int device id,

int port_num,

int state)
where;
device id: unique deviceid for each device
port_num port in the specified device
state state: O: disable; 1: enable

Development Tools User’s Guide

u Intel® IXP2400/I1XP2800 Network Processors
In o SPI14 Bus Functional Model

E.3.2 Simulation Control

The simulation control functions are:
* spi4 set_device stop_control (see Section E.3.2.1)
* gpid_set_port_stop_control (see Section E.3.2.1)
* gpid_set_sim_options (see Section E.3.2.2)
E.3.2.1 spi4_set_X stop_control
Thespi4d_set_X stop_control setssimulation control over the specified spi4 device/port.
int spi4_set_device _stop_control(int device id,
int stop_type,

int num_packets)

int spi4_set_port_stop_control(int device id,

int port_num,
int stop_type,
int num_packets)
where:
device id: unique device id for each device
port_num port in the specified device
stop_type 0: no stop-control
1: stop on sending X packetsto IXP/MSF
2: stop on receiving X packets from IXP/MSF
num_packets number of packets received/transmitted for the stop condition to be true

E.3.2.2 spi4_set_sim_options

Thespi4_set_sim_options setssimulation control over:
* Running in unbounded mode - spi4 mode at full-bandwidth of IXP/MSF bus.
* Ignoring the spi4_bfm receive buffer overflow.
¢ Ignoring the spi4_bfm transmit buffer underflow.
int spi4_set_sim_options(int run_unbounded,

intignore_rx_buffer_overflow,
intignore_tx_buffer_underflow)

where:
run_unbounded 1: run unbounded mode otherwise run normal mode
ignore rx_buffer_overflow 1: ignore spi4_bfm rx FIFO overflow

ignore_tx_buffer_underflowl: ignore spi4_bfm tx FIFO underflow

Development Tools User’s Guide 315

Intel® IXP2400/I1XP2800 Network Processors u
SPI14 Bus Functional Model In o

E.3.3

E.3.3.1

316

Flow Control

The flow control functions are:
* gpi4_set_rx_fc_info (see Section E.3.3.1)
* gpid set tx_fc info (see Section E.3.3.1)
* gpi4 set rx_calendar (see Section E.3.3.1)
* gspi4 set tx_calendar (see Section E.3.3.1)

spi4_set_rx_fc_info/spi4_set_tx_fc_info/spi4_set _rx_calendar /
spi4_set_tx_calendar

Thespi4d_set rx_fc_info/spid_set_tx_fc_info/

spi4_set_tx _calendarrspi4_set_ tx calendar setsthe flow control information.
The parameters specified in these three functions are al so supported by the

spi4_set _device rx_param/spi4_set device_ tx_ param.

int spi4_set_rx_fc_info(char *device id_str,
int nBurstl
int nBurst2
int nMaxiFifol nterval,
int nHWM

int nPortAddr)

int spi4_set_tx_fc_info(char *device id_str,
int nBurstl
int nBurst2
int nM axiFifolnterval,
int nHWM
int nPortAddr)

where:

device id_str string representation of device id

nBurstl Rx/Tx SPI4 Flow Control MaxBurst1 (16-byte/unit)

nBurst2 Rx/Tx SPI4 Flow Control MaxBurst2 (16-byte/unit)
nMaxiFifol nterval Tx SPI4 Flow Control timeinterval FIFO_MAX_T (msf cycle)
nHWM Rx/Tx High Water Mark

nPort Addr physical port address

int spi4_set_rx_calendar (int device id,
int calendar_length
int index
int calendar

int spi4_set_tx_calendar (int device id,

Development Tools User’s Guide

Intel® IXP2400/I1XP2800 Network Processors
SPI14 Bus Functional Model

int calendar_length

int index
int calendar
where:
device id unique device id for each device
calendar_length MSF/Tx calendar length (the latest spi4_bfm uses the transactor
XACT _IO interface to retrieve this information automatically once the
Tx flow control isturned on)
index calendar index
calendar calendar value
E.3.4 Statistical Information Access

