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Intel® IXP2400 Network Processor
Introduction

Introduction 1

1.1 About this Document
This document serves as the hardware reference manual for the Intel® IXP2400 Network 
Processor. This book is intended for use by developers and is organized as follows:

Section 2, “Hardware Overview” contains a hardware overview of the IXP2400 Network 
Processor.

Section 3, “Intel® XScale® Core” describes the operation of the embedded Intel XScale core.

Section 4, “Microengines” describes the operation of the Microengines.

Section 5, “DDR SDRAM Controller” describes the operation of the SDRAM Unit.

Section 6, “SRAM Interface” describes the operation of the SRAM Unit.

Section 7, “SHaC Unit” describes the Scratchpad, Hash Unit, and CSRs.

Section 8, “Media and Switch Fabric Interface” describes the Media and Switch Fabric (MSF) 
Interface used to connect the network processor to a physical layer device.

Section 9, “PCI Unit” describes the operation of the PCI Unit.

Section 10, “Clocks, Reset, and Initialization” describes the clocks, reset and initialization 
sequence.

1.2 Related Documentation
Further information on the IXP2400 is available in the following documents:

IXP2400 Network Processor Datasheet – Contains summary information on the IXP2400 Network 
Processor including a functional description, signal descriptions, electrical specifications, and 
mechanical specifications.

IXP2400/IXP2800 Network Processor Programmer’s Reference Manual – Contains detailed 
programming information for designers.

IXP2400/IXP2800 Network Processor Development Tools User’s Guide – Describes the 
Workbench and the development tools you can access through the use of the Workbench.

1.3 Conventions
This section describes the conventions used in this manual.
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1.3.1 Data Terminology

1.3.2 Definitions
MPKT

The data read from a MAC device receive FIFO as the result of a single receive request to the 
receive state machine. The size of Mpkt is the same as the size of RBUF or TBUF entries. The size 
of RBUF and TBUF entries are user configurable and can be 64, 128, or 256 bytes in length.

Packet

The data framed between the assertion of an SOP signal and assertion of its associated EOP signal.

Table 1. Data Terminology

Term Words Bytes Bits

Byte ½ 1 8

Word 1 2 16

Longword 2 4 32

Quadword 4 8 64
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Hardware Overview 2

2.1 Overview
This chapter provides an introduction to the IXP2400 internal hardware. Specific details of each of 
the hardware functions are included in corresponding chapters in this manual.

Figure 1 shows a block diagram of the chip, including the major internal blocks.

The major blocks are:

• Intel XScale® core (Section 2.2)—A general-purpose, 32-bit RISC processor compatible to 
ARM Version 5 Architecture. The Intel XScale® core initializes and manages the chip, and can 
be used for higher layer network processing tasks.

— A high-performance, low-power, 32-bit embedded RISC processor

— 32-Kbyte Instruction Cache and 32-Kbyte Data Cache

— 2-Kbyte mini-Data Cache that facilitates transient data processing

— Four outstanding-pending read requests before stalling the processor

— New instructions sets

— Performance monitor features

— JTAG/boundary scan debug support

• Microengines (MEs) (Section 2.3)—eight 32-bit programmable engines specialized for 
network processing; these MEs handle the main data plane processing per packet

— Eight threads per ME with no overhead for context switching

Figure 1. IXP2400 Chassis Concept Block Diagram
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— 4K x 40-bit instruction control store per ME

— Enhanced instructions sets (MEv2)

— 640 32-bit local memory per ME

— 256 GPRs

— Total of 512 transfer registers

— 128 Next Neighbor registers

— Multiplier per ME to support 8 x 24, 16 x 16, 32 x 32 multiplications

• SRAM Controller (Section 2.4)—two independent controllers for QDR SRAM. Typically 
SRAM is used for control information storage.

— Two independent channels

— Peak bandwidth of 1.6 Gbyte/second per channel

— Supports frequencies of 100, 150, or 200 MHz

— Address up to 64 Mbytes per channel

— Parity protected data

— Enqueue/Dequeue support

— Support atomic swap, bit set, bit clear, increment, decrement, add operations

• DRAM Controller (Section 2.5)—1 DDR SDRAM controller. Typically DRAM is used for 
data buffer storage.

— Peak bandwidth 2.4 GByte/sec. per channel at frequency of 150 and 100 MHz

— 1 independent channels provided

— Address up to 2 GB

— ECC protected data

• Media and Switch Fabric Interface (MSF) (Section 2.6)—Interface for network framers and/or 
Switch Fabric. Contains receive and transmit buffers.

— Configurable to either of the following:

• UTOPIA 1/2/3, POS-2, SPI-3, CSIX (only in 32-bit mode)

— UTOPIA/POS/CSIX Interface:

• Supports 1 UTOPIA 1/2/3 or POS-2 or SPI-3 interfaces at 104 MHz that can be 
overclocked to 133 MHz

• PCI Controller (Section 2.7)—64-bit PCI Rev 2.2 compliant IO bus. PCI can be used to either 
connect to a Host processor, or to attach PCI compliant peripheral devices.

— Compliant with PCI 2.2 spec.
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— Support 64-bit interface at 66 MHz

— Link-list-based DMA transfer to/from DRAM

— Master/slave support

• The SHaC unit contains three main subblocks: the Scratchpad, the Hash units and the CAP 
(CSR Access Proxy)

• Scratchpad Memory (Section 2.8)—16-Kbyte storage for general-purpose use with atomic 
operations and ring support

• Hash Unit (Section 2.9)—Polynomial hash accelerator; the Intel XScale® core and 
Microengines can use it to offload hash calculations

• CAP (Section 2.10)—Chip-wide control and status registers; these provide special inter-
processor communication features to allow flexible and efficient inter-ME and ME-to-Intel 
XScale® core communications

• Performance monitor—Counters that can be programmed to count selected internal chip 
hardware events; used to analyze and tune performance

• Intel XScale® core peripherals (XPI) (Section 2.11)—Interrupt Controller, Four Timers, one 
serial UART port, eight general-purpose IO (GPIO) and interface to low-speed off-chip 
peripherals (such as maintenance port of network devices) and Flash ROM.

2.2 Intel® XScale® Core
The Intel XScale® core is a 32-bit, general-purpose RISC processor. It incorporates an extensive 
list of architecture features that allows it to achieve high performance.

2.2.1 ARM Compatibility
The Intel XScale® core is compatible to ARM Version 5 (V5) Architecture. It implements the 
integer instruction set of ARM V5, but does not provide hardware support of the floating point 
instructions.

The Intel XScale® core provides the Thumb instruction set (ARM V5T) and the ARM V5E DSP 
extensions.

Backward compatibility with the first generation of StrongARM* products is maintained for user-
mode applications. Operating systems may require modifications to match the specific hardware 
features of the Intel XScale® core and to take advantage of the performance enhancements added 
to the Intel XScale® core.
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2.2.2 Features

2.2.2.1 Multiply/Accumulate (MAC)

The MAC unit supports early termination of multiplies/accumulates in two cycles and can sustain a 
throughput of a MAC operation every cycle. Several architectural enhancements were made to the 
MAC to support audio coding algorithms, which include a 40-bit accumulator and support for 16-
bit packed values.

2.2.2.2 Memory Management

The Intel XScale® core implements the Memory Management Unit (MMU) Architecture specified 
in the ARM Architecture Reference Manual. The MMU provides access protection and virtual to 
physical address translation.

The MMU Architecture also specifies the caching policies for the instruction cache and data 
memory. These policies are specified as page attributes and include:

• identifying code as cacheable or non-cacheable

• selecting between the mini-data cache or data cache

• write-back or write-through data caching

• enabling data write allocation policy

• enabling the write buffer to coalesce stores to external memory

2.2.2.3 Instruction Cache

The Intel XScale® core implements a 32-Kbyte, 32-way set associative instruction cache with a 
line size of 32 bytes. All requests that miss the instruction cache generate a 32-byte read request to 
external memory. A mechanism to lock critical code within the cache is also provided.

2.2.2.4 Branch Target Buffer

The Intel XScale® core provides a Branch Target Buffer (BTB) to predict the outcome of branch 
type instructions. It provides storage for the target address of branch type instructions and predicts 
the next address to present to the instruction cache when the current instruction address is that of a 
branch.

The BTB holds 128 entries.

2.2.2.5 Data Cache

The Intel XScale® core implements a 32-Kbyte, 32-way set associative data cache and a 2-Kbyte, 
2-way set associative mini-data cache. Each cache has a line size of 32 bytes, and supports write-
through or write-back caching.

The data/mini-data cache is controlled by page attributes defined in the MMU Architecture and by 
coprocessor 15.

The Intel XScale® core allows applications to re-configure a portion of the data cache as data 
RAM. Software may place special tables or frequently used variables in this RAM.
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2.2.2.6 Interrupt Controller

The Intel XScale® core provides two levels of interrupt, IRQ and FIQ. They can be masked via 
coprocessor 13. Note that there is also a memory mapped interrupt controller described with the 
Intel XScale® core Peripherals (Section 2.11), which is used to mask and steer many chip-wide 
interrupt sources.

2.2.2.7 Address Map

Figure 2 shows the partitioning of the Intel XScale® core 4 GB address space.
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Figure 2. Intel® XScale® Core 4GB (32-bit) Address Space
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2.3 Microengine
The Microengines (MEs) do most of the programmable per packet processing in IXP2400. There 
are 8 Microengines, connected as shown in Figure 1. The Microengines have access to all shared 
resources (SRAM, DRAM, MSF, etc) as well as private connections between adjacent 
Microengines (referred to as next neighbors).

The block diagram in Figure 3 is used in the overview of the Microengines. Note that this block 
diagram is simplified for clarity; some blocks and connectivity have been omitted to make the 
diagram more readable. Also, this block diagram does not show any pipeline stages, rather it shows 
the logical flow of information.

The Microengine provides support for software controlled multi-threaded operation. Given the 
disparity in processor cycle times versus external memory times, a single thread of execution will 
often block waiting for external memory operations to complete. Having multiple threads available 
allows for threads to interleave operation—there is often at least one thread ready to run while 
others are blocked.
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Figure 3. Microengine Block Diagram
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2.4 SRAM
The IXP2400 Network Processor has two independent SRAM controllers, which each support 
pipelined QDR synchronous static RAM (SRAM) and/or a coprocessor that adheres to QDR 
signaling. Any or all controllers can be left unpopulated if the application does not need to use 
them. SRAMs are accessible by the Microengines, the Intel XScale® core, and the PCI Unit 
(external bus masters and DMA).

The memory is logically four bytes (32-bits) wide; physically the data pins are two bytes wide and 
are double-clocked. Byte parity is supported. Each of the four bytes has a parity bit, which is 
written when the byte is written and checked when the data is read. There are byte enables that 
select which bytes to write for writes of less than 32 bits.

Best efforts have been made to provide impedance controls within the IXP2400 for IXP2400-
initiated signals driving to QDR devices. Providing a clean signaling environment is critical to 
achieving 200-MHz QDRII data transfers. 

The configuration assumptions for IXP2400 I/O driver/receiver development includes 4 QDR 
loads and IXP2400. It should be noted that some future QDRII SRAMs require a burst of 4 to 
achieve higher frequency. The IXP2400 initial release will not support bursts of four QDR SRAM 
devices; the initial release supports bursts of two SRAMs.

The SRAM controller can also be configured to interface to an external coprocessor that adheres to 
the QDR electricals and protocol.

Each SRAM controller may also interface to an external coprocessor through its standard QDR 
interface. This interface will allow for the cohabitation of both SRAM devices and coprocessors to 
operate on the same bus. The coprocessor will behave as a memory mapped device on the SRAM 
bus.

2.5 DRAM
The Memory Controller is responsible for controlling the off-chip DRAM and provides a 
mechanism for other functional units in the IXP2400 to access the DRAM. The IXP2400 supports 
a single 64-bit channel (72 bit with ECC) of DRAM. DRAM sizes of 64, 128, 256, 512-Mb, and 1 
Gb are supported. The DRAM channel can be populated with either a single- or double-sided 
DIMM.

An address space of 2 GB is allocated to DRAM. The memory space is guaranteed to be 
contiguous from a software perspective. If less than 2 GB of memory is present, the upper part of 
the address space is aliased into the lower part of the address space and should not be used by 
software.

Reads and writes to DRAM are generated by the Microengines, the Intel XScale® core and PCI bus 
masters. They are connected to the controllers via the Command Bus and Push and Pull Buses. The 
memory controller takes commands from these sources and enqueues them. The commands are 
dequeued, according to the priority defined later in this chapter, and the accesses to the DRAM are 
performed. The controller also does refresh cycles to the DRAMs.

ECC (Error Correcting Code) is supported, but can be disabled. Enabling ECC requires that x72 
DIMMs be used. If ECC is disabled, x64 DIMMs can be used.
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2.5.1 Feature List
• Supports one DDR SDRAM channel, 64b wide (72b with ECC)

• Supports DDR devices up to 300 MTs

• Supports 64-, 128-, 256-, 512-Mb, and 1-Gb technologies for x8 and x16 devices (DIMM and 
direct-soldered)

• Hardware-controlled interleaving to spread contiguous addresses across multiple banks

• All supported devices have four banks

• Configurable, optional error correction using ECC bits

• Supports 1 single- or double-sided DIMM 

• Supports up to 2 GB memory capacity (using 1-Gb technology)

2.6 Media and Switch Fabric (MSF) Interface
The Media and Switch Fabric (MSF) Interface is used to connect IXP2400 to a physical layer 
device (PHY) and/or to a switch fabric. The MSF has the following major features:

• Separate and independently configurable 32-bit receive and transmit buses.

• A configurable bus interface; the bus may function as a single 32-bit bus, or it can be 
channelized into independent buses: two 16-bit buses, four 8-bit, or one 16-bit bus and two 8-
bit buses. Each channel may be configured to operate in either UTOPIA or POS-PHY modes.

• The Media bus operates from 25 to 133 MHz. 

• UTOPIA Level 1/2/3 and POS-PHY Level 2/3 single-PHY (SPHY) master operation; 8-, 16-, 
or 32-bit buses are supported.

• UTOPIA Level 3 multi-phy (MPHY) master operation with a 32-bit-wide bus; up to 16 slave 
ports are supported; polling may be single RxClav/TxClav, or Direct Status Indication 
(maximum of four slave ports).

• POS-PHY Level 3 multi-phy (MPHY) master operation with a 32-bit-wide bus with in-band 
addressing; up to 16 slave ports are supported; polling may be packet level or byte level.

• Support for CSIX-L1 protocol with a 32-bit-wide bus. The only deviation from the CSIX-L1 
specification is that the IXP2400 is clocked by a globally synchronous clock and is electrically 
3.3V LVTTL.

• Support for interprocessor CBus for communicating link level and fabric level flow control 
information between egress and ingress processors in CSIX mode.

• Interface to internal buses: command, SRAM push/pull, and DRAM push/pull.

Figure 4 shows one expected usage model.
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Note: In this document, UTOPIA always refers to cell transport; POS-PHY refers to variable length 
packet transport; CSIX refers to CFrame transport.

2.6.1 Reference Documents
The reader should be familiar with the following specifications:

1. UTOPIA Specification, Level 1, Version 2.01, March 21, 1994

2. UTOPIA Level 2 Specification, Version 1.0, June 1995

3. UTOPIA 3 Physical Layer Interface, November 1999

4. POS-PHY Level 2 Specification, Issue 5, December 1998

5. POS-PHY Level 3 Specification, Issue 4, June 2000

6. SPI-3 Specification, June 2000

7. Frame Based ATM Interface (Level 3), March 2000

8. CSIX-L1: Common Switch Interface Specification -L1, Version 1.0, August 5, 2000

Q

2.7 PCI Controller
The PCI Controller provides 64-bit, 66-MHz-capable PCI Revision 2.2 interface. It is also 
compatible to 32-bit and/or 33-MHz PCI devices. The PCI controller provides the following 
functions:

• Target Access (external Bus Master access to SRAM, DRAM, and CSRs)

• Master Access (Intel XScale® core access to PCI Target devices)

• Three DMA channels

Figure 4. An Expected Usage Model
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• Mailbox and Doorbell registers for Intel XScale® core-to-host communication

• PCI Arbiter

IXP2400 can be configured to act as PCI central function (for use in a stand-alone system), where 
it provides the PCI reset signal, or as an add-in device, where it uses the PCI reset signal as the chip 
reset input. The choice is made by connecting the cfg_rst_dir input pin low or high.

2.7.1 Target Access
There are three Base Address Registers (BARs) to allow PCI Bus Masters to access SRAM, 
DRAM, and CSRs, respectively. Examples of PCI Bus Masters include a Host Processor (for 
example a Pentium® processor), or an IO device such as an Ethernet controller, SCSI controller, or 
encryption coprocessor.

Strapping Options (Without PROM Boot)

The SRAM BAR can be strapped to sizes of 32, 64, 128, or 256 MB.

The DRAM BAR can be strapped to sizes of 128, 256, 512 MB, or 1 GB.

The CSR BAR is 1 MB.

Programmable Options (With PROM Boot)

The SRAM BAR can be programmed to sizes of 0 bytes, 256 or 512 KB, 1, 2, 4, 8, 16, 32, 64, 128, 
or 256 MB.

The DRAM BAR can be programmed to sizes of 0 bytes, 1, 2, 4, 8, 16, 32, 64, 128, 256, or 512 
MB, or 1 GB.

The CSR BAR is 1 MB.

PCI Boot Mode is supported, in which the Host downloads the Intel XScale® core boot image into 
DRAM, while holding the Intel XScale® core in reset. Once the boot image has been loaded, the 
Intel XScale® core reset is deasserted. The alternative is to provide the boot image in a Flash ROM 
attached to the SlowPort (Section 2.11.5).

2.7.2 Master Access
The Intel XScale® core processor and Microengines can directly access PCI bus. The Intel 
XScale® core can do loads and stores to specific address regions to generate all PCI command 
types (see Figure 2). Microengines use PCI instructions, and also use address regions to generate 
different PCI commands. Master access can also be generated by DMA.

2.7.3 DMA Channels
There are three DMA Channels, each of which can move blocks of data from DRAM to the PCI or 
from the PCI to DRAM. The DMA channels read parameters from a list of descriptors in SRAM, 
perform the data movement to or from DRAM, and stop when the list is exhausted. The descriptors 
are loaded from predefined SRAM entries or may be set directly by CSR writes to DMA Channel 
registers. There is no restriction on byte alignment of the source address or the destination address. 
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For PCI to DRAM transfers, the PCI command is Memory Read, Memory Read line, or Memory 
Read Multiple. For DRAM to PCI transfers, the PCI command is Memory Write. Memory Write 
Invalidate is not supported.

Up to three DMA channels are running at a time with three descriptors outstanding. Effectively, the 
active channels interleave bursts to or from the PCI Bus. 

Interrupts are generated at the end of DMA operation for the Intel XScale® core; interrupts are also 
generated for the PCI bus. Microengines, however, do not provide an interrupt mechanism. The 
DMA Channel will instead use an Event Signal to notify the particular Microengine on completion 
of DMA. 

2.7.3.1 DMA Descriptor

Each descriptor occupies four 32-bit words in SRAM, aligned on a 16 byte boundary. The DMA 
channels read the descriptors from SRAM into working registers once the control register has been 
set to initiate the transaction. This control must be set explicitly. This starts the DMA transfer. The 
register names for the DMA channels are listed in Figure 5. Table 2 lists the contents of the 
descriptor.

After a descriptor is processed, the next descriptor is loaded in the working registers. This process 
repeats until the chain of descriptors is terminated (that is, until the End of Chain bit is set).

Figure 5. DMA Descriptor Reads
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Prior Descriptor
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DMA Channel Register Channel Register Name (X can be 1, 2, or 3)

Byte Count Register CHAN_X_BYTE_COUNT

PCI Address Register CHAN_X_PCI_ADDR

DRAM Address Register CHAN_X_DRAM_ADDR

Descriptor Pointer Register CHAN_X_DESC_PTR

DMA Channel Register Channel   Register Name (X can be 1, 2, or 3)

Control Register CHAN_X_CONTROL

Working Register
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Table 2. DMA Descriptor Format

Offset from Descriptor Pointer Description

0x0 Byte Count

0x4 PCI Address

0x8 DRAM Address

0xC Next Descriptor Address
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2.7.3.2 DMA Channel Operation

The DMA channel can be set up to read the first descriptor in SRAM, or with the first descriptor 
written directly to the DMA channel registers.

When descriptors and the descriptor list are in SRAM, the procedure is as follows:

1. The DMA channel owner writes the address of the first descriptor into the DMA Channel 
Descriptor Pointer register (DESC_PTR).

2. The DMA channel owner writes the DMA Channel Control register (CONTROL) with 
miscellaneous control information and also sets the channel enable bit (bit 0). The channel 
initial descriptor bit (bit 4) in the CONTROL register must also be cleared to indicate that the 
first descriptor is in SRAM.

3. Depending on the DMA channel number, the DMA channel reads the descriptor block into the 
corresponding DMA registers, BYTE_COUNT, PCI_ADDR, DRAM_ADDR, and 
DESC_PTR.

4. The DMA channel transfers the data until the byte count is exhausted, and then sets the 
channel transfer done bit in the CONTROL register.

5. If the end of chain bit (bit 31) in the BYTE_COUNT register is clear, the channel checks the 
Chain Pointer value. If the Chain Pointer value is not equal to 0, it reads the next descriptor 
and transfers the data (step 3 and 4 above). If the Chain Pointer value is equal to 0, it waits for 
the Descriptor Added bit of the Channel Control Register to be set before reading the next 
descriptor and transfers the data (step 3 and 4 above). If bit 31 is set, the channel sets the 
channel chain done bit in the CONTROL register and then stops.

6. Proceed to the Channel End Operation.

When single descriptors are written directly into the DMA channel registers, the procedure is as 
follows:

1. The DMA channel owner writes the descriptor values directly into the DMA channel registers. 
The end of chain bit (bit 31) in the BYTE_COUNT register must be set, and the value in the 
DESC_PTR register is not used. (If the end of chain bit is not set, the DESC_PTR will point to 
the next descriptor in SRAM).

2. The DMA channel owner writes the base address of the DMA transfer into the PCI_ADDR to 
specify the PCI starting address.

3. When the first descriptor is in the BYTE_COUNT register, the DRAM_ADDR register must 
be written with the address of the data to be moved.

4. The DMA channel owner writes the CONTROL register with miscellaneous control 
information, along with setting the channel enable bit (bit 0). The channel initial descriptor in 
register bit (bit 4) in the CONTROL register must also be set to indicate that the first descriptor 
is already in the channel descriptor registers.

5. The DMA channel transfers the data until the byte count is exhausted, and then sets the 
channel transfer done bit (bit 2) in the CONTROL register.

6. Since the end of the chain bit (bit 31) in the BYTE_CONT register is set, the channel sets the 
channel chain done bit (bit 7) in the CONTROL register and then stops.

7. Proceed to the Channel End Operation.
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2.7.3.3 DMA Channel End Operation

1. Channel owned by PCI
If not masked via the PCI Outbound Interrupt Mask register, the DMA channel interrupts the 
PCI host after the setting of the DMA done bit in the CHAN_X_CONTROL register, which is 
readable in the PCI Outbound Interrupt Status register.

2. Channel owned by the Intel XScale® core
If enabled via the Intel XScale® core Interrupt Enable registers, the DMA channel interrupts 
the Intel XScale® core by setting the DMA channel done bit in the CHAN_X_CONTROL 
register, which is readable in the Intel XScale® core Interrupt Status register.

3. Channel owned by Microengine
If enabled via the Microengine Auto-Push Enable registers, the DMA channel signals the 
Microengine after setting the DMA channel done bit in the CHAN_X_CONTROL register, 
which is readable in the Microengine Auto-Push Status register. 

2.7.3.4 Adding Descriptor to Unterminated Chain

It is possible to add a descriptor to a chain while a channel is running. To do so the chain should be 
left unterminated, that is the last descriptor should have End of Chain clear, and the Chain Pointer 
value equal to 0. A new descriptor (or linked list of descriptors) can be added to the chain by 
overwriting the Chain Pointer value of the unterminated descriptor (in SRAM) with the Local 
Memory address of the (first) added descriptor (note that the added descriptor must actually be 
valid in Local Memory prior to that). After updating the Chain Pointer field, the software must 
write a 1 to the Descriptor Added bit of the Channel Control Register. This is necessary for the case 
where the channel was paused in order to re-activate the channel. However, software need not 
check the state of the channel before writing that bit; there is no side-effect of writing that bit in the 
case where the channel had not yet read the unlinked descriptor.

If the channel was paused or had read an unlinked Pointer, it will re-read the last descriptor 
processed (that is, the one that originally had the zero value for Chain Pointer) to get the address of 
the newly added descriptor.

A descriptor can not be added to a descriptor which has End of Chain set.

2.7.4 Mailbox and Message Registers
Mailbox and Doorbell registers provide hardware support for communication between the Intel 
XScale® core and a device on the PCI Bus.

Four 32-bit mailbox registers are provided so that messages can be passed between the Intel 
XScale® core and a PCI device. All four registers can be read and written with byte resolution from 
both the Intel XScale® core and PCI. How the registers are used is application dependent and the 
messages are not used internally by the PCI Unit in any way. The mailbox registers are often used 
with the Doorbell interrupts.

Doorbell interrupts provide an efficient method of generating an interrupt as well as encoding the 
purpose of the interrupt. The PCI Unit supports a 32-bit Intel XScale® core DOORBELL register 
that is used by a PCI device to generate an Intel XScale® core interrupt, and a separate 32-bit PCI 
DOORBELL register that is used by the Intel XScale® core to generate a PCI interrupt. A source 
generating the Doorbell interrupt can write a software defined bitmap to the register to indicate a 
specific purpose. This bitmap is translated into a single interrupt signal to the destination (either a 
PCI interrupt or an Intel XScale® core interrupt). When an interrupt is received, the DOORBELL 
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registers can be read and the bit mask can be interpreted. If a larger bit mask is required than that is 
provided by the DOORBELL register, the MAILBOX registers can be used to pass up to 16 bytes 
of data.

The doorbell interrupts are controlled through the registers shown in Table 3.

2.7.5 PCI Arbiter
The PCI unit contains a PCI bus arbiter that supports two external masters in addition to the PCI 
Unit’s initiator interface. If more than two external masters are used in the system, the arbiter can 
be disabled and an external (to IXP2400) arbiter used. In that case, IXP2400 will provide its PCI 
request signal to the external arbiter, and use that arbiters grant signal.

The arbiter uses a simple round-robin priority algorithm. It asserts the grant signal corresponding to 
the next request in the round-robin during the current executing transaction on the PCI bus (this is 
also called hidden arbitration). If the arbiter detects that an initiator has failed to assert frame_l 
after 16 cycles of both grant assertion and PCI bus idle condition, the arbiter deasserts the grant. 
That master does not receive any more grants until it deasserts its request for at least one PCI clock 
cycle. Bus parking is implemented in that the last bus grant will stay asserted if no request is 
pending.

To prevent bus contention, if the PCI bus is idle, the arbiter never asserts one grant signal in the 
same PCI cycle in which it deasserts another, It deasserts one grant, and then asserts the next grant 
after one full PCI clock cycle has elapsed to provide for bus driver turnaround.

2.8 Scratchpad Memory
IXP2400 contains a 16KB Scratchpad Memory, organized as 4K 32-bit words, that is accessible by 
Microengines and Intel XScale® core.

The Scratchpad Memory provides the following operations:

• Normal reads and writes—from one to 16 32-bit words can be read/written with a single 
Microengine instruction

Note: Scratchpad is not byte-writeable (each write must write all 4 bytes)

• Atomic read-modify-write operations: bit-set, bit-clear, increment, decrement, add, subtract, 
and swap—the RMW operations can also optionally return the pre-modified data

• 16 Hardware Assisted Rings1 for interprocess communication

Table 3. Doorbell Interrupt Registers

Register Name Description

Intel XScale® core 
DOORBELL Used to generate the Intel XScale® core Doorbell interrupts

Intel XScale® core 
DOORBELL SETUP Used to initialize the Intel XScale® core Doorbell register and for diagnostics.

PCI DOORBELL Used to generate the PCI Doorbell interrupts

PCI DOORBELL SETUP Used to initialize the PCI Doorbell register and for diagnostics.

1. A ring is a FIFO that uses a head and tail pointer to store/read information in Scratchpad memory.
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Scratchpad Memory is provided as a third memory resource (in addition to SRAM and DRAM) 
that is shared by the Microengines and Intel XScale® core. The Microengines and Intel XScale® 
core can distribute memory accesses between these three types of memory resources to provide a 
greater number of memory accesses occurring in parallel.

2.9 Hash Unit
IXP2400 contains a Hash Unit that can take 48-bit, 64-bit or 128-bit data and produces a 48-bit, a 
64-bit or a 128-bit hash index, respectively. The Hash Unit is accessible by the Microengines and 
Intel XScale® core, and is useful in doing table searches with large keys, for example L2 addresses. 
Figure 6 is a block diagram of the Hash Unit.

Up to three hash indices can be created using a single Microengine instruction. This helps to 
minimize command overhead. The Intel XScale® core can only do a single hash at a time.

A Microengine initiates a hash operation by writing the hash operands into a contiguous set of 
S TRANSFER OUT Registers and then executing the hash instruction. The Intel XScale® core 
initiates a hash operation by writing a set of memory-mapped HASH_OP Registers, which are built 
in the Intel XScale® core gasket, with the data to be used to generate the hash index. There are 
separate registers for 48-bit, 64-bit, and 128-bit hashes. The data is written from MSB to LSB, with 
the write to LSB triggering the Hash Operation. In both cases, the Hash Unit reads the operand into 
an input buffer, performs the hash operation, and returns the result.

The Hash Unit uses a hard-wired polynomial algorithm and a programmable hash multiplier to 
create hash indices. Three separate multipliers are supported, one for 48-bit hash operations, one 
for 64-bit hash operations and one for 128-bit hash operations. The multiplier is programmed 
through Control registers in the Hash Unit.

Figure 6. Hash Unit Block Diagram
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The multiplicand is shifted into the hash array sixteen bits at a time. The hash array performs a 
ones-complement multiply and polynomial divide, calculated using the multiplier and 16 bits of the 
multiplicand. The result is placed into an output buffer register and also feeds back into the array. 
This process is repeated 3 times for a 48-bit hash (16 bits x 3 = 48), 4 times for a 64-bit hash (16 
bits x 4 = 64) and 8 times for a 128-bit hash (16 x 8 = 128). After an entire multiplicand has been 
passed through the hash array, the resulting hash index is placed into a two-stage output buffer.

After each hash index is completed, the Hash Unit returns the hash index to the Microengines S 
Transfer In Registers, or Intel XScale® core HASH_OP Registers. For Microengine initiated hash 
operations, the Microengine is signaled after all the hashes specified in the instruction have been 
completed.

For Intel XScale® core-initiated hash operations, the Intel XScale® core reads the results from the 
memory-mapped HASH_OP Registers. The addresses of Hash Results are the same as the 
HASH_OP Registers. Because of queuing delays at the Hash Unit, the time to complete an 
operation is not fixed. The Intel XScale® core can do one of two operations to get the hash results.

• Poll the HASH_DONE Register. This register is cleared when the HASH_OP Registers are 
written. Bit [0] of HASH_DONE Register is set when the HASH_OP Registers get the return 
result from the Hash Unit (when the last word of the result is returned). The Intel XScale® core 
software can poll on HASH_DONE, and read HASH_OP when HASH_DONE is equal to 
0x00000001.

• Read HASH_OP directly. The interface hardware will acknowledge the read only when the 
result is valid. This method will result in the Intel XScale® core stalling if the result is not 
valid when the read happens.

The number of clock cycles required to perform a single hash operation is the sum of two or four 
cycles through the input buffers, three, four or eight cycles through the hash array, and two or four 
cycles through the output buffers. Because of the pipeline characteristics of the Hash Unit, 
performance is improved if multiple hash operations are initiated with a single instruction rather 
than separate hash instructions for each hash operation.

2.10 Control and Status Register Access Proxy
Control and Status Register Access Proxy (CAP) contains a number of chip-wide control and status 
registers. Some provide miscellaneous control and status, while others are used for inter-
Microengine or Microengine-to-Intel XScale® core communication (note that rings in Scratchpad 
Memory and SRAM can also be used for interprocess communication). These include:

• Interthread Signal—Each thread (or context) on a Microengine can send a signal to any other 
thread by writing to InterThread_Signal register. This allows a thread to go to sleep waiting 
completion of a task by a different thread.

• Thread Message—Each thread has a message register where it can post a software-specific 
message. Other Microengine threads or Intel XScale® core can poll for availability of 
messages by reading THREAD_MESSAGE_SUMMARY register. Both the 
THREAD_MESSAGE and corresponding THREAD_MESSAGE_SUMMARY clear upon a 
read of the message; this eliminates a race condition when there are multiple message readers. 
Only one reader will get the message.

• Self Destruct—This register provides another type of communication. Microengine software 
can atomically set individual bits in the SELF DESTRUCT registers; the registers clear upon 
read. The meaning of each bit is software-specific. Clearing the register upon read eliminates a 
race condition when there are multiple readers.
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• Thread Interrupt—Each thread can interrupt the Intel XScale® core on two different 
interrupts; the usage is software-specific. Having two interrupts allows for flexibility, for 
example one can be assigned to normal service requests and one can be assigned to error 
conditions. If more information needs to be associated with the interrupt, mailboxes or Rings 
in Scratchpad Memory or SRAM could be used.

• Reflector—CAP provides a function (called reflector) where any Microengine thread can 
move data between its registers and those of any other thread. In response to a single write or 
read instruction (with the address in the specific reflector range) CAP will get data from the 
source Microengine and put it into the destination Microengine. Both the sending and 
receiving threads can optionally be signalled upon completion of the data movement.

2.11 Intel® XScale® Core Peripherals

2.11.1 Interrupt Controller
The Interrupt Controller provides the ability to enable or mask interrupts from a number of chip-
wide sources, for example:

• Timers (normally used by Real-Time Operating System)

• Interrupts generated by Microengine software to request services from the Intel XScale® core

• External agents such as PCI devices

• Error conditions, such as DRAM ECC error, or SPI-4 parity error

Interrupt status is read as memory mapped registers—the state of an interrupt signal can be read 
even if it is masked from interrupting. Enabling and masking of interrupts is done as writes to 
memory mapped registers. 

2.11.2 Timers
IXP2400 contains four programmable 32-bit timers which can be used for software support. Each 
timer can be clocked by the internal clock, by a divided version of the clock, or by a signal on an 
external GPIO pin (Section 2.11.3). Each timer can be programmed to generate a periodic interrupt 
after a programmed number of clocks. The range is from several ns to several minutes depending 
on the clock frequency.

In addition, timer 4 can be used as a watchdog timer. In this use, software must periodically reload 
the timer value; if it fails to do so and the timer counts to zero, it will reset the chip. This can be 
used to detect if software hangs or for some other reason fails to reload the timer.

2.11.3 GPIO
IXP2400 contains eight General Purpose IO (GPIO) pins. These can be programmed as either input 
or output and can be used for slow speed IO such as LEDs or input switches. They can also be used 
as interrupts to the Intel XScale® core or to clock the programmable timers (Section 2.11.2). 
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2.11.4 UART
IXP2400 contains a standard RS-232 compatible Universal Asynchronous Receiver/Transmitter 
(UART) which can be used for communication with a debugger or maintenance console. Modem 
controls are not supported; if they are needed, GPIO pins can be used for that purpose. 

The UART performs serial-to-parallel conversion on data characters received from a peripheral 
device and parallel-to-serial conversion on data characters received from the processor. The 
processor can read the complete status of the UART at any time during operation. Available status 
information includes the type and condition of the transfer operations being performed by the 
UART and any error conditions (parity, overrun, framing or break interrupt).