The statistical information functions are:

spid_get receive stats packet (see Section E.3.4.1)
Spid_get receive stats byte (see Section E.3.4.1)
pid_get_receive stats cycle (see Section E.3.4.1)
Spid_get_transmit_stats packet (see Section E.3.4.1)
spi4_get_transmit_stats byte (see Section E.3.4.1)
spid_get transmit_stats cycle (see Section E.3.4.1)
spid_get_rx_buffer_byte (see Section E.3.4.2)
spid_get_rx_buffer_int32 (see Section E.3.4.2)
spid_get_tx_buffer_byte (see Section E.3.4.2)
spid_get_tx_buffer_int32 (see Section E.3.4.2)
spi4_get_rx_clock _cycle (see Section E.3.4.3)
spi4_get tx_clock_cycle (see Section E.3.4.3)
pid_reset_stat (see Section E.3.4.4)

Spid_version (see Section E.3.4.5)

E.3.4.1 spi4_get_receive_stats_X/spi4_get_transmit_stats_X

Thespi4_get _receive_stats X/spi4_get transmit_stats_ Xreturnsthe
statistics information on rx/tx FIFO of spi4_bfm.

int spi4_get_receive stats packet(int device id,
int port_num)

int spi4_get_receive stats byte(int device id,
int port_num)

Development Tools User’s Guide 317

SPI14 Bus Functional Model

Intel® IXP2400/I1XP2800 Network Processors u tel
®

E.3.4.2

318

where:
device id:

port_num

int spi4_get_receive stats cycle(int device_id,
int port_num)

int spi4_get_transmit_stats packet(int device_id,
int port_num)

int spi4_get_transmit_stats byte(int device id,
int port_num)

int spi4_get_transmit_stats cycle(int device id,
int port_num)

unique device id for each device

port in the specified device

spi4_get_rx_buffer_byte/ spi4_get_tx_buffer_byte and
spi4_get_rx_buffer_int32/ spi4_get_tx_buffer_int32

Thespi4_get rx_buffer_byte/spi4_get tx_ buffer_byte returns one-byte data
from spid_bfm rx/tx FIFO, and spi4_get_rx_buffer_int32/
spi4_get _tx_buffer_int32 returns four-byte of datafrom spi4_bfm rx/tx FIFO.

where:
device id:
port_num

byte index

int spi4_get_rx_buffer_byte(int device_id,
int port_num,
int byte index)

int spi4_get_rx_buffer_int32(int device id,
int port_num,
int byte index)

int spi4_get_tx_buffer_byte(int device id,
int port_num,
int byte index)

int spi4_get_tx_buffer_int32(int device id,
int port_num,
int byte index)

unique deviceid for each device
port in the specified device
index for the first byte in the FIFO

Development Tools User’s Guide

INlal.

E.3.4.3

E.3.44

E.3.45

E.4

Intel® IXP2400/I1XP2800 Network Processors
SPI14 Bus Functional Model

spi4_get_rx_clock_cycle/spi4_get_tx_cycle _count

Thespi4_get_rx_clock cycle/spi4_get tx _cycle_count returnsthe spi4 bfm
cycle count for reference.

int spi4_get rx_clock_cycle(int device id,
int port_num)

int spi4_get_tx_clock_cycle(int device id,
int port_num)

where:
device id: unique deviceid for each device
port_num port in the specified device

Spi4_reset_stat
Thespi4_reset_stat resets both the rx/tx statistics over spi4_bfm.

int spi4_reset_stat(void)

Spi4_version
Thespi4_version printsout the version and built time of spi4_bfm.dll

int spi4_version()

C-API

The following C-API provides access functions to retrieve SPI4 BFM FIFO statistics through C-
function calls. They are the C-function implementations of the aforementioned statistic information
access console functions. The only addition isthe Regi sterMessageCal Iback function,
which alows the WB to register a callback routine to handle message print out in the GUI
environment.

SPI4 WMAC_API int GetNumBytesl nRxBuffer (int device_id,
int port_num)

SPI4 WMAC_API void GetRxBuffer Bytes(int device id,
int port_num,
unsigned char *buffer,
int buffer_size)

SPI4 WMAC_API int GetNumBytesl nTxBuffer (int device_id,
int port_num)

SPI4 WMAC_API void GetTxBuffer Bytes(int device id,
int port_num,

Development Tools User’s Guide 319

SPI14 Bus Functional Model

In

Intel® IXP2400/I1XP2800 Network Processors u t9I
®

320

unsigned char *buffer,
int buffer_size)

SPI4 WMAC_API int GetReceiveStats(int device_id,
int port_num,
int& num_packets received,
int& num_bytes received,
int& num_bytes cycles)

SPI4 WMAC_API int GetTransmitStats(int device id,
int port_num,
int& num_packets received,
int& num_bytes received,
int& num_bytes cycles)

SPI4 WMAC_API bool GetRxClockCycle(int device id,
int port_num,
unsigned int& cycles)
SPI4 WMAC_API bool GetTxClockCycle(int device id,
int port_num,
unsigned int& cycles)
SPI14_ WMAC_API void ResetSatistics()

SPI4 WMAC_API int Register M essageCallback(void (*fp) char * pM essage,
int Severity))

Development Tools User’s Guide

	Intel® IXP2400/IXP2800 Network Processors
	Copyright
	Contents
	Figures
	Tables

	Introduction 1
	1.1 About this Document
	1.2 Intended Audience
	1.3 Related Documents

	Developer Workbench 2
	2.1 Overview
	2.2 About the Graphical User Interface (GUI)
	2.2.1 About Windows, Toolbars, and Menus
	2.2.2 Hiding and Showing Windows and Toolbars
	2.2.3 Customizing Toolbars and Menus
	2.2.3.1 Creating Toolbars
	2.2.3.2 Renaming Toolbars
	2.2.3.3 Deleting Toolbars
	2.2.3.4 Adding and Removing Toolbar Buttons and Controls
	2.2.3.5 Customizing Menus
	2.2.3.6 Returning to Default Toolbar Settings

	2.2.4 GUI Toolbar Configurations

	2.3 Workbench Projects
	2.3.1 Creating a New Project
	2.3.1.1 Debug-only Projects

	2.3.2 Opening a Project
	2.3.3 Saving a Project
	2.3.4 Closing a Project
	2.3.5 Specifying a Default Project Folder

	2.4 About the Project Workspace
	2.4.1 About FileView
	2.4.2 About ThreadView
	2.4.2.1 Expanding and Collapsing Thread Trees
	2.4.2.2 Renaming a Thread

	2.4.3 About InfoView

	2.5 Working with Files
	2.5.1 Creating New Files
	2.5.2 Opening Files
	2.5.3 Closing Files
	2.5.4 Saving Files
	2.5.5 Saving Copies of Files
	2.5.6 Saving All Files at Once
	2.5.7 Working With File Windows
	2.5.8 Printing Files
	2.5.8.1 Setting Up the Printer
	2.5.8.2 Printing the File

	2.5.9 Inserting Into and Removing Files from a Project
	2.5.9.1 Inserting Files Into a Project
	2.5.9.2 Removing Files From a Project

	2.5.10 Editing Files
	2.5.10.1 Tab Configuration
	2.5.10.2 Go To Line

	2.5.11 Bookmarks and Errors/Tags
	2.5.12 About Find In Files
	2.5.13 About Fonts and Syntax Coloring
	2.5.14 About Macros

	2.6 The Assembler
	2.6.1 Root Files and Dependencies
	2.6.2 Selecting Assembler Build Settings
	2.6.2.1 General Build Settings
	2.6.2.2 Specifying Additional Include Paths
	2.6.2.3 Specifying Assembler Options