The serial ports can operate in either FIFO or non-FIFO mode. In FIFO mode, a 64-byte transmit 
FIFO holds data from the processor to be transmitted on the serial link and a 64-byte receive FIFO 
buffers data from the serial link until read by the processor.

The UART includes a programmable baud rate generator which is capable of dividing the internal 
clock input by divisors of 1 to 216 - 1 and produces a 16X clock to drive the internal transmitter 
logic. It also drives the receive logic. The UART can be operated in polled or in interrupt driven 
mode as selected by software.

2.11.5 SlowPort
The SlowPort is an external interface to IXP2400, used for Flash ROM access and 8, 16, or 32-bit 
asynchronous device access. It allows the Intel XScale® core do read/write data transfers to these 
slave devices.

The address bus and data bus are multiplexed to reduce the pincount. In addition, 24 bits of address 
are shifted out on three clock cycles. Therefore, an external set of buffers (such as 74F377) is 
needed to latch the address. Two chip selects are provided. See Figure 7.
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The access is asynchronous. Insertion of delay cycles for both data setup and hold time is 
programmable via internal Control registers. The transfer can also wait for a handshake 
acknowledge signal from the external device.

Figure 8 shows an interface to an 8-bit device.

Figure 7. Generic SlowPort Connection
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Figure 8. 8-bit SlowPort Interface Example (PMC-Sierra PM5351 S/UNI-TETRA)
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Intel® XScale® Core 3

This section contains information describing the Intel XScale® core, XScale core gasket and 
XScale core Peripherals (XPI).

For additional information about Intel XScale architecture, refer to the Intel® XScale® Core 
Developer’s Manual, available on the Intel Developer website
(http://www.intel.com/design/intelxscale/273473.htm).

3.1 Introduction
The XScale core is an ARM* V5TE compliant microprocessor. It has been designed for high 
performance and low power; leading the industry in mW/MIPs. The XScale core incorporates an 
extensive list of architecture features that allows it to achieve high performance. Many of the 
architectural features added to the XScale core help hide memory latency which often is a serious 
impediment to high-performance processors. 

This includes:

• the ability to continue instruction execution even while the data cache is retrieving data from 
external memory.

• a write buffer.

• write-back caching.

• various data cache allocation policies which can be configured different for each application.

• and cache locking.

All these features improve the efficiency of the memory bus external to the core. 

ARM* Version 5 (V5) Architecture added floating point instructions to ARM* Version 4. The 
XScale core implements the integer instruction set architecture of ARM* V5, but does not provide 
hardware support of the floating point instructions.

The XScale core provides the Thumb instruction set (ARM* V5T) and the ARM* V5E DSP 
extensions.

Backward compatibility with StrongARM products is maintained for user-mode applications. 
Operating systems may require modifications to match the specific hardware features of the 
XScale core and to take advantage of the performance enhancements added.



50 Hardware Reference Manual

Intel® IXP2400 Network Processor
Intel® XScale® Core

3.2 Features
Figure 9 shows the major functional blocks of the XScale core. The following sections give a brief, 
high-level overview of these blocks.

3.2.1 Multiply/Accumulate (MAC)
The MAC unit supports early termination of multiplies/accumulates in two cycles and can sustain a 
throughput of a MAC operation every cycle. Several architectural enhancements were made to the 
MAC to support audio coding algorithms, which include a 40-bit accumulator and support for 16-
bit packed data. 

3.2.2 Memory Management
The XScale core implements the Memory Management Unit (MMU) Architecture specified in the 
ARM* Architecture Reference Manual. The MMU provides access protection and virtual to 
physical address translation. 

The MMU Architecture also specifies the caching policies for the instruction cache and data 
memory. These policies are specified as page attributes and include:

• identifying code as cacheable or non-cacheable

• selecting between the mini-data cache or data cache

• write-back or write-through data caching

Figure 9. Intel® XScale® Core Architecture Features
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• enabling data write allocation policy

• and enabling the write buffer to coalesce stores to external memory

3.2.3 Instruction Cache
The XScale core implements a 32-Kbyte, 32-way set associative instruction cache with a line size 
of 32 bytes. All requests that “miss” the instruction cache generate a 32-byte read request to 
external memory. A mechanism to lock critical code within the cache is also provided. 

3.2.4 Branch Target Buffer
The XScale core provides a Branch Target Buffer (BTB) to predict the outcome of branch type 
instructions. It provides storage for the target address of branch type instructions and predicts the 
next address to present to the instruction cache when the current instruction address is that of a 
branch.

The BTB holds 128 entries.

3.2.5 Data Cache
The XScale core implements a 32-Kbyte, a 32-way set associative data cache and a 2-Kbyte, 2-way 
set associative mini-data cache. Each cache has a line size of 32 bytes, and supports write-through 
or write-back caching. 

The data/mini-data cache is controlled by page attributes defined in the MMU Architecture and by 
coprocessor 15. 

The XScale core allows applications to re-configure a portion of the data cache as data RAM. 
Software may place special tables or frequently used variables in this RAM.

3.2.6 Performance Monitoring
Two performance monitoring counters have been added to the XScale core that can be configured 
to monitor various events. These events allow a software developer to measure cache efficiency, 
detect system bottlenecks, and reduce the overall latency of programs. 

3.2.7 Power Management
The XScale core incorporates a power and clock management unit that can assist ASSPs 
(Application Specific Standard Product) in controlling their clocking and managing their power.

3.2.8 Debug
The XScale core supports software debugging through two instruction address breakpoint registers, 
one data-address breakpoint register, one data-address/mask breakpoint register, and a trace buffer. 
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3.2.9 JTAG
Testability is supported on the XScale core through the Test Access Port (TAP) Controller 
implementation, which is based on IEEE 1149.1 (JTAG) Standard Test Access Port and Boundary-
Scan Architecture. The purpose of the TAP controller is to support test logic internal and external 
to the XScale core such as built-in self-test, boundary-scan, and scan. 

3.3 Memory Management
The XScale core implements the Memory Management Unit (MMU) Architecture specified in the 
ARM Architecture Reference Manual. To accelerate virtual to physical address translation, the 
XScale core uses both an instruction Translation Look-aside Buffer (TLB) and a data TLB to cache 
the latest translations. Each TLB holds 32 entries and is fully-associative. Not only do the TLBs 
contain the translated addresses, but also the access rights for memory references.

If an instruction or data TLB miss occurs, a hardware translation-table-walking mechanism is 
invoked to translate the virtual address to a physical address. Once translated, the physical address 
is placed in the TLB along with the access rights and attributes of the page or section. These 
translations can also be locked down in either TLB to guarantee the performance of critical 
routines. 

The XScale core allows system software to associate various attributes with regions of memory:

• cacheable

• bufferable

• line allocate policy

• write policy

• I/O 

• mini Data Cache

• Coalescing

• P bit

Note: The virtual address with which the TLBs are accessed may be remapped by the PID (Process ID) 
register.

3.3.1 Architecture Model

3.3.1.1 Version 4 vs. Version 5

ARM* MMU Version 5 Architecture introduces the support of tiny pages, which are 1 KByte in 
size. The reserved field in the first-level descriptor (encoding 0b11) is used as the fine page table 
base address.
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3.3.1.2 Memory Attributes

The attributes associated with a particular region of memory are configured in the memory 
management page table and control the behavior of accesses to the instruction cache, data cache, 
mini-data cache and the write buffer. These attributes are ignored when the MMU is disabled.

To allow compatibility with older system software, the new Intel XScale core attributes take 
advantage of encoding space in the descriptors that was formerly reserved.

3.3.1.2.1 Page (P) Attribute Bit

The P bit assigns a page attribute to a memory region. Refer to the Intel® IXP2400/IXP2800 
Network Processor Programmer’s Reference Manual for details about the P bit.

3.3.1.2.2 Instruction Cache

When examining these bits in a descriptor, the Instruction Cache only utilizes the C bit. If the C bit 
is clear, the Instruction Cache considers a code fetch from that memory to be non-cacheable, and 
will not fill a cache entry. If the C bit is set, then fetches from the associated memory region will be 
cached.

3.3.1.2.3 Data Cache and Write Buffer

All of these descriptor bits affect the behavior of the Data Cache and the Write Buffer.

If the X bit for a descriptor is zero (see Table 4), the C and B bits operate as mandated by the 
ARM* architecture. If the X bit for a descriptor is one, the C and B bits’ meaning is extended, as 
detailed in Table 5.

Table 4. Data Cache and Buffer Behavior when X = 0

C B Cacheable? Bufferable? Write Policy
Line 

Allocation 
Policy

Notes

0 0 N N - - Stall until completea

a. Normally, the processor will continue executing after a data access if no dependency on that access is encountered. With
this setting, the processor will stall execution until the data access completes. This guarantees to software that the data ac-
cess has taken effect by the time execution of the data access instruction completes. External data aborts from such access-
es will be imprecise.

0 1 N Y - -

1 0 Y Y Write Through Read Allocate

1 1 Y Y Write Back Read Allocate
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3.3.1.2.4 Details on Data Cache and Write Buffer Behavior

If the MMU is disabled all data accesses will be non-cacheable and non-bufferable. This is the 
same behavior as when the MMU is enabled, and a data access uses a descriptor with X, C, and B 
all set to 0.

The X, C, and B bits determine when the processor should place new data into the Data Cache. The 
cache places data into the cache in lines (also called blocks). Thus, the basis for making a decision 
about placing new data into the cache is a called a “Line Allocation Policy”.

If the Line Allocation Policy is read-allocate, all load operations that miss the cache request a 32-
byte cache line from external memory and allocate it into either the data cache or mini-data cache 
(this is assuming the cache is enabled). Store operations that miss the cache will not cause a line to 
be allocated.

If read/write-allocate is in effect, load or store operations that miss the cache will request a 32-byte 
cache line from external memory if the cache is enabled.

The other policy determined by the X, C, and B bits is the Write Policy. A write-through policy 
instructs the Data Cache to keep external memory coherent by performing stores to both external 
memory and the cache. A write-back policy only updates external memory when a line in the cache 
is cleaned or needs to be replaced with a new line. Generally, write-back provides higher 
performance because it generates less data traffic to external memory.

3.3.1.2.5 Memory Operation Ordering

A fence memory operation (memop) is one that guarantees all memops issued prior to the fence 
will execute before any memop issued after the fence. Thus software may issue a fence to impose a 
partial ordering on memory accesses.

Table 6 shows the circumstances in which memops act as fences.

Any swap (SWP or SWPB) to a page that would create a fence on a load or store is a fence.

Table 5. Data Cache and Buffer Behavior when X = 1

C B Cacheable? Bufferable? Write Policy
Line 

Allocation 
Policy

Notes

0 0 - - - - Unpredictable -- do not use

0 1 N Y - - Writes will not coalesce into 
buffersa

a. Normally, bufferable writes can coalesce with previously buffered data in the same address range

1 0 (Mini Data 
Cache) - - -

Cache policy is determined 
by MD field of Auxiliary 
Control register

1 1 Y Y Write Back Read/Write 
Allocate
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3.3.2 Exceptions
The MMU may generate prefetch aborts for instruction accesses and data aborts for data memory 
accesses. 

Data address alignment checking is enabled by setting bit 1 of the Control Register (CP15, 
register 1). Alignment faults are still reported even if the MMU is disabled. All other MMU 
exceptions are disabled when the MMU is disabled. 

3.3.3 Interaction of the MMU, Instruction Cache, and Data Cache
The MMU, instruction cache, and data/mini-data cache may be enabled/disabled independently. 
The instruction cache can be enabled with the MMU enabled or disabled. However, the data cache 
can only be enabled when the MMU is enabled. Therefore only three of the four combinations of 
the MMU and data/mini-data cache enables are valid (see Table 7). The invalid combination will 
cause undefined results.

3.3.4 Control

3.3.4.1 Invalidate (Flush) Operation

The entire instruction and data TLB can be invalidated at the same time with one command or they 
can be invalidated separately. An individual entry in the data or instruction TLB can also be 
invalidated.

Globally invalidating a TLB will not affect locked TLB entries. However, the invalidate-entry 
operations can invalidate individual locked entries. In this case, the locked remains in the TLB, but 
will never “hit” on an address translation. Effectively, a hole is in the TLB. This situation may be 
rectified by unlocking the TLB.

3.3.4.2 Enabling/Disabling

The MMU is enabled by setting bit 0 in coprocessor 15, register 1 (Control Register). 

Table 6. Memory Operations that Impose a Fence

operation X C B

load - 0 -

store 1 0 1

load or store 0 0 0

Table 7. Valid MMU and Data/Mini-data Cache Combinations

MMU Data/mini-data Cache

Off Off

On Off

On On
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When the MMU is disabled, accesses to the instruction cache default to cacheable and all accesses 
to data memory are made non-cacheable. 

A recommended code sequence for enabling the MMU is shown in Example 1.

3.3.4.3 Locking Entries

Individual entries can be locked into the instruction and data TLBs. If a lock operation finds the 
virtual address translation already resident in the TLB, the results are unpredictable. An invalidate 
by entry command before the lock command will ensure proper operation. Software can also 
accomplish this by invalidating all entries, as shown in Example 2. 

Locking entries into either the instruction TLB or data TLB reduces the available number of entries 
(by the number that was locked down) for hardware to cache other virtual to physical address 
translations. 

A procedure for locking entries into the instruction TLB is shown in Example 2.

If a MMU abort is generated during an instruction or data TLB lock operation, the Fault Status 
Register is updated to indicate a Lock Abort, and the exception is reported as a data abort. 

Example 1. Enabling the MMU

; This routine provides software with a predictable way of enabling the MMU.

; After the CPWAIT, the MMU is guaranteed to be enabled. Be aware

; that the MMU will be enabled sometime after MCR and before the instruction

; that executes after the CPWAIT.

; Programming Note: This code sequence requires a one-to-one virtual to 

; physical address mapping on this code since 

; the MMU may be enabled part way through. This would allow the instructions 

; after MCR to execute properly regardless the state of the MMU.

MRC P15,0,R0,C1,C0,0; Read CP15, register 1 

ORR R0, R0, #0x1; Turn on the MMU

MCR P15,0,R0,C1,C0,0; Write to CP15, register 1

; The MMU is guaranteed to be enabled at this point; the next instruction or 

; data address will be translated.
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Note: If exceptions are allowed to occur in the middle of this routine, the TLB may end up caching a 
translation that is about to be locked. For example, if R1 is the virtual address of an interrupt 
service routine and that interrupt occurs immediately after the TLB has been invalidated, the lock 
operation will be ignored when the interrupt service routine returns back to this code sequence. 
Software should disable interrupts (FIQ or IRQ) in this case. 

As a general rule, software should avoid locking in all other exception types. 

The proper procedure for locking entries into the data TLB is shown in Example 3.

Note: Care must be exercised here when allowing exceptions to occur during this routine whose handlers 
may have data that lies in a page that is trying to be locked into the TLB. 

Example 2. Locking Entries into the Instruction TLB

; R1, R2 and R3 contain the virtual addresses to translate and lock into 

; the instruction TLB.

; The value in R0 is ignored in the following instruction. 

; Hardware guarantees that accesses to CP15 occur in program order

MCR P15,0,R0,C8,C5,0 ; Invalidate the entire instruction TLB

MCR P15,0,R1,C10,C4,0 ; Translate virtual address (R1) and lock into

; instruction TLB

MCR P15,0,R2,C10,C4,0 ; Translate

; virtual address (R2) and lock into instruction TLB

MCR P15,0,R3,C10,C4,0 ; Translate virtual address (R3) and lock into

; instruction TLB

CPWAIT

; The MMU is guaranteed to be updated at this point; the next instruction will 

; see the locked instruction TLB entries.

Example 3. Locking Entries into the Data TLB

; R1, and R2 contain the virtual addresses to translate and lock into the data TLB

MCR  P15,0,R1,C8,C6,1 ; Invalidate the data TLB entry specified by the

; virtual address in R1

MCR  P15,0,R1,C10,C8,0 ; Translate virtual address (R1) and lock into 

; data TLB

; Repeat sequence for virtual address in R2

MCR  P15,0,R2,C8,C6,1 ; Invalidate the data TLB entry specified by the

; virtual address in R2

MCR  P15,0,R2,C10,C8,0 ; Translate virtual address (R2) and lock into 

; data TLB

CPWAIT ; wait for locks to complete

; The MMU is guaranteed to be updated at this point; the next instruction will 

; see the locked data TLB entries.
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3.3.4.4 Round-Robin Replacement Algorithm

The line replacement algorithm for the TLBs is round-robin; there is a round-robin pointer that 
keeps track of the next entry to replace. The next entry to replace is the one sequentially after the 
last entry that was written. For example, if the last virtual to physical address translation was 
written into entry 5, the next entry to replace is entry 6. 

At reset, the round-robin pointer is set to entry 31. Once a translation is written into entry 31, the 
round-robin pointer gets set to the next available entry, beginning with entry 0 if no entries have 
been locked down. Subsequent translations move the round-robin pointer to the next sequential 
entry until entry 31 is reached, where it will wrap back to entry 0 upon the next translation. 

A lock pointer is used for locking entries into the TLB and is set to entry 0 at reset. A TLB lock 
operation places the specified translation at the entry designated by the lock pointer, moves the 
lock pointer to the next sequential entry, and resets the round-robin pointer to entry 31. Locking 
entries into either TLB effectively reduces the available entries for updating. For example, if the 
first three entries were locked down, the round-robin pointer would be entry 3 after it rolled over 
from entry 31. 

Only entries 0 through 30 can be locked in either TLB; entry 31can never be locked. If the lock 
pointer is at entry 31, a lock operation will update the TLB entry with the translation and ignore the 
lock. In this case, the round-robin pointer will stay at entry 31. 

Figure 10. Example of Locked Entries in TLB
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3.4 Instruction Cache
The XScale core instruction cache enhances performance by reducing the number of instruction 
fetches from external memory. The cache provides fast execution of cached code. Code can also be 
locked down when guaranteed or fast access time is required. 

Figure 11 shows the cache organization and how the instruction address is used to access the cache. 

The instruction cache is a 32-Kbyte, 32-way set associative cache; this means there are 32 sets with 
each set containing 32 ways. Each way of a set contains eight 32-bit words and one valid bit, which 
is referred to as a line. The replacement policy is a round-robin algorithm and the cache also 
supports the ability to lock code in at a line granularity. 

The instruction cache is virtually addressed and virtually tagged.

Note: The virtual address presented to the instruction cache may be remapped by the PID register. 

Figure 11. Instruction Cache Organization
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3.4.1 Instruction Cache Operation

3.4.1.1 Operation When Instruction Cache is Enabled

When the cache is enabled, it compares every instruction request address against the addresses of 
instructions that it is currently holding. If the cache contains the requested instruction, the access 
“hits” the cache, and the cache returns the requested instruction. If the cache does not contain the 
requested instruction, the access “misses” the cache, and the cache requests a fetch from external 
memory of the 8-word line (32 bytes) that contains the requested instruction using the fetch policy. 
As the fetch returns instructions to the cache, they are placed in one of two fetch buffers and the 
requested instruction is delivered to the instruction decoder.

A fetched line will be written into the cache if it is cacheable. Code is designated as cacheable 
when the Memory Management Unit (MMU) is disabled or when the MMU is enable and the 
cacheable (C) bit is set to 1 in its corresponding page. 

Note that an instruction fetch may “miss” the cache but “hit” one of the fetch buffers. When this 
happens, the requested instruction will be delivered to the instruction decoder in the same manner 
as a cache “hit.”

3.4.1.2 Operation When The Instruction Cache Is Disabled

Disabling the cache prevents any lines from being written into the instruction cache. Although the 
cache is disabled, it is still accessed and may generate a “hit” if the data is already in the cache. 

Disabling the instruction cache does not disable instruction buffering that may occur within the 
instruction fetch buffers. Two 8-word instruction fetch buffers will always be enabled in the cache 
disabled mode. So long as instruction fetches continue to “hit” within either buffer (even in the 
presence of forward and backward branches), no external fetches for instructions are generated. A 
miss causes one or the other buffer to be filled from external memory using the fill policy. 

3.4.1.3 Fetch Policy

An instruction-cache “miss” occurs when the requested instruction is not found in the instruction 
fetch buffers or instruction cache; a fetch request is then made to external memory. The instruction 
cache can handle up to two “misses.” Each external fetch request uses a fetch buffer that holds 32-
bytes and eight valid bits, one for each word. A miss causes the following:

1. A fetch buffer is allocated

2. The instruction cache sends a fetch request to the external bus. This request is for a 32-byte line.

3. Instructions words are returned back from the external bus, at a maximum rate of 1 word per 
core cycle. As each word returns, the corresponding valid bit is set for the word in the fetch 
buffer. 

4. As soon as the fetch buffer receives the requested instruction, it forwards the instruction to the 
instruction decoder for execution.

5. When all words have returned, the fetched line will be written into the instruction cache if it’s 
cacheable and if the instruction cache is enabled. The line chosen for update in the cache is 
controlled by the round-robin replacement algorithm. This update may evict a valid line at that 
location.

6. Once the cache is updated, the eight valid bits of the fetch buffer are invalidated. 
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3.4.1.4 Round-Robin Replacement Algorithm

The line replacement algorithm for the instruction cache is round-robin. Each set in the instruction 
cache has a round-robin pointer that keeps track of the next line (in that set) to replace. The next 
line to replace in a set is the one after the last line that was written. For example, if the line for the 
last external instruction fetch was written into way 5-set 2, the next line to replace for that set 
would be way 6. None of the other round-robin pointers for the other sets are affected in this case. 

After reset, way 31 is pointed to by the round-robin pointer for all the sets. Once a line is written 
into way 31, the round-robin pointer points to the first available way of a set, beginning with way0 
if no lines have been locked into that particular set. Locking lines into the instruction cache 
effectively reduces the available lines for cache updating. For example, if the first three lines of a 
set were locked down, the round-robin pointer would point to the line at way 3 after it rolled over 
from way 31.

3.4.1.5 Parity Protection

The instruction cache is protected by parity to ensure data integrity. Each instruction cache word 
has 1 parity bit. (The instruction cache tag is NOT parity protected.) When a parity error is detected 
on an instruction cache access, a prefetch abort exception occurs if the XScale core attempts to 
execute the instruction. Before servicing the exception, hardware place a notification of the error in 
the Fault Status Register (Coprocessor 15, register 5). 

A software exception handler can recover from an instruction cache parity error. This can be 
accomplished by invalidating the instruction cache and the branch target buffer and then returning 
to the instruction that caused the prefetch abort exception. A simplified code example is shown in 
Example 4. A more complex handler might choose to invalidate the specific line that caused the 
exception and then invalidate the BTB.

If a parity error occurs on an instruction that is locked in the cache, the software exception handler 
needs to unlock the instruction cache, invalidate the cache and then re-lock the code in before it 
returns to the faulting instruction. 

3.4.1.6 Instruction Fetch Latency

The instruction fetch latency is dependent on the core to memory frequency ratio, system bus 
bandwidth, system memory, etc.

Example 4. Recovering from an Instruction Cache Parity Error

; Prefetch abort handler 

MCR P15,0,R0,C7,C5,0 ; Invalidate the instruction cache and branch target 

; buffer

CPWAIT ; wait for effect 

;

SUBS PC,R14,#4 ; Returns to the instruction that generated the 

; parity error

; The Instruction Cache is guaranteed to be invalidated at this point
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3.4.1.7 Instruction Cache Coherency

The instruction cache does not detect modification to program memory by loads, stores or actions 
of other bus masters. Several situations may require program memory modification, such as 
uploading code from disk. 

The application program is responsible for synchronizing code modification and invalidating the 
cache. In general, software must ensure that modified code space is not accessed until modification 
and invalidating are completed.

To achieve cache coherence, instruction cache contents can be invalidated after code modification 
in external memory is complete.

If the instruction cache is not enabled, or code is being written to a non-cacheable region, software 
must still invalidate the instruction cache before using the newly-written code. This precaution 
ensures that state associated with the new code is not buffered elsewhere in the processor, such as 
the fetch buffers or the BTB.

Naturally, when writing code as data, care must be taken to force it completely out of the processor 
into external memory before attempting to execute it. If writing into a non-cacheable region, 
flushing the write buffers is sufficient precaution. If writing to a cacheable region, then the data 
cache should be submitted to a Clean/Invalidate operation to ensure coherency.

3.4.2 Instruction Cache Control

3.4.2.1 Instruction Cache State at Reset

After reset, the instruction cache is always disabled, unlocked, and invalidated (flushed). 

3.4.2.2 Enabling/Disabling

The instruction cache is enabled by setting bit 12 in coprocessor 15, register 1 (Control Register). 
This process is illustrated in Example 5.

Example 5. Enabling the Instruction Cache

; Enable the ICache

MRC P15, 0, R0, C1, C0, 0 ; Get the control register

ORR R0, R0, #0x1000 ; set bit 12 -- the I bit

MCR P15, 0, R0, C1, C0, 0 ; Set the control register

CPWAIT
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3.4.2.3 Invalidating the Instruction Cache

The entire instruction cache along with the fetch buffers are invalidated by writing to 
coprocessor 15, register 7. This command does not unlock any lines that were locked in the 
instruction cache nor does it invalidate those locked lines. To invalidate the entire cache including 
locked lines, the unlock instruction cache command needs to be executed before the invalidate 
command.

There is an inherent delay from the execution of the instruction cache invalidate command to 
where the next instruction will see the result of the invalidate. The routine in Example 6can be used 
to guarantee proper synchronization.

The XScale core also supports invalidating an individual line from the instruction cache. 

3.4.2.4 Locking Instructions in the Instruction Cache

Software has the ability to lock performance critical routines into the instruction cache. Up to 
28 lines in each set can be locked; hardware will ignore the lock command if software is trying to 
lock all the lines in a particular set (i.e., ways 28-31can never be locked). When this happens, the 
line will still be allocated into the cache but the lock will be ignored. The round-robin pointer will 
stay at way 31 for that set. 

Lines can be locked into the instruction cache by initiating a write to coprocessor 15. Register Rd 
contains the virtual address of the line to be locked into the cache. 

There are several requirements for locking down code:

1. the routine used to lock lines down in the cache must be placed in non-cacheable memory, 
which means the MMU is enabled. As a corollary: no fetches of cacheable code should occur 
while locking instructions into the cache.

2. the code being locked into the cache must be cacheable

3. the instruction cache must be enabled and invalidated prior to locking down lines

Failure to follow these requirements will produce unpredictable results when accessing the 
instruction cache.

System programmers should ensure that the code to lock instructions into the cache does not reside 
closer than 128 bytes to a non-cacheable/cacheable page boundary. If the processor fetches ahead 
into a cacheable page, then the first requirement noted above could be violated.

Lines are locked into a set starting at way 0 and may progress up to way 27; which set a line gets 
locked into depends on the set index of the virtual address. Figure 12 is an example of where lines 
of code may be locked into the cache along with how the round-robin pointer is affected. 

Example 6. Invalidating the Instruction Cache

MCR P15,0,R1,C7,C5,0 ; Invalidate the instruction cache and branch

; target buffer

CPWAIT

; The instruction cache is guaranteed to be invalidated at this point; the next

; instruction sees the result of the invalidate command.
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Software can lock down several different routines located at different memory locations. This may 
cause some sets to have more locked lines than others as shown in Figure 12. 

Example 7 shows how a routine, called “lockMe” in this example, might be locked into the 
instruction cache. Note that it is possible to receive an exception while locking code.

Figure 12. Locked Line Effect on Round Robin Replacement
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Example 7. Locking Code into the Cache

lockMe: ; This is the code that will be locked into the cache

mov r0, #5

add r5, r1, r2

. . .

lockMeEnd:

. . .

codeLock: ; here is the code to lock the “lockMe” routine

ldr r0, =(lockMe AND NOT 31); r0 gets a pointer to the first line we 

should lock

ldr r1, =(lockMeEnd AND NOT 31); r1 contains a pointer to the last line we 

should lock

lockLoop:

mcr p15, 0, r0, c9, c1, 0; lock next line of code into ICache

cmp r0, r1 ; are we done yet?

add r0, r0, #32 ; advance pointer to next line

bne lockLoop ; if not done, do the next line



Hardware Reference Manual 65

Intel® IXP2400 Network Processor
Intel® XScale® Core

3.4.2.5 Unlocking Instructions in the Instruction Cache

The XScale core provides a global unlock command for the instruction cache. Writing to 
coprocessor 15, register 9 unlocks all the locked lines in the instruction cache and leaves them 
valid. These lines then become available for the round-robin replacement algorithm.

3.5 Branch Target Buffer
The XScale core uses dynamic branch prediction to reduce the penalties associated with changing 
the flow of program execution. The XScale core features a branch target buffer that provides the 
instruction cache with the target address of branch type instructions. The branch target buffer is 
implemented as a 128-entry, direct mapped cache.

3.5.1 Branch Target Buffer (BTB) Operation
The BTB stores the history of branches that have executed along with their targets. Figure 13 
shows an entry in the BTB, where the tag is the instruction address of a previously executed branch 
and the data contains the target address of the previously executed branch along with two bits of 
history information. 

The BTB takes the current instruction address and checks to see if this address is a branch that was 
previously seen. It uses bits [8:2] of the current address to read out the tag and then compares this 
tag to bits [31:9,1] of the current instruction address. If the current instruction address matches the 
tag in the cache and the history bits indicate that this branch is usually taken in the past, the BTB 
uses the data (target address) as the next instruction address to send to the instruction cache. 

Bit[1] of the instruction address is included in the tag comparison in order to support Thumb 
execution. This organization means that two consecutive Thumb branch (B) instructions, with 
instruction address bits[8:2] the same, will contend for the same BTB entry. Thumb also requires 
31 bits for the branch target address. In ARM* mode, bit[1] is zero. 

The history bits represent four possible prediction states for a branch entry in the BTB. Figure 14 
shows these states along with the possible transitions. The initial state for branches stored in the 
BTB is Weakly-Taken (WT). Every time a branch that exists in the BTB is executed, the history 
bits are updated to reflect the latest outcome of the branch, either taken or not-taken. 

The BTB does not have to be managed explicitly by software; it is disabled by default after reset 
and is invalidated when the instruction cache is invalidated. 

Figure 13. BTB Entry
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3.5.1.1 Reset

After Processor Reset, the BTB is disabled and all entries are invalidated. 

3.5.2 Update Policy
A new entry is stored into the BTB when the following conditions are met:

• the branch instruction has executed,

• the branch was taken

• the branch is not currently in the BTB

The entry is then marked valid and the history bits are set to WT. If another valid branch exists at 
the same entry in the BTB, it will be evicted by the new branch. 

Once a branch is stored in the BTB, the history bits are updated upon every execution of the branch 
as shown in Figure 14. 

3.5.3 BTB Control

3.5.3.1 Disabling/Enabling

The BTB is always disabled with Reset. Software can enable the BTB through a bit in a 
coprocessor register.

Before enabling or disabling the BTB, software must invalidate it (described in the following 
section). This action will ensure correct operation in case stale data is in the BTB. Software should 
not place any branch instruction between the code that invalidates the BTB and the code that 
enables/disables it.

Figure 14. Branch History
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3.5.3.2 Invalidation

There are four ways the contents of the BTB can be invalidated.

1. Reset

2. Software can directly invalidate the BTB via a CP15, register 7 function.

3. The BTB is invalidated when the Process ID Register is written. 

4. The BTB is invalidated when the instruction cache is invalidated via CP15, register 7 
functions.

3.6 Data Cache
The XScale core data cache enhances performance by reducing the number of data accesses to and 
from external memory. There are two data cache structures in the XScale core, a 32 Kbyte data 
cache and a 2 Kbyte mini-data cache. An eight entry write buffer and a four entry fill buffer are 
also implemented to decouple the XScale core instruction execution from external memory 
accesses, which increases overall system performance. 

3.6.1 Overviews

3.6.1.1 Data Cache Overview

The data cache is a 32-Kbyte, 32-way set associative cache; this means there are 32 sets with each 
set containing 32 ways. Each way of a set contains 32 bytes (one cache line) and one valid bit. 
There also exist two dirty bits for every line, one for the lower 16 bytes and the other one for the 
upper 16 bytes. When a store hits the cache the dirty bit associated with it is set. The replacement 
policy is a round-robin algorithm and the cache also supports the ability to reconfigure each line as 
data RAM.

Figure 15 shows the cache organization and how the data address is used to access the cache. 

Cache policies may be adjusted for particular regions of memory by altering page attribute bits in 
the MMU descriptor that controls that memory. 

The data cache is virtually addressed and virtually tagged. It supports write-back and write-through 
caching policies. The data cache always allocates a line in the cache when a cacheable read miss 
occurs and will allocate a line into the cache on a cacheable write miss when write allocate is 
specified by its page attribute. Page attribute bits determine whether a line gets allocated into the 
data cache or mini-data cache.
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3.6.1.2 Mini-Data Cache Overview

The mini-data cache is a 2-Kbyte, 2-way set associative cache; this means there are 32 sets with 
each set containing 2 ways. Each way of a set contains 32 bytes (one cache line) and one valid bit. 
There also exist 2 dirty bits for every line, one for the lower 16 bytes and the other one for the 
upper 16 bytes. When a store hits the cache the dirty bit associated with it is set. The replacement 
policy is a round-robin algorithm. 

Figure 16 shows the cache organization and how the data address is used to access the cache. 

The mini-data cache is virtually addressed and virtually tagged and supports the same caching 
policies as the data cache. However, lines can’t be locked into the mini-data cache. 

Figure 15. Data Cache Organization
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3.6.1.3 Write Buffer and Fill Buffer Overview

The XScale core employs an eight entry write buffer, each entry containing 16 bytes. Stores to 
external memory are first placed in the write buffer and subsequently taken out when the bus is 
available. 

The write buffer supports the coalescing of multiple store requests to external memory. An 
incoming store may coalesce with any of the eight entries. 

The fill buffer holds the external memory request information for a data cache or mini-data cache 
fill or non-cacheable read request. Up to four 32-byte read request operations can be outstanding in 
the fill buffer before the XScale core needs to stall. 

The fill buffer has been augmented with a four entry pend buffer that captures data memory 
requests to outstanding fill operations. Each entry in the pend buffer contains enough data storage 
to hold one 32-bit word, specifically for store operations. Cacheable load or store operations that 
hit an entry in the fill buffer get placed in the pend buffer and are completed when the associated 
fill completes. Any entry in the pend buffer can be pended against any of the entries in the fill 
buffer; multiple entries in the pend buffer can be pended against a single entry in the fill buffer. 

Pended operations complete in program order.

Figure 16. Mini-Data Cache Organization
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3.6.2 Data Cache and Mini-Data Cache Operation
The following discussions refer to the data cache and mini-data cache as one cache (data/mini-
data) since their behavior is the same when accessed. 

3.6.2.1 Operation When Caching is Enabled

When the data/mini-data cache is enabled for an access, the data/mini-data cache compares the 
address of the request against the addresses of data that it is currently holding. If the line containing 
the address of the request is resident in the cache, the access “hits’ the cache. For a load operation 
the cache returns the requested data to the destination register and for a store operation the data is 
stored into the cache. The data associated with the store may also be written to external memory if 
write-through caching is specified for that area of memory. If the cache does not contain the 
requested data, the access ‘misses’ the cache, and the sequence of events that follows depends on 
the configuration of the cache, the configuration of the MMU and the page attributes. 

3.6.2.2 Operation When Data Caching is Disabled

The data/mini-data cache is still accessed even though it is disabled. If a load hits the cache it will 
return the requested data to the destination register. If a store hits the cache, the data is written into 
the cache. Any access that misses the cache will not allocate a line in the cache when it’s disabled, 
even if the MMU is enabled and the memory region’s cacheability attribute is set. 

3.6.2.3 Cache Policies

3.6.2.3.1 Cacheability

Data at a specified address is cacheable given the following:

• the MMU is enabled

• the cacheable attribute is set in the descriptor for the accessed address 

• and the data/mini-data cache is enabled

3.6.2.3.2 Read Miss Policy

The following sequence of events occurs when a cacheable load operation misses the cache:

1. The fill buffer is checked to see if an outstanding fill request already exists for that line. 
If so, the current request is placed in the pending buffer and waits until the previously 
requested fill completes, after which it accesses the cache again, to obtain the request data and 
returns it to the destination register. 
If there is no outstanding fill request for that line, the current load request is placed in the fill 
buffer and a 32-byte external memory read request is made. If the pending buffer or fill buffer 
is full, the XScale core will stall until an entry is available.

2. A line is allocated in the cache to receive the 32-bytes of fill data. The line selected is 
determined by the round-robin pointer (see Section 3.6.2.4). The line chosen may contain a 
valid line previously allocated in the cache. In this case both dirty bits are examined and if set, 
the four words associated with a dirty bit that’s asserted will be written back to external 
memory as a four word burst operation. 

3. As data returns from external memory it is written into the cache in the previously allocated 
line.
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A load operation that misses the cache and is NOT cacheable makes a request from external 
memory for the exact data size of the original load request. For example, LDRH requests exactly 
two bytes from external memory, LDR requests 4 bytes from external memory, etc. This request is 
placed in the fill buffer until, the data is returned from external memory, which is then forwarded 
back to the destination register(s).

3.6.2.3.3 Write Miss Policy

A write operation that misses the cache will request a 32-byte cache line from external memory if 
the access is cacheable and write allocation is specified in the page. In this case the following 
sequence of events occur:

1. The fill buffer is checked to see if an outstanding fill request already exists for that line. 
If so, the current request is placed in the pending buffer and waits until the previously 
requested fill completes, after which it writes its data into the recently allocated cache line.
If there is no outstanding fill request for that line, the current store request is placed in the fill 
buffer and a 32-byte external memory read request is made. If the pending buffer or fill buffer 
is full, the XScale core will stall until an entry is available.

2. The 32-bytes of data can be returned back to the XScale core in any word order, i.e, the eight 
words in the line can be returned in any order. Note that it does not matter, for performance 
reasons, which order the data is returned to the XScale core since the store operation has to 
wait until the entire line is written into the cache before it can complete. 

3. When the entire 32-byte line has returned from external memory, a line is allocated in the 
cache, selected by the round-robin pointer (see Section 3.6.2.4). The line to be written into the 
cache may replace a valid line previously allocated in the cache. In this case both dirty bits are 
examined and if any are set, the four words associated with a dirty bit that’s asserted will be 
written back to external memory as a 4 word burst operation. This write operation will be 
placed in the write buffer. 

4. The line is written into the cache along with the data associated with the store operation. 

If the above condition for requesting a 32-byte cache line is not met, a write miss will cause a write 
request to external memory for the exact data size specified by the store operation, assuming the 
write request doesn’t coalesce with another write operation in the write buffer. 

3.6.2.3.4 Write-Back Versus Write-Through

The XScale core supports write-back caching or write-through caching, controlled through the 
MMU page attributes. When write-through caching is specified, all store operations are written to 
external memory even if the access hits the cache. This feature keeps the external memory coherent 
with the cache, i.e., no dirty bits are set for this region of memory in the data/mini-data cache. This 
however does not guarantee that the data/mini-data cache is coherent with external memory, which 
is dependent on the system level configuration, specifically if the external memory is shared by 
another master. 

When write-back caching is specified, a store operation that hits the cache will not generate a write 
to external memory, thus reducing external memory traffic.
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3.6.2.4 Round-Robin Replacement Algorithm

The line replacement algorithm for the data cache is round-robin. Each set in the data cache has a 
round-robin pointer that keeps track of the next line (in that set) to replace. The next line to replace 
in a set is the next sequential line after the last one that was just filled. For example, if the line for 
the last fill was written into way 5-set 2, the next line to replace for that set would be way 6. None 
of the other round-robin pointers for the other sets are affected in this case. 

After reset, way 31 is pointed to by the round-robin pointer for all the sets. Once a line is written 
into way 31, the round-robin pointer points to the first available way of a set, beginning with way 0 
if no lines have been re-configured as data RAM in that particular set. Re-configuring lines as data 
RAM effectively reduces the available lines for cache updating. For example, if the first three lines 
of a set were re-configured, the round-robin pointer would point to the line at way 3 after it rolled 
over from way 31. Refer to Section 3.6.4 for more details on data RAM.

The mini-data cache follows the same round-robin replacement algorithm as the data cache except 
that there are only two lines the round-robin pointer can point to such that the round-robin pointer 
always points to the least recently filled line. A least recently used replacement algorithm is not 
supported because the purpose of the mini-data cache is to cache data that exhibits low temporal 
locality, i.e.,data that is placed into the mini-data cache is typically modified once and then written 
back out to external memory. 

3.6.2.5 Parity Protection

The data cache and mini-data cache are protected by parity to ensure data integrity; there is one 
parity bit per byte of data. (The tags are NOT parity protected.) When a parity error is detected on a 
data/mini-data cache access, a data abort exception occurs. Before servicing the exception, 
hardware will set bit 10 of the Fault Status Register register. 

A data/mini-data cache parity error is an imprecise data abort, meaning R14_ABORT (+8) may not 
point to the instruction that caused the parity error. If the parity error occurred during a load, the 
targeted register may be updated with incorrect data.

A data abort due to a data/mini-data cache parity error may not be recoverable if the data address 
that caused the abort occurred on a line in the cache that has a write-back caching policy. Prior 
updates to this line may be lost; in this case the software exception handler should perform a “clean 
and clear” operation on the data cache, ignoring subsequent parity errors, and restart the offending 
process. This operation is shown in Section 3.6.3.3.1.

3.6.2.6 Atomic Accesses

The SWP and SWPB instructions generate an atomic load and store operation allowing a memory 
semaphore to be loaded and altered without interruption. These accesses may hit or miss the data/
mini-data cache depending on configuration of the cache, configuration of the MMU, and the page 
attributes. Refer to Section 3.11.4 for more information.
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3.6.3 Data Cache and Mini-Data Cache Control

3.6.3.1 Data Memory State After Reset

After processor reset, both the data cache and mini-data cache are disabled, all valid bits are set to 
zero (invalid), and the round-robin bit points to way 31. Any lines in the data cache that were 
configured as data RAM before reset are changed back to cacheable lines after reset, i.e., there are 
32 KBytes of data cache and zero bytes of data RAM.

3.6.3.2 Enabling/Disabling

The data cache and mini-data cache are enabled by setting bit 2 in coprocessor 15, register 1 
(Control Register).

Example 8 shows code that enables the data and mini-data caches. Note that the MMU must be 
enabled to use the data cache.

3.6.3.3 Invalidate and Clean Operations

Individual entries can be invalidated and cleaned in the data cache and mini-data cache via 
coprocessor 15, register 7. Note that a line locked into the data cache remains locked even after it 
has been subjected to an invalidate-entry operation. This will leave an unusable line in the cache 
until a global unlock has occurred. For this reason, do not use these commands on locked lines.

This same register also provides the command to invalidate the entire data cache and mini-data 
cache. These global invalidate commands have no effect on lines locked in the data cache. Locked 
lines must be unlocked before they can be invalidated. This is accomplished by the Unlock Data 
Cache command.

3.6.3.3.1 Global Clean and Invalidate Operation

A simple software routine is used to globally clean the data cache. It takes advantage of the line-
allocate data cache operation, which allocates a line into the data cache. This allocation evicts any 
cache dirty data back to external memory. Example 9 shows how data cache can be cleaned.

Example 8. Enabling the Data Cache

enableDCache:

MCR p15, 0, r0, c7, c10, 4; Drain pending data operations...

; 

MRC p15, 0, r0, c1, c0, 0; Get current control register

ORR r0, r0, #4 ; Enable DCache by setting ‘C’ (bit 2)

MCR p15, 0, r0, c1, c0, 0; And update the Control register
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The line-allocate operation does not require physical memory to exist at the virtual address 
specified by the instruction, since it does not generate a load/fill request to external memory. Also, 
the line-allocate operation does not set the 32 bytes of data associated with the line to any known 
value. Reading this data will produce unpredictable results.

The line-allocate command will not operate on the mini Data Cache, so system software must clean 
this cache by reading 2KByte of contiguous unused data into it. This data must be unused and 
reserved for this purpose so that it will not already be in the cache. It must reside in a page that is 
marked as mini Data Cache cacheable.

The time it takes to execute a global clean operation depends on the number of dirty lines in cache.

Example 9. Global Clean Operation
; Global Clean/Invalidate THE DATA CACHE
; R1 contains the virtual address of a region of cacheable memory reserved for
; this clean operation
; R0 is the loop count; Iterate 1024 times which is the number of lines in the 
; data cache

;; Macro ALLOCATE performs the line-allocation cache operation on the
;; address specified in register Rx.
;;

MACRO ALLOCATE Rx

MCR P15, 0, Rx, C7, C2, 5

ENDM

MOV  R0, #1024

LOOP1:

ALLOCATE R1 ; Allocate a line at the virtual address 

; specified by R1.

ADD R1, R1, #32 ; Increment the address in R1 to the next cache line

SUBS R0, R0, #1 ; Decrement loop count

BNE LOOP1

;

;Clean the Mini-data Cache

; Can’t use line-allocate command, so cycle 2KB of unused data through.

; R2 contains the virtual address of a region of cacheable memory reserved for
; cleaning the Mini-data Cache

; R0 is the loop count; Iterate 64 times which is the number of lines in the
; Mini-data Cache.

MOV  R0, #64

LOOP2:

LDR R3,[R2],#32 ; Load and increment to next cache line

SUBS R0, R0, #1 ; Decrement loop count

BNE LOOP2

;

; Invalidate the data cache and mini-data cache 

MCR P15, 0, R0, C7, C6, 0 

;
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3.6.4 Re-configuring the Data Cache as Data RAM
Software has the ability to lock tags associated with 32-byte lines in the data cache, thus creating 
the appearance of data RAM. Any subsequent access to this line will always hit the cache unless it 
is invalidated. Once a line is locked into the data cache it is no longer available for cache allocation 
on a line fill. Up to 28 lines in each set can be reconfigured as data RAM, such that the maximum 
data RAM size is 28 Kbytes. 

Hardware does not support locking lines into the mini-data cache; any attempt to do this will 
produce unpredictable results.

There are two methods for locking tags into the data cache; the method of choice depends on the 
application. One method is used to lock data that resides in external memory into the data cache 
and the other method is used to re-configure lines in the data cache as data RAM. Locking data 
from external memory into the data cache is useful for lookup tables, constants, and any other data 
that is frequently accessed. Re-configuring a portion of the data cache as data RAM is useful when 
an application needs scratch memory (bigger than the register file can provide) for frequently used 
variables. These variables may be strewn across memory, making it advantageous for software to 
pack them into data RAM memory.

Refer to the Intel® XScale® Core Developers Manual for code examples.

Tags can be locked into the data cache by enabling the data cache lock mode bit located in 
coprocessor 15, register 9. Once enabled, any new lines allocated into the data cache will be locked 
down.

Note that the PLD instruction will not affect the cache contents if it encounters an error while 
executing. For this reason, system software should ensure the memory address used in the PLD is 
correct. If this cannot be ascertained, replace the PLD with a LDR instruction that targets a scratch 
register.

Lines are locked into a set starting at way0 and may progress up to way 27; which set a line gets 
locked into depends on the set index of the virtual address of the request. Figure 17 is an example 
of where lines of code may be locked into the cache along with how the round-robin pointer is 
affected. 

Figure 17. Locked Line Effect on Round Robin Replacement
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Software can lock down data located at different memory locations. This may cause some sets to 
have more locked lines than others as shown in Figure 17.

Lines are unlocked in the data cache by performing an unlock operation.

Before locking, the programmer must ensure that no part of the target data range is already resident 
in the cache. The XScale core will not refetch such data, which will result in it not being locked 
into the cache. If there is any doubt as to the location of the targeted memory data, the cache should 
be cleaned and invalidated to prevent this scenario. If the cache contains a locked region which the 
programmer wishes to lock again, then the cache must be unlocked before being cleaned and 
invalidated.

3.6.5 Write Buffer/Fill Buffer Operation and Control
The write buffer is always enabled which means stores to external memory will be buffered. The K 
bit in the Auxiliary Control Register (CP15, register 1) is a global enable/disable for allowing 
coalescing in the write buffer. When this bit disables coalescing, no coalescing will occur 
regardless the value of the page attributes. If this bit enables coalescing, the page attributes X, C, 
and B are examined to see if coalescing is enabled for each region of memory.

All reads and writes to external memory occur in program order when coalescing is disabled in the 
write buffer. If coalescing is enabled in the write buffer, writes may occur out of program order to 
external memory. Program correctness is maintained in this case by comparing all store requests 
with all the valid entries in the fill buffer. 

The write buffer and fill buffer support a drain operation, such that before the next instruction 
executes, all the XScale core data requests to external memory have completed. 

Writes to a region marked non-cacheable/non-bufferable (page attributes C, B, and X all 0) will 
cause execution to stall until the write completes.

If software is running in a privileged mode, it can explicitly drain all buffered writes.

3.7 Configuration
The System Control Coprocessor (CP15) configures the MMU, caches, buffers and other system 
attributes. Where possible, the definition of CP15 follows the definition of the StrongARM* 
products. Coprocessor 14 (CP14) contains the performance monitor registers and the trace buffer 
registers.

CP15 is accessed through MRC and MCR coprocessor instructions and allowed only in privileged 
mode. Any access to CP15 in user mode or with LDC or STC coprocessor instructions will cause 
an undefined instruction exception. 

CP14 registers can be accessed through MRC, MCR, LDC, and STC coprocessor instructions and 
allowed only in privileged mode. Any access to CP14 in user mode will cause an undefined 
instruction exception.

The XScale core Coprocessors, CP15 and CP14, do not support access via CDP, MRRC, or MCRR 
instructions. An attempt to access these coprocessors with these instructions will result in an 
Undefined Instruction exception.
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Many of the MCR commands available in CP15 modify hardware state sometime after execution. 
A software sequence is available for those wishing to determine when this update occurs.

Like certain other ARM* architecture products, the XScale core includes an extra level of virtual 
address translation in the form of a PID (Process ID) register and associated logic. Privileged code 
needs to be aware of this facility because, when interacting with CP15, some addresses are 
modified by the PID and others are not.

An address that has yet to be modified by the PID (“PIDified”) is known as a virtual address (VA). 
An address that has been through the PID logic, but not translated into a physical address, is a 
modified virtual address (MVA). Non-privileged code always deals with VAs, while privileged 
code that programs CP15 occasionally needs to use MVAs.

For details refer to the Intel® XScale® Core Developer’s Manual.

3.8 Performance Monitoring
The XScale core hardware provides two 32-bit performance counters that allow two unique events 
to be monitored simultaneously. In addition, the XScale core implements a 32-bit clock counter 
that can be used in conjunction with the performance counters; its sole purpose is to count the 
number of core clock cycles which is useful in measuring total execution time. 

The XScale core can monitor either occurrence events or duration events. When counting 
occurrence events, a counter is incremented each time a specified event takes place and when 
measuring duration, a counter counts the number of processor clocks that occur while a specified 
condition is true. If any of the 3 counters overflow, an IRQ or FIQ will be generated if it’s enabled. 
(Refer to the Intel® IXP2400/IXP2800 Network Processor Programmer’s Reference Manual) Each 
counter has its own interrupt enable. The counters continue to monitor events even after an 
overflow occurs, until disabled by software. 

Each of these counters can be programmed to monitor any one of various events.

To further augment performance monitoring, the XScale core clock counter can be used to measure 
the executing time of an application. This information combined with a duration event can 
feedback a percentage of time the event occurred with respect to overall execution time.

Each of the three counters and the performance monitoring control register are accessible through 
Coprocessor 14 (CP14), registers 0-3. Access is allowed in privileged mode only. 

The following are a few notes about controlling the performance monitoring mechanism:

• An interrupt will be reported when a counter’s overflow flag is set and its associated interrupt 
enable bit is set in the PMNC register. The interrupt will remain asserted until software clears 
the overflow flag by writing a one to the flag that is set. Note that the product specific interrupt 
unit and the CPSR must have enabled the interrupt in order for software to receive it.

• The counters continue to record events even after they overflow. 
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3.8.1 Performance Monitoring Events
Table 8 lists events that may be monitored by the PMU. Each of the Performance Monitor Count 
Registers (PMN0 and PMN1) can count any listed event. Software selects which event is counted 
by each PMNx register by programming the evtCountx fields of the PMNC register.

Some typical combination of counted events are listed in this section and summarized in Table 9. 
In this section, we call such an event combination a mode.

Table 8. Performance Monitoring Events
Event Number 
(evtCount0 or 

evtCount1)
Event Definition

0x0 Instruction cache miss requires fetch from external memory.

0x1 Instruction cache cannot deliver an instruction. This could indicate an ICache miss or an 
ITLB miss. This event will occur every cycle in which the condition is present.

0x2 Stall due to a data dependency. This event will occur every cycle in which the condition is 
present.

0x3 Instruction TLB miss.
0x4 Data TLB miss.
0x5 Branch instruction executed, branch may or may not have changed program flow.
0x6 Branch mispredicted. (B and BL instructions only.)
0x7 Instruction executed.

0x8 Stall because the data cache buffers are full. This event will occur every cycle in which the 
condition is present.

0x9 Stall because the data cache buffers are full. This event will occur once for each contiguous 
sequence of this type of stall.

0xA Data cache access, not including Cache Operations
0xB Data cache miss, not including Cache Operations

0xC  Data cache write-back. This event occurs once for each 1/2 line (four words) that are 
written back from the cache.

0xD
Software changed the PC. This event occurs any time the PC is changed by software and 
there is not a mode change. For example, a mov instruction with PC as the destination will 
trigger this event. Executing a swi from User mode will not trigger this event, because it will 
incur a mode change.

0x10 through 
0x17

Refer to the Intel® IXP2400/IXP2800 Network Processor Programmer’s Reference Manual 
for more details.

all others Reserved, unpredictable results

Table 9. Some Common Uses of the PMU
Mode PMNC.evtCount0 PMNC.evtCount1

Instruction Cache Efficiency 0x7 (instruction count) 0x0 (ICache miss)
Data Cache Efficiency 0xA (Dcache access) 0xB (DCache miss)
Instruction Fetch Latency 0x1 (ICache cannot deliver) 0x0 (ICache miss)
Data/Bus Request Buffer Full 0x8 (DBuffer stall duration) 0x9 (DBuffer stall)
Stall/Writeback Statistics 0x2 (data stall) 0xC (DCache writeback)
Instruction TLB Efficiency 0x7 (instruction count) 0x3 (ITLB miss)
Data TLB Efficiency 0xA (Dcache access) 0x4 (DTLB miss)
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3.8.1.1 Instruction Cache Efficiency Mode

PMN0 totals the number of instructions that were executed, which does not include instructions 
fetched from the instruction cache that were never executed. This can happen if a branch 
instruction changes the program flow; the instruction cache may retrieve the next sequential 
instructions after the branch, before it receives the target address of the branch. 

PMN1 counts the number of instruction fetch requests to external memory. Each of these requests 
loads 32 bytes at a time. 

Statistics derived from these two events:

• Instruction cache miss-rate. This is derived by dividing PMN1 by PMN0. 

• The average number of cycles it took to execute an instruction or commonly referred to as 
cycles-per-instruction (CPI). CPI can be derived by dividing CCNT by PMN0, where CCNT 
was used to measure total execution time.

3.8.1.2 Data Cache Efficiency Mode

PMN0 totals the number of data cache accesses, which includes cacheable and non-cacheable 
accesses, mini-data cache access and accesses made to locations configured as data RAM. 

Note that STM and LDM will each count as several accesses to the data cache depending on the 
number of registers specified in the register list. LDRD will register two accesses. 

PMN1 counts the number of data cache and mini-data cache misses. Cache operations do not 
contribute to this count. 
Statistics derived from these two events are:
- Data cache miss-rate. This is derived by dividing PMN1 by PMN0

3.8.1.3 Instruction Fetch Latency Mode

PMN0 accumulates the number of cycles when the instruction-cache is not able to deliver an 
instruction to the XScale core due to an instruction-cache miss or instruction-TLB miss. This event 
means that the processor core is stalled.

PMN1 counts the number of instruction fetch requests to external memory. Each of these requests 
loads 32 bytes at a time. This is the same event as measured in instruction cache efficiency mode 
and is included in this mode for convenience so that only one performance monitoring run is need.

Statistics derived from these two events:

• The average number of cycles the processor stalled waiting for an instruction fetch from 
external memory to return. This is calculated by dividing PMN0 by PMN1. If the average is 
high then the XScale core may be starved of the bus external to the XScale core.

• The percentage of total execution cycles the processor stalled waiting on an instruction fetch 
from external memory to return. This is calculated by dividing PMN0 by CCNT, which was 
used to measure total execution time. 
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3.8.1.4 Data/Bus Request Buffer Full Mode

The Data Cache has buffers available to service cache misses or uncacheable accesses. For every 
memory request that the Data Cache receives from the processor core a buffer is speculatively 
allocated in case an external memory request is required or temporary storage is needed for an 
unaligned access. If no buffers are available, the Data Cache will stall the processor core. How 
often the Data Cache stalls depends on the performance of the bus external to the XScale core and 
what the memory access latency is for Data Cache miss requests to external memory. If the XScale 
core memory access latency is high, possibly due to starvation, these Data Cache buffers will 
become full. This performance monitoring mode is provided to see if the XScale core is being 
starved of the bus external to the XScale core, which will effect the performance of the application 
running on the XScale core. 

PMN0 accumulates the number of clock cycles the processor is being stalled due to this condition 
and PMN1 monitors the number of times this condition occurs. 

Statistics derived from these two events:
• The average number of cycles the processor stalled on a data-cache access that may overflow 

the data-cache buffers. This is calculated by dividing PMN0 by PMN1. This statistic lets you 
know if the duration event cycles are due to many requests or are attributed to just a few 
requests. If the average is high then the XScale core may be starved of the bus external to the 
XScale core. 

• The percentage of total execution cycles the processor stalled because a Data Cache request 
buffer was not available. This is calculated by dividing PMN0 by CCNT, which was used to 
measure total execution time. 

3.8.1.5 Stall/Writeback Statistics

When an instruction requires the result of a previous instruction and that result is not yet available, 
the XScale core stalls in order to preserve the correct data dependencies. PMN0 counts the number 
of stall cycles due to data-dependencies. Not all data-dependencies cause a stall; only the following 
dependencies cause such a stall penalty:

• Load-use penalty: attempting to use the result of a load before the load completes. To avoid the 
penalty, software should delay using the result of a load until it’s available. This penalty shows 
the latency effect of data-cache access.

• Multiply/Accumulate-use penalty: attempting to use the result of a multiply or multiply-
accumulate operation before the operation completes. Again, to avoid the penalty, software 
should delay using the result until it’s available.

• ALU use penalty: there are a few isolated cases where back to back ALU operations may 
result in one cycle delay in the execution. 

PMN1 counts the number of writeback operations emitted by the data cache. These writebacks 
occur when the data cache evicts a dirty line of data to make room for a newly requested line or as 
the result of clean operation (CP15, register 7). 

Statistics derived from these two events:
• The percentage of total execution cycles the processor stalled because of a data dependency. 

This is calculated by dividing PMN0 by CCNT, which was used to measure total execution 
time. Often a compiler can reschedule code to avoid these penalties when given the right 
optimization switches.

• Total number of data writeback requests to external memory can be derived solely with PMN1. 
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3.8.1.6 Instruction TLB Efficiency Mode

PMN0 totals the number of instructions that were executed, which does not include instructions 
that were translated by the instruction TLB and never executed. This can happen if a branch 
instruction changes the program flow; the instruction TLB may translate the next sequential 
instructions after the branch, before it receives the target address of the branch. 

PMN1 counts the number of instruction TLB table-walks, which occurs when there is a TLB miss. 
If the instruction TLB is disabled PMN1 will not increment. 

Statistics derived from these two events:

• Instruction TLB miss-rate. This is derived by dividing PMN1 by PMN0. 

• The average number of cycles it took to execute an instruction or commonly referred to as 
cycles-per-instruction (CPI). CPI can be derived by dividing CCNT by PMN0, where CCNT 
was used to measure total execution time.

3.8.1.7 Data TLB Efficiency Mode

PMN0 totals the number of data cache accesses, which includes cacheable and non-cacheable 
accesses, mini-data cache access and accesses made to locations configured as data RAM. 

Note that STM and LDM will each count as several accesses to the data TLB depending on the 
number of registers specified in the register list. LDRD will register two accesses. 

PMN1 counts the number of data TLB table-walks, which occurs when there is a TLB miss. If the 
data TLB is disabled PMN1 will not increment. 

The statistic derived from these two events is:

• Data TLB miss-rate. This is derived by dividing PMN1 by PMN0. 

3.8.2 Multiple Performance Monitoring Run Statistics
Even though only two events can be monitored at any given time, multiple performance monitoring 
runs can be done, capturing different events from different modes. For example, the first run could 
monitor the number of writeback operations (PMN1 of mode, Stall/Writeback) and the second run 
could monitor the total number of data cache accesses (PMN0 of mode, Data Cache Efficiency). 
From the results, a percentage of writeback operations to the total number of data accesses can be 
derived. 

3.9 Performance Considerations
This section describes relevant performance considerations that compiler writers, application 
programmers and system designers need to be aware of to efficiently use the XScale core. 
Performance numbers discussed here include interrupt latency, branch prediction, and instruction 
latencies. 



82 Hardware Reference Manual

Intel® IXP2400 Network Processor
Intel® XScale® Core

3.9.1 Interrupt Latency
Minimum Interrupt Latency is defined as the minimum number of cycles from the assertion of any 
interrupt signal (IRQ or FIQ) to the execution of the instruction at the vector for that interrupt. This 
number assumes best case conditions exist when the interrupt is asserted, e.g., the system isn’t 
waiting on the completion of some other operation. 

A sometimes more useful number to work with is the Maximum Interrupt Latency. This is typically 
a complex calculation that depends on what else is going on in the system at the time the interrupt 
is asserted. Some examples that can adversely affect interrupt latency are: 

• the instruction currently executing could be a 16-register LDM,

• the processor could fault just when the interrupt arrives,

• the processor could be waiting for data from a load, doing a page table walk, etc., and

• high core to system (bus) clock ratios.

Maximum Interrupt Latency can be reduced by:

• ensuring that the interrupt vector and interrupt service routine are resident in the instruction 
cache. This can be accomplished by locking them down into the cache. 

• removing or reducing the occurrences of hardware page table walks. This also can be 
accomplished by locking down the application’s page table entries into the TLBs, along with 
the page table entry for the interrupt service routine. 

3.9.2 Branch Prediction
The XScale core implements dynamic branch prediction for the ARM* instructions B and BL and 
for the Thumb instruction B. Any instruction that specifies the PC as the destination is predicted as 
not taken. For example, an LDR or a MOV that loads or moves directly to the PC will be predicted 
not taken and incur a branch latency penalty. 

These instructions -- ARM B, ARM BL and Thumb B -- enter into the branch target buffer when 
they are “taken” for the first time. (A “taken” branch refers to when they are evaluated to be true.) 
Once in the branch target buffer, the XScale core dynamically predicts the outcome of these 
instructions based on previous outcomes. Table 10 shows the branch latency penalty when these 
instructions are correctly predicted and when they are not. A penalty of zero for correct prediction 
means that the XScale core can execute the next instruction in the program flow in the cycle 
following the branch.

Table 10. Branch Latency Penalty

Core Clock Cycles
Description

ARM* Thumb

+0 + 0 Predicted Correctly. The instruction is in the branch target cache and is 
correctly predicted.

+4 + 5

Mispredicted. There are three occurrences of branch misprediction, all of 
which incur a 4-cycle branch delay penalty. 
1. The instruction is in the branch target buffer and is predicted not-taken, but 

is actually taken. 
2. The instruction is not in the branch target buffer and is a taken branch.
3. The instruction is in the branch target buffer and is predicted taken, but is 

actually not-taken
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3.9.3 Addressing Modes
All load and store addressing modes implemented in the XScale core do not add to the instruction 
latencies numbers.   

3.9.4 Instruction Latencies
The latencies for all the instructions are shown in the following sections with respect to their 
functional groups: branch, data processing, multiply, status register access, load/store, semaphore, 
and coprocessor.

The following section explains how to read these tables. 

3.9.4.1 Performance Terms

• Issue Clock (cycle 0)
The first cycle when an instruction is decoded and allowed to proceed to further stages in the 
execution pipeline (i.e., when the instruction is actually issued).

• Cycle Distance from A to B
The cycle distance from cycle A to cycle B is (B-A) -- that is, the number of cycles from the 
start of cycle A to the start of cycle B. Example: the cycle distance from cycle 3 to cycle 4 is 
one cycle.

• Issue Latency
The cycle distance from the first issue clock of the current instruction to the issue clock of the 
next instruction. The actual number of cycles can be influenced by cache-misses, resource-
dependency stalls, and resource availability conflicts.

• Result Latency
The cycle distance from the first issue clock of the current instruction to the issue clock of the 
first instruction that can use the result without incurring a resource dependency stall. The 
actual number of cycles can be influenced by cache-misses, resource-dependency stalls, and 
resource availability conflicts

• Minimum Issue Latency (without Branch Misprediction)
The minimum cycle distance from the issue clock of the current instruction to the first possible 
issue clock of the next instruction assuming best case conditions (i.e., that the issuing of the 
next instruction is not stalled due to a resource dependency stall; the next instruction is 
immediately available from the cache or memory interface; the current instruction does not 
incur resource dependency stalls during execution that can not be detected at issue time; and if 
the instruction uses dynamic branch prediction, correct prediction is assumed).

• Minimum Result Latency
The required minimum cycle distance from the issue clock of the current instruction to the 
issue clock of the first instruction that can use the result without incurring a resource 
dependency stall assuming best case conditions (i.e., that the issuing of the next instruction is 
not stalled due to a resource dependency stall; the next instruction is immediately available 
from the cache or memory interface; and the current instruction does not incur resource 
dependency stalls during execution that can not be detected at issue time).

• Minimum Issue Latency (with Branch Misprediction)
The minimum cycle distance from the issue clock of the current branching instruction to the 
first possible issue clock of the next instruction. This definition is identical to Minimum Issue 
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Latency except that the branching instruction has been mispredicted. It is calculated by adding 
Minimum Issue Latency (without Branch Misprediction) to the minimum branch latency 
penalty number from Table 10, which is four cycles.

• Minimum Resource Latency
The minimum cycle distance from the issue clock of the current multiply instruction to the 
issue clock of the next multiply instruction assuming the second multiply does not incur a data 
dependency and is immediately available from the instruction cache or memory interface. 
Example 10contains a code fragment and an example of computing latencies.

Table 11 shows how to calculate Issue Latency and Result Latency for each instruction. Looking at 
the issue column, the UMLAL instruction starts to issue on cycle 0 and the next instruction, ADD, 
issues on cycle 2, so the Issue Latency for UMLAL is two. From the code fragment, there is a 
result dependency between the UMLAL instruction and the SUB instruction. In Table 11, 
UMLAL starts to issue at cycle 0 and the SUB issues at cycle 5. thus the Result Latency is five. 

3.9.4.2 Branch Instruction Timings

Example 10. Computing Latencies

UMLALr6,r8,r0,r1

ADD r9,r10,r11

SUB r2,r8,r9

MOV r0,r1

Table 11. Latency Example

Cycle Issue Executing

0 umlal (1st cycle) --

1 umlal (2nd cycle) umlal

2 add umlal

3 sub (stalled) umlal & add

4 sub (stalled) umlal

5 sub umlal

6 mov sub

7 -- mov

Table 12. Branch Instruction Timings (Those predicted by the BTB)

Mnemonic Minimum Issue Latency when Correctly 
Predicted by the BTB

Minimum Issue Latency with Branch 
Misprediction

B 1 5
BL 1 5
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3.9.4.3 Data Processing Instruction Timings

Table 13. Branch Instruction Timings (Those not predicted by the BTB)

Mnemonic Minimum Issue Latency when 
the branch is not taken

Minimum Issue Latency when 
the branch is taken

BLX(1) N/A 5
BLX(2) 1 5

BX 1 5
Data Processing Instruction with 

PC as the destination Same as Table 14 4 + numbers in Table 14

LDR PC,<> 2 8
LDM with PC in register list 3 + numrega

a. numreg is the number of registers in the register list including the PC.

10 + max (0, numreg-3)

Table 14. Data Processing Instruction Timings

Mnemonic

<shifter operand> is NOT a Shift/Rotate 
by Register

<shifter operand> is a Shift/Rotate by 
Register OR

<shifter operand> is RRX

Minimum Issue 
Latency

Minimum Result 
Latencya

a. If the next instruction needs to use the result of the data processing for a shift by immediate or as Rn in a QDADD or QDSUB,
one extra cycle of result latency is added to the number listed.

Minimum Issue 
Latency

Minimum Result 
Latencya

ADC 1 1 2 2
ADD 1 1 2 2
AND 1 1 2 2
BIC 1 1 2 2

CMN 1 1 2 2
CMP 1 1 2 2
EOR 1 1 2 2
MOV 1 1 2 2
MVN 1 1 2 2
ORR 1 1 2 2
RSB 1 1 2 2
RSC 1 1 2 2
SBC 1 1 2 2
SUB 1 1 2 2
TEQ 1 1 2 2
TST 1 1 2 2
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3.9.4.4 Multiply Instruction Timings

Table 15. Multiply Instruction Timings (Sheet 1 of 2)

Mnemonic Rs Value
(Early Termination)

S-Bit
Value

Minimum 
Issue Latency

Minimum Result 
Latencya

Minimum Resource 
Latency (Throughput)

MLA

Rs[31:15] = 0x00000
or

Rs[31:15] = 0x1FFFF

0 1 2 1

1 2 2 2

Rs[31:27] = 0x00
or

Rs[31:27] = 0x1F

0 1 3 2

1 3 3 3

all others
0 1 4 3
1 4 4 4

MUL

Rs[31:15] = 0x00000
or

Rs[31:15] = 0x1FFFF

0 1 2 1

1 2 2 2

Rs[31:27] = 0x00
or

Rs[31:27] = 0x1F

0 1 3 2

1 3 3 3

all others
0 1 4 3
1 4 4 4

SMLAL

Rs[31:15] = 0x00000
or

Rs[31:15] = 0x1FFFF

0 2 RdLo = 2; RdHi = 3 2

1 3 3 3

Rs[31:27] = 0x00
or

Rs[31:27] = 0x1F

0 2 RdLo = 3; RdHi = 4 3

1 4 4 4

all others
0 2 RdLo = 4; RdHi = 5 4
1 5 5 5

SMLALxy N/A N/A 2 RdLo = 2; RdHi = 3 2
SMLAWy N/A N/A 1 3 2
SMLAxy N/A N/A 1 2 1

SMULL

Rs[31:15] = 0x00000
or

Rs[31:15] = 0x1FFFF

0 1 RdLo = 2; RdHi = 3 2

1 3 3 3

Rs[31:27] = 0x00
or

Rs[31:27] = 0x1F

0 1 RdLo = 3; RdHi = 4 3

1 4 4 4

all others
0 1 RdLo = 4; RdHi = 5 4
1 5 5 5

SMULWy N/A N/A 1 3 2
SMULxy N/A N/A 1 2 1

UMLAL

Rs[31:15] = 0x00000
0 2 RdLo = 2; RdHi = 3 2
1 3 3 3

Rs[31:27] = 0x00
0 2 RdLo = 3; RdHi = 4 3
1 4 4 4

all others
0 2 RdLo = 4; RdHi = 5 4
1 5 5 5
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3.9.4.5 Saturated Arithmetic Instructions
h

UMULL

Rs[31:15] = 0x00000
0 1 RdLo = 2; RdHi = 3 2
1 3 3 3

Rs[31:27] = 0x00
0 1 RdLo = 3; RdHi = 4 3
1 4 4 4

all others
0 1 RdLo = 4; RdHi = 5 4
1 5 5 5

a. If the next instruction needs to use the result of the multiply for a shift by immediate or as Rn in a QDADD or QDSUB, one
extra cycle of result latency is added to the number listed.