	2.6.3 Invoking the Assembler
	2.6.4 Assembly Errors

	2.7 The Microengine C Compiler
	2.7.1 Adding C Source Files to Your Project
	2.7.2 Selecting Compiler Build Settings
	2.7.2.1 Selecting Additional Compiler Include Paths
	2.7.2.2 Selecting the target .list File
	2.7.2.3 Selecting C Source Files to Compile
	2.7.2.4 Selecting C Object Files to Compile
	2.7.2.5 Removing C Source Files to Compile
	2.7.2.6 Selecting the Target .obj File
	2.7.2.7 Deleting a Target .list or .obj File
	2.7.2.8 Selecting Compile Options
	2.7.2.9 Saving Build Settings

	2.7.3 Invoking the Compiler
	2.7.4 Compilation Errors

	2.8 The Linker
	2.8.1 Customizing Linker Settings
	2.8.2 Building and Rebuilding a Project

	2.9 Configuring the IXP2400 Simulation Environment
	2.9.1 IXP2400 Clock Frequencies
	2.9.2 IXP2400 Memory
	2.9.3 IXP2400 MSF Device Configuration
	2.9.4 IXP2400 Network Connections
	2.9.5 IXP2400 CBUS Connections

	2.10 Configuring the IXP2800 Simulation Environment
	2.10.1 IXP2800 Clock Frequencies
	2.10.2 IXP2800 Memory
	2.10.3 IXP2800 MSF Device Configuration
	2.10.4 IXP2800 Network Connections
	2.10.5 IXP2800 CBUS Connections

	2.11 Packet Simulation
	2.11.1 General Options
	2.11.2 Traffic Interface Logging
	2.11.3 Stop Control
	2.11.4 Traffic Assignment
	2.11.5 Manage NTS Plug-ins
	2.11.5.1 Network Traffic Simulation DLLs

	2.12 Data Streams
	2.12.1 Creating and Editing a POS IP Data Stream
	2.12.2 Creating and Editing an ATM Data Stream
	2.12.3 Creating and Editing a Custom Ethernet TCP/IP Data Stream
	2.12.4 Creating and Editing an Ethernet IP Data Stream
	2.12.5 Creating and Editing an Ethernet TCP/IP Data Stream
	2.12.6 Creating and Editing a PPP TCP/IP Data Stream
	2.12.7 Creating an IP Packet Pool
	2.12.8 Specifying an Ethernet Header
	2.12.9 Specifying an IP Header
	2.12.10 Specifying a TCP Header
	2.12.11 Specifying a Data Payload
	2.12.12 Specifying Frame Size

	2.13 Debugging
	2.13.1 Local Simulation Debugging with a Local Foreign Model
	2.13.1.1 Local Simulation Debugging with a Remote Foreign Model
	2.13.1.2 Hardware Debugging
	2.13.1.3 Portmapper

	2.13.2 Starting and Stopping the Debugger
	2.13.3 Changing Simulation Options
	2.13.3.1 Marking Instructions
	2.13.3.2 Changing the Colors for Execution State
	2.13.3.3 Initializing Simulation Startup Options
	2.13.3.4 Using Imported Variable Data

	2.13.4 Exporting the Startup Script
	2.13.5 Changing Hardware Options
	2.13.5.1 Specifying Hardware Startup Options

	2.13.6 The Command Line Interface
	2.13.7 Command Scripts
	2.13.8 Thread Windows
	2.13.8.1 Controlling Thread Window Activation
	2.13.8.2 Thread Window Controls
	2.13.8.3 Tracking the Active Thread
	2.13.8.4 Running to Cursor
	2.13.8.5 Toggle View
	2.13.8.6 Activating Thread Windows
	2.13.8.7 Displaying, Expanding, and Collapsing Macros (Assembled Threads Only)
	2.13.8.8 Displaying and Hiding Instruction Addresses
	2.13.8.9 Instruction Markers
	2.13.8.10 Viewing Instruction Execution in the Thread Window
	2.13.8.11 Document and Thread Window History