Table 16. Multiply Implicit Accumulate Instruction Timings

Mnemonic Rs Value (Early 
Termination)

Minimum Issue 
Latency

Minimum Result 
Latency

Minimum Resource 
Latency 

(Throughput)

MIA

Rs[31:16] = 0x0000
or

Rs[31:16] = 0xFFFF
1 1 1

Rs[31:28] = 0x0
or

Rs[31:28] = 0xF
1 2 2

all others 1 3 3

MIAxy N/A 1 1 1

MIAPH N/A 1 2 2

Table 17. Implicit Accumulator Access Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency Minimum Resource Latency 
(Throughput)

MAR 2 2 2

MRA 1 (RdLo = 2; RdHi = 3)a

a. If the next instruction needs to use the result of the MRA for a shift by immediate or as Rn in a QDADD or QDSUB, one extra
cycle of result latency is added to the number listed.

2

Table 18. Saturated Data Processing Instruction Timings
Mnemonic Minimum Issue Latency Minimum Result Latency

QADD 1 2
QSUB 1 2

QDADD 1 2
QDSUB 1 2

Table 15. Multiply Instruction Timings (Sheet 2 of 2)

Mnemonic Rs Value
(Early Termination)

S-Bit
Value

Minimum 
Issue Latency

Minimum Result 
Latencya

Minimum Resource 
Latency (Throughput)
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3.9.4.6 Status Register Access Instructions

3.9.4.7 Load/Store Instructions

3.9.4.8 Semaphore Instructions

Table 19. Status Register Access Instruction Timings
Mnemonic Minimum Issue Latency Minimum Result Latency

MRS 1 2
MSR 2 (6 if updating mode bits) 1

Table 20. Load and Store Instruction Timings
Mnemonic Minimum Issue Latency Minimum Result Latency

LDR 1 3 for load data; 1 for writeback of base
LDRB 1 3 for load data; 1 for writeback of base

LDRBT 1 3 for load data; 1 for writeback of base
LDRD 1 (+1 if Rd is R12) 3 for Rd; 4 for Rd+1; 2 for writeback of base
LDRH 1 3 for load data; 1 for writeback of base

LDRSB 1 3 for load data; 1 for writeback of base
LDRSH 1 3 for load data; 1 for writeback of base
LDRT 1 3 for load data; 1 for writeback of base
PLD 1 N/A
STR 1 1 for writeback of base

STRB 1 1 for writeback of base
STRBT 1 1 for writeback of base
STRD 2 1 for writeback of base
STRH 1 1 for writeback of base
STRT 1 1 for writeback of base

Table 21. Load and Store Multiple Instruction Timings
Mnemonic Minimum Issue Latencya

a. LDM issue latency is 7 + N if R15 is in the register list and 2 + N if it is not. STM issue latency is calculated as 2 + N. N is
the number of registers to load or store.

Minimum Result Latency

LDM 3 - 23 1-3 for load data; 1 for writeback of base
STM 3 - 18 1 for writeback of base

Table 22. Semaphore Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

SWP 5 5

SWPB 5 5



Hardware Reference Manual 89

Intel® IXP2400 Network Processor
Intel® XScale® Core

3.9.4.9 Coprocessor Instructions

3.9.4.10 Miscellaneous Instruction Timing

3.9.4.11 Thumb Instructions

The timing of Thumb instructions are the same as their equivalent ARM* instructions. This 
mapping can be found in the ARM* Architecture Reference Manual. The only exception is the 
Thumb BL instruction when H = 0; the timing in this case would be the same as an ARM* data 
processing instruction. 

3.10 IXP2400 Network Processor Endianness
Endianness defines the way bytes are addressed within a word. A little endian system is one in 
which byte zero is the least significant byte (LSB) in the word and byte three is the most significant 
byte. A big endian system is one in which byte zero is the most significant byte (MSB) and byte 3 
is the LSB. For example the value of 0x12345678 at address 0x0 in a 32-bit little endian system 
looks like this:

Table 23. CP15 Register Access Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

MRC 4 4

MCR 2 N/A

Table 24. CP14 Register Access Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

MRC 7 7

MCR 7 N/A

LDC 10 N/A

STC 7 N/A

Table 25. SWI Instruction Timings

Mnemonic Minimum latency to first instruction of SWI exception handler

SWI 6

Table 26. Count Leading Zeros Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

CLZ 1 1
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The same value is stored in Big Endian system looks like this:

Bits within a byte are always in Little Endian order. The least significant bit resides at bit location 0 
and the most significant bit resides at bit location 7 (7:0).

The following conventions are used in this document:

Endianness for the IXP2400 processor can be divided into three major categories:

• Read and write transactions initiated by the XScale core:

— Reads initiated by XScale core

— Writes initiated by XScale core 

• SRAM and DRAM access:

— 64-bit Data transfer between DRAM and the XScale core

— Byte, word or long-word transfer between SRAM/DRAM and XScale core

— Data transfer between SRAM/DRAM and PCI

— Microengine initiated access to SRAM and DRAM

• PCI Accesses

— the XScale core generated reads/writes to PCI in memory space

— the XScale core generated read/write of external/internal PCI config registers

Table 27. Little Endian Encoding

Address/Byte 
Lane 0x0/ByteLane 3 0x0/ByteLane 2 0x0/ByteLane 1 0x0/ByteLane 0

Byte Value 0x12 0x34 0x56 0x78

Table 28. Big Endian Encoding

Address/Byte 
Lane 0x0/ByteLane 3 0x0/ByteLane 2 0x0/ByteLane 1 0x0/ByteLane 0

Byte Value 0x78 0x56 0x34 0x12

1 Byte: 8-bit data

1 Word: 16-bit data

1 Long-word: 32-bit data

Long Word Little Endian
Format (LWLE)

32-bit data (0x12345678) arranged as {12 34 56 78}
64-bit data 0x12345678 9ABCDE56 arranged as {12 34 56 78 9A BC DE 56}

Long Word-Big Endian format
(LWBE):

32-bit data (0x12345678) arranged as {78 56 34 12}
64-bit data 0x12345678 9ABCDE56 arranged as {78 56 34 12, 56 DE BC 9A}
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3.10.1 Read and Write Transactions 
Initiated by the Intel® XScale® Core
The XScale core may be used in either a little endian or big endian configuration. The 
configuration affects the entire system in which the XScale microarchitecture resides. Software and 
hardware must agree on the byte ordering to be used. In software, a system’s byte order is 
configured with CP15 register 1, the control register. Bit 7 of this register, the B bit, informs the 
processor of the byte order in use by the system. Note that this bit takes effect even if the MMU is 
not otherwise in use or enabled.

Though it is the responsibility of system hardware to assign correct byte lanes to each byte field in 
the data bus, in the IXP2400 it is left to the software to interpret byte lanes in accordance with the 
endianness of the system. As shown in Figure 18, system byte lanes 0–3 are connected directly to 
the XScale core byte lanes 0–3. What this means is that byte lane 0 (M[7:0]) of the system is 
connected to byte lane 0 (X[7:0]) of the XScale core, byte lane 1 (M[15:8]) of the system is 
connected to byte lane 1 (X[15:8]) of the XScale core and so on.

Interface operation of the XScale core and the rest of the IXP2400 can be divided into two parts:

• XScale core reading from the IXP2400

• XScale core writing to the IXP2400

3.10.1.1 Reads Initiated by Intel® XScale® Core

XScale core reads can be one of the following three types:

• Byte read

• 16-bits (word) read

• 32-bits (Long Word) read

Byte Read

When reading a byte, the XScale core generates the byte_enable that corresponds to the proper byte 
lane as defined by the endianness setting. Table 29 summarizes byte enable generation for this 
mode.

The 4-to-1 mux steers the byte read into byte lane 0 location of the read register inside the XScale 
core. Select signals for the mux are generated based on endian setting and ByteEnable generated by 
the XScale core as defined in Figure 18.

Table 29. Byte Enable Generation by the Intel® XScale® Core for Byte 
Transfers in Little and Big Endian System

Byte# to 
be read

Byte Enables When System is Little Endian Byte Enables When System is Big Endian

X_BE[0] X_BE[1] X_BE[2] X_BE[3] X_BE[0] X_BE[1] X_BE[2] X_BE[3]

Byte0 1 0 0 0 0 0 0 1

Byte1 0 1 0 0 0 0 1 0

Byte2 0 0 1 0 0 1 0 0

Byte3 0 0 0 1 1 0 0 0
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16-bit (Word) Read

When reading a word, the XScale core generates the byte_enable that corresponds to the proper 
byte lane as defined by the endianness setting. Figure 19 summarizes byte enable generation for 
this mode.

The 4-to-1 mux steers Byte lane 0 or Byte lane 2 into Byte0 location of the read register inside the 
XScale core. The 2-to-1 mux steers Byte lane 1 or Byte lane 3 into Byte1 location of the read 
register inside the XScale core. The XScale core does not allow word access to an odd byte 
address. Select signals for the mux are generated based on endian setting and ByteEnable generated 
by the XScale core as defined in Figure 18. Table 30 summarizes byte enable generation for this 
mode.

Figure 18. Byte Steering for Read and Byte Enable 
Generation by the Intel® XScale® Core
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Notes:
For 32-bit Operation  S0[3:0] = 0001; S1[1:0] = 01
Otherwise:  S0[3:0] = X_BE[3:0]; S1[1:0] = X_BE[1:2]
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32-bits (Long Word) Read

32-bits (long Word) reads are independent of endianness setting and byte lane 0 from the XScale 
core’s data bus gets into Byte 0 location of the read register inside XScale core, byte lane 1 from 
XScale core’s data bus gets into Byte1 location of the read register inside XScale core and so on. It 
is up to the software to deal with byte location properly based on the endian setting.

3.10.1.2 The Intel® XScale® Core Writing to the IXP2400

Similar to reads, writes by XScale core can also be divided in following three categories:

• Byte Write

• Word Write (16-bits)

• Long Word write (32-bits)

Byte Write

When XScale core writes single byte to external memory, it puts the byte in the byte lane where it 
intends to write it along with the byte enable for that byte turned ON based on endian setting of the 
system. XScale core register bits [7:0] always contain the byte to be written regardless of the B-bit 
setting. For example if the XScale core wants to write to byte 0 in little endian system, it puts the 
byte in byte lane0 and turns X_BE[0] ON. If the system is big endian, in that case the XScale core 
puts byte0 in byte lane 3 and turns X_BE[3] ON. Other possible combinations of byte lanes and 
byte enables are shown in the Table 31. Other byte lanes besides the one currently driven by the 
XScale core contain undefined data.

Word Write (16-bits Write)

Table 30. Byte Enable Generation by the Intel® XScale® Core for 16-bit Data 
Transfer in Little and Big Endian Systems

Word to 
be read

Byte Enables When System is Little Endian Byte Enables When System is Big Endian

X_BE[0] X_BE[1] X_BE[2] X_BE[3] X_BE[0] X_BE[1] X_BE[2] X_BE[3]

Byte0 & 
Byte1 1 1 0 0 0 0 1 1

Byte2 & 
Byte3 0 0 1 1 1 1 0 0

Table 31. Byte Enable Generation by the Intel® XScale® Core for Byte 
Write In Little and Big Endian System

Byte#
to be 

written

Byte Enables when system is Little Endian Byte Enables when system is Big Endian

X_BE[0] X_BE[1] X_BE[2] X_BE[3] X_BE[0] X_BE[1] X_BE[2] X_BE[3]

Byte0 1 0 0 0 0 0 0 1

Byte1 0 1 0 0 0 0 1 0

Byte2 0 0 1 0 0 1 0 0

Byte3 0 0 0 1 1 0 0 0
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When the XScale core writes a 16-bit word to external memory, it puts the bytes in the byte lanes 
where it intends to write them along with the byte enables for those bytes turned ON based on the 
endian setting of the system. The XScale core does not allow a word write on an odd byte address. 
The XScale core register bits [15:0] always contain the word to be written regardless of the B-bit 
setting. For example if the XScale core wants to write one word to a little endian system at address 
0x0002, it will copy byte0 to byte lane 2 and byte1 to byte lane 3 along with X_BE[2] and 
X_BE[3] turned ON. If the XScale core wants to write one word to a big endian system at address 
0x0002, it will copy byte0 to byte lane 0 and byte1 to byte lane 1 along with X_BE[0] and 
X_BE[1] turned ON. Other possible combinations of byte lanes and byte enables are shown in 
Table 32. Other byte lanes besides the ones currently driven by the XScale core contain undefined 
data.

Long Word (32-bits) Write

The long word to be written is put on the XScale core’s data bus with byte0 on X[7:0], byte1 on 
X[15:8], byte2 on X[23:16] and byte4 on X[31:24] (see Figure 19). All the byte enables are turned 
ON. A 32-bit long word write (0x12345678) by the XScale core to address 0x0000 irrespective of 
the endianness of the system causes byte0 (0x78) to be written to address 0x0000, byte1 (0x56) to 
address 0x0001, byte2 (0x34) to address 0x0002 and byte3 (0x12) to address 0x0003.

Table 32. Byte Enable Generation by the Intel® XScale® Core for Word 
Writes in Little-Endian and Big-Endian Systems

Word
to be 

written

Byte Enables When System is Little Endian Byte Enables When System is Big Endian

X_BE[0] X_BE[1] X_BE[2] X_BE[3] X_BE[0] X_BE[1] X_BE[2] X_BE[3]

Byte0 & 
Byte1 1 1 0 0 0 0 1 1

Byte2 & 
Byte3 0 0 1 1 1 1 0 0

Figure 19. Intel® XScale® Core Initiated Write to the IXP2400 Network Processor

B2858-01

Byte
Write M[7:0]

M[15:8]

M[23:16]

M[31:24]

 X [7:0]

X [15:8]

X [23:16]

X [31:24]

Byte Write by Intel XScale® Core

Intel® IXP2400
Gasket



Hardware Reference Manual 95

Intel® IXP2400 Network Processor
Intel® XScale® Core

3.11 Intel® XScale® Gasket Unit

3.11.1 Overview
The XScale core uses the Core Memory Bus (CMB) to communicate with the functional blocks. 
The rest of the IXP2400 Network Processor functional blocks use the Command Push Pull (CPP) 
as the global bus to pass data. Therefore the gasket is needed to translate Core Memory Bus 
commands to Command Push Pull commands. 

This gasket has a set of local CSRs, including interrupt registers. These registers can be accessed 
by the XScale core via the gasket internal bus.The CSR Access Proxy (CAP) is allowed to only do 
a set on these interrupt registers.

The XScale core includes Design for Test logic (DFT). The XScale core coprocessor bus is not 
used in the IXP2400 Network Processors, all accesses are only through the CMB. 

Figure 19. Intel® XScale® Core Initiated Write to the IXP2400 Network Processor (Continued)
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Figure 20 shows the block diagram of the global bus connections to the gasket.

The gasket unit has the following features:

• Interrupts are sent to the XScale core via the gasket, with the interrupt controller registers used 
for masking the interrupts.

• The gasket converts CMB reads and writes to CPP format.

• All the atomic operations are applied on SRAM and SCRATCH only, not DRAM.

• There is a stepping-stone sitting between the XScale core and the gasket. The XScale core runs 
at 600MHz to 700MHz. The gasket currently supports a 1:1 (IXP2800 Network Processor and 
2:1 (IXP2400 Network Processor) clock ratio. For a 2:1 ratio, the Command Push Pull bus will 
be running at half of the frequency of the XScale core.

• In IXP2400 memory controllers, read after write ordering is enforced. There is no write after 
read enforcement for the XScale core. The gasket will perform enforcement by employing 
Content Addressable Memory (CAM) to detect a write to an address with read pending. This 
only applies for writes to SRAM.

• The gasket CPP interface contains one command bus, one D_Push bus, one D_Pull bus, one 
S_Push bus, one S_Pull bus, each with a 32-bit data width. 

A maximum four outstanding reads and four outstanding writes from the XScale core are allowed.

Figure 20. Global Buses Connection to the XScale® Gasket 
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3.11.2 Intel® XScale® Gasket Functional Description

3.11.2.1 Core Memory Bus to Command Push/Pull Conversion

The primary function of the XScale gasket unit is to translate commands initiated from the XScale 
core in the XScale command bus format, into the IXP2400 internal command format (Command 
Push/Pull format)

Table 33 shows how many CPP commands are generated by the gasket from each CMB command. 
Write data is guaranteed to be 32 bit (long word) aligned. Table 33 shows only the Store command. 
In the Load case, the gasket simply converts it to the CPP format. No command splitting is 
required. A Load can only be a byte (8 bits), a word (16 bits), long word (32 bits), or eight long 
words (8x32).

3.11.3 CAM Operation
In the SRAM controller, access ordering is guaranteed only for a read coming after a write. The 
gasket enforces order rules in the following two cases.

1. Write coming after a read.

2. Read-Modify-Write coming after read.

The address CAMing is on 8 word boundaries. The SRAM effective address is 28-bits. Deduct
5 bits (2 bits for the word address and 3 bits for 8 words), and the tag width for the CAM is 23-bits 
wide. The CAM only operates on SRAM accesses. 

Table 33. CMB Write Command to CPP Command Conversion 

Store Length CPP SRAM 
Cmd Count

CPP DRAM 
Cmd Count Remark

Byte, word, long 
word 1 1 SRAM uses 4-bit mask, DRAM uses an 8-bit mask.

2 long word 1 or 2 1 or 2

SRAM: If there is any mask bit detected as ‘0’,two 
commands will be generated.
DRAM: If it starts with odd word address, two commands 
will be generated.

3 long word 1 or 3 2
SRAM: If there is a mask bit of ‘0’ detected, 3 SRAM 
commands will be generated.
DRAM: always 2 DRAM commands.

4 long word 1 or 4 1 or 2

SRAM: If there is a mask bit of ‘0’ detected, four 
commands will be generated.
DRAM: If there is a mask bit of ‘0’ detected, two 
commands will be generated.

8 long word Not allowed in a write.
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3.11.4 Atomic Operations
The XScale core has Swap (SWP) and Swap Byte (SWPB) instructions that generate an atomic 
read-write pair to a single address. These instructions are supported for the SRAM and Scratch 
space, and also to any other address space if it is done by a Read command followed by Write 
command. 

cbiIO is asserted when a data cache request is initiated to a memory region with cacheable and 
bufferable bits in the translation table first-level descriptor set to zero. Also, if cbiIO is asserted 
during the CMB read portion of the SWP, then it also does a Read Command followed by Write 
Command, regardless of address. In those cases the SWP/SWPB is atomic with respect to 
processes running on the XScale core, but not with respect to the Microengines. 

The following summarizes the Atomic operation.

Address Space cbiIO Operation

SRAM/Scratch 0 RMW Command

Not SRAM/Scratch x Read Command followed by Write Command

Any 1 Read Command followed by Write Command

When the XScale core presents the read command portion of the SWP it will assert the cbiLock 
signal. The gasket will ack the read and save the BufID in the push_ff. It will not arbitrate for the 
command bus at that time; rather it will wait for the corresponding write of the SWP (which will 
also have cbiLock asserted). At that time the gasket will arbitrate for the command bus to send a 
command with the atomic operation in the command field [the command is based on the address 
space chosen for the SRAM/Scratch, which has multiple aliased address ranges]. 

The SRAM or Scratch controller will pull the data, do the atomic read-modify-write, and then push 
the read data back. The gasket will use the saved BufID when returning the data to CMB. [Note - 
unrelated reads, such as instruction and Page Table fetches, can come in the interval between the 
read-lock and write-unlock, and will be handled by the gasket. No other data reads or writes will 
come in that interval. Also XScale will not wait for the SWP read data before presenting the write 
data.]

The gasket uses address aliases to generate the following atomic operations.

• Bit Set

• Bit Clear

• Add

• Subtract

• Swap

For the alias address type of atomic operation, the XScale core will issue a SWP command with an 
alias address if it needs data return. The XScale core will use the write command with an alias 
address if it doesn’t need data return.

Xscale_IF will not check the second address, as long as it detects one write after one read, both 
with cbiLock enabled. It will take the write address and put it in the command.

The summary of the rules for Atomic command in I/O space are.
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• SWP to SRAM/Scratch and Not cbiIO, Xscale_IF generates an Atomic operation command.

• SWP to all other Addresses that are not SRAM/Scratch, will be treated as separate read and 
write commands. No Atomic command is generated.

• SWP to SRAM/Scratch and cbiIO, will be treated as separate read and write commands. No 
Atomic command is generated.

3.11.4.1 Intel® XScale® Access to SRAM Q-Array

The XScale core can access the SRAM controllers queue function to do buffer allocation and 
freeing. Allocation does a SRAM dequeue (deq) operation, and freeing does a SRAM enqueue 
(enq) operation. Alias addresses are used as shown in Table 34 to access the freelist. Each SRAM 
channel supports up to 64 lists, so there are 64 addresses per channel.

Address 7:2 selects which Queue_Array entry within the SRAM channel is used.

Doing a load to an address in the table will do a deq, the SRAM controller returns the dequeued 
information (i.e. the buffer pointer) as the load data.

Doing a store to an address in the table will do an enq. The data to be enqueued is taken from the 
XScale core store data.

The gasket will generate command fields as follows, based on address and cbiLd:

Target_ID = SRAM (00 0010)
Command = deq (1011) if cbiLd, enq (1100) if ~cbiLd
Token[1:0] = 0x0
Byte_Mask = 0xFF
Length = 0x1
Address = {XScale_Address[23:22], XScale_Address[7:2], XScale_Write_Data[25:2]}

(Note: On command bus -- address[31:30] selects the SRAM channel, address[29:24] is Q_Array 
number; and address[23:0] is the SRAM longword address. For Dequeue, SRAM controller 
ignores address[23:0].) 

3.11.5 I/O Transaction
XScale core can request an I/O transaction by asserting xsoCBI_IO concurrently with 
xsoCBI_Req. The value of xsoCBI_IO is undefined when xsoCBI_Req is not asserted. When the 
gasket sees an I/O request with xsoCBI_IO asserted, it will raise xsiCBR_Ack but will not 

Table 34. IXP2400 Network Processor SRAM Q-Array Access Alias Addresses

Channela

a. The IXP2400 has two SRAM Q-Array address ranges; channels 2 and 3 are re-
served.

Address Range

0 0xCC00 0100 – 0xCC00 01FC

1 0xCC40 0100 – 0xCC40 01FC

2 0xCC80 0100 – 0xCC80 01FC

3 0xCCC0 0100 – 0xCCC0 01FC
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acknowledge future requests until the IO transaction is complete. The gasket will check if all the 
command FIFOs and write data FIFOs are empty or not. It will also check if the command counters 
(SRAM and DRAM) are equal to zero. All these checks are to guarantee that:

• Writes are issued to the target, and targets have pulled the data.

• Pending reads have their data all back to the gasket.

When the gasket sees that all the conditions are satisfied, it will assert xsiCBR_SynchDone to the 
XScale core. XsiCBR_SynchDone is one cycle long and does not need to coincide with 
xsiCBR_DataValid.

3.11.6 Hash Access
Hash accesses are accomplished by the gasket Local_CSR accesses from the XScale core. There 
are two sets of registers in the gasket that are involved in Hash accesses.

• Four 32 bit XG_GCSR_Hash[3:0] registers for holding the data to be hashed and index 
returned as well. 

• A XG_GCSR_CTR0(valid) register to hold the status of the Hash Access.

The procedure for the XScale core to setup a Hash access is as follows.

1. The XScale core writes data to XG_GCSR_Hash by Local_CSR access using address [X:yy:zz]. 
X selects Hash register set. yy selects hash_48, hash_64 or hash_128 mode. zz selects one of four 
Hash_Data registers.

2. Data write order is 3-2-1-0(for hash_128), 1-0(for hash_48 or hash_64). When the data write to 
Hash_Data[0] is performed, it triggers the Hash request to go out on the CPP bus. At the same time, 
XG_GCSR_Hash(valid) will be cleared by hardware. 

3. The XScale core starts to poll Hash_Result_Valid periodically by Local_CSR read.

4. After some period of time, the Hash_Result is returned to XG_GCSR_Hash, and 
XG_GCSR_CTR0(valid) is set to indicate that Hash_Result is ready to be retrieved.

5. The XScale core issues a Local_CSR read to read back the Hash_Result.

Note, each Hash command requests only one index returned.

The Hash CSR is in the gasket local CSR space.

3.11.7 Gasket Local CSR
There are two sets of Control and Status registers residing in the gasket Local CSR space. ICSR 
refers to the Interrupt CSR. The ICSR address range is 0xd600_0000 - 0xd6ff_ffff. The Gasket 
CSR (GCSR) refers to the Hash CSRs and debug CSR. It has a range of 0xd700_0000 - 
0xd7ff_ffff. GCSR is shown in Table 35.

Note: The Gasket registers are defined in the IXP2400 Network Processor Programmers Reference 
Manual.
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Table 35. GCSR Address Map (0xd700 0000)

3.11.8 Interrupt
The XScale core CSR controller contains local CSR(s) and interrupts inputs from multiple sources. 
The diagram in Figure 21 shows the flow through the controller.

Within the Interrupt/CSR Register block there are raw status registers, enable registers, and local 
CSR(s). The raw status registers are the un-masked interrupt status. These interrupt status are 
masked or steered to the XScale core’s IRQ or FIQ inputs by multiple levels of enable registers. 

Refer to Figure 22.

• {IRQ,FIQ}Status = (RawStatus & {IRQ,FIQ}Enable)

• {IRQ,FIQ}ErrorStatus = (ErrorRawStatus & {IRQ,FIQ}ErrorEnable)

• {IRQ,FIQ}ThreadStatus_$_# = ({IRQ,FIQ}ThreadRawStatus_$_# & 
{IRQ,FIQ}ThreadEnable_$_#)

Each interrupt input is visible in the RawStatusRegister and is masked or steered by two level of 
interrupt enable registers. The error and thread status are masked by one level of enable registers. 
Their combination along with other interrupt sources contributes to the RawStatusReg. The 
RawStatus is masked via IRQEnable/FIQEnable to trigger the IRQ and FIQ interrupt to the XScale 
core.

Bits Name R/W Description Address Offset 

[31:0] XG_GCSR_HASH0 R/W
Hash word 0
Write from XScale.
Rd/Wr from CPP.

0x00 : for 48bit Hash
0x10 : for 64bit Hash
0x20 : for 128bit Hash

[31:0] XG_GCSR_HASH1 R/W
Hash word 1
Write from XScale.
Rd/Wr from CPP.

0x04 : for 48bit Hash
0x14 : for 64bit Hash
0x24 : for 128bit Hash

[31:0] XG_GCSR_HASH2 R/W
Hash word 2
Write from XScale.
Rd/Wr from CPP.

0x28 : for 128bit Hash

[31:0] XG_GCSR_HASH3 R/W
Hash word 3
Write from XScale.
Rd/Wr from CPP.

0x2c : for 128bit Hash

[31:0] XG_GCSR_CTR0 R
[31:1] reserved. 
[0] hash valid flag.
Read from XScale.
Set by LCSR control.

0x30

[31:0] XG_GCSR_CTR1 R/W

[31:1] reserved. 
[0] Break_Function
When set to 1, the debug 
break signal is used to 
stop the clocks. 
When set to 0, the debug 
break signal is used to 
cause an XScale debug 
breakpoint

0x3c
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The enable register’s bits are set and cleared through EnableSet and EnabeClear registers. The 
Status, RawStatus, and Enable Registers are read-only, and EnableSet and EnableClear are write-
only. Also, Enable and EnableSet share the same address for reads and writes respectively.

Note that software needs to take into account the delay between the clearing of an interrupt 
condition and having its status updated in the RawStatus registers. Also in the case of simultaneous 
writes to the same registers, the value of the last write is recorded.

Figure 21. Flow Through the Intel® XScale® Core Interrupt Controller
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3.12 Intel® XScale® Core Peripheral Interface
This section describes the XScale core Peripheral Interface unit (XPI). The XPI is the block that 
connects to all the slow and serial interfaces that communicate with the XScale core through the 
APB bus. These can also be accessed by the Microengines and PCI unit. 

This section does not describe the XScale core interface protocol, only how to interface with the 
peripheral devices connected to the core. The I/O units described are:

• UART

• Watchdog timers

• GPIO

Figure 22. Interrupt Masking Block Diagram
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• SlowPort 

All the peripheral units are memory mapped from the XScale point of view.

3.12.1 XPI Overview
Figure 23 shows the XPI location in the IXP2400 Network Processor. The XPI receives read and 
write commands from the Command Push Pull bus to addresses the memory has mapped to I/O 
devices. 

The SHaC (Scratchpad, Hash Unit, and CSRs) acts like a bridge to control the access from the 
XScale core or other host (like the PCI Unit). The extended APB bus is used to communicate 
between the XPI and the SHaC. The extended APB has only one signal, 
XPSH_APB_RDY_RAPBH, added. This signal is used to tell the SHaC when the transaction 
should be terminated. 

The XPI is responsible for passing the data between the extended APB bus and the internal fubs, 
like the UART, GPIO, Timer, and SlowPort, which will in turn pass these data to an external 
peripheral device with a corresponding bus format.

The XPI is always a master on the SlowPort bus and all the SlowPort devices act like slaves. On the 
other side, the SHaC is always the master and the XPI is the slave with respect to the APB. 

Figure 23. XPI Interfaces (IXP2400 A0/A1)
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3.12.1.1 Data Transfers

The current rate for data transfers is four bytes, except for the SlowPort. The 8-bit and 16-bit 
accesses are only available in the SlowPort bus. The devices connected to the SlowPort dictate this 
data width. The user has to configure the data width register resident in the SlowPort in order to run 
a different type of data transaction. There is no burst to SlowPort.

Figure 25 and Figure 26 displays one possible data flow issued by the external host on the PCI side. 
The external agent basically can request the access to the IXP2400 timer through the PCI bus. 

Figure 27 displays the second possible data flow. This time the XScale issues a command to fetch 
the data from the boot PROM during the boot sequence. First XScale launches a fetch command to 
the SHaC. SHaC will launch a read transaction in the extended APB bus to XPI. XPI then access 
the external PROM device through the SlowPort bus. Data will be packed into 32-bit data and 
passed back the SHaC. SHaC will deliver these data back to the XScale core.

Figure 24. XPI Interfaces (IXP2400 B0)
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Figure 25. PCI/XPI Data Flows Example (IXP2400 A0/A1)
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Figure 26. PCI/XPI Data Flows Example (IXP2400 B0)
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3.12.1.2 Data Alignment

For all the CSR accesses, a 32-bit data bus is assumed. Therefore, the lower two bits of the address 
bus are ignored.

However, for the SlowPort accesses, 8-bit, 16-bit, or 32-bit data access is dictated by the external 
device connected to the SlowPort. The APB Bus should be able to match the data width according 
to which devices it is talking to. 

SeeTable 36 for additional details on data alignment.

3.12.1.3 Address Spaces for XPI Internal Devices

Table 37 shows the address space assignment for XPI devices.

Figure 27. Second Example of Data Flows
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Table 36. Data Transaction Alignment

Interface Units APB Bus Read Write

GRegs 32 bits 32 bits 32 bits

UART 32 bits 32 bits 32 bits

GPIO 32 bits 32 bits 32 bits

Timer 32 bits 32 bits 32 bits

SlowPort
Microprocessor Access

8 bits 8 bits 8 bits

16 bits 16 bits 16 bits

32 bits 32 bits 32 bits

SlowPort
Flash Memory Accessa

a. The flash memory interface only supports 8-bit wide flash devices. APB write transactions are assumed to be 8-bits wide,
and correspond to one write cycle at the flash interface. APB read transactions are assumed to be 32-bits wide, and corre-
spond to four flash read cycles for the 32-bit read mode set in the SP_FRM register. However, for the flash register read
mode (8-bit read mode), it only needs one flash read cycle of 8-bit data and passes it back to APB directly. By default, the
32-bit read mode is set. It is advisable to stay in this mode most of the time and not change them dynamically during ac-
cesses.

32 bits for 32-bit read mode, 8 
bits for register read mode;
8 bits for write;

Assemble 8 bits into 32-bit data for 
32-bit read mode; 8 bits for register 
read mode (8-bit read mode).

8 bits

CSR Access 32 bits 32 bits 32 bits
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3.12.2 UART Overview
The Universal Asynchronous Receiver/Transmitter (UART) performs serial-to-parallel conversion 
on data characters received from a peripheral device and parallel-to-serial conversion on data 
characters received from the network processor. The processor can read the complete status of 
UART at any time during the functional operation. Available status information includes the type 
and condition of the transfer operations being performed by the UART and any error conditions 
(parity, overrun, framing or break interrupt).

The serial ports can operate in either FIFO or non-FIFO mode. In FIFO mode, a 64-byte transmit 
FIFO holds data from the processor to be transmitted on the serial link and a 64-byte receive FIFO 
buffers data from the serial link until read by the processor.

The UART includes a programmable baud rate generator which is capable of dividing the clock 
input by divisors of 1 to 216 - 1 and produces a 16X clock to drive the internal transmitter logic. It 
also drives the receive logic. UART has a processor interrupt system. The UART can be operated 
in polled or in interrupt driven mode as selected by software.

The UART has two clocks: clock from baud rate generator for transmit operation and receive 
operation and clock from the XPI unit for register reads and writes.

Figure 28 shows the top level overview of UART. PLPL_APB_CLK is used in the Baud rate 
generator to produce the transmit CLK that is used in the transmit registers. The transmitters and 
receivers have shift registers, holding registers and the FIFO’s as the main components.

Table 37.  Address Spaces for XPI Internal Devices

 Units Starting Address Range Ending Address

GPIO 0xC0010000 0xC0010040

Timer 0xC0020000 0xC0020040

UART 0xC0030000 0xC003001C

PMU 0xC0050000  0xC0050E00

SlowPort CSR 0xC0080000  0xC0080028

SlowPort 
Device 0xC4000000  0xC7FFFFFF
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To prevent FIFO overflow, UART FIFO control register can be programmed to cause an interrupt 
and signal to the XScale core or PCI host. 

The UART has the following features

• Functionally compatible with National Semiconductor’s PC16550D for basic receive and 
transmit.

• Adds or deletes standard asynchronous communications bits (start, stop, and parity) to or from 
the serial data

• Independently controlled transmit, receive, line status

• Programmable baud rate generator allows division of clock by 1 to (216 - 1) and generates an 
internal 16X clock

• 5, 6, 7 or 8-bit characters

• Even, odd, or no parity detection

• 1, 1-1/2, or 2 stop bit generation

Figure 28. UART Top Level Diagrama,b

a. For IXP2400 A0/A1, the UART FIFO control register can be programmed to cause an interrupt to XScale based on 1, 8, 16
or 32 entries.

b. For IXP2400 B0, UART FIFO control register can be programmed to cause an interrupt to XScale or PCI based on 1, 8, 16
or 32 entries.
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• Baud rate generation

• False start bit detection

• 64-byte Transmit FIFO

• 64-byte Receive FIFO

• Complete status reporting capability

• Internal diagnostic capabilities include:

— Break, parity, overrun, and framing error simulation

• Fully prioritized interrupt system controls

3.12.2.1 Baud Rate Generator

The baud rate generator is a programmable block and generates a clock used in the transmit block. 
The output frequency of the baud rate generator is 16X the baud rate. The baud rate is calculated as 
follows:
Baud Rate = System Clock / (16 X Divisor)

The Divisor ranges from 2 to (216 - 1). For example, for a system clock of 50 MHz and baud rate of 
115200 bps the divisor is 27. The divisor is not allowed to set to 0 and 1; otherwise, no internal 
clock is generated for operation of the UART unit.