	2.13.9 Run Control
	2.13.9.1 Single Stepping
	2.13.9.2 Stepping Microengines
	2.13.9.3 Stepping Over
	2.13.9.4 Stepping Into (Compiled Threads Only)
	2.13.9.5 Stepping Out (Compiled Threads Only)
	2.13.9.6 Executing Multiple Cycles
	2.13.9.7 Running to a Specific Cycle
	2.13.9.8 Running to a Label or Microword Address
	2.13.9.9 Running Indefinitely
	2.13.9.10 Stopping Execution
	2.13.9.11 Resetting the Simulation

	2.13.10 About Breakpoints
	2.13.10.1 Breakpoint Properties Dialog Box
	2.13.10.2 Setting Breakpoints in Hardware Mode
	2.13.10.3 About Breakpoint Markers
	2.13.10.4 Inserting and Removing Breakpoints
	2.13.10.5 Enabling and Disabling Breakpoints
	2.13.10.6 Changing Breakpoint Properties
	2.13.10.7 About Multi-Microengine Breakpoint Support

	2.13.11 Displaying Register Contents
	2.13.12 Data Watch
	2.13.12.1 Data Watches in C Thread Windows
	2.13.12.2 Entering a New Data Watch
	2.13.12.3 Watching Control and Status Registers and Pins
	2.13.12.4 Watching General Purpose and Transfer Registers
	2.13.12.5 Deleting a Data Watch
	2.13.12.6 Changing a Data Watch
	2.13.12.7 Changing the Data Watch Radix
	2.13.12.8 Depositing Data
	2.13.12.9 Breaking on Data Changes

	2.13.13 Memory Watch
	2.13.13.1 Entering a New Memory Watch
	2.13.13.2 Adding a Memory Watch
	2.13.13.3 Deleting a Memory Watch
	2.13.13.4 Changing a Memory Watch
	2.13.13.5 Changing the Memory Watch Address Radix
	2.13.13.6 Changing the Memory Watch Value Radix
	2.13.13.7 Depositing Memory Data

	2.13.14 Execution Coverage
	2.13.14.1 Changing Execution Count Ranges and Colors
	2.13.14.2 Displaying and Hiding Instruction Addresses
	2.13.14.3 Instruction Markers
	2.13.14.4 Miscellaneous Controls
	2.13.14.5 Scaling the Bar Graph
	2.13.14.6 Resetting Execution Counts

	2.13.15 Performance Statistics
	2.13.15.1 Displaying Statistics
	2.13.15.2 Resetting Statistics

	2.13.16 Thread and Queue History
	2.13.16.1 Displaying the History Window
	2.13.16.2 Displaying Queues in the History Window
	2.13.16.3 Hardware Debugging Restrictions
	2.13.16.4 Scaling the Display
	2.13.16.5 Thread Display Property Page
	2.13.16.6 Displaying Code Labels
	2.13.16.7 Displaying Reference History
	2.13.16.8 Queue History

	2.13.17 Queue Status
	2.13.17.1 Queue Status History
	2.13.17.2 Setting Queue Breakpoints
	2.13.17.3 Changing Thread History Colors
	2.13.17.4 Displaying the History Legend
	2.13.17.5 Tracing Instruction Execution
	2.13.17.6 History Collecting

	2.13.18 Thread Status
	2.13.19 Packet Simulation Status

	2.14 Running in Batch Mode

	Performance Monitoring Unit 3
	3.1 Introduction

	3.2 PMU Limitations
	3.3 Sampling Modes
	3.3.1 Time Based Sampling
	3.3.1.1 Point Sampling

	3.3.1.2 Window Sampling

	3.3.2
Random Based, or Statistical Sampling

	3.4 PMU Graphical User Interface
 (GUI)
	3.4.1 Canned Analysis
 Property Sheet
	3.4.2 Sampling Method Property Pages

	3.4.2.1 Time Based Sampling (TBS)

	3.4.2.2 Random Based Sampling (RBS)

	3.4.3 Sampling Macros Dialog

	3.4.3.1 Monitor Sampling Macro
	3.4.3.2

Threshold Sampling Macro
	3.4.3.3 Sampling Considerations

	3.4.4 Event Selection Dialog
 Box

	3.5 Output Formats

	Assembler 4
	4.1 Assembly Process
	4.1.1 Command Line Arguments
	4.1.2 Assembler Steps
	4.1.3 Case Sensitivity
	4.1.4 Assembler Optimizations
	4.1.5 Processor Type and Revision