Table 38. UART Register Map

Abbreviation Address 
[7:0] Name Description

UART_RBR 0x00, 
DLAB=0

UART Receive Buffer 
Register

It is used to buffer the received 
data.

UART_THR
0x00,

DLAB=0
UART Transmit Holding 
Register

It is used to hold the 
transmitting data.

UART_DLRL 0x00, 
DLAB=1

UART Divisor Latch 
register Low

It is associated with 
UART_DLHR and used to 
control the baud rate together. 

UART_DLRH 0x04, 
DLAB=1

UART Divisor Latch 
Register High

It is associated with 
UART_DLRL and used to 
control the baud rate together. 

UART_IER
0x04,

DLAB=0
UART Interrupt Enable 
Register

It is the interrupt enable register 
for all interrupt control.

UART_IIR 0x08 UART Interrupt 
Identification Register

This is a read only register and 
shares the same space as 
UART_FCR

UART_FCR 0x08 UART Fifo control register This is a write only register. It is 
used to control the FIFO.

UART_LCR 0x0C UART Line Control 
Register

This is used to control the 
transmission line data format.

UART_LSR 0x14 UART Line Status Register This stores the status of the 
previous transaction.

UART_SPR 0x1C UART scratch pad register
This allows the program to 
access for programming 
purpose.
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3.12.2.2 UART FIFO Operation

The UART has one transmit FIFO and one receive FIFO. The transmit FIFO is 64-bytes deep and 
8-bits wide. The receive FIFO is 64-bytes deep and 11-bits wide.

3.12.2.2.1 UART FIFO Interrupt Mode Operation - Receiver Interrupt

When the Receive FIFO and receiver interrupts are enabled (UART_FCR[0]=1 and 
UART_IER[0]=1), receiver interrupts occur as follows:

• The receive data available interrupt is invoked when the FIFO has reached its programmed 
trigger level. The interrupt is cleared when the FIFO drops below the programmed trigger 
level.

• The UART_IIR receive data available indication also occurs when the FIFO trigger level is 
reached, and like the interrupt, the bits are cleared when the FIFO drops below the trigger 
level.

• The receiver line status interrupt (UART_IIR = C6H), as before, has the highest priority. The 
receiver data available interrupt (UART_IIR=C4H) is lower. The line status interrupt occurs 
only when the character at the top of the FIFO has errors.

• The data ready bit (DR in UART_LSR register) is set to 1 as soon as a character is transferred 
from the shift register to the Receive FIFO. This bit is reset to 0 when the FIFO is empty.

Character Time-out Interrupt

When the receiver FIFO and receiver timeout interrupt are enabled, a character timeout interrupt 
occurs when all of the following conditions exist:

• At least one character is in the FIFO.

• The last received character was longer than four continuous character times ago (if two stop 
bits are programmed the second one is included in this time delay).

• The most recent processor read of the FIFO was longer than four continuous character times 
ago.

The maximum time between a received character and a timeout interrupt is 160 ms at 300 baud 
with a 12-bit receive character (i.e., 1 start, 8 data, 1 parity, and 2 stop bits).

When a timeout interrupt occurs, it is cleared and the timer is reset when the processor reads one 
character from the receiver FIFO. If a timeout interrupt has not occurred, the timeout timer is reset 
after a new character is received or after the processor reads the receiver FIFO.

Timeout interrupt is coupled with the FIFO interrupt trigger level/threshold level. If the data reach 
the threshold value, the timeout interrupt is prohibited. Therefore, no timeout interrupt occurs when 
the threshold value is set to 1 byte trigger. For 8-, 16-, and 32-byte trigger level, the timeout 
interrupt will occur if the data is left stranded in the FIFO.

Transmit Interrupt

When the transmitter FIFO and transmitter interrupt are enabled (UART_FCR[0]=1, 
UART_IER[1]=1), transmit interrupts occur as follows:

• The Transmit Data Request interrupt occurs when the transmit FIFO is half empty or more 
than half empty. The interrupt is cleared as soon as the Transmit Holding Register is written 
(1 to 64 characters may be written to the transmit FIFO while servicing the interrupt) or the IIR 
is read.
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3.12.2.2.2 FIFO Polled Mode Operation

With the FIFOs enabled (TRFIFOE bit of UART_FCR set to 1), setting UART_IER[4:0] to all 
zeros puts the serial port in the FIFO polled mode of operation. Since the receiver and the 
transmitter are controlled separately, either one or both can be in the polled mode of operation. In 
this mode, software checks receiver and transmitter status via the UART_LSR. As stated in the 
register description:

• UART_LSR[0] is set as long as there is one byte in the receiver FIFO.

• UART_LSR[1] through UART_LSR[4] specify which error(s) has occurred for the character 
at the top of the FIFO. Character error status is handled the same way as interrupt mode. The 
UART_IIR is not affected since UART_IER[2] = 0.

• UART_LSR[5] indicates when the transmitter FIFO needs data.

• UART_LSR[6] indicates that both the transmitter FIFO and shift register are empty.

• UART_LSR[7] indicates whether there are any errors in the receiver FIFO.

3.12.3 General Purpose I/O (GPIO)
The IXP2400 Network Processor has eight General Purpose Input/Output (GPIO) port pins for use 
in generating and capturing application-specific input and output signals. Each pin is 
programmable as an input or output or as an interrupt signal sourcing from an external device. The 
GPIO can be used with appropriate software in I2C application.

Each GPIO pin can be configured as a input or an output by programming the corresponding GPIO 
pin direction register. When programmed as an input, the current state of the GPIO can be read 
through the corresponding GPIO pin level register. The register can be read at any time and can be 
used to confirm the state of the pin when it is configured as an output. In addition, each GPIO pin 
can be programmed to detect a rising or a falling edge by setting the corresponding GPIO rising/
falling edge detect registers. 

When configured as an output, the pin can be controlled by writing to the GPIO set register to write 
a 1 and by writing to the GPIO clear register to write a 0. These registers can be written regardless 
of whether the pin is configured as an input or a output.

Each of the GPIO pins is designed the same and instantiated to the number of GPIO port pins. 
Figure 29 shows a GPIO functional diagram. The GPIO pin as seen can be programmed based on 
the configuration registers.



Hardware Reference Manual 113

Intel® IXP2400 Network Processor
Intel® XScale® Core

Figure 29. GPIO Functional Diagram
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Table 39. GPIO Register Map

Abbreviation Address Name Description

GPIO_PLR 0x00 GPIO Pin level register This is used to determine the 
current value of a particular pin

GPIO_PDPR 0x04 GPIO Pin direction 
programmable register

This is to program a pin as an input 
or a output

GPIO_PDSR 0x08 GPIO Pin direction set 
register This is to set a pin as an output

GPIO_PDCR 0x0C GPIO Pin direction 
clear register This is to reset a pin as an input

GPIO_POPR 0x10 GPIO Output data 
programmable register

This is to program the output data 
register

GPIO_POSR 0x14 GPIO Output data set 
register

This is to set an output data 
register

GPIO_POCR 0x18 GPIO Output data 
clear register

This is to clear an output data 
register 

GPIO_REDR 0x1C GPIO Rising edge 
detect enable register

This is to enable detects on rising 
edge

GPIO_FEDR 0x20 GPIO Falling edge 
detect enable register

This is to enable detects on falling 
edge

GPIO_EDSR 0x24 GPIO Edge detect 
status register

This is the logging of detected 
transitions

GPIO_LSHR 0x28 GPIO level sensitive 
high enable register

This is to enable detect on level 
sensitive high inputs.
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3.12.4 Timers
The IXP2400 Network Processor supports four timers. These timers are clocked by the Advanced 
Peripheral/Bus Clock (APB-CLK), which runs at 50 MHz. to produce the PLPL_APB_CLK, 
PLPL_APB_CLK/16 or PLPL_APB_CLK/256 signals. The counters are loaded with an initial 
value, count down to zero, and raise an interrupt (if interrupts are not masked). 

In addition, timer 4 can be used as a watchdog timer when the watchdog enable bits are configured 
to one. When used as a watchdog timer, and when a count of zero is encountered, it will initiate the 
reset sequence.

Figure 30 shows the timer control unit interfacing with other functional blocks.

GPIO_LSLR 0x2C GPIO level sensitive 
low enable register

This is to enable detect on level 
sensitive low inputs.

GPIO_LDSR 0x30 GPIO level detect 
status register

This is to log the logic level of 
inputs.

GPIO_INER 0x34 GPIO Interrupt Enable 
register

This is to enable the interrupt 
generation.

GPIO_INSR 0x38 GPIO Interrupt Set 
register

This is to set the interrupt enable 
register.

GPIO_INCR 0x3C GPIO Interrupt Reset 
register

This is to reset the interrupt enable 
register.

GPIO_INST 0x40 GPIO Interrupt Status 
Register

This is to capture the interrupts 
occurred to the corresponding pin 
by the external devices.

Table 39. GPIO Register Map (Continued)

Abbreviation Address Name Description
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3.12.4.1 Timer Operation

Each timer consists of a 32-bit counter.

By default, the timer counter load register (TCLD) is set to 0xFFFFFFFF. The timer will count 
down from 0xFFFFFFFF to zero, then wrap back to 0xFFFFFFFF and continue to decrement if the 
TCLD is not programmed to any value. If a different value is programmed in the TCLD, then the 
counter will load this value every time it counts down to zero.

An interrupt is issued to the XScale core whenever the counter reaches zero. The interrupt signals 
can be enabled or disabled by the IRQEnable/FIQEnable registers. The interrupt remains asserted 
until it is cleared by writing a 1 to the corresponding timer clear register (TCLR).

The counter can be advanced by the clock, clock divided by 16, clock divided by 256, and the 
GPIO signals. The clock rate is controlled by the TCTL value programmed into the TCTL 
registers. There are four GPIO signals, GPIO[3:0] which correspond to Timer 1, 2, 3, and 4, 
respectively. These signal are synchronized within the timer-clock domain before driving the 
counter.

Figure 31 shows the Timer Internal logic.

Figure 30. Timer Control Unit Interfacing Diagram
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Figure 31. Timer Internal Logic Diagram
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Table 40. Timer Register Map

Name Abbreviation Address Description

TIMER 
CONTROL 
registers

T1_CTL

T2_CTL

T3_CTL

T4_CTL

0x00

0x04

0x08

0x0C

This is used to determine the timer 
functions, mode, activation

TIMER 
COUNTER 
LOADING 
registers

T1_CLD

T2_CLD

T3_CLD

T4_CLD

0x10

0x14

0x18

0x1C

These registers store the initial values 
for the timer counters. Writing to a 
register causes the timer to reload with 
its initial value.
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TIMER 
COUNTER 

STATUS register

T1_CSR

T2_CSR

T3_CSR

T4_CSR

0x20

0x24

0x28

0x2C

This is to store the current counter 
values.

TIMER 
COUNTER 

CLEAR 
registers

T1_CLR

T2_CLR

T3_CLR

T4_CLR

0x30, 
0x34, 
0x38, 
0x3C

Any write to these registers clear the 
associated timer interrupts.

TIMER 
WATCHDOG 

ENABLE 
register

TWDE 0x40 This is to enable the timer 4 to be a 
watchdog timer.

Table 40. Timer Register Map (Continued)

Name Abbreviation Address Description
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3.12.5 SlowPort Unit
The IXP2400 Network Processor SlowPort Unit supports basic PROM access and 8-, 16-, and 32-
bit microprocessor device access. It allows a master, (XScale core or Microengine), to do a read/
write data transfer to these slave devices.

The address bus and data bus are multiplexed to reduce the pin count. In addition, the address bus 
is also compressed from A[24:0] down to A[7:0] and shifted out with three clock cycles. Therefore, 
an external set of buffers is needed for address storage and latch.

The access can be asynchronous. Insertion of delay cycles is possible for both setup and hold data. 
A programmable timing control mechanism is provided for this purpose.

There are two types of interfaces supported in the SlowPort Unit:

• Flash memory interface

• µP interface. 

The Flash memory interface is used for the PROM device. The µP interface can be used for 
SONET/SDH Framer µP access. 

There are two ports in the SlowPort unit. The first is dedicated to the flash memory device while 
the second to the µP device.

3.12.5.1 PROM Device Support

For all the Flash Memory access, only 8-bit devices are supported. APB write transactions are 
assumed to be eight bits wide, and correspond to one write cycle at the flash interface. The 
extended APB read transactions are assumed to be 32 bits wide, and correspond to four read cycles 
at the flash memory interface for all the flash memory data read. However, for the flash register 
read inside the flash memory, like the flash status register, the returned data are one byte and placed 
in the lower order byte location. In this case, only one external transaction cycle is involved.

To accomplish this, a register (SP_FRM) is installed to allow to configure between 8-bit read mode 
and 32-bit read mode. By default, it goes to 32-bit read mode. For the 8-bit read mode, one read 
cycle is involved. No packing process is needed. The data will be directly placed onto the lower 
order byte, [7:0] and passed to APB bus. For the 32-bit read mode, it needs four read cycles. All 4 
bytes are packed into a 32-bit data and passed to the APB bus. 16-bit mode is not supported for 
read.

Write always accesses the flash with one 8-bit cycle. Therefore, no unpacking process is needed.

The PROM device supported are listed in Figure 41:

Table 41. 8-bit Flash Memory Device Density

Vendor Part Number Size

Intel 28F128J3A 16MB

Intel 28F640J3A 8MB

Intel 28F320J3A 4MB
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3.12.5.2 µP interface support for the Framer

The SlowPort Unit also supports a microprocessor interface with Framer components. Some 
supported devices are listed in Table 42.

Table 42. SONET/SDH Devices

Vendor Part Number µP Interface SP_PCR register 
Setting

DW Setting in 
SP_ADC register

PMC-Sierra PM3386 16 bits 0x3 0x1

PMC-Sierra PM5345 8 bits 0x2 0x0

PMC-Sierra PM5346 8 bits 0x2 0x0

PMC-Sierra PM5347 8 bits 0x2 0x0

PMC-Sierra PM5348 8 bits 0x2 0x0

PMC-Sierra PM5349 8 bits 0x2 0x0

PMC-Sierra PM5350 8 bits 0x2 0x0

PMC-Sierra PM5351 8 bits 0x2 0x0

PMC-Sierra PM5352 8 bits 0x2 0x0

PMC-Sierra PM5355 8 bits 0x2 0x0

PMC-Sierra PM5356 8 bits 0x2 0x0

PMC-Sierra PM5357 8 bits 0x2 0x0

PMC-Sierra PM5358 16 bits 0x2 0x1

PMC-Sierra PM5381 16 bits 0x2 0x1

PMC-Sierra PM5382 8 bits 0x2 0x0

PMC-Sierra PM5386 16 bits 0x2 0x1

AMCC S4801 (AMAZON) 8 bits 0x0 0x0

AMCC S4803 (YUKON) 8 bits 0x0 0x0

AMCC S4804 (RHINE) 8/16 bits 0x0/0x3 0x0/0x1

Intel IXF6012 (Volga) 16 bits 0x3/0x4a

a. Usually there are two different protocols, Intel or Motorola, of µP interface in the Intel framer; the setting in the PCR should
match with protocols activated in the framer.

0x1

Intel IXF6048 (Amazon-A) 16 bits 0x3/0x4a 0x1

Intel Centaur 0x3/0x4a

Intel IXF6501 0x3/0x4a

Intel Ben Nevis 32 bits 0x3/0x4a 0x2

Lucent TDAT042G5 16 bits 0x1/ 0x1

Lucent TDAT04622 16 bits 0x1 0x1

Lucent TDAT021G2 16 bits 0x1 0x1
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3.12.5.3 SlowPort Unit Interfaces

Figure 32 shows the SlowPort Unit interface diagram.

3.12.5.3.1 Endianness

Little-endianness is supported in the SlowPort. Therefore, the lowest address byte should be placed 
in the byte lane 0, D[7:0].

3.12.5.3.2 Byte Ordering

During byte write, the data should be placed according the Table 43 above. APB controller should 
place first byte in d[7:0], second byte in d[15:8] and so on. During half-word write, APB should 
place the first half word in d[15:0] and the second, in d[31:16]. However, during the byte read, the 
SlowPort should duplicate the byte into four byte lanes. Similar for the half word read, it duplicates 
twice and places it on both upper, d[31:16], and lower half word lanes, d[15:0]. For the word read, 
it is similar to the write case with the lowest byte placed in the lowest byte lane, second in the 
second byte lane, and so on.

Figure 32. SlowPort Unit Interface Diagram
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Table 43. Byte Address

Byte Lane Address Data bus

0 00 [7:0]

1 01 [15:8]

2 10 [23:16]

3 11 [31:24]
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3.12.5.4 Address Space

The total address space is defined as 64 MB, which is further divided into two segments of 32 MB 
each. Two devices can be connect to this bus. If these peripheral devices have a density of 256 Mbit 
(32 MB) each, all the address space is going to be filled like a contiguous address space. However, 
if a small capacity device is used (like a 4 MB, 8 MB, 16 MB), there will be a memory hole left in 
between these two devices. Figure 33 is a 4 MB memory example. Trying to read the space in 
between, you will get the repeating value for each 4 MB location

3.12.5.5 SlowPort Interfacing Topology

Figure 34 demonstrates one of the topologies used to connect to an 8-bit device. From the diagram, 
we can observe that address is shifted out 8 bits at a time and buffered into three 74F377 or 
equivalent tri-state buffer devices in three consecutive clock cycles. These buffers also output 
separately to form a 25-bit wide address bus to address the 8-bit devices. The data are expected to 
be driven out after the address has been placed into the buffers.

There are two devices shown in Figure 34. The top one is the fix-timed device, while the lower 
one, self-timing device. For the self-timing device, the access latency depends on the SP_ACK_L 
responded back from this device.

Three extra signals, SP_CP, SP_OE_L and SP_DIR, are added to pack and unpack the data when a 
16-bit or 32-bit device is hooked up to SlowPort. They are used for special application only as 
described below.

Figure 33. An Example of Address Space Hole Diagram
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Figure 34. SlowPort Example Application Topology
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3.12.5.6 SlowPort 8-bit Device Bus Protocols

The write/read transfer protocols are discussed in the following sections. The burst transfers are 
going to be broken down into single mode transfer. For each single write/read transaction, it can be 
either fixed-timed transaction or self-timing transaction. The fixed-timed transaction has the 
response fixed in a certain period, which can be controlled by the timing control registers. 

For the self-timing transaction, the response timing is dictated by the peripheral device. Hence, 
wait states can be inserted during the transaction. All the back-to-back transactions are intervened 
with one clock cycle. The SlowPort clock, SP_CLK, shown in the following waveform diagrams, 
is generated by dividing the PLPL_APB_CLK. The divisor used is specified in the clock control 
register, SP_CCR.

3.12.5.6.1 Mode 0 Single Write Transfer for Fixed-Timed Device

Figure 35, shows the single write transfer for a fixed-timed device with the CSR programmed to a 
value of setup=4, pulse width=4, and hold=2, followed by another read transfer.

Figure 35. Mode 0 Single Write Transfer for a Fixed-Timed Device (IXP2400 A0/A1)
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The transaction is initiated with SP_ALE_L asserted. It latches the address from the SP_AD[7:0] 
bus into the external buffer, using three clock cycles. After that, it should deassert the SP_ALE_L 
to disable latching the address into the buffers.

The SP_A[1:0] signals span the whole transaction cycle.

For the write, it drives the data onto the SP_AD[7:0]. Meanwhile, it asserts the SP_CS_L[1:0] 
signals. Depending on the timing control setup parameter, for this case, the SP_WR_L is not 
asserted until four clock cycles have elapsed. The SP_CS_L[1:0] signals are deasserted two clocks 
after the SP_WR_L is deasserted.

3.12.5.6.2 Mode 0 Single Write Transfer for a Self-timing Device

Figure 37 depicts the single write transfer for a self-timing device with the CSR programmed to 
setup=4, pulse width=0, and hold=3. Similarly, a read transaction is attached behind.

Figure 36. Mode 0 Single Write Transfer for a Fixed-Timed 
Device (IXP2400 B0)
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Figure 37. Mode 0 Single Write Transfer for a Self-Timing 
Device (IXP2400 A0/A1)
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Similar to the single write for fixed-timed device, the ALE_L, CS_L[1:0], AD[7:0], and A[1:0] 
follow the same pattern, and the timing is controlled by the timing control register. Except for the 
WR_L which is terminated depending on the SP_ACK_L returned from the self-timing device.

The time-out counter will be set to 255. If no SP_ACK_L responds back when the time-out counter 
reaches zero, the transaction is terminated with a time-out. An interrupt signal is issued to the bus 
master simultaneously with the time-out register update.

3.12.5.6.3 Mode 0 Single Read Transfer for Fixed-timed Device

Figure 39 demonstrates the single read transfer issued to a fixed-timed PROM device followed by 
another write transaction. The CSR is assumed to be configured to the value setup=2, pulse 
width=10, and hold=1.

Figure 38. Mode 0 Single Write Transfer for a Self-Timing 
Device (IXP2400 B0)
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Figure 39. Mode 0 Single Read Transfer for a Fixed-Timed 
Device (IXP2400 A0/A1)
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The address is loaded onto the external buffer in three clock cycles with the ALE_L asserted. Then, 
a clock cycle is inserted to tri-state all the AD[7:0] signals. The CS_L[1:0] signals come asserted 
on the fourth clock cycle. Now, the values stored in the timing control registers take effect. The 
RD_L becomes asserted after two clock cycles. It keeps asserted for ten clock cycles. The 
CS_L[1:0] should be de-asserted one clock cycle after RD_L is de-asserted. The data will be valid 
at clock cycle 16 as shown in the diagram. Since the hold delay has 2 cycles, transaction is 
terminated at clock cycle 16.

3.12.5.6.4 Single Read Transfer for a Self-timing Device

Figure 41 demonstrates the single read transfer issued to a self-timing PROM device followed by 
another write transaction. The CSR assumed to be programmed to the value of setup=4, pulse 
width=0, and hold=1.

Figure 40. Mode 0 Single Read Transfer for a Fixed-Timed 
Device (IXP2400 B0)
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The only difference for self-timed mode is in the SP_ACK_L signal. It has a dominant effect on the 
length of the transaction cycle or it overrides the value in the timing control register. A time-out 
counter is set to 255. The SP_ACK_L should arrive before the time-out counter counts down to 
zero. Similarly to the single write for self-timing device, an interrupt is launched for the time-out 
event and the time-out register is updated. In this case, the data will be sampled at clock cycle 12.

3.12.5.7 SONET/SDH Microprocessor Access Support

In order to support the SONET/SDH Microprocessor Interface, extra logic is added into this unit. 
Here we consider three SONET/SDH available components, including the Lucent TDAT042G5, 
PMC-Sierra PM5351, Intel, and AMCC SONET/SDH devices.

Figure 41. Mode 0 Single Read Transfer for a Self-Timing 
Device (IXP2400 A0/A1)

Figure 42. Mode 0 Single Read Transfer for a Self-Timing 
Device (IXP2400 B0)
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However, because these microprocessor interfaces are not standardized, we treat them separately 
and a configuration register is installed to activate the bus to work with different interface protocol 
at a time. Extra pins are also added to accomplish this task.

A microprocessor interface type register is used to provide these kinds of solutions. The user is 
allowed to configure the interface to the following four different modes. The pin functionality and 
the interface protocol will be changed accordingly. By default, it activates the mode 0 with 8-bit 
generic PROM device support as mentioned above.

3.12.5.7.1 Mode 1: 16-bit Microprocessor Interface Support with 16-bit Address Lines

The address size control register is programmed to 16-bit address space for this case. This mode is 
designated for the devices with the similar protocol with the Lucent TDAT042G5 SONET/SDH 
device.

16-bit Microprocessor Interfacing Topology with 16-bit address lines

Figure 43 shows a solution for the 16-bit microprocessor interface. This solution bridges the 
Lucent TDAT042G5 SONET/SDH 16-bit interface. From Figure 43, we observe that the control 
pins SP_RD_L and SP_WR_L are converted to R/W and ADS. The CS and DT are still 
compactible with SP_CS_L[1] and SP_ACK_L protocol.

Extra pins are added to accomplish the task of multiplexing and demultiplexing the data bus. The 
total pin count is 18.

During the write cycle, 8-bit data are stacked into 16-bit data. They are first shifted into two tri-
state buffers, 74F646 or equivalent by SP_CP, using two consecutive clock cycle. Then the 
SP_CS_L is used for output the 16-bit data, which is shared with the CS.

During the read cycle, the 16-bit data are unpacked into 8-bit data by SP_CP. Two 74F646 or 
equivalent tri-state buffers are used. First, the 16-bit data are stored into these buffers. Then they 
are shifted out by SP_DIR, using two consecutive clock cycle.
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16-bit Microprocessor Write Interface Protocol
Figure 44 uses the Lucent TDAT042G5 device. In this case, the user should program the P_PCR 
register to mode 1 and also program the write timing control register to setup=7, pulse width=5, 
and hold=1, which represent 7 clock cycles for CS, 5clock cycle for DT delay, and 1 clock cycle for 
ADS. They are intervened with two idle cycles.

From Figure 44, we observe that there are a total of twelve clock cycles used for write access, (i.e., 
240 ns), not including an intervened turnaround cycle after the write transaction. The throughput is 
8.3 MB per second

Figure 43. An Interface Topology with Lucent TDAT042G5 SONET/SDH
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Figure 44. Mode 1 Single Write Transfer for Lucent TDAT042G5 
Device (IXP2400 A0/A1)
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16-bit Microprocessor Read Interface Protocol

Figure 46, likewise depicts a single read transaction launched from the IXP2400 Network 
Processor to the Lucent TDAT042G5 device followed by a single read transaction. However, in 
this case the read timing control register has to be programmed to setup=0, pulse width=7, and 
hold=1.

In Figure 46, we can count twelve clock cycles used for the read transaction in total, (i.e., 240 ns) 
for a clock cycle of 20 ns, excluding a turnaround cycle after that.

Figure 45. Mode 1 Single Write Transfer for Lucent TDAT042G5 
Device (IXP2400 B0)
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Figure 46. Mode 1 Single Read Transfer for Lucent TDAT042G5 
Device (IXP2400 A0/A1)
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3.12.5.7.2 Mode 2: Interface With 8 Data Bits and 11 Address Bits

This application is designed for the PMC-Sierra PM5351 S/UNI-TETRA Device. For the PMC-
Sierra PM5351, the address space is programmed to 11-bits; otherwise, other address space should 
be specified.

8-bit PMC-Sierra PM5351 S/UNI-TETRA Interfacing Topology

Figure 48 displays one of the topologies used to connect to the SlowPort with the PMC-Sierra 
PM5351 S/UNI-TETRA device.

From Figure 48, because the protocols are very close to the generic SlowPort protocol, the pin 
counts and the functionality is quite compatible. We don’t need to use any more pins in this case. 
The only difference is in the INTB signal, which will be connected to the SP_ACK_L. Therefore 
the SP_ACK_L needs to be converted to an interrupt signal.

Also because the address contains only 11bits, two 74F377 or equivalent buffers are needed.

The AS field in the SP_ADC register should be programmed to a 16-bit addressing space with the 
upper 5 address bits unconnected.

The timing controls are similar to the generic case.

Figure 47. Mode 1 Single Read Transfer for Lucent TDAT042G5 
Device (IXP2400 B0)

0 2 4 6 8 12 14 16 18 2010

A[7:0] A[15:8]

T0 T1 T2 T3 T4 T5 T6 T7

D[15:8] D[7:0] A[7:0] A[15:8] A[23:16] D[7:0]

SP_CLK

SP_ALE_L

SP_CS_L[1]/CS

SP_WR_L/ADS

SP_AD[7:0]

SP_ACK_L/DT

SP_RD_L/R/W

SP_CP

ADDR[15:0]

DATA[15:0]

SP_DIR

A[23:0]A[15:0] A[23:0]

D[7:0]D[15:0]

A[15:0]

SP_OE_L

D[15:0] 2x[15:8]

A[23:16]

A[7:0] A[7:0]



134 Hardware Reference Manual

Intel® IXP2400 Network Processor
Intel® XScale® Core

PMC-Sierra PM5351 S/UNI-TETRA Write Interface Protocol

Figure 49 depicts a single write transaction launched from the IXP2400 to the PMC-Sierra 
PM5351 device followed by single read transaction.
The write transaction for the PMC-Sierra component has 6 clock cycle or 120ns access time for a 
50MHz SlowPort clock. In this case, no intervening cycle is added after the transaction. The 
SP_PCR should be programmed to mode 2 and the fields of SU, PW, and HD in the SP_WTC2 
should be set to 1, 2, 1 respectively. Here SU, PW, and HD represent the SP_CS_L[1] pulse width, 
SP_WR_L pulse width, and SP_CP pulse width respectively.

Figure 48. An Interface Topology with PMC-Sierra PM5351 S/UNI-TETRA

B1088-01

SP_RD_L

SP_CS_L[1]

SP_ACK_L

SP_AD[7:0]

CE#

CP

D[7:0]

Q[7:0]
74F377

SP_WR_L

RDB

ALE

CSB

INTB

WRB

DATA[7:0]

ADDR[10:0]

Intel® IXP2400
Network

Processor

PMC-Sierra
PM5351

SP_ALE_L

SP_CLK

CE#

CP

D[7:0]

ADDR[10:8]

ADDR[7:0]

VCC

Q[7:0]
74F377

Clock
Driver

CY2305



Hardware Reference Manual 135

Intel® IXP2400 Network Processor
Intel® XScale® Core

Figure 49. Mode 2 Single Write Transfer for PMC-Sierra PM5351 
Device (IXP2400 A0/A1)
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PMC-Sierra PM5351 S/UNI-TETRA Read Interface Protocol

Figure 51, depicts a single read transaction launched from the IXP2400 Network Processor to the 
PMC-Sierra PM5351 device followed by a single write transaction.

In this case, there are eight clock cycles of access time, or 160 ns of a 50 MHz clock in total with a 
turnaround cycle attached at the back. The SP_PCR is programmed to mode two and the fields of  
SU, PW, and HD in the SP_RTC are programmed to one, four, one, which represent 
theSP_CS_L[1], SP_RD_L, and SP_CP pulse width respectively.

Figure 50. Mode 2 Single Write Transfer for PMC-Sierra PM5351 
Device (IXP2400 B0)

SP_CLK

0 2 4 6 8 12 14 16 18 2010

SP_ALE_L

SP_CS_L[1](CSB)

SP_WR_L(WRB)

SP_AD[7:0]

SP_ACK_L(INTB)

A[7:0] A[10:8] D[7:0]

SP_RD_L(RDB)

ADDR[15:0]

DATA[7:0]

D[7:0]

D[7:0] D[7:0]A[7:0] A[7:0]

A[7:0] A[10:8]

A[10:8] A[10:8]

A[10:0] A[10:0] A[10:0]A[10:8]

SP_OE_L

SP_DIR

A[7:0] A[7:0]

SP_CP



Hardware Reference Manual 137

Intel® IXP2400 Network Processor
Intel® XScale® Core

Figure 51. Mode 2 Single Read Transfer for PMC-Sierra PM5351 
Device (IXP2400 A0/A1)
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3.12.5.7.3 Mode 3: Support the Intel and AMCC 2488 Mbps SONET/SDH Microprocessor 
Interface

The user can configure the address bus up to 24 bits.

Mode 3 Interfacing Topology

Figure 53 demonstrates one of the topologies used to connect the SlowPort to the Intel and AMCC 
2488Mbps SONET/SDH device. Similar to the Lucent TDAT042G5 interface, the address and the 
data need demultiplexing. Totally, it requires four buffers to accomplish this task.

The SP_RD_L, SP_WR_L, and SP_CS_L[1] entirely match the RDB, WRB, and CSB pins in the 
Intel and AMCC component. However, the INT has to be connected to the SP_ACK_L as the 
PMC-Sierra Interface does. The ALE pin shares the SP_CP signal. If the timing doesn’t meet 
specification, ALE can be tied high as shown in Figure 54. It employs the same method as Lucent’s 
TDAT042G5’s topology to pack and unpack the data between the IXP2400 SlowPort interface and 
the Intel and AMCC microprocessor interface.

For a write, SP_CP loads the data onto the 74F646 or equivalent tri-state buffers, using two clock 
cycles. In order to reduce the pin count, the 16-bit data are latched with the same pin 
(SP_CS_L[1]), assuming that a turnaround cycle is inserted between the transaction cycles.

For a read, data are shifted out of two 74F646 or equivalent tri-state buffers by SP_CP, using two 
consecutive clock cycles.

Figure 52. Mode 2 Single Read Transfer for PMC-Sierra PM5351 
Device (IXP2400 B0)
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Figure 53. An Interface Topology with Intel / AMCC SONET/SDH Device
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Mode 3 Write Interface Protocol

Figure 55 depicts a single write transaction launched from the IXP2400 Network Processor to the 
Intel and AMCC SONET/SDH device followed by two consecutive reads.

Compared with the Lucent TDAT042G5, this device has a shorter access time, about 8 clock cycles 
(i.e., 160 ns). In this case, an intervening cycle may not be needed for the write transactions. 
Therefore, the throughput is about 12.5 MB per second.

Figure 54. Mode 3 Second Interface Topology with Intel / AMCC SONET/SDH Device
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Figure 55. Mode 3 Single Write Transfer Followed 
by Read (IXP2400 A0/A1)
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Mode 3 Read Interface Protocol

Figure 57 depicts a single read transaction launched from the IXP2400 to the Intel and AMCC 
SONET/SDH device followed by two consecutive writes.

Similarly, the access time is much better than the Lucent TDAT042G5. The access time is 8 clock 
cycles or 160ns for a 50 MHz SlowPort clock. Here, there are three intervening cycles between 
transactions.

Figure 56. Mode 3 Single Write Transfer Followed 
by Read (IXP2400 B0)
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Figure 57. Mode 3 Single Read Transfer Followed 
by Write (IXP2400 A0/A1)
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Mode 4 Interfacing Topology

Figure 59 demonstrates one of the topologies used to connect SlowPort to the Intel and AMCC 
SONET/SDH device.

Similar to the Lucent TDAT042G5 interface, the address and the data need demultiplexing. It 
requires a total of six buffers.

The RD_L, WR_L, and CS_L[1] entirely match the E, RWB, and CSB pins respectively in the 
Intel framer configured to Motorola mode. However, the INT has to be connected to the 
SP_ACK_L as the PMC-Sierra Interface does. The ALE pin can share the SP_CP. However, if it 
doesn’t meet the timing, ALE pin can be tied high as shown in Figure 60.

It employs the same way to pack and unpack the data between the IXP2400 Network Processor 
SlowPort interface and the Intel and AMCC microprocessor interface.

For a write, W2B loads the data onto the 74F646 or equivalent tri-state buffers, using two clock 
cycles. In order to reduce the pin count, the 16-bit data are latched with the same pin (CS_L[1]), 
assuming that a turnaround cycle is inserted between the transaction cycles.

For a read, data are pipelined out of two 74F646 or equivalent tri-state buffers by B2S, using two 
consecutive clock cycles.

Figure 58. Mode 3 Single Read Transfer Followed 
by Write (IXP2400 B0)
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Figure 59. An Interface Topology with Intel / AMCC SONET/SDH 
Device in Motorola Mode
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Mode 4 Write Interface Protocol

Figure 61 depicts a single write transaction launched from the IXP2400 Network Processor to the 
Intel and AMCC SONET/SDH device, followed by two consecutive reads.

Comparing with the Lucent TDAT042G5 device, this device has a shorter access time, about 8 
clock cycles, i.e., 160 ns. In this case, an intervened cycle may not be needed about the write 
transaction.