	Microengine C Compiler 5
	5.1 The Command Line
	5.2 Supported Compilations
	5.3 Supported Option Switches
	5.4 Compiler Steps
	5.5 Case Sensitivity

	Linker 6
	6.1 About the Linker
	6.1.1 Configuration and Data Accessed by the Linker
	6.1.2 Shared Address Update (Flow)

	6.2 Microengine Image Linker (UCLD)
	6.2.1 Usage
	6.2.2 Command Line Options

	6.3 Generating a Microengine Application
	6.4 Syntax Definitions
	6.4.1 Image Name Definition
	6.4.2 Import Variable Definition
	6.4.3 Microengine Assignment
	6.4.4 Code Entry Point Definition

	6.5 Examples
	6.5.1 Uca Source File (*.uc) Example
	6.5.2 Uca Output File (*.list) Example
	6.5.3 .map File Example

	6.6 Memory Segment Usage
	6.7 Microcode Object File (UOF) Format
	6.7.1 File Header
	6.7.2 File Chunk Header
	6.7.2.1 UOF Object Header
	6.7.2.2 UOF Object Chunk Header
	6.7.2.3 UOF_STRT
	6.7.2.4 UOF_IMEM
	6.7.2.5 Memory Initialization Value Attributes
	6.7.2.6 uof_initRegSym
	6.7.2.7 UOF_MSEG
	6.7.2.8 UOF_GTID
	6.7.2.9 UOF_IMAG
	6.7.2.10 uof_codePage
	6.7.2.11 uof_meRegTab
	6.7.2.12 uof_meReg
	6.7.2.13 uof_neighReg
	6.7.2.14 uof_neighRegTab
	6.7.2.15 uof_importExpr
	6.7.2.16 uof_impExprTabTab
	6.7.2.17 uof_xferReflectTab
	6.7.2.18 uof_UcVar
	6.7.2.19 uof_ucVarTab
	6.7.2.20 uof_initRegSymTab
	6.7.2.21 uof_uwordFixup
	6.7.2.22 uof_codeArea

	6.8 DBG_OBJS
	6.8.1 Debug Objects Header
	6.8.2 Debug Object Chunk Header
	6.8.3 DBG_STRT
	6.8.4 dbg_RegTab
	6.8.5 dbg_LblTab
	6.8.6 dbg_SymTab
	6.8.7 dbg_SrcTab
	6.8.8 dbg_TypTab
	6.8.9 dbg_ScopeTab
	6.8.10 dbg_Image
	6.8.11 dbg_Label
	6.8.12 dbg_Source
	6.8.13 dbg_Symb
	6.8.14 dbg_Type
	6.8.15 dbg_StructDef
	6.8.16 dbg_StructField
	6.8.17 dbg_EnumDef
	6.8.18 dbg_EnumValue
	6.8.19 dbg_Scope
	6.8.20 dbg_ValueLoc
	6.8.21 dbg_Variable
	6.8.22 dbg_Sloc
	6.8.23 dbg_Tloc
	6.8.24 dbg_RlocTab
	6.8.25 dbg_Lmloc
	6.8.26 dbg_Liverange
	6.8.27 dbg_Range
	6.8.28 dbg_InstOprnd

	Foreign Model Simulation Extensions 7
	7.1 Overview
	7.2 Integrating Foreign Models with the Transactor
	7.3 Foreign Model Dynamic-Link Library (DLL)
	7.4 Simulating Media Devices
	7.5 Creating A Foreign Model DLL
	7.5.1 DLL Sample Code.