Figure 60. Second Interface Topology with Intel / AMCC SONET/SDH Device
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Figure 61. Mode 4 Single Write Transfer (IXP2400 A0/A1)
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Mode 4 Read Interface Protocol

Figure 63, depicts a single read transaction launched from the IXP2400 to the Intel and AMCC 
SONET/SDH device, followed by two consecutive writes.

Similarly, the access time is much better the Lucent TDAT042G5, the access time is about 8 clock 
cycles or 160ns. Here, we need an intervened cycle at the back. 

Figure 62. Mode 4 Single Write Transfer (IXP2400 B0)
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Figure 63. Mode 4 Single Read Transfer (IXP2400 A0/A1)
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3.12.6 PROM Device Timing Information for IXP2400 A0/A1
The following provides timing information of the SlowPort in mode 0.

Figure 64. Mode 4 Single Read Transfer (IXP2400 B0)
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Figure 65. Single Write Transfer for Fixed-Timed 
Device (IXP2400 A0/A1)

Table 44. Single Write Transfer for Fixed-Timed Device 
Timing Parameters (IXP2400 A0/A1)

External 
Signals

tco fall
max/min

tco rise
max/min th tsu tpw unit

SP_CLK 805/51 10125/10122 ps

SP_ALE 10073/9966 ps

SP_CS[0] 10076/9967 ps

SP_CS[1] 10069/9964 ps

SP_WR 10073/9966 10034/9948 a ps

SP_RD ps

SP_ACK 0 10216 ps

SP_AD[1:0] 11493/9969 10093/9991 ps

SP_AD[7:0]
output to 
external 
device

10123/9930 10123/9930 ps
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output to 
external 
device
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a. The pulse width depends on the pulse-width parameter set in the SP_WTC1 and SP_WTC2 registers
and the clock divisor as well. The minimum is 20 ns for one clock cycle at 50 MHz.

Figure 66. Framer Interrupt Enable Register Timing 
Diagram (IXP2400 A0/A1)

Table 45. Framer Interrupt Enable Register Timing 
Parameters (IXP2400 A0/A1)

External 
Signals

tco fall
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tco rise
max/min th tsu tpw toz/zoa

max/min unit
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3.12.7 PROM Device Timing Information (IXP2400 B0)
The following provides timing information for the SlowPort in mode 0.

a. The values are only obtained without loading. We need to add the delay caused by loading according to the typical PN and
slew bit table below.

b. At least two clock cycles.
c. The pulse width depends on the pulse-width parameter set in the SP_WTC1 and SP_WTC2 registers and the clock divisor

as well. The minimum is 20 ns for one clock cycle at 50 MHz.

Figure 67. Single Write Transfer for Fixed-Timed 
Device (IXP2400 B0)

Table 46.  Single Write Transfer for Fixed-Timed Device 
Timing Parameters (IXP2400 B0)

External Signals tco rise
(defaulta) (ns)

tco fall
(defaultb) (ns)

th
(ns)

tsu
(ns)

tpw
(ns)

Max Min Max Min Max Min Max Min Max Min

SP_CLK 3.0 1.4 3.7 3.3

SP_ALE 8.5 5.3 9.0 5.4

SP_CS[0] 8.4 5.3 9.0 5.4

SP_CS[1] 8.4 5.3 9.0 5.4

SP_WR 9.1 5.5 9.2 5.6 c
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SP_RD

SP_ACK 0 0 6.8 4.5

SP_A[1:0] 8.4 5.3 9.0 5.4

SP_AD[7:0]
output to external 

device
9.0 5.5 9.2 5.6 9.2 5.5

a. Default out timing delay is controlled by the TXE register. By default this register is set to 1, i.e, two P clock cycles delay or 6666.66 ps. minimum
delay can be set to 0.

b. Default out timing delay is controlled by the TXE register. By default, this register is set to 1, i.e, two P clock cycles delay or 6666.66 ps. Minimum
delay can be set to 0.

c. The pulse width depends on the pulse-width parameter set in the SP_WTC1 and SP_WTC2 registers and the clock divisor as well. The minimum
is 20 ns for one clock cycle at 50 MHz.

Figure 68. Framer Interrupt Enable Register Timing (IXP2400 B0)

Table 46.  Single Write Transfer for Fixed-Timed Device 
Timing Parameters (IXP2400 B0)

External Signals tco rise
(defaulta) (ns)
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(defaultb) (ns)
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Microengines 4

This section defines the Network Processor Microengine (ME). This is the second version of the 
Microengine, and is often referred to as the MEv2 (Microengine Version 2). 

4.1 Overview
The following sections describe the programmer’s view of the Microengine. The block diagram in 
Figure 69 is used in the description. Note that this block diagram is simplified for clarity, not all 
interface signals are shown, and some blocks and connectivity have been omitted to make the 
diagram more readable. This block diagram does not show any pipeline stages, rather it shows the 
logical flow of information.

The Microengine provides support for software controlled multi-threaded operation. Given the 
disparity in processor cycle times versus external memory times, a single thread of execution will 
often block waiting for external memory operations to complete. Having multiple threads available 
allows for threads to interleave operation—there is often at least one thread ready to run while 
others are blocked.
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4.1.1 Control Store
The Control Store is a static RAM, which holds the program that the Microengine executes. It 
holds 4096 instructions, each of which is 40-bits wide. It is initialized by an external device 
(XScale), which writes to Ustore_Addr and Ustore_Data Local CSRs.

Figure 69. Microengine Block Diagram
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The Control Store can optionally be protected by parity against soft errors. The parity protection is 
optional, so that it can be disabled for implementations that don’t need or want to pay the cost for 
it. Parity checking is enabled by CTX_Enable[Control Store Parity Enable]. A parity error on an 
instruction read will halt the Microengine and assert an output signal that can be used as an 
interrupt (e.g., to XScale).

4.1.2 Contexts
There are eight hardware Contexts available in the Microengine. To allow for efficient context 
swapping, each Context has its own register set, Program Counter, and Context specific Local 
Registers. Having a separate copy per Context eliminates the need to move Context specific 
information to/from shared memory and Microengine registers for each Context swap. Fast context 
swapping allows a Context to do computation while other Contexts wait for IO (typically external 
memory accesses) to complete or for a signal from another Context or hardware unit. [Note that a 
context swap is similar to a taken branch in timing.]

Each of the eight Contexts is always in one of four states.

1. Inactive—Some applications may not require all eight contexts. A Context is in the Inactive 
state when its CTX_Enable CSR enable bit is a ‘0’.

2. Executing—A Context is in Executing state when its context number is in Active_CTX_Status 
CSR. The executing Context’s PC is used to fetch instructions from the Control Store. A 
Context will stay in this state until it executes an instruction that causes it to go to Sleep state 
(there is no hardware interrupt or preemption; Context swapping is completely under software 
control). At most one Context can be in Executing state at any time.

3. Ready—In this state, a Context is ready to execute, but is not because a different Context is 
executing. When the Executing Context goes to Sleep state, the Microengine’s context arbiter 
selects the next Context to go to the Executing state from among all the Contexts in the Ready 
state. The arbitration is round robin.

4. Sleep—Context is waiting for external event(s) specified in the CTX_#_Wakeup_Events CSR 
to occur (typically, but not limited to, an IO access). In this state the Context does not arbitrate 
to enter the Executing state.

The state diagram in Figure 70 illustrates the Context state transitions. Each of the eight Contexts 
will be in one of these states. At most one Context can be in Executing state at a time; any number 
of Contexts can be in any of the other states.
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The Microengine is in Idle state whenever no Context is running (all Contexts are in either Inactive 
or Sleep states). This state is entered:

1. After reset (because CTX_Enable Local CSR is clear, putting all Contexts into Inactive states).

2. When a context swap is executed, but no context is ready to wakeup.

3. When a ctx_arb[bpt] instruction is executed by the Microengine (this is a special case of #2 
above, since the ctx_arb[bpt] clears CTX_Enable, putting all Contexts into Inactive states).

The Microengine provides the following functionality during Idle state:

1. The Microengine continuously checks if a Context is in Ready state. If so, a new Context 
begins to execute. If no Context is Ready, the Microengine remains in the Idle state.

2. Only the ALU instructions are supported. They are used for debug via special hardware 
defined in number 3 below.

3. A write to the Ustore_Addr Local CSR with the Ustore_Addr[ECS] bit set, causing the 
Microengine to repeatedly execute the instruction pointed by the address specified in the 
Ustore_Addr CSR. Only the ALU instructions are supported in this mode. Also, the result of 
the execution is written to the ALU_Out Local CSR rather than a destination register.

4. A write to the Ustore_Addr Local CSR with the Ustore_Addr[ECS] bit set, followed by a 
write to the Ustore_Data Local CSR loads an instruction into the Control Store. After the 
Control Store is loaded, execution proceeds as described in number 3 above. Note that the 
write to Ustore_Data causes Ustore_Addr to increment, so it must be written back to the 
address of the desired instruction.

Figure 70. Context State Transition Diagram
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CTX_WAKEUP_EVENTS to 0x1 (voluntary), and then set the appropriate CTX_ENABLE bits to begin 
executing Context(s),
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4.1.3 Datapath Registers
As shown in the block diagram in Figure 69, each Microengine contains four types of 32-bit 
datapath registers:

1. 256 General Purpose Registers

2. 512 Transfer Registers

3. 128 Next Neighbor Registers

4. 640 32-bit words of Local Memory1

4.1.3.1 General-Purpose Registers (GPRs)

GPRs are used for general programming purposes. They are read and written exclusively under 
program control. GPRs, when used as a source in an instruction, supply operands to the execution 
datapath. When used as a destination in an instruction, they are written with the result of the 
execution datapath. The specific GPRs selected are encoded in the instruction.

The GPRs are physically and logically contained in two banks, GPR A, and GPR B, defined in 
Table 48.

Note: The Microengine registers are defined in the IXP2400 Network Processor Programmers Reference 
Manual.

4.1.3.2 Transfer Registers

Transfer Registers (abbreviated Xfer Registers) are used for transferring data to and from the 
Microengine and locations external to the Microengine, (for example DRAMs, SRAMs etc.). 
There are four types of transfer registers.

1. S_Transfer_In

2. S_Transfer_Out

3. D_Transfer_In

4. D_Transfer_Out

Transfer_In Registers, when used as a source in an instruction, supply operands to the execution 
datapath. The specific register selected is either encoded in the instruction, or selected indirectly 
via T_Index. Transfer_In Registers are written by external units based on the Push_ID input to the 
Microengine.

As shown in Figure 69, the mux between the S and D push buses allow data arriving on the buses to 
be written to either the S or D transfer registers. No mux exists for the pull buses so it is not 
possible to write data from the S transfer registers onto the D push bus or to write data from the D 
Transfer registers onto the S push bus.

Transfer_Out Registers, when used as a destination in an instruction, are written with the result 
from the execution datapath. The specific register selected is encoded in the instruction, or selected 
indirectly via T_Index. Transfer_Out Registers supply data to external units based on the Pull_ID 
input to the Microengine.

1. Some implementations may choose to include a different amount of Local Memory. The minimum allowed is 512 32-bit words. The 
maximum is 1024 32-bit words (limited by the size of LM_Addr).
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The S_Transfer_In and S_Transfer_Out Registers connect to the S_Push and S_Pull buses, 
respectively.

The D_Transfer_In and D_Transfer_Out Transfer Registers connect to the D_Push and D_Pull 
buses, respectively.

Typically, the external units access the Transfer Registers in response to commands sent by the 
MEs; the commands are sent in response to instructions executed by the Microengine (for example, 
the command instructs a SRAM controller to read from external SRAM, and place the data into a 
S_Transfer_In register). However, it is possible for an external unit to access a given Microengine’s 
Transfer Registers either autonomously, or under control of a different Microengine, or the XScale 
core, etc. The Microengine interface signals controlling writing/reading of the Transfer_In/
Transfer_Out registers are independent of the operation of the rest of the Microengine.

The number and types of external units connected to the Push and Pull buses is chip 
implementation specific.

4.1.3.3 Next Neighbor Registers

A new feature added for the Microengine Version 2 are 128 Next Neighbor registers that provide a 
dedicated datapath for transferring data from the previous/next neighbor Microengine.

Next Neighbor Registers, when used as a source in an instruction, supply operands to the execution 
datapath. They are written in two different ways 1) by an external entity, typically, but not limited 
to, another, adjacent Microengine, or 2) by the same Microengine they are in, as controlled by 
CTX_Enable[NN_Mode].

The specific register is selected in one of two ways: 1) Context-relative, the register number is 
encoded in the instruction, or 2) as a Ring, selected via NN_Get and NN_Put CSR Registers.

When CTX_Enable[NN_Mode] is ‘0’ -- When Next Neighbor is used as a destination in an 
instruction, the instruction result data is sent out of the Microengine, typically to another, adjacent 
Microengine.

When CTX_Enable[NN_Mode] is ‘1’ -- When Next Neighbor is used as a destination in an 
instruction, the instruction result data is written to the selected Next Neighbor Register in the 
Microengine. Note that there is a 6-instruction latency until the newly written data may be read. 
The data is not sent out of the Microengine as it would be when CTX_Enable[NN_Mode] is ‘0’.

Note: In this mode the datapath bypass is not used and the code must ensure it uses the newly written data 
correctly. The following example shows the earliest use of the new data. Any earlier use of the 
destination register would get the old contents of the register.
alu [n$_reg,...]
inst_2
inst_3
inst_4
inst_5
inst_6
alu [..., n$_reg]
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4.1.3.4 Local Memory (LM)

Local Memory is addressable storage located in the Microengine. LM is read and written 
exclusively under program control. LM supplies operands to the execution datapath as a source, 
and receives results as a destination. The specific LM location selected is based on the value in one 
of the LM_ADDR Registers, which are written by local_csr_wr instructions. There are two 
LM_ADDR Registers per Context and a working copy of each. When a Context goes to Sleep 
state, the value of the working copies is put into the Context’s copy of LM_ADDR. When the 
Context goes to Executing state, the value in its copy of LM_ADDR are put into the working 
copies. The choice of LM_ADDR_0 or LM_ADDR_1 is selected in the instruction. 

It is also possible to make use of both or one LM_ADDRs as global by setting 
CTX_ENABLE[LM_ADDR_0_GLOBAL] and/or CTX_ENABLE[LM_ADDR_1_GLOBAL]. 
When used globally, all Contexts use the working copy of LM_ADDR in place of their own 
Context specific one; the Context specific ones are unused.

There is a three-instruction latency when writing a new value to the LM_ADDR, as shown in 
Example 11.

LM_ADDR can also be incremented or decremented in parallel with use as a source and/or 
destination (using the notation *l$index#++ and *l$index#--), as shown in Example 12, where 
three consecutive LM locations are used in three consecutive instructions.

LM is written by selecting it as a destination. Example 13 shows copying a section of LM to 
another section. Each instruction accesses the next sequential LM location from the previous 
instruction.

Table 47. Next Neighbor Write as a Function of CTX_Enable[NN_Mode

NN_Mode
Where Does Write Go?

External NN Register in 
This ME

0 Yes No

1 No Yes

Example 11. Three-Cycle Latency when Writing a New Value to LM_ADDR
;some instruction to compute the address into gpr_m

local_csr_wr[INDIRECT_LM_ADDR_0, gpr_m]; put gpr_m into lm_addr

;unrelated instruction 1

;unrelated instruction 2

;unrelated instruction 3

alu[dest_reg, *l$index0, op, src_reg]

;dest_reg can be used as a source in next instruction

Example 12. Using LM_ADDR in Consecutive Instructions
alu[dest_reg1, src_reg1, op, *l$index0++]

alu[dest_reg2, src_reg2, op, *l$index0++]

alu[dest_reg3, src_reg3, op, *l$index0++]
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Example 14 shows loading and using both LM addresses.

As shown in Example 11 there is a latency in loading LM_ADDR. Until the new value is loaded 
the old value is still usable. Example 15 shows the maximum pipelined usage of LM_ADDR.

LM_ADDR can also be used as the base of a 16 32-bit word region of memory, with the instruction 
specifying the offset from that base, as shown in Example 16. The source and destination can use 
different offsets.

Note: LM has 640 32-bit words. LM_ADDR can hold values from 0 to 1023. Using LM_ADDR to 
address LM when its value is not in the range of 0..639 will cause unpredictable results.

To the programmer, all instructions using LM act as follows, including read/modify/write 
instructions like immed_w0, ld_field, etc.

1. Read LM_ADDR location (if LM_ADDR is specified as source)

2. Execute logic function

3. Write LM_ADDR location (if LM_ADDR is specified as destination)

4. If specified, increment or decrement LM_ADDR

5. Proceed to next instruction

Example 17 shows using post-modify when the same LM_ADDR is both source and destination.

Example 13. Copying One Section of LM to Another Section
alu[*l$index1++, --, B, *l$index0++]

alu[*l$index1++, --, B, *l$index0++]

alu[*l$index1++, --, B, *l$index0++]

Example 14. Loading and Using both LM Addresses
local_csr_wr[INDIRECT_LM_ADDR_0, gpr_m]

local_csr_wr[INDIRECT_LM_ADDR_1, gpr_n]

;unrelated instruction 1

;unrelated instruction 2

alu[dest_reg1, *l$index0, op, src_reg1]

alu[dest_reg2, *l$index1, op, src_reg2]

Example 15. Maximum Pipelined Usage of LM_ADDR
local_csr_wr[INDIRECT_LM_ADDR_0, gpr_m]

local_csr_wr[INDIRECT_LM_ADDR_0, gpr_n]

local_csr_wr[INDIRECT_LM_ADDR_0, gpr_o]

local_csr_wr[INDIRECT_LM_ADDR_0, gpr_p]

alu[dest_reg1, *l$index0, op, src_reg1] ; uses address from gpr_m

alu[dest_reg2, *l$index0, op, src_reg2] ; uses address from gpr_n

alu[dest_reg3, *l$index0, op, src_reg3] ; uses address from gpr_o

alu[dest_reg4, *l$index0, op, src_reg4] ; uses address from gpr_p

Example 16. LM_ADDR Used as Base of a 16 32-bit word Region of Local Memory
alu[*l$index0[3], *l$index0[4], +, 1]

Example 17. LM_ADDR Use as Source and Destination
alu[*l$index0++, --, ~B, *l$index0]
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To the programmer, all instructions using LM act as follows, including read/modify/write 
instructions like immed_w0, Id_field, etc.

1. Read l_addr location (if lm_addr is specified as source)

2. Execute logic function

3. Write lm_addr location (if lm_addr is specified as destination)

4. If specified, increment or decrement LM_addr

5. Proceed to next instruction

The rule that the assembler uses is that when the same index register is used as both a source and 
destination, any increment/decrement operator must be applied to the destination usage.

Example 19 is not legal; LM offset cannot be used at the same time as post-modify.

In Example 19, the second instruction will access the LM location, one past the source/destination 
of the first.

4.1.4 Addressing Modes
GPRs can be accessed in two different addressing modes: Context-Relative and Absolute. Some 
instructions can specify either mode, other instructions can specify only Context-Relative mode.

Transfer and Next Neighbor registers can be accessed in Context-Relative and Indexed modes.

Local Memory is accessed in Indexed mode.

The addressing mode in use is encoded directly into each instruction, for each source and 
destination specifier.

4.1.4.1 Context-Relative Addressing Mode

The GPRs are logically subdivided into equal regions such that each Context has exclusive access 
to one of the regions. The number of regions is configured in the CTX_Enable CSR, and can be 
either 4 or 8. Thus a Context-Relative register name is actually associated with multiple different 
physical registers. The actual register to be accessed is determined by the Context making the 
access request (the Context number is concatenated with the register number specified in the 
instruction—see Table 48). Context-Relative addressing is a powerful feature that enables eight 
different contexts to share the same microcode, yet maintain separate data.

Table 48 shows how the Context number is used in selecting the register number in relative mode. 
The register number in Table 48 is the Absolute GPR address, or Transfer or Next Neighbor Index 
number to use to access the specific Context-Relative register. For example, with 8 active Contexts, 
Context-Relative Register 0 for Context 2 is Absolute Register Number 32.

Example 18. LM_ADDR Use as Source and Destination
alu[*l$index0++, --, ~B, *$index0] ; ***Illegal

Example 19. LM_ADDR Post-increment
alu[*l$index0++, --, ~B, gpr_n]

alu[gpr_m, --, ~B, *l$index0]
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4.1.4.2 Absolute Addressing Mode

With Absolute addressing, any GPR can be read or written by any one of the eight Contexts in an 
Microengine. Absolute addressing enables register data to be shared among all of the Contexts, for 
example for global variables, or for parameter passing. All 256 GPRs can be read by Absolute 
address.

4.1.4.3 Indexed Addressing Mode

With Indexed addressing, any Transfer or Next Neighbor register can be read or written by any one 
of the eight Contexts in a Microengine. Indexed addressing enables register data to be shared 
among all of the Contexts. For indexed addressing the register number comes from the T_INDEX 
register for Transfer Registers or NN_PUT and NN_GET registers (for Next Neighbor Registers).

Example 20 shows an example of using the Index Mode. Assume that the numbered bytes have 
been moved into the S_Transfer_In registers as shown.

Table 48. Registers Used By Contexts in Context-Relative Addressing Mode

Number of 
Active 

Contexts

Active
Context 
Number

GPR
Absolute Register Numbers S Transfer or 

Neighbor
Index Number

D Transfer
Index Number

A Port B Port

8

0 0-15 0-15 0-15 0-15

1 16-31 16-31 16-31 16-31

2 32-47 32-47 32-47 32-47

3 48-63 48-63 48-63 48-63

4 64-79 64-79 64-79 64-79

5 80-95 80-95 80-95 80-95

6 96-111 96-111 96-111 96-111

7 112-127 112-127 112-127 112-127

4

0 0-31 0-31 0-31 0-31

2 32-63 32-63 32-63 32-63

4 64-95 64-95 64-95 64-95

6 96-127 96-127 96-127 96-127

Example 20. Use of Indexed Addressing Mode

Transfer 
Register #

Data

31:24 23:16 15:8 7:0

0 0x00 0x01 0x02 0x03

1 0x04 0x05 0x06 0x07

2 0x08 0x09 0x0a 0x0b

3 0x0c 0x0d 0x0e 0x0f

4 0x10 0x11 0x12 0x013
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If the software wants to access a specific byte that is known at compile-time, it will normally use 
context-relative addressing. For example to access the word in transfer register 3:

If the location of the data is found at run-time, indexed mode can be used. For example, the case 
where the start of an encapsulated header is dependent on a value in an outer header (the outer 
header byte is in a fixed location).

4.2 Local CSRs
Local Control and Status Registers (CSRs) are external to the Execution Datapath, and hold 
specific purpose information. They can be read and written by special instructions (local_csr_rd 
and local_csr_wr) and are typically accessed less frequently than datapath registers. Because Local 
CSRs are not built in the datapath, there is a write to use delay of either three or four cycles, and a 
read to consume penalty of one cycle.

5 0x14 0x15 0x16 0x17

6 0x18 0x19 0x1a 0x1b

7 0x1c 0x1d 0x1e 0x1f

Example 20. Use of Indexed Addressing Mode

Transfer 
Register #

Data

31:24 23:16 15:8 7:0

alu[dest, --, B, $xfer3] ; move the data from s_transfer 3 to gpr dest

; Check byte 2 of transfer 0

; If value==5 header starts on byte 0x9, else byte 0x14

br=byte[$0, 2, 0x5, L1#], defer_[1]

local_csr_wr[t_index_byte_index, 0x09]

local_csr_wr[t_index_byte_index, 0x14]

nop ; wait for index registers to be loaded

L1#:

; Move bytes right justified into destination registers

nop ; wait for index registers to be loaded

nop ;

byte_align_be[dest1, *t_index++]

byte_align_be[dest2, *t_index++]

; etc

Note that the t_index and byte_index registers are loaded by the same instruction.
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4.3 Execution Datapath
The Execution Datapath can take one or two operands, perform an operation, and optionally write 
back a result. The sources and destinations can be GPRs, Transfer Registers, Next Neighbor 
Registers, and Local Memory. The operations are shifts, add/subtract, logicals, multiply, byte align, 
and find first bit set. There is also a CAM in the Execution Datapath.

4.3.1 Byte Align
The datapath provides a mechanism to move data from source register(s) to any destination 
register(s) with byte aligning. Byte aligning takes four consecutive bytes from two concatenated 
values (8 bytes), starting at any of four byte boundaries (0, 1, 2, 3), and based on the endian-type 
(which is defined in the instruction opcode), as shown in Table 49. The four bytes are taken from 
two concatenated values. Four bytes are always supplied from a temporary register that always 
holds the A or B operand from the previous cycle, and the other four bytes from the B or A operand 
of the Byte Align instruction. The operation is described below using the block diagram Figure 71. 
The alignment is controlled by the 2 LSBs of the Byte_Index Local CSR.

Table 49. Align Value and Shift Amount

Align Value
(in Byte_Index[1:0])

Right Shift Amount (# of Bits)
(Decimal)

Little Endian Big Endian

0 0 32

1 8 24

2 16 16

3 24 8

Figure 71. Byte Align Block Diagram
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Example 21 shows an align sequence of instructions and the value of the various operands. 
Table 50 shows the data in the registers for this example. The value in Byte_Index[1:0] CSR 
(which controls the shift amount) for this example is 2.

Example 22 shows another sequence of instructions and the value of the various operands. 
Table 51, shows the data in the registers for this example.

The value in Byte_Index[1:0] CSR (which controls the shift amount) for this example is 2.

As the examples show, byte aligning “n” words takes “n+1” cycles due to the first instruction 
needed to start the operation.

Table 50. Register Contents for Example 21

Register Byte 3
[31:24]

Byte 2 
[23:16]

Byte 1
[15:8]

Byte 0
[7:0]

0 0 1 2 3

1 4 5 6 7

2 8 9 A B

3 C D E F

Example 21. Big Endian Align

Instruction Prev B A Operand B Operand Result

Byte_align_be[--, r0] -- -- 0123 --

Byte_align_be[dest1, r1] 0123 0123 4567 2345

Byte_align_be[dest2, r2] 4567 4567 89AB 6789

Byte_align_be[dest3, r3] 89AB 89AB CDEF ABCD

NOTE: A Operand comes from Prev_B register during byte_align_be instructions.

Table 51. Register Contents for Example 22

Register Byte 3
[31:24]

Byte 2 
[23:16]

Byte 1
[15:8]

Byte 0
[7:0]

0 3 2 1 0

1 7 6 5 4

2 B A 9 8

3 F E D C

Example 22. Little Endian Align

Instruction A Operand B Operand Prev A Result

Byte_align_le[--, r0] 3210 -- -- --

Byte_align_le[dest1, r1] 7654 3210 3210 5432

Byte_align_le[dest2, r2] BA98 7654 7654 9876

Byte_align_le[dest3, r3] FEDC BA98 BA98 DCBA

NOTE: B Operand comes from Prev_A register during byte_align_le instructions.
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Another mode of operation is to use the T_Index register with post-increment, to select the source 
registers. T_Index operation is described later in this chapter.

4.3.2 CAM
The block diagram in Figure 72 is used to explain the CAM operation.

The CAM has 16 entries. Each entry stores a 32 bit value, which can be compared against a source 
operand by instruction:

CAM_Lookup[dest_reg, source_reg]

All entries are compared in parallel, and the result of the lookup is a 9 bit value which is written 
into the specified destination register in bits 11:3, with all other bits of the register zero (the choice 
of bits 11:3 is explained below). The result can also optionally be written into either of the 
LM_Addr registers (see below in this section for details).

The 9-bit result consists of 4 State bits (dest_reg[11:8]), concatenated with a 1-bit Hit/Miss 
indication (dest_reg[7]), concatenated with 4-bit entry number (dest_reg[6:3]). All other bits of 
dest_reg are written with 0. Possible results of the lookup are:

• miss (0)—lookup value is not in CAM, entry number is Least Recently Used entry (which can 
be used as a suggested entry to replace), and State bits are 0000.

• hit (1)—lookup value is in CAM, entry number is entry which has matched, State bits are the 
value from the entry which has matched.
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Note: The State bits are data associated with the entry. State bits are only used by software. There is no 
implication of ownership of the entry by any Context. The State bits hardware function is:

• the value is set by software (at the time the entry is loaded, or changed in an already loaded 
entry).

• its value is read out on a lookup that hits, and used as part of the status written into the 
destination register.

• its value can be read out separately (normally only used for diagnostic or debug).

The LRU (Least Recently Used) Logic maintains a time-ordered list of CAM entry usage. When an 
entry is loaded, or matches on a lookup, it is marked as MRU (Most Recently Used). Note that a 
lookup that misses does not modify the LRU list.

The CAM is loaded by instruction:
CAM_Write[entry_reg, source_reg, state_value]

The value in the register specified by source_reg is put into the Tag field of the entry specified by 
entry_reg. The value for the State bits of the entry is specified in the instruction as state_value.

Figure 72. CAM Block Diagram
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The value in the State bits for an entry can be written, without modifying the Tag, by instruction:
CAM_Write_State[entry_reg, state_value]

Note: CAM_Write_State does not modify the LRU list.

One possible way to use the result of a lookup is to dispatch to the proper code using instruction:
jump[register, label#],defer [3]

where the register holds the result of the lookup. The State bits can be used to differentiate cases 
where the data associated with the CAM entry is in flight, or is pending a change, etc. Because the 
lookup result was loaded into bits[11:3] of the destination register, the jump destinations are spaced 
eight instructions apart. This is a balance between giving enough space for many applications to 
complete their task without having to jump to another region vs. consuming too much Control 
Store. Another way to use the lookup result is to branch on just the hit miss bit, and use the entry 
number as a base pointer into a block of Local Memory.

When enabled, the CAM lookup result is loaded into Local_Addr as follows:
LM_Addr[5:0] = 0 ([1:0] are read-only bits)
LM_Addr[9:6] = lookup result [6:3] (entry number)
LM_Addr[11:10] = constant specified in instruction

This function is useful when the CAM is used as a cache, and each entry is associated with a block 
of data in Local Memory. Note that the latency from when CAM_Lookup executes until the 
LM_Addr is loaded is the same as when LM_Addr is written by a Local_CSR_Wr instruction.

The Tag and State bits for a given entry can be read by instructions:
CAM_Read_Tag[dest_reg, entry_reg]

CAM_Read_State[dest_reg, entry_reg]

The Tag value and State bits value for the specified entry is written into the destination register, 
respectively for the two instructions (the State bits are placed into bits [11:8] of dest_reg, with all 
other bits 0). Reading the tag is useful in the case where an entry needs to be evicted to make room 
for a new value—the lookup of the new value results in a miss, with the LRU entry number 
returned as a result of the miss. The CAM_Read_Tag instruction can then be used to find the value 
that was stored in that entry. An alternative would be to keep the tag value in a GPR. These two 
instructions can also be used by debug and diagnostic software. Neither of these modify the state of 
the LRU pointer.

Note: The following rules must be adhered to when using the CAM.

1) CAM is not reset by Microengine reset. Software must either do a CAM_clear prior to using the 
CAM to initialize the LRU and clear the tags to zero, or explicitly write all entries with CAM_write.

2) No two tags can be written to have same value. If this rule is violated, the result of a lookup that 
matches that value will be unpredictable, and LRU state is unpredictable. 

The value 0x00000000 can be used as a valid lookup value. However, note that CAM_clear 
instruction puts 0x00000000 into all tags. So in order to not violate rule 2 after doing CAM_clear, it 
is necessary to write all entries to unique values prior to doing a lookup of 0x00000000.

An algorithm for debug software to find out the contents of the CAM is shown in Table 52.
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The CAM can be cleared with CAM_Clear instruction. This instruction writes 0x00000000 
simultaneously to all entries tag, clears all the state bits, and puts the LRU into an initial state 
(where entry 0 is LRU, ..., entry 15 is MRU).

4.4 CRC Unit
The CRC Unit operates in parallel with the Execution Datapath. It takes two operands, performs a 
CRC operation, and writes back a result. CRC-CCITT and CRC-32 are supported. One of the 
operands is the CRC_Remainder Local CSR, and the other is a GPR, Transfer In Register, Next 
Neighbor, or Local Memory, specified in the instruction and passed through the Execution 
Datapath to the CRC Unit. The instruction specifies the CRC operation type, whether to swap bytes 
and or bits, and which bytes of the operand to include in the operation. The result of the CRC 
operation is written back into CRC_Remainder. The source operand can also be written into a 
destination register (however the byte/bit swapping and masking do not affect the destination 
register; they only affect the CRC computation). This allows moving data, for example, from S 
Transfer In registers to S Transfer Out registers at the same time as computing the CRC.

Table 52. Algorithm for Debug Software to Find out the Contents of the CAM
; First read each of the tag entries. Note that these reads
; don’t modify the LRU list or any other CAM state.
tag[0] = CAM_Read_Tag(entry_0);
......
tag[15] = CAM_Read_Tag(entry_15);

; Now read each of the state bits
state[0] = CAM_Read_State(entry_0);
...
state[15] = CAM_Read_State(entry_15);

; Knowing what tags are in the CAM makes it possible to 
; create a value that is not in any tag, and will therefore
; miss on a lookup.

; Next loop through a sequence of 16 lookups, each of which will
; miss, to obtain the LRU values of the CAM.
for (i = 0; i < 16; i++)
  BEGIN_LOOP
   ; Do a lookup with a tag not present in the CAM. On a
   ; miss, the LRU entry will be returned. Since this lookup
   ; missed the LRU state is not modified.
   LRU[i] = CAM_Lookup(some_tag_not_in_cam);
   ; Now do a lookup using the tag of the LRU entry. This 
   ; lookup will hit, which makes that entry MRU.
   ; This is necessary to allow the next lookup miss to
   ; see the next LRU entry.
   junk = CAM_Lookup(tag[LRU[i]]);
END_LOOP

; Because all entries were hit in the same order as they were
; LRU, the LRU list is now back to where it started before the
; loop executed.
; LRU[0] through LRU[15] holds the LRU list.
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4.5 Event Signals
Event Signals are used to coordinate a program with completion of external events. For example, 
when a Microengine issues a command to an external unit to read data (which will be written into a 
Transfer_In register), the program must insure that it does not try to use the data until the external 
unit has written it. There is no hardware mechanism to flag that a register write is pending, and then 
prevent the program from using it. Instead the coordination is under software control, with 
hardware support.

When the program issues the command to the external event, it can request that the external unit 
supply an indication (called an Event Signal) that the command has been completed. There are 15 
Event Signals per Context that can be used, and Local CSRs per Context to track which Event 
Signals are pending and which have been returned. The Event Signals can be used to move a 
Context from Sleep state to Ready state, or alternatively, the program can test and branch on the 
status of Event Signals.

Event Signals can be set in nine different ways.

1. When data is written into S_Transfer_In Registers (part of S_Push_ID input)

2. When data is written into D_Transfer_In Registers (part of D_Push_ID input)

3. When data is taken from S_Transfer_Out Registers (part of S_Pull_ID input)

4. When data is taken from D_Transfer_Out Registers (part of D_Pull_ID input)

5. On InterThread_Sig_In input

6. On NN_Sig_In input

7. On Prev_Sig_In input

8. On write to Same_ME_Signal Local CSR

9. By Internal Timer

Any or all Event Signals can be set by any of the above sources. 

When a Context goes to Sleep state (executes a ctx_arb instruction, or a Command instruction with 
ctx_swap token), it specifies which Event Signal(s) it requires to be put in Ready state. Ctx_arb 
instruction also specifies if the logical AND or logical OR of the Event Signal(s) is needed to put 
the Context into Ready state.

When a Context Event Signals arrive, it goes to Ready state, and then to Executing state. In the 
case where the Event Signal is linked to moving data into or out of Transfer registers (numbers 1 
through 4 in the list above), the code can safely use the Transfer register as the first instruction (for 
example, using a Transfer_In register as a source operand will get the new read data). The same is 
true when the Event Signal is tested for branches (br_=signal or br_!signal instructions).

The ctx_arb instruction, CTX_Sig_Events, and CTX_Wakeup_#_Events Local CSR descriptions 
provide details.

4.5.1 Microengine Endianness
Microengine operation from endianness point of view can be divided in following categories:

• Read from RBUF (64-bits)
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• Write to TBUF (64-bits)

• Read/write from/to SRAM

• Read/write from/to DRAM

• Read/write from/to SHAC and other CSRs

• Write to Hash

4.5.1.1 Read from RBUF (64-bits)

Data in RBUF is arranged in LWBE (long word big endian) order. Whenever Microengine reads 
from RBUF, the low order long word (LDW0) is transferred into Microengine transfer register 0 
(treg0), the high order long word (LDW1) is transferred into treg1, and so on. This is explained in 
Figure 73.

4.5.1.2 Write to TBUF

Data in TBUF is arranged in LWBE order. When writing from Microengine transfer registers to 
TBUF, treg0 goes into LDW0, treg1 goes into LDW1, and so on. See Figure 74.

Figure 73. Read from RBUF (64-bits)
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Figure 74. Write to TBUF (64-bits)
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4.5.1.3 Read/Write from/to SRAM

Data inside SRAM is in big-endian order. While transferring data from SRAM to a Microengine, 
no endianness is involved and first-read data goes into the first transfer register specified, the next 
read data into the second and so on.

4.5.1.4 Read/Write from/to DRAM

Data inside DRAM is in LWBE order. When a Microengine reads from DRAM, LDW0 goes into 
the first transfer register specified in the instruction, LDW1 goes into the next, and so on. While 
writing to DRAM, treg0 goes first followed by treg1 and both are combined in the DRAM 
controller as {LDW1, LDW0} and written as a 64-bit quantity into DRAM.

4.5.1.5 Read/Write from/to SHAC and Other CSRs

Read and write from SHAC and other CSRs happen as 32-bits operation only and are endian 
independent. Low byte goes into the low byte of transfer register and high byte goes into high byte 
of transfer register.

4.5.1.6 Write to Hash Unit

Figure 75 explains 48-bits, 64-bits and 128-bits hash operation. When Microengine transfers 48 bit 
hash operand to hash unit, operand resides in two transfer registers and is transferred as shown in 
Figure 75. In the second long word transfer, only lower half is valid. Hash unit concatenates the 
two long words as shown in Figure 75. Similarly 64-bits and 128-bits hash operand transfer from 
Microengine to hash unit happen as shown in the Figure 75.
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4.6 Summary of the Differences Between MEv2 and 
MEv1
This section documents the changes between MEv2 and MEv1. The purpose of this section is to 
provide those familiar with MEv1 with a quick review of removed, added, or modified features. 
Full descriptions of added features are in other sections.

4.6.1 General Purpose Registers and Transfer Registers
MEv2 has more GPRs and Transfer Registers than MEv1. There are

• 256 General Purpose Registers (vs. 128)

• 128 S Read Transfer Registers (vs. 32)

• 128 S Write Transfer Registers (vs. 32)

• 128 D Read Transfer Registers (vs. 32)

Figure 75. 48-bit, 64-bit and 128-bits Hash Operand Transfer

A8943-01

63 032 31

48-bit Hash

MicroEngine
Transfer Registers

treg0

S-Push / S-Pull Bus

treg1

11 10 9 8 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

11 10 9 8

127 096 95 64 63 32 31

128-bit Hash

MicroEngine
Transfer Registers

treg0

S-Push / S-Pull Bus

treg1

treg2

treg3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

63 032 31

64-bit Hash

MicroEngine
Transfer Registers

treg0

S-Push / S-Pull Bus

treg1

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8

15 14 13 12 11 10 9 8



176 Hardware Reference Manual

Intel® IXP2400 Network Processor
Microengines

• 128 D Write Transfer Registers (vs. 32)

4.6.2 Next Neighbor Registers
MEv2 has 128 Next Neighbor Registers, vs. none for MEv1.

4.6.3 Local Memory
MEv2 has 640 32-bit words of Local Memory, vs. none for MEv1.

4.6.4 Contexts
MEv2 has eight available contexts versus four in MEv1. As in the MEv1, the registers can be 
accessed relative to the active context, or absolutely, so that a given context can access all registers. 
There is also a 4-context mode which partitions the registers four ways (doubling the number of 
Context-Relative registers from 8-context mode.

4.6.5 Larger Microstore
MEv2 provides 4K instructions, vs. 2K instructions for MEv1. The branch offset is expanded so 
that branch instructions can branch to any location in the Microstore.

4.6.6 CAM
MEv2 includes a 16 entry CAM with associated control logic. MEv1 does not contain a CAM.

4.6.7 Event Signals
MEv2 has 15 Event Signals per Context, that can be dynamically used in a flexible way. MEv1 has 
fixed binding between Event Signals and specific hardware or software events.

4.6.8 Larger Immediate Field
MEv2 provides for an 8-bit immediate field versus 5-bit for MEv1. Note that this refers to 
immediates used in ALU operations, not IMMEDxx instructions.

4.6.9 Fast Write—Wider Data Field, Access to More Registers
[Note that Command instruction is not required to be used to create Fast Write instruction. This 
description assumes that the implementation may contain CSRs and may use the Command 
instruction to access them.]

In MEv2 Fast write instruction can generate 14-bits of data in the instruction versus 10 for MEv1. 
In addition, there is a new variant of fast write (fast_write_alu) that can generate 32-bits of data, by 
using the ALU result of the previous instruction as the data.
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4.6.10 Local CSR Instruction Uses Absolute/Relative Register 
Addressing
MEv2 Local CSR accesses use Absolute/Relative Register Addressing, vs. only Context-Relative 
Register Addressing in MEv1.

4.6.11 Timestamp
MEv2 has a Timestamp Local CSR. MEv1 does not have a Timestamp built, however there is a 
globally accessible Timestamp in the IXP1200 chip.

4.6.12 Future_Count Event
In MEv2 each Context has a Future_Count Local CSR which can be programmed to generate an 
event signal to the Context.

4.6.13 Multiply Hardware Support
MEv2 has multiply hardware support, which can retire 8-bits per cycle. MEv1 has +IFsign ALU 
instruction, which has been deleted from MEv2.

4.6.14 No +IFsign ALU Opcode
MEv2’s 8-bit per cycle multiply hardware makes the +IFsign not useful, so it has been eliminated.

4.6.15 New Find First Bit Instruction
MEv2 adds new Find First Bit instructions in place of one already existing in MEv1. The reasons 
this is done relative to the existing instruction are:

1. Ability to test 32 bits at a time (vs. 16).

2. Better latency to use result (because existing datapath bypass infrastructure is used).

4.6.16 ctx_arb[bpt]
A new type of ctx_arb instruction has been added for use by debugger software. The operation is 
described in ctx_arb instruction section.

4.6.17 Pseudo-Random Number CSR
MEv2 has a Pseudo_Random_Number Local CSR. MEv1 has no special hardware support for 
random number generation.
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4.6.18 Local CSR Access for External Agents
MEv1 allows Local CSR access from external agents or by code running on the Microengine. 
External accesses are typically done for debug, such as adding and removing breakpoints, and code 
profiling, for example histogramming of active context and PC by periodically reading those Local 
CSRs. However, there is only one port to the Local CSRs. If there is a simultaneous access (to any 
registers, not necessarily the exact same register) the external agent will take priority and the 
Microengine access will be lost. In MEv1 this is not normally a problem, since there is little reason 
for Microengine code to access registers.

In MEv2, there are several new Local CSRs that will be frequently accessed during some 
applications (for example the Pseudo-Random Number, and the Future Count). There is a new 
mechanism to allow for both external agents and MEv2 code to access Local CSRs reliably. It is 
described in the Local_CSR_Status CSR description.

4.6.19 New Branch Types to Support Signed and Unsigned 
Numbers
MEv2 adds more Branch on Condition Codes types relative to MEv1.

4.6.20 Branch Guess Taken Has No Effect in Hardware
The implementation cost vs. frequency of usage does not justify continued implementation of 
branch guess taken. Decision tree branches (such as header parsing) normally go forward, and thus 
do not benefit from guess taken. Loop ending branches can be replaced by unconditional branches 
at the top of the loop followed by a conditional branch taken prior to re-entering the loop.

4.6.21 No Shift with Add or XOR
In order to allow for faster cycle times on the MEv2, the operation of shifting and adding or 
subtracting in one cycle is disallowed. Shift with logicals is allowed, with the exception of XOR. A 
shift and add/subtract can be replaced by two instructions; first to shift and second to add/subtract.

4.6.22 No A + 4 B ALU Opcode
The A + 4 B opcode has been eliminated from MEv2. It had limited (or non-existents) utility, and 
required a special nibble select in the datapath. Note that A + 8 B and A + 16 B both still exist.

4.6.23 Local_CSR_Rd Returns 32 Bits
In MEv1 local_csr_rd returns only 16 bits (during the following immed instruction). MEv2 
returns 32 bits.

4.6.24 Profile Count Local CSR
MEv2 has a counter that can be used for profiling code. MEv1 does not have one.
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4.6.25 CSR_CTX_Pointer
MEv1 provided a separate Local CSR address for all of the per-Context Local CSRs. MEv2 does 
not provide separate addresses. Instead, each of the per-Context Local CSRs can be accessed in two 
ways; one address accesses the active Context’s copy of the register; another address accesses the 
register for the Context number in CSR_CTX_Pointer Local CSR.
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DDR SDRAM Controller 5

5.1 Overview
The DDR SDRAM Controller is responsible for controlling the off-chip DRAM and provides a 
mechanism for other functional units in IXP2400 to access the DRAM. IXP2400 supports a single 
64-bit channel (72-bit with ECC) of DRAM. DRAM sizes of 64, 128, 256, 512 Mb, and 1 Gb are 
supported, The DRAM channel can be populated with either a single or double sided DIMM.

An address space of 2 GB is allocated to DRAM. The memory space is guaranteed to be 
contiguous from a software perspective. If less than 2 GB of memory is present, the upper part of 
the address space is aliased into the lower part of the address space and should not be used by 
software.

Reads and writes to DRAM are generated by Microengines, Intel XScale® core, and PCI bus 
masters. They are connected to the controllers via the Command Bus and Push and Pull Buses. The 
memory controller takes commands from these sources and enqueues them. The commands are 
dequeued—according to the priority defined later in this chapter—and the accesses to the DRAM 
are performed. The controller also does refresh cycles to the DRAMs.

ECC (Error Correcting Code) is supported, but can be disabled. Enabling ECC requires that x72 
DIMMs be used. If ECC is disabled, x64 DIMMs can be used.

Figure 76 illustrates how the memory controllers communicate with other units and with the DDR 
DRAM.

Figure 76. Memory Controller’s Communications
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5.2 Feature List
• Supports One DDR SDRAM channels, 64 bits wide (72 bits with ECC)

• Supports DDR devices up to 300 MTs

• Supports 64-, 128-, 256-, 512-Mb, and 1-Gb, technologies for x8 and x16 devices (DIMM and 
direct soldered)

• Hardware controlled interleaving is done to spread contiguous addresses across multiple banks

• All supported devices have four banks

• Configurable optional Error Correction using ECC bits

• Supports one single- or double-sided DIMM 

• Supports up to 2-Gb memory capacity (using 1-Gb technology)

5.3 Configurations
Table 54 shows the memory that can be supported by the DDR channel in IXP2400. The first 
column shows the total memory capacity that can be supported. Each row represents different 
configuration options that are available to support a desired memory capacity. 

Notes for Table 54:

• x16 parts can be used but the resulting datapath width is 80 bits

• 8 bits of the 80 bit x16 part widths must be discarded to accommodate the 72 bit wide data and 
ECC bus

Table 53. DDR Memory Auto Precharge Options

Stepping Description

IXP2400 A0/A1 Supports only DDR memories with Concurrent Auto 
Precharge.

IXP2400 B0
Supports DDR memories with or without Concurrent 
Auto Precharge. Set bit 30 (DIS_CAP) of the 
DU_CONTROL register to 1 to support DRAMs that do 
not feature optional Concurrent Auto Precharge.

Table 54. Supported Configurations

Mem 
Capacity

DRAM 
Density

Part 
Width

Total Num 
of SDRAMs

Num of 
DIMMs

Num of 
Sides

Comments (sample DIMM vendors 
shown if information available)

16 MB 64 Mbit x32 2 1 1
No ECC and No Parity

IXP2400 B0

32 MB 128 Mbit x32 2 1 1
No ECC and No Parity

IXP2400 B0

64 MB
64 Mbit x8 9 1 1

128 Mbit x16 5 1 1
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5.4 Initialization
The DDR DRAM DIMMs contain a serial PROM which contains information about DIMM size, 
density, speed etc. This serial PROM is read by software running on the Intel XScale® core 
processor in order to configure the memory controller. GPIO pins will be used to read the PROM.

5.5 Supported Frequencies
The DRAM controller implements a few clock ratios in order to support different DRAM speeds 
and internal clock frequencies. The clock ratios supported are 1:1 and 3:2. Table 55 lists the 
frequency targets for IXP2400 and the corresponding DRAM frequency (data transfer rate).

128 MB

64 Mbit x8 18 1 2

128 Mbit x8 9 1 1 Samsung, Micron

128 Mbit x16 10 1 2

256 Mbit x16 5 1 1

256 MB

128 Mbit x8 18 1 2 Samsung, Micron

256 Mbit x8 9 1 1 Samsung

256 Mbit x16 10 1 2

512 Mbit x16 5 1 1

512 MB

256 Mbit x8 18 1 2 Samsung, Micron (3Q2001)

512 Mbit x8 9 1 1

512 Mbit x16 10 1 2

1 Gbit x16 5 1 1

1 GB

512 Mbit x8 18 1 2

1 Gbit x8 9 1 1

1 Gbit x16 10 1 2

2 GB 1 Gbit x8 18 1 2

Table 54. Supported Configurations (Continued)

Mem 
Capacity

DRAM 
Density

Part 
Width

Total Num 
of SDRAMs

Num of 
DIMMs

Num of 
Sides

Comments (sample DIMM vendors 
shown if information available)

Table 55. Clock Frequencies 

Internal Bus Frequency Clock Ratio DRAM Freq (Data 
transfer rate)

IXP2400 300
1:1 300 MTS

3:2 200 MTS
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5.6 Interleaving
In IXP2400, all accesses are directed to the single available channel. The maximum DIMM size 
supported is 2 GB, which is the maximum address space.

The DRAM memory banks are interleaved to improve concurrency and bandwidth utilization. 
Contiguous addresses are directed to different DRAM banks by remapping the physical address 
bits such that the new addresses are spread across the 4 DRAM banks. Note that the mapping of 
addresses to memory banks is completely transparent to software. Software deals with physical 
addresses in DRAM space; the mapping is done completely by hardware.

5.6.1 Interleaving across Banks 
The addresses are interleaved across internal banks and DIMM sides. This improves memory 
utilization since certain operations to different banks can be performed concurrently.

Bits 8:7 of the command address are used as the bank select bits.

Bit 9 of the command address is used to select the side of the DIMM if a double sided DIMM is 
used.

5.7 Error Correction
Each 64-bit bank of DRAM is protected with an 8-bit SEC/DED ECC (Single Error Correct, 
Double Error Detect Error Correction Code.) Every store to the DRAM will cause the ECC to be 
calculated and stored with the data. Stores of less than 64 bits will incur a Read-Modify-Write 
penalty to generate the correct ECC. If ECC checking is enabled, then any data read with incorrect 
ECC will be corrected if the data had a single bit in error and a correctable error interrupt is 
generated. If two bits were in error, an uncorrectable error interrupt is generated. In both cases 
status is captured. The hardware does not guarantee error detection if more than 2 bits in a 64 bit 
data chunk are corrupted.If ECC checking is disabled the integrity of the data is unknown.

There is an address register, a status register and some control bits in the DRAM control register 
associated with memory integrity reporting. Control bits enable ECC checking, and allow 
diagnostic software to force error conditions to test the detection and reporting logic. An error 
address register and an error status register capture the address and syndrome of the first error to 
occur. That information is frozen in place until software has re-armed capture. The status register 
also has bits indicating UE (Uncorrectable Error) and CE (Correctable Error) to assist the program 
in determining the type of error seen as well as the ID of the initiator of the transaction and a bit 
indicating if this was a RMW cycle.

If the registers hold status and address for a CE, the first UE to occur will overwrite that 
information. The CE bit remains set to indicate that this occurred. If a UE happens first, but a CE is 
detected before the UE status is released then the CE bit sets but the UE status and address are 
unaffected, again to indicate that both had occurred. The DRAM Controller will assert the 
Correctable Error Interrupt if a correctable error occurs and the Uncorrectable Error Interrupt if an 
uncorrectable error occurs. See Table 56.
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DRAM scrub is not supported in hardware. The mechanism to correct errors is to have an ME do a 
write to the error address with all bytes masked. This will have the effect of causing an RMW and 
writing the corrected data back to DRAM.

5.8 Supported Requests

5.8.1 Reads and Writes
The DRAM controller supports read and write burst accesses of 16-128 bytes in multiples of 8 
bytes starting on any 8-byte boundary, and single accesses of 8 bytes on an 8-byte boundary. Read 
accesses smaller than 8 bytes always return 8 bytes on the 8-byte-wide bus; the requesting unit is 
responsible for extracting the data it requested. Write accesses smaller than 8 bytes cause a read-
modify-write cycle to merge new data and to check for and to generate correct ECC. If the read 
data had a correctable error, the data is corrected prior to the merge. These partial write accesses 
can come from Microengines using a write mask, from PCI, or from the Intel XScale® core issuing 
non-cached accesses. Write accesses smaller than 8 bytes will cause a read-modify-write cycle 
even if ECC is disabled. Cache writebacks from Intel XScale® core are aligned in units of 16 bytes, 
and cache fills are aligned reads of 32 bytes.

The Microengines access DRAM using the dram instruction with various options. Intel XScale® 

core uses the DRAM address space in the memory map to access DRAM. PCI accesses DRAM as 
a target and via DMA channels.

5.8.2 Register Access
There are a number of DRAM related Status and Control Registers which are located in the DRAM 
controller. Read and write operations to these Registers are supported. All the registers and the 
read/write operations are 4 bytes. However, due to the 64 bit data bus used by the DDR controller, 
all the register addresses are aligned on an 8 byte boundary. 

g

To summarize, the DRAM controller can accept the request types listed in Table 57.

Table 56. DRAM Error Status

Sequence of Events CE Bit UE Bit Address, Error Syndrome, 
Other Status

No error has occurred 0 0 x

Correctable Error has occurred 1 0 From first CE

Uncorrectable Error has 
occurred 0 1 From first UE

Correctable Error followed by a 
Uncorrectable Error 1 1 From first UE

Uncorrectable Error followed by 
a Correctable Error 1 1 From first UE
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5.9 Microengine Signals
The Microengine tags each memory request with two signal numbers. The memory controller 
sends these signals back to the Microengine to indicate completion of the associated request. The 
Microengine waits for both the signals to be delivered in order to determine whether the request 
has been completed.

For memory reads, the signals are delivered when the data has been written into the transfer 
registers. This is implemented by including a Signal Done field in the Push Command.

For memory writes, the signals are delivered when the data is pulled out of the Microengine 
transfer registers. The Pull Command includes a Signal Done field in order to implement this 
functionality.

It is possible that a request could get split across two banks. In this case, the different components 
of the request could complete in any order. The signal protocol guarantees that a signal is delivered 
to the Microengine only when all the component parts of a request have completed. This is 
achieved by having each component of the request return one signal when it is done. The 
Microengine waits for 2 signals to arrive and thus will consider the request complete only after 
both components of the request have completed. 

If the request is contained within one bank, the memory controller will return only 1 signal to the 
Microengine, and will assert a signal indicating No Split, when the request is complete. The arbiter 
uses the No Split signal to indicate to the ME that two signals should be set. From a microcode 
viewpoint there is no difference in behavior between requests that get split across banks and those 
that are contained within a single bank.

Table 57. Supported Requests

Request 
Type

Start 
Address 

Alignment
Min Length

(bytes)
Max 

Length
(bytes)

Increment 
Size

(bytes)
Byte 

Selectable

Internal Buses used 
by transaction

Cmd Push Pull

Read 8B Boundary 8B 128B 8B No Yes Yes No

Write 8B Boundary 16B 128B 8B No Yes No Yes

Write 8B Boundary 8B 8B N/A Yes Yes No Yes

Register 
Read 4B Boundary 4B 4B N/A No Yes Yes No

Register 
Write 4B Boundary 4B 4B N/A No Yes No Yes
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5.10 Read/Write Ordering Requirements
Reads/writes are not guaranteed to finish in order with respect to other reads/writes unless they are 
to the same address. If ordering is needed, it must be guaranteed by the command initiator. Refer to 
Table 58.

5.11 Design Overview
This section provides a brief overview of the implementation.

Figure 77 is a block diagram of the DRAM controller.

Table 58. Ordering Requirements 

First 
Access

Second 
Access Ordering Requirement Implementation Note

Read Read
None. Reads to DRAM have no side 
effects, both readers will get the same 
data.

Reads which access the same location in 
memory are not re-ordered by the DRAM 
controller. 

Read Write

The read must return the pre-modified 
data. However, this does not have to be 
enforced by Hardware. For ME, 
software is responsible for issuing the 
Write only after the read is complete.

Reads and writes to the same address are 
issued in order. Therefore the write after 
read hazard is not present.

Write Read

Read must return modified data. The 
read can be issued by the requestor 
when it receives the done signal for the 
write. The done signal for the write is 
sent when the write data is pulled out of 
the requestor (and not when the write 
data is actually written into DRAM).

Reads and writes to the same address are 
issued in order. Therefore the read after 
write hazard is not present.

Write Write No ordering is guaranteed.
The DRAM controller will issue writes to a 
particular address in the order that they 
were received.
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The following sections briefly describe the flow of a typical read and write request through the 
DRAM controller. The DRAM controller also supports CSR accesses and partial writes.

Figure 77. DRAM Controller
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5.11.1 Read Requests
• Incoming Command: A requestor initiates a DRAM access by sending a command on the Cmd 

bus. IXP2400 has one command bus interfacing with the DRAM controller. The DRAM 
controller can receive only one command in any given clock cycle. Flow control is 
implemented as follows: the DRAM controller sends an Almost Full signal to the Cmd bus 
arbiter which, if asserted, prevents further requests from being generated.

• Enqueue Command: The incoming command is received by the DRAM controller. The 
controller inspects the Target_ID of the request to check if it targets the DRAM. The command 
is enqueued only if there is a match.

• Op Generation: When the request reaches the head of the Cmd FIFO, it is inspected to 
determine if it needs to be split into multiple DRAM ops. Splitting of requests is needed if the 
data requested by the read cmd spans multiple banks, rows or DRAM burst boundaries. If 
needed, the request is split and multiple DRAM ops are generated and latched. The address 
generation block uses the start address and length fields of the original request to generate new 
addresses for the DRAM ops.

• Op Scheduling Queues: The DRAM Ops are then enqueued onto a queue based on the DRAM 
bank that they target. There are four such queues, one for each internal DRAM bank. The 
purpose of these queues is to help minimize bank conflicts between successive ops so that 
better utilization can be achieved on the DRAM data bus. Separating Ops on the basis of bank 
(as opposed to read or write type) simplifies the design as a CAM is not needed to detect reads 
and writes with conflicting addresses. The Request Scheduling FSM picks ops from these 
queues and schedules them on to the Pin FSM. Also, these ops are enqueued onto the Push 
Cmd Queue to keep track of the returning data.

• Pin FSM: The pin FSM checks that all constraints specified by the DDR DRAM pin protocol 
(such as RAS to RAS delay etc.) are satisfied before it issues an Activate command for this 
read op. The pin FSM keeps track of this op and issues a read command when appropriate.

• Data Return: When the DRAM returns data, it is put into the Push Data Queue. The Push Cmd 
Queue then arbitrates for access to the Push Bus in order to return the data. On being granted 
the Push bus, the data is returned to the requesting agent. Each 64 bit data transfer is sent as a 
separate push with the push_id incremented for each 64 bit transfer. Also note that data is not 
necessarily returned in the same order that the read requests were made since the Op 
scheduling queues can reorder the reads.

5.11.2 Write Requests
Write requests go through essentially the same steps, with some differences:

• Incoming Command: A requestor initiates a DRAM access by sending a command on the Cmd 
bus. IXP2400 has one command bus interfacing with the DRAM controller. The DRAM 
controller can receive only one command in any given clock cycle. Flow control is 
implemented as follows: the DRAM controller sends an almost full signal to the Cmd bus 
arbiter which, if asserted, prevents further requests from being generated.

• Enqueue Command: The incoming command is received by the DRAM controller. The 
controller inspects the Target_ID of the request to check if it targets the DRAM. The command 
is enqueued only if there is a match.

• Pull Request: When the write command reaches the head of the Inlet queue and if there is 
room in the pull data fifo, a request is made to the Pull arbiter to transfer the write data from 
the Data source to the DRAM controller. If the pull data fifo does not have enough space, the 
request is stalled until space becomes available.The Pull arbiter will forward the request to the 
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data source and data will be written into the DRAM controller’s pull data fifo when available. 
Completion signals are sent as part of the pull command.

• Op Generation: Concurent with making the Pull request, the write command is inspected to 
determine if it needs to be split into multiple DRAM ops. Splitting of requests is needed if the 
data requested by the write cmd spans multiple banks, rows or DRAM burst boundaries. If 
needed, the request is split and multiple DRAM ops are generated and latched. The address 
generation block uses the start address and length fields of the original request to generate new 
addresses for the DRAM ops.

• Op Scheduling Queues: The DRAM Ops are then enqueued onto a queue based on the DRAM 
bank that they target. The Request Scheduling FSM picks ops from these queues and schedules 
them on to the Pin FSM. Note that the DRAM Ops are enqueued into the bank queues even if 
the corresponding write data is not yet available. The DRAM ops will not be dequeued out of 
the bank queues until the write data is available. Blocking the DRAM Ops in the bank queues 
as opposed to the Inlet command queue has the advantage of letting reads to other banks 
advance.

• Pin FSM: The pin FSM checks that all constraints specified by the DDR DRAM pin protocol 
(such as RAS to RAS delay etc.) are satisfied before it issues an Activate command for this 
write op. The pin FSM keeps track of this op and issues a write command when appropriate.

5.11.3 Request Scheduling Algorithm
This block selects a request from the four bank queues and schedules it to the DDR pin protocol 
FSM. The intent here is to schedule the requests such that the DRAM data bus utilization is 
improved. Specifically, the Request Scheduling FSM tries to perform the following optimizations:

• Minimize bank conflicts. The Request Scheduling FSM attempts to pick requests from the 
bank queues in a round robin manner. Since the requests in the bank queues have already been 
sorted on the basis of the bank they target, this results in successive requests accessing 
different banks.

• Minimize read-write turnarounds. There is a performance penalty associated with switching 
between read and write requests. The Request Scheduling FSM attempts to schedule requests 
of the same type in succession so that switching between reads and writes is minimized. For 
example if there were a number of read and write requests which were waiting to be 
scheduled, the FSM would schedule 4 read requests followed by 4 write requests and so on.

The round robin pointer is initialized to point to a particular bank queue (say bank 0). Also, the 
logic is initialized to favor a particular type of request (say read). The algorithm selects requests in 
round robin order as long as all requests are reads. When a write is encountered, the 
Request_Skipped_Count counter is incremented and the pointer skips to the next (in round robin 
order) bank queue. If that request is a read it is selected, if it is a write the Request_Skipped_Count 
is incremented once again and the pointer is incremented.

The algorithm keeps selecting and issuing reads till the Request_Skipped_Count reaches a 
programmable threshold value (see the description of bits 7:0 of the DU_CONTROL2 CSR). 
When this happens, the favored type is changed to Write and the Request_Skipped_Count is reset 
to 0. The algorithm now selects writes until reads are skipped enough times to flip the favored type 
again.
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5.11.4 DDR Pin FSM
The DDR pin FSM is responsible for issuing commands on the DRAM bus. Key features are listed 
here.

• The pin FSM attempts to keep the pins busy by overlapping Activate and Read/Write 
commands of different requests.

• Writes smaller than 8 bytes result in a Read-Modify-Write (RMW) sequence. Selectively 
writing fewer than 8 bytes by masking the write of specific bytes is not possible since the ECC 
needs to be computed over the entire 8 byte quantity. Commands targeting other banks can be 
issued in between the read and the write of the RMW since they do not conflict with the RMW.

• The FSM has a closed page policy—a page which is activated for a read or write request is 
precharged at the end of the operation. Reads and writes are issued with the Auto-Precharge bit 
set on the last burst of a request.

5.12 Register Descriptions

5.12.1 Register Map
The DDR registers are addressed at 8 byte offsets. Each register is 32 bits and data is transferred on 
the low 32 bits of the DRAM Push/Pull Data Buses.

Table 59. DDR Register Map

Abbreviation Offset Name Description

DU_CONTROL 0x000
DRAM Controller Control 

Register 
Contains programmable delay/
latency parameters to support 
various configurations 

DU_ERROR_STATUS_1 0x008 DRAM Error Status Register 1 Logs the Address of transaction 
which had an ECC error

DU_ERROR_STATUS_2 0x010 DRAM Error Status Register 2 Logs details about type of ECC 
error 

DU_ECC_TEST 0x018 DRAM ECC Test Register
Has control settings which can be 
used to inject false ECC errors for 
testing purposes

DU_INIT 0x020 DRAM Initialization Register
Contains controls for the DDR 
Mode register set, refresh, 
precharge commands

DU_CONTROL2 0X028
DRAM Controller Control 

Register 2
Contains additional DRAM 
Controller control fields

- 0x030
- 0x0F8 - Reserved

DU_IO_CONFIG[1:224] 0x100
- 0x7F8

DRAM IO Configuration 
Registers

Contains Drive strength controls 
for various interface pins
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SRAM Interface 6

6.1 Overview
The Intel® IXP2400 and IXP2800 network processors contain two and four independent SRAM 
controllers, respectively. SRAM controllers support pipelined QDR and QDR II synchronous static 
RAM (SRAM) technologies and a coprocessor which adheres to QDR signaling. Any or all 
controllers can be left unpopulated if the application does not need to use them.

Reads and writes to SRAM are generated by Microengines (ME), Intel XScale® core, and PCI Bus 
masters. They are connected to the controllers via Command Buses and Push and Pull Buses. Each 
SRAM controller enqueues commands from the command bus. The commands are dequeued and 
successive access to the SRAMs is performed. Each SRAM controller receives commands using 
two Command Buses, one of which may be tied off inactive, depending on the chip 
implementation. The SRAM Controller can enqueue a command from each Command Bus in each 
cycle. Data movement between the SRAM controllers and the MEs is via the S-Push bus and S-
Pull bus.

The overall structure of the SRAM controllers is shown in Figure 78.
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6.2 SRAM Interface Configurations
Memory is logically four bytes (one longword) wide while physically the data pins are two bytes 
wide and double clocked. Byte parity is supported. Each of the four bytes has a parity bit, which is 
written when the byte is written and checked when the longword is read. There are byte enables 
that select which bytes to write for lengths of less than a longword.

Examples of supported SRAMs are:

• Micron MT54V512H18A 9Mb QDR SRAM (512K x 18)

• IDT IDT71T6280H 9Mb Pipelined QDR SRAM Burst of 2 (512K x 18)

• Cypress CY7C1302V25 9-Mb Pipelined SRAM with QDR Architecture (512K x 18)

The SRAM controller can also be configured to interface to an external coprocessor that adheres to 
the QDR or QDR II electrical and functional specification.\

In general, QDR and QDR II burst of 2 SRAM will be supported at speeds up to 200 MHz. As 
other (larger) QDR SRAMs are introduced, they will also be supported.

Figure 78. SRAM Controller/Chassis Block Diagram
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Each of the 2 QDR ports are QDR and QDRII compatible. Each port implements the _K and _C 
output clocks and _CQ as an input and their inversions.

Note: The _C and _CQ clocks are optional.

Extensive work has been performed providing impedance controls within IXP2400 for IXP2400-
initiated signals driving to QDR parts. Providing a clean signaling environment is critical to 
achieving 200 MHz QDRII data transfers. 

The configuration assumptions for IXP2400 IO driver/receiver development includes 4 QDR loads 
and IXP2400. It should be noted that some future QDRII SRAMs require a burst of 4 to achieve 
higher frequency. IXP2400 initial release will not support burst of 4 QDR SRAM parts. The 
IXP2400 Network Processor initial release supports bursts of 2 SRAMs.

The echo clocks are C1n/Cn# and C2n/C2n# (see Figure 79). IXP2400 uses one pair of the Cn/Cn# 
clocks for read data, the other pair is terminated on the die.

The SRAM controller can also be configured to interface to an external coprocessor that adheres to 
the QDR electricals and protocol.
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6.3 SRAM Interface Configurations
This section describes SRAM interface build configurations for communicating to 1 or 2 ME 
clusters and either 1, 2, 3, or 4 SRAM/co-processor channels to accommodate use of either 
IXP2400 or IXP2800 chips.

6.3.1 Internal Interface
Each SRAM channel receives commands via the command bus mechanism and transfers data to 
and from MEs, Intel XScale® core, and PCI via push and pull buses.

6.3.2 Number of Channels
The SRAM/coprocessor channels are supported via the instantiation of multiple SRAM controller 
FUBs. The IXP2800 supports 4 channels and the IXP2400 supports 2 SRAM/coprocessor 
channels.

6.3.3 Coprocessor and/or SRAMs Attached to a Channel
Each channel will support the attachment of QDR SRAMs, a co-processor, or both depending upon 
the module level signal integrity and loading.

Figure 79. Echo Clock Configuration
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6.4 SRAM Controller Configurations
There are enough address pins (24) to support up to 64 MB of SRAM. The SRAM controllers can 
directly generate multiple port enables (up to 5 pairs) to allow for depth expansion. Two pairs of 
pins are dedicated for port enables. Smaller RAMs use fewer address signals than the number 
provided to accommodate the largest RAMs, so some address pins (23:18) are configurable as 
either address or port enable based on CSR SRAM_Control[Port_Control] as shown in Table 60.

Note: All of the SRAMs on a given channel must be the same size.

Note: Table 60 shows the capability of the logic—up to 4 loads will be supported, and the table reflects 
that information.

Each channel can be expanded in depth according to the number of port enables available. If 
external decoding is used, then the number of SRAMs is not limited by the number of port enables 
generated by the SRAM controller.

Note: External decoding may require external pipeline registers to account for the decode time, 
depending on the desired frequency.

Maximum SRAM system sizes are shown in Table 61. Shaded entries require external decoding, 
because they use more port enables than the SRAM controller can directly supply.

Table 60. SRAM Controller Configurations

SRAM
Configuration SRAM Size Addresses Needed

to Index SRAM
Addresses Used
as Port Enables

Total Number of Port
Select Pairs Available

512K x 18 1 MB 17:0 23:22, 21:20 4

1M x 18 2 MB 18:0 23:22, 21:20 4

2M x 18 4 MB 19:0 23:22, 21:20 4

4M x 18 8 MB 20:0 23:22 3

8M x 18 16 MB 21:0 23:22 3

16M x 18 32 MB 22:0 None 2

32M x 18 64 MB 23:0 None 1

Table 61. Total Memory Per Channel

SRAM Size
Number of SRAMs on Channel

1 2 3 4 5 6 7 8

512K x 18 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB 7 MB 8 MB

1M x 18 2 MB 4 MB 6 MB 8 MB 10 MB 12 MB 14 MB 16 MB

2M x 18 4 MB 8 MB 12 MB 16 MB 20 MB 24 MB 28 MB 32 MB

4M x 18 8 MB 16 MB 24 MB 32 MB 64 MB NA NA NA

8M x 18 16 MB 32 MB 48 MB 64 MB NA NA NA NA

16M x 18 32 MB 64 MB NA NA NA NA NA NA

32M x 18 64 MB NA NA NA NA NA NA NA
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Figure 80 shows how the SRAM clocks on a channel are connected. For receiving data from the 
SRAMs, clock path and data path are matched to meet hold time requirements.