	Transactor 8
	8.1 Overview
	8.2 Invoking the Transactor
	8.3 Transactor Commands
	8.3.1 #define
	8.3.2 #undef
	8.3.3 @
	8.3.4 benchmark
	8.3.5 cd
	8.3.6 close
	8.3.7 connect
	8.3.8 deposit
	8.3.9 dir
	8.3.10 examine
	8.3.11 exit
	8.3.12 force
	8.3.13 foreign_model
	8.3.14 go
	8.3.15 go_thread
	8.3.16 gop
	8.3.17 goto
	8.3.18 goto_addr
	8.3.19 help
	8.3.20 init
	8.3.21 inst
	8.3.22 load_ixc
	8.3.23 log
	8.3.24 logical
	8.3.25 path
	8.3.26 pwd
	8.3.27 remove
	8.3.28 root_init
	8.3.29 set_clock
	8.3.30 set_default_go_clk
	8.3.31 set_default_goto_filter
	8.3.32 set_float_threshold
	8.3.33 show_clocks
	8.3.34 sim_delete
	8.3.35 sim_reset
	8.3.36 time
	8.3.37 trace
	8.3.38 type
	8.3.39 ubreak
	8.3.40 unforce
	8.3.41 version
	8.3.42 watch

	8.4 C Interpreter
	8.4.1 C macros supported
	8.4.2 Supported Data Types

	8.5 Simulation Switches
	8.6 Predefined C Functions
	8.7 Error Handling
	8.8 Printing Statistics from the Transactor
	8.8.1 perf_stat_set()
	8.8.2 perf_stat_print()

	Simulator APIs 9
	9.1 Foreign Model API
	9.1.1 FOR_MOD_INITIALIZE
	9.1.2 FOR_MOD_PRE_SIM
	9.1.3 FOR_MOD_POST_SIM
	9.1.4 FOR_MOD_EXIT
	9.1.5 FOR_MOD_RESET
	9.1.6 FOR_MOD_DELETE

	9.2 Overview of XACT API Functions
	9.3 State Name Reference Routines
	9.3.1 XACT_find_wildcard_state_name
	9.3.2 XACT_get_handle
	9.3.3 XACT_delete_handle
	9.3.4 XACT_get_state_info
	9.3.5 XACT_get_state_value
	9.3.6 XACT_get_state_field
	9.3.7 XACT_get_array_state_value
	9.3.8 XACT_set_state_value
	9.3.9 XACT_set_state_field
	9.3.10 XACT_set_array_state_value
	9.3.11 XACT_add_sim_state
	9.3.12 XACT_HANDLE XACT_alloc_user_sim_state
	9.3.13 XACT_start_of_cycle
	9.3.14 XACT_full_cycle_simulated
	9.3.15 XACT_clock_cycle
	9.3.16 XACT_clock_cycle_with_remainder
	9.3.17 XACT_get_top_level_inst

	9.4 Callback Creation and Deletion Functions
	9.4.1 XACT_Define_Callback_Create_Chip
	9.4.2 XACT_Define_Callback_Init_Sim
	9.4.3 XACT_Define_Callback_Sim_Reset
	9.4.4 XACT_Define_Callback_Sim_Delete
	9.4.5 XACT_Define_Callback_Restore
	9.4.6 XACT_Define_Callback_Sim_In_Progress
	9.4.7 XACT_Define_Callback_Default_Go_Clock_Domain
	9.4.8 XACT_Define_Callback_State_Transition
	9.4.9 XACT_Define_Cancel_Callback_State_Transition
	9.4.10 XACT_Cancel_State_Transition_Callback
	9.4.11 XACT_Define_Handle_Invalidation_Callback
	9.4.12 XACT_Define_Callback_Output_Message
	9.4.13 XACT_Define_Callback_Set_Prompt
	9.4.14 XACT_Define_Callback_Get_Console_Input

	9.5 Miscellaneous Functions
	9.5.1 XACT_Define_Automatic_Sim_Halt
	9.5.2 XACT_output_to_console
	9.5.3 XACT_printf
	9.5.4 XACT_printf_error
	9.5.5 XACT_register_console_function
	9.5.6 XACT_register_console_function_w_arrayed_args
	9.5.7 XACT_unregister_console_function
	9.5.8 XACT_ExecuteCommandStr
	9.5.9 XACT_init_gui_console
	9.5.10 XACT_gui_execute_command
	9.5.11 XACT_start_console()
	9.5.12 XACT_initialize()
	9.5.13 XACT_stop_execution_at_clk
	9.5.14 XACT_exit_transactor
	9.5.15 XACT_CTRL_C_SWITCH
	9.5.16 XACT_stop_execution
	9.5.17 XACT_gui_interface

	Transactor States A
	A.1 About States
	A.1.1 State Definition Format

	A.2 Memory Setup
	A.3 Hardware States
	A.3.1 Chip Reference
	A.3.2 SRAM
	A.3.3 Scratchpad
	A.3.4 DRAM
	A.3.5 RBUF
	A.3.6 TBUF
	A.3.7 FIFO

	A.4 Microengine Registers
	A.4.1 Local Memory
	A.4.2 GPR A bank
	A.4.3 GPR B bank
	A.4.4 Transfer Register S In
	A.4.5 Transfer Register S Out
	A.4.6 Transfer Register D In
	A.4.7 Transfer Register D Out
	A.4.8 Next Neighbor Registers

	A.5 CSRs
	A.6 Intel XScale® Memory Map Access
	A.7 IXP2400 and IXP2800 Transactor States
	A.8 Transactor States for PCI Pins

	Developer Workbench Shortcuts B
	B.1 Introduction

	Intel XScale® Core Memory Bus Functional Model C
	C.1 Summary of APIs

	C.1.1 XACT_IO API

	C.1.2 simRead32 / simWrite32

	C.1.3
simIntConnect / simIntEnable / simIntDisable
cmbIntConnect/cmbIntEnable/cmbIntDisable

	C.1.4 simIntEnableIRQ / simIntEnableFIQ / simIntDisableIRQ / simIntDisableFIQ
cmbIntEnableIRQ / c...
	C.1.5
IS_CMB_ADDR_RESERVED / IS_CMB_INT_RESERVED

	C.1.6
Additional CMB_IO API

	C.1.7
cmbRead32 / cmbWrite32

	C.1.8
cmbSetCb

	C.1.9 cmbSwapRead32 / cmbSwapWrite32

	C.1.10 cmbBFMRead32 / cmbBFMWrite32

	C.2
ENUMs

	C.3
Defines

	PCI Bus Functional Model D
	D.1 Loading the BFM
	D.2 Initializing the BFM
	D.3 Creating a Device
	D.4 Calling Console Functions from Another Foreign Model
	D.5 Setting a Callback Function
	D.6 Header file pciconfx.h

	SPI4 Bus Functional Model E
	E.1 Overview
	E.2 SPI4 BFM Help
	E.3 Console Functions
	E.3.1 Device/Port Configuration
	E.3.1.1 spi4_define_device
	E.3.1.2 spi4_set_device_X_param/spi4_set_port_X_param
	E.3.1.3 spi4_create_device
	E.3.1.4 spi4_connect_device
	E.3.1.5 spi4_enable_X

	E.3.2 Simulation Control
	E.3.2.1 spi4_set_X_stop_control
	E.3.2.2 spi4_set_sim_options

	E.3.3 Flow Control
	E.3.3.1 spi4_set_rx_fc_info/spi4_set_tx_fc_info/spi4_set_rx_calendar / spi4_set_tx_calendar

	E.3.4 Statistical Information Access
	E.3.4.1 spi4_get_receive_stats_X/spi4_get_transmit_stats_X
	E.3.4.2 spi4_get_rx_buffer_byte/ spi4_get_tx_buffer_byte and spi4_get_rx_buffer_int32/ spi4_get_t...
	E.3.4.3 spi4_get_rx_clock_cycle/spi4_get_tx_cycle_count
	E.3.4.4 spi4_reset_stat
	E.3.4.5 spi4_version

	E.4 C-API