It is also possible to pipeline the SRAM signals with external registers. This is useful for the case 
when there is considerable loading on the address and data signals, which would slow down the 
cycle time. The pipeline stages make it possible to keep the cycle time fast by fanning out the 
address, byte write, and data signals. The RAM read data may also be put through a pipeline 
register, depending on configuration. External decoding of port selects can also be done to expand 
the number of SRAMs supported. Figure 81 is a simple block diagram showing the concept of 
external pipelining.

A side effect of the pipeline registers is to add latency to reads, and the SRAM controller must 
account for that delay by waiting extra cycles (relative to no external pipeline registers) before it 
registers the read data. The number of extra pipeline delays is programmed in 
SRAM_Control[Pipeline].

Figure 81 depicts use of external pipeline registers, which add two cycles of latency to reads.

Figure 80. SRAM Clock Connection on a Channel
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6.5 Command Overview
This section will give an overview of the SRAM commands and their operation. The details will be 
given later in the document. Memory reference ordering will be specified along with the detailed 
command operation.

Note: A longword is a 32 bit (4 byte) data entity.

6.5.1 Basic Read/Write Commands
The basic read and write commands will transfer from 1 to 16 longwords of data to/from the QDR 
SRAM external to the IXP2400 Network processor.

For a read command, the SRAM is read and the data placed on the Push bus one longword at a 
time. The command source (for example, the ME) is signaled that the command is complete during 
the last data phase of the push bus transfer.

For a write command, the data is first pulled from the source, then written to the SRAM in 
consecutive SRAM cycles. The command source is signaled that the command is complete during 
the last data phase of the pull bus transfer.

6.5.2 Atomic Operations
The SRAM Controller does read-modify-writes for the atomic operations, the pre-modified data 
can also be returned if desired. Other (non-atomic) readers and writers can access the addressed 
location in between the read and write portion of the read-modify-write. Table 62 describes the 
atomic operations supported by the SRAM Controller.

Table 62. Atomic Operations

Instruction Pull Operand Value Written to SRAM

Set_bits Yes SRAM_Read_Data OR Pull_Data

Clear_bits Yes SRAM_Read_Data AND NOT Pull_Data

Increment No SRAM_Read_Data + 0x00000001

Decrementa

a. Unsigned value that saturates at 0x0000000.

No SRAM_Read_Data - 0x00000001

Addb,c

b. Pull_Data is twos complement and saturates at 0x0000000 if Pull_Data is < 0.
c. Return result (when enabled) can be tested to determine amount actually added or

subtracted in order to detect the case where the operation saturated at zero. For ex-
ample, assume the data in the addressed SRAM location is 0x10. Subtracting 0x3 (add-
ing 0xFFFFFFFD) would return 0x10 and write 0xD into the SRAM. However, Subtracting
0x15 (adding 0xFFFFFFFB) would return 0x10 and write 0x0 into the SRAM, because the
subtraction saturates at 0x0. The reader can test the return data to determine if the
amount actually available is the minimum of the amount requested and the returned
data.

Yes SRAM_Read_Data + Pull_Data 

Swapd

d. Swap will normally be used with return of read data enabled. Doing a Swap without re-
turn of read data will write the Pull data into memory without returning the original read
data—that operation is better done by normal (non-atomic) write.

Yes Pull_Data
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Up to two ME signals will be assigned to each read-modify-write reference. Microcode should 
always tag the read-modify-write reference with an even numbered signal. If the operation requires 
a pull (see Table 62), then the requested signal will be sent on the pull. If the pre-modified data is to 
be returned to the ME, then the ME will be sent (requested signal OR 1) when that data is pushed.

In Example 23, there is both a pull and a push for an SRAM read-modify-write:

In Example 24, there is no pull:

6.5.3 Queue Data Structure Commands
The ability to enqueue and dequeue data buffers at a fast rate is key to meeting chip performance 
goals. This is a difficult problem as it involves dependent memory references that must be turned 
around very quickly. The SRAM controller includes a data structure called the Q_array and 
associated control logic in order to perform efficient enqueue and dequeue operations. Optionally, 
this hardware or a portion of this hardware can be used to implement rings and journals.

A queue is an ordered list of data buffers stored at discontiguous addresses. The first buffer added 
to the queue will be the first buffer removed from the queue. Queue entries are joined together by 
creating links from one data buffer to the next. This hardware implementation supports only a 
forward link. A queue is described by a pointer to its first entry, called the head, and a pointer to its 
last entry, the tail. In addition, there is a count of the number of items currently on the queue. This 
triplet of head, tail, and count is referred to as the queue descriptor. In the IXP2400 and IXP2800 
chips, the queue descriptor is stored in that order—head first, then tail, then count. The longword 
alignment of the head addresses for all queue descriptors must be a power of two. For example, 
when there are no extra parameters on the queue descriptor, there will be one unused longword per 
queue descriptor.

Figure 82 shows a queue descriptor and queue links for a queue containing four entries.

Example 23. SRAM Read-Modify-Write with Pull Data
IMMED [$xfer0, 0x1]
IMMED [test_address,0x0]

SRAM [TEST_AND_SET, $xfer0, test_address, 0], SIG_DONE[SIGNAL_2]
CTX_ARB [SIGNAL_2]

; SIGNAL_2 is set when $xfer0 is pulled from this ME. SIGNAL_2+1 is
; set when $xfer0 is written with the test value. Sleep until both
;SIGNALS have arrived. 

Example 24. SRAM Read-Modify-Write without Pull Data
SRAM [SET, $xfer0, test_address, 0], SIG_DONE[SIGNAL_2] 

CTX_ARB [SIGNAL_2]

; SIGNAL_2 is set when $xfer0 is pulled from this ME. Sleep until that signal 
arrives.
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There are two different versions of the enqueue command, ENQUEUE and ENQUEUE_TAIL. 
ENQUEUE is used to enqueue one buffer at a time. ENQUEUE followed by ENQUEUE_TAIL are 
used to enqueue a previously linked string of buffers. The string of buffers is used in the case where 
one packet is too large to fit in one buffer. Instead, it is divided among multiple buffers. These two 
versions are shown in Figure 83 and Figure 84 respectively.

Figure 82. Queue Descriptor with Four Links
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Figure 83. Enqueueing One Buffer at a Time
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There are three different modes for dequeue command. The 
SRAM_CONTROL[QC_IGN_EOP:QC_IGN_SEG_CNT] register bits support the following three 
modes that determine the behavior of the dequeue command (Mode 2 is not supported).

Mode 0: Dequeue Segments and Count Packets

The seg_cnt is decremented for each SRAM[dequeue] command. Only when seg_cnt equals 0 
is the q_link removed from the linked list. The EOP is used by hardware to determine if it 
should decrement the q_count, therefore it must be set on the last buffer of a packet for 
software designs that support multiple buffers per packet or on all buffers for software designs 
that support a single buffer per packet. The state of the EOP bit is returned with the data for 
each dequeue command. The state of the SOP bit is returned only with the data for the first 
dequeue command to a buffer. The SOP bit is clear for subsequent dequeue commands to the 
buffer. 

Mode 1: Dequeue Buffers and Count Packets

Figure 84. Enqueue a String of Buffers to a Queue
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The seg_cnt is ignored in this mode so a q_link is removed from the linked list for each 
sram[dequeue] command. The EOP and SOP bits are treated the same as mode 1. The seg_cnt 
is returned unchanged on each dequeue.

Mode 3: Dequeue Buffers and Count Buffers

The seg_cnt is ignored in this mode so a q_link is removed from the linked list for each 
sram[dequeue] command. The EOP bit is also ignored by hardware so the q_count is always 
decremented for each dequeue command. Note: In this mode the seg_cnt is added to the 
q_count on every enqueue.

A ring is an ordered list of data words stored in a fixed block of contiguous addresses. A ring is 
described by a head pointer and a tail pointer. Data is written, using the put command, to a ring at 
the address contained in the tail pointer and the tail pointer is incremented. Data is read, using the 
get command, from a ring at the address contained in the head pointer and the head pointer is 
incremented. Whenever either pointer reaches the end of the ring, the pointer is wrapped back to 
the address of the start of the ring.

A journal is similar to a ring. It is generally used for debugging. Journal commands only write to 
the data structure. New data overwrites the oldest data. Microcode can choose to tag the journal 
data with the ME number and CTX number of the journal writer.

The Q_array to support queuing, rings and journals contains 64 registers per SRAM channel. For a 
design with a large number of queues, the queue descriptors cannot all be stored on chip, and thus a 
subset of the queue descriptors (16) is cached in the Q_array. To implement the cache, 16 

Figure 85. Dequeue Buffer
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contiguous Q_array registers must be allocated. The cache tag (the mapping of queue number to 
Q_array registers) for the Q_array is maintained by microcode in the CAM of an ME. The 
writeback and load of the cached registers in the Q_array is under the control of that microcode.

Note: The size of the Q_array does not set a limit on the number of queues supported.

For other queues (free buffer pools, for example), rings, and journals, the information does not 
need to be subsetted and thus can be loaded into the Q_array at initialization time and left there to 
be updated solely by the SRAM controller.

The sum total of the cached queue descriptors plus the number of rings, journals and static queues 
must be less than or equal to 64 for a given SRAM channel.

The fields and sizes of the Q_array registers are shown in Table 63 and Table 64. All addresses are 
of type longword, and are 32 bits in length.

Note: For a Ring or Journal, Head and Tail must be initialized to the same address.

Journals/Rings can be configured to be one of eight sizes, as shown in Table 65.

Table 63. Queue Format

Name Longword # Bit #a

a. Bits 31:24 of longword number 2 are available for use by ucode.

Definition

EOP 0 31 End of Packet—decrement Q_count on dequeue

SOP 0 30 Start of Packet

Segment Count 0 29:24 Number of segments in the buffer

Head 0 23:0 Head pointer

Tail 1 23:0 Tail pointer

Q_count 2 23:0 Number of packets on the queue or number of buffers on 
the queue

SW_Private 2 31:24 Ignored by hardware, returned to ME

Head Valid N/A Cached head pointer valid—maintained by hardware

Tail Valid N/A Cached tail pointer valid—maintained by hardware

Table 64. Ring/Journal Format

Name Longword # Bit # Definition

Ring Size 0 31:29 See Table 129 for size encoding.

Head 0 23:0 Get pointer

Tail 1 23:0 Put pointer

Ring Count 2 23:0 Number of longwords on the ring
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The following sections contain pseudo-code to describe the operation of the various queue and ring 
instructions.

Note: For these examples, NIL is the value 0.

6.5.3.1 Read_Q_Descriptor Commands

These commands are used to bring the queue descriptor data from QDR SRAM memory into the 
Q_array. Only portions of the Q_descriptor are read with each variant of the command in order 
minimize QDR SRAM bandwidth utilization. It is assumed that microcode has previously evicted 
the Q_descriptor data for the entry prior to overwriting the entry data with the new Q_descriptor 
data. Example 25 details the operations performed.

Table 65. Ring Size Encoding

Ring Size Encoding Size of Journal/Ring Area Head/Tail Field Base Head and Tail Field Increment

000 512 Longwords 23:9 8:0

001 1K 23:10 9:0

010 2K 23:11 10:0

011 4K 23:12 11:0

100 8K 23:13 12:0

101 16K 23:14 13:0

110 32K 23:15 14:0

111 64K 23:16 15:0
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Example 25. Read_Q_Descriptor Commands
Rd_qdesc_head(xfer_addr, address,entry, length)

// Loads the head, EOP, SOP, segment_count, and queue_count

// for entry into the Q_array cache

head[entry] <-- SRAM[address]<23:0>

segment_count[entry]<-- SRAM[address]<29:24>
SOP[entry] <-- SRAM[address]<30>

EOP[entry] <-- SRAM[address]<31>

head_valid[entry]<-- 1

ME[xfer_addr], Q_count[entry]<-- SRAM[address+2]

; optional parameter(s) sent to SRAM xfer

; registers if length >2

xfer_addr += 1

addr = address + 3

for (temp = 3, temp<=length, temp++)

ME[xfer_addr]<-- SRAM[address]

addr += 1

xfer_addr += 1

Rd_qdesc_tail(xfer_addr, address,entry, length)

// Loads the tail and queue_count for entry into

// the Q_array cache

tail[entry] <-- SRAM[address+1]

tail_valid[entry]<-- 1

ME[xfer_addr], Q_count[entry]<-- SRAM[address+2]

; optional parameter(s) sent to SRAM xfer

; registers if length > 2

xfer_addr += 1

addr = address + 3

for (temp = 3, temp<=length, temp++)

ME[xfer_addr]<-- SRAM[addr]

addr += 1

xfer_addr += 1

Rd_qdesc_other(address, entry)

// Loads any missing information for line entry into

// the Q_array cache

if head_valid[entry] == 0

begin

head[entry]<-- SRAM[address]<23:0>

segment_count[entry]<-- SRAM[address]<29:24>
SOP[entry]<-- SRAM[address]<30>

EOP[entry] <-- SRAM[address]<31>

head_valid[entry]<-- 1

end

if tail_valid[entry] == 0

begin

tail[entry]<-- SRAM[address+1]

tail_valid[entry]<-- 1

end
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6.5.3.2 Write_Q_Descriptor Commands

The write_Q_descriptor commands are used to evict an entry in the Q_array and return its contents 
to QDR SRAM memory. Only the valid fields of the Q_descriptor are written in order minimize 
QDR SRAM bandwidth utilization. Example 26 describes the details of the operations performed.

6.5.3.3 ENQ and DEQ Commands

These commands add or remove elements from the queue structure while updating the Q_array 
registers. Example 27 describes the details of the operations performed.

Example 26. Write_Q_Descriptor Commands
Wr_qdesc(address, entry)

if (head_valid[entry] == 1)

begin

SRAM[address] <23:0>← head[entry]

SRAM[address] <29:24>← segment_count[entry]

SRAM[address] <30><-SOP[entry]

SRAM[address] <31>← EOP[entry]

end

if (tail_valid[entry] == 1)

SRAM[address+1] ← tail[entry]

SRAM[address+2]← Q_count[entry]

head_valid[entry]← 0

tail_valid[entry]← 0

Write_Q_Descriptor_Count(address, entry)

// This version is used to refresh just the Q_count in SRAM. The entry is not 
evicted.

SRAM[address+2]← Q_count[entry]
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Example 27. ENQ and DEQ Commands
ENQ_tail_and_link( buff_desc_adr, cell_count, EOP, entry)
// Adds a buffer to the queue contained in Q_Array entry, and
// sets the tail to point to the buffer. If necessary, a link
// is established from the old tail buffer to the new buffer.
// This command is used to add an entire frame to the queue
// or to add the Start-of-Packet buffer of a multi-buffer frame
// to the queue.
If Q_count[entry]==0

begin
head[entry] ← buff_desc_adr
cell_count[entry] ← cell_count
EOP[entry] ← EOP
SOP[entry] ← SOP
head_valid[entry] ← 1

end

If Q_count[entry] > 0
SRAM[tail[entry]]<29:24> ← buff_desc_adr
SRAM[tail[entry]]<30> ← SOP
SRAM[tail[entry]]<31> ← EOP
SRAM[tail[entry]]<23:0> ← cell_count

tail[entry] ← buff_desc_adr
Q_count[entry]++

ENQ_tail( buff_desc_adr, entry)
// Updates the tail pointer only. This command must be
// proceeded by a ENQ_tail_and_link to the same entry.
// This adds the End-of-Packet buffer of a multi-buffer frame
// to the queue.
tail[entry] ← buff_desc_adr

DEQ(entry, xfer_addr)
// Removes a cell or a frame from the queue cached in line entry.
If Q_count[entry] > 0

begin
ME[xfer_addr] ← {EOP[entry], SOP[entry], cell_count[entry],

head[entry]}
if cell_count[entry] == 0

begin
// update queue count only when an entire frame has been removed
if EOP[entry]

Q_count[entry]--
// load the buffer descriptor for the next buffer
cell_count[entry] ← SRAM[head[entry]]<29:24>
SOP[entry] ← SRAM[head[entry]]<30>
EOP[entry] ← SRAM[head[entry]]<31>
head[entry] ← SRAM[head[entry]]<23:0>
end

else
cell_count[entry]--

end
else

// count was 0, so nil value indicates nothing was available to DEQ
ME[xfer_addr] ← nil
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6.5.4 Ring Data Structure Commands
The ring structure commands use the Q_array registers to hold the head tail and count data for a 
ring data structure, which is a fixed size array of data with insert and remove pointers. Example 28 
describes the details of the operations performed.

6.5.5 Journaling Commands
Journaling commands use the Q_array registers to index into an array of memory in the QDR 
SRAM that will be periodically written with information to help debug applications running on the 
IXP2400 and IXP2800 processors. Once the array has been completely written once, subsequent 
journal writes will overwrite the previously written data—only the most recent data will be present 
in the data structure. Example 29 describes the details of the operations performed.

Example 28. Ring Data Structure Commands
Get(entry, length, xfer_addr)

If count[entry] >= length //enough data in the ring?

// Return length number of longwords

For (temp=length, temp>0, temp--)

ME[xfer_addr] ← SRAM[head[entry]]

head[entry] = (head[entry] + 1) % ringSize

count[entry] -= 1

xfer_addr +=1

else

ME[xfer_addr] ← nil // 1 data phase of 0 signals read off empty 
list

Put(entry, length, xfer_addr)

If (ring_size - count[entry] < 16) // 16 is max value for length

initial_xfer_addr = xfer_addr

For (temp=length, temp>0, temp--)

// Write length number of longwords

SRAM[tail[entry]] ← ME[xfer_addr]

tail[entry]= (tail[entry] + 1) % ringSize

Count[entry] += 1

xfer_addr += 1

ME[initial_xfer_addr] ← { 1,count[entry] } // 1 for success

Else

ME[initial_xfer_addr] ← { 0,count[entry] } // 0 for failure
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6.5.6 CSR Accesses
CSR accesses will write or read CSRs within each controller. The upper address bits will determine 
which channel will respond, while the CSR address within a channel are given in the lower address 
bits.

6.6 Parity
SRAM can be optionally protected by byte parity. Even parity is used—the combination of eight 
data bits and the corresponding parity bit will have an even number of 1s. The SRAM controller 
generates parity on all SRAM writes. When parity is enabled (SRAM_Control[Par_Enable]) the 
SRAM controller checks for correct parity on all reads. Upon detection of a parity error on a read 
or the read portion of an atomic read-modify-write, the SRAM controller will record the address of 
the location with bad parity in SRAM_Parity[Address] and set the appropriate 
SRAM_Parity[Error] bit(s). Those bit(s) will interrupt the Intel XScale® core when enabled in 
IRQ_Enable[SRAM_Parity] or FIQ_Enable[SRAM_Parity]. The Data Error signal in the 
Push_CMD will be asserted when the data to be read is delivered (unless the token Ignore Data Error 
was asserted in the command; in that case the SRAM controller will not assert Data Error). When 
Data Error is asserted, the Push Arbiter will suppress the ME Signal if the read was originated by 
an ME (it will use 0x0, which is a null signal, in place of the requested signal number).

Note: If incorrect parity is detected on the read portion of an atomic read-modify-write, the incorrect 
parity will be preserved after the write (that is, the byte(s) with bad parity during the read will have 
incorrect parity written during the write).

When parity is used, Intel XScale® core software must initialize the SRAMs by:

1. Enable parity (write a 1 to SRAM_Control[Par_Enable]).

2. Writing to every SRAM address.

SRAM should not be read prior to doing the above initialization, otherwise parity errors are likely 
to be recorded.

Example 29. Journaling Commands
Journal(entry, length, xfer_addr)

For (temp=length, temp>0, temp--)

// Write length number of longwords

SRAM[tail[entry]]← ME [xfer_addr]
tail[entry] = (tail[entry] + 1) % ringSize

Count[entry] += 1

xfer_addr += 1

fastJournal(entry)// either constant or ALU output

SRAM[tail[entry]]← {ME#, ctx#, ME command bus<address field<23:0>}

tail[entry]= (tail[entry] + 1) % ringSize

Count[entry]++
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6.7 Address Map
Each SRAM channel occupies a 1GB region of addresses. Channel 0 starts at 0, Channel 1 at 1GB, 
and so on. Each SRAM controller receives commands from the command buses. It compares the 
target ID to the SRAM target ID, and address bits 31:30 to the channel number. If they both match, 
then the controller processes the command. See Table 66.

Note: If an access addresses a non-existent address within an SRAM controller’s address space the results 
are unpredictable. For example the result of accessing address 0x0100 0000 when there is only 
1MB of SRAM populated on the channel will produce unpredictable results.

For SRAM (memory or CSR) references from the Intel XScale® core, the channel select is in 
address bits 29:28. The Gasket shifts those bits to 31:30 to match addresses generated by the MEs. 
Thus, the SRAM channel select logic is the same whether the command source is an ME or the 
Intel XScale® core.

The same channel start and end addresses are used both for SRAM memory and CSR references. 
CSR references are distinguished from memory references via the CSR encoding in the command 
field.

Note: Reads and writes to undefined CSR addresses will yield unpredictable results.

The IXP2400 and IXP2800 addresses are byte addresses. As the fundamental unit of operation of 
the SRAM controller is a longword access, the SRAM controller will ignore the 2 low order 
address bits in all cases and utilize the byte mask field on memory address space writes to 
determine the bytes to write into the SRAM. Any combination of the four bytes can be masked. 
The operation of byte writes with a length other than 1 are unpredictable. That is, microcode should 
not use a ref_count greater than 1 longword when a byte_mask is active. CSRs are not byte 
writeable.

6.8 Reference Ordering
This section discusses the ordering between accesses to any one SRAM controller. Various 
mechanisms are used to guarantee order—for example, references that always go to the same 
FIFOs remain in order. There is a CAM associated with write addresses that is used to order reads 
behind writes. Lastly, several counter pairs are used to implement fences. The input counter is 
tagged to a command and the command is not permitted to execute until the output counter 
matches the fence tag. All of this will be discussed in more detail in this section.

Table 66. Address Map

Start Address End Address Responder

0x0000 0000 0x3fff ffff Channel 0

0x4000 0000 0x7fff ffff Channel 1

0x8000 0000 0xbfff ffff reserved

0xc000 0000 0xffff ffff reserved
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6.8.1 Reference Order Tables
Table 67 shows the architectural guarantees of order of accesses to the same SRAM address 
between a reference of any given type (shown in the column labels) and a subsequent reference of 
any given type (shown in the row labels). The definition of first and second is defined by the time 
the command is valid on the command bus. Verification requires testing only the order rules shown 
in Table 67 and Table 68). Note that a blank entry means no order is enforced.

Table 68 shows the architectural guarantees of order to access to the same SRAM Q_array entry 
between a reference of any given type (shown in the column labels) and a subsequent reference of 
any given type (shown in the row labels). The terms first and second are defined with reference to 
the time the command is valid on the command bus. The same caveats that apply to Table 67 apply 
to Table 68.

Table 67. Address Reference Order

1st ref
2nd ref Memory 

Read CSR Read Memory 
Write CSR Write Atomics

Queue / 
Ring / 

Q_Descr 
Commands

Memory Read Order Order

CSR Read Order

Memory Write Order Order

CSR Write Order

Atomics Order Order

Queue / Ring /
Q_ Descr 
Commands

See 
Table 68.

Table 68. Q_array Entry Reference Order

1st ref
2nd ref

Read_Q
_Descr 
head,

tail

Read_
Q_Des

cr 
other

Write_Q
_Descr Enqueue Dequeue Put Get Journal

Read_Q_Descr
head,tail Ordera

Read_Q_
Descr other Order

Write_Q_
Descrb

Enqueue Order Order Order Orderc

Dequeue Order Order Orderc Order

Put Order

Get Order

Journal Order
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6.8.2 Microcode Restrictions to Maintain Ordering
It is the microcode programmer’s job to insure order where the program flow requires order and 
where the architecture does not guarantee that order. 

One mechanism that can be used to do this is signaling. For example, say that ucode needs to 
update several locations in a table. A location in SRAM is used to lock access to the table. 
Example 30 is the microcode for this table update.

Other microcode rules:

• All accesses to atomic variables should be through read-modify-write instructions.

• If the flow must know that a write is completed (actually in the SRAM itself), follow the write 
with a read to the same address. The write is guaranteed to be complete when the read data has 
been returned to the ME.

• With the exception of initialization, never do write commands to the first 3 longwords of a 
queue_descriptor data structure (these are the longwords that hold head, tail, and count). All 
accesses to this data must be via the Q commands.

• To initialize the Q_array registers, perform a memory write of at least 3 longwords, followed 
by a memory read to the same address (to guarantee that the write completed). Then, for each 
entry in the Q_array, perform a rd_qdesc_head followed by a rd_qdesc_other using the address 
of the same 3 longwords.

6.9 Coprocessor Mode
Each SRAM controller may interface to an external coprocessor through it's standard QDR 
interface. This interface will allow for the cohabitation of both SRAM devices and coprocessors 
operating on the same bus. The coprocessor will behave as a memory mapped device on the SRAM 
bus. Figure 78 is a simplified block diagram of the SRAM controller. Figure 86 shows the 
connection to a coprocessor through a standard QDR interface.

a. The order of Read_Q_Descr_head/tail after Write_Q_Descr to the same element will be guaranteed only if it is to a different
descriptor SRAM address. The order of Read_Q_Descr_head/tail after Write_Q_Descr to the same element with the same
descriptor SRAM address is not guaranteed and should be handled by the Microengine code.

b. Write_Q_Descr reference order is not guaranteed after any of the other references. The Queue array hardware assumes
that the Microengine managing the cached entries will flush an element ONLY when it becomes the LRU in the Microengine
CAM. Using this scheme, the time between the last use of this element and the write reference is sufficient to guarantee the
order.

c. Order between Enqueue references and Dequeue references are guaranteed only when the Queue is empty or near empty.

Example 30. Table Update Microcode
IMMED [$xfer0, 1]

SRAM [write, $xfer0, flag_address, 0, 1, ctx_swap [SIG_DONE_2]

; At this point, the write to flag_address has passed the point of coherency. Do 
the table updates.

SRAM [write, $xfer1, table_base, offset1, 2] , sig_done [SIG_DONE_3]

SRAM [write, $xfer3, table_base, offset2, 2] , sig_done [SIG_DONE_4]

CTX_ARB [SIG_DONE_3, SIG_DONE_4]

; At this point, the table writes have passed the point of coherency. Clear the 
flag to allow access by other threads.

IMMED [$xfer0, 0]

SRAM [write, $xfer0, flag_address, 0, 1, ctx_swap [SIG_DONE_2]
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Note: Most coprocessors will not need a large number of address bits—connect as many bits of An as 
required by the coprocessor.

The external coprocessor interface is based on FIFO communication.

A thread can send parameters to the coprocessor by doing a normal SRAM write instruction:
sram[write, $sram_xfer_reg, src1, src2, ref_count], optional_token

The number of parameters (longwords) passed is specified by ref_count. The address can be used 
to support multiple coprocessor FIFO ports. The coprocessor will perform some operation using 
the parameters, and then, sometime later it will pass back some number of results values (the 
number of parameters and results will be known by the coprocessor designers). The time between 
the input parameter and return values is not fixed; it is determined by the amount of time the 
coprocessor requires to do its processing and can be variable. When the coprocessor is ready to 
return the results it signals back to the SRAM controller through a mailbox valid bit that the data in 
the read FIFO is valid. A thread can get the return values by doing a normal SRAM read 
instruction:
sram[read, $sram_xfer_reg, src1, src2, ref_count], optional_token

Figure 87 shows the coprocessor with memory-mapped FIFO ports.

Figure 86. Connection to a Coprocessor Though Standard QDR Interface
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If the read instruction executes before the return values are ready, the coprocessor will signal data 
invalid through the mailbox register on the read data bus (Qn[17:0]). Signaling a thread upon 
pushing its read data works exactly as in a normal SRAM read.

There can be multiple operations in-progress in the coprocessor. The SRAM controller will send 
parameters to the coprocessor in response to each SRAM write instruction without waiting for 
return results of previous writes. If the coprocessor is capable of re-ordering operations—that is, 
returning the results for a given operation before returning the results of an earlier arriving 
operation—ME code must manage matching results to operations. Tagging the operation by 
putting a sequence value into the parameters, and having the coprocessor copy that value into the 
results is one way to accomplish this requirement.

Flow control will be under the Network Processor's ME control. An ME thread accessing a 
coprocessor port will maintain a count of the number of entries in that coprocessor 's write FIFO 
port. Each time an entry is written to that coprocessor port the count will be incremented. When a 
valid entry is read from that coprocessor read port the count will be decrement by the thread.

Figure 87. Coprocessor with Memory Mapped FIFO Ports
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SHaC Unit 7

7.1 Prerequisite Reading
1. Section 2, “Hardware Overview”

7.2 Introduction
This chapter will cover the operation of the SHaC unit. The SHaC unit contains three main 
subblocks: the Scratchpad, the Hash units and the CAP (CSR Access Proxy). Each subblock will 
be described separately and in greater detail in the sections that follow.

The CSR and ΑRM Advanced Peripheral Bus (APB) bus interfaces are controlled by the 
Scratchpad state machine and will be addressed in the Scratchpad design detail section. (See 
“Scratchpad” on page 7-219.)

7.3 Unit Overview
The SHaC unit is a multifunction block containing Scratchpad memory and logic blocks to perform 
hashing operations and interface with Intel XScale® core peripherals and chip CSRs through the 
APB and CSR buses, respectively. The SHaC also houses the global registers, as well as chip Reset 
logic.

The SHaC unit provides the following features:

• Communication to Intel XScale® core peripherals, such as GPIOs and timers, through the APB 
bus

• Creation of hash indices of 48, 64, or 128-bit widths

• A communication ring used by Microengines (MEs) for interprocess communication

• A Scratchpad memory storage option usable by Intel XScale® core and MEs

• A CSR bus interface to permit fast writes to CSRs, as well as standard read and writes

• A Push/Pull Reflector to transfer data from the Pull bus to the Push bus
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7.4 High Level Block Diagrams

7.4.1 Full Chip Diagram

Figure 88. IXP2400 Chassis (APB and CSR Buses Not Shown) Block Diagram

B2861-01

S_Push Bus
Arbiter 0

S_Pull Bus
Arbiter 0

DRAM
Controller 0

cmd_bus[88:0]

S_Push Bus
Arbiter 1

S_Pull Bus
Arbiter 1

cmd0 arb cmd1 arb

S_Push
Queue

D_Pull
Queue & Mux

Media Switch
Fabric SHaC

SRAM
Controller 0

SRAM
Controller 1

PCI Intel XScale®

Archtecture
ME(0,1,2,3) ME(10,11,12,13)

S_Pull_1

Grant
Requests

from 4 MEs

D_Pull_1

D_Push

S_Push_1S_Pull_0

S_Push_0



Hardware Reference Manual 219

Intel® IXP2400 Network Processor
SHaC Unit

7.4.2 SHaC Unit Block Diagram

7.5 Unit Design Details

7.5.1 Scratchpad

7.5.1.1 Scratchpad Description

The SHaC Unit contains a 16KB Scratchpad memory, organized as 4 K 32-bit words, that is 
accessible by the Intel XScale® core and Microengines (MEs). The Scratchpad connects to the 
internal Command, S_Push/S_Pull, CSR, and APB buses.

The Scratchpad memory provides the following operations:

• Normal reads and writes. From one to 16 longwords (32 bits) can be read/written with a single 
command. Note that Scratchpad is not byte-writable. Each write must write all four bytes.

Figure 89. SHaC Top Level Diagram
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• Atomic read-modify-write operations: bit-set, bit-clear, increment, decrement, add, subtract, 
and swap. The Read-Modify-Write (RMW) operations can also optionally return the 
premodified data.

• Sixteen Hardware Assisted Rings for interprocess communication.1

• Standard support of APB peripherals such as UART, Timers, and GPIOs through the ARM 
Advanced Peripheral Bus (APB).

• Fast write and standard read and write operations to CSRs through the CSR Bus. A fast write 
is where the write data is supplied with the command, rather than pulling the data from the 
source.

• Push/Pull Reflector Mode that supports reading from a device on the pull bus and writing the 
data to a device on the push bus (reflecting the data from one bus to the other). A typical 
implementation of this mode is to allow an ME to read or write the transfer registers or CSRs 
in another ME.

Note: The Push/Pull Reflector Mode only connects to a single Push/Pull bus. If a chassis implements 
more than one Push/Pull bus, it can only connect one specific bus to the CAP.

Collectively, operations to the CSRs and APB peripherals—as well as the Push/Pull Reflector 
Mode — form what is known as the CSR Access Proxy (CAP). The CAP is treated as a separate 
target to the MEs and the Intel XScale® core.

Scratchpad memory is provided as a third memory resource (in addition to SRAM and DRAM) 
that is shared by the MEs and Intel XScale® core. The MEs and Intel XScale® core can distribute 
memory accesses between these three types of memory resources to provide a greater number of 
memory accesses occurring in parallel.

7.5.1.2 Scratchpad Interface

The Scratchpad interfaces to the internal Command, S_Push, S_Pull, CSR, and APB buses. 

The Scratchpad command and S_Push and S_Pull bus interfaces are shared with the Hash Unit. 
Only one command, to either of those units, can be accepted per cycle.

The CSR and APB buses will be described in detail in the following sections.

7.5.1.2.1 Command Interface

The Scratchpad accepts commands from the Command Bus and can accept one command every 
cycle.

For Push/Pull reflector write and read commands, the command bus is rearranged before being sent 
to the Scratchpad state machine in order to allow a single state (REFLECT_PP) to be used to 
handle both commands. 

7.5.1.2.2 Push/Pull Interface

The Scratchpad has the capability to interface to either one or two push/pull (PP) bus pairs. The 
interface from the Scratchpad to the PP bus pair is through the Push/Pull Arbiters. Each PP bus has 
a separate Push arbiter and Pull arbiter through which access to the Push bus and Pull bus, 
respectively, is regulated. Refer to Section 6, “SRAM Interface” for more information. When the 
Scratchpad is used in a chip that only utilizes one pair of PP buses, the other interface is unused.

1. A ring is a FIFO that uses a head and tail pointer to store/read information in Scratchpad memory.
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7.5.1.2.3 CSR Bus Interface

The CSR Bus provides fast write and standard read and write operations from the Scratchpad to the 
CSRs in the CSR block.

7.5.1.2.4 Advanced Peripherals Bus Interface (APB)

The Advanced Peripheral Bus (APB) is part of the Advanced Microcontroller Bus Architecture 
(AMBA) hierarchy of buses that is optimized for minimal power consumption and reduced design 
complexity.

Note: TheIXP2400 SHaC Unit uses a modified APB interface in which the APB peripheral is required to 
generate an acknowledge signal (APB_RDY_H) during read operations. This is done to indicate 
that valid data is on the bus. The addition of the acknowledge signal is an enhancement added 
specifically for the IXP Chassis. For more details refer to the ARM AMBA Specification 1.6.1.3.

7.5.1.3 Scratchpad Command Overview

This section will detail the operations performed for each Scratchpad command. Command order is 
preserved because all commands go through a single command inlet FIFO.

When a valid command is placed on the command bus, the control logic checks the instruction 
field for the Scratchpad or CAP ID. The command, address, length, etc. are enqueued into the 
Command Inlet FIFO. If the command requires pull data, signals are generated and immediately 
sent to the Pull Arbiter. The command is pushed from the Inlet FIFO to the command pipe where it 
will be serviced according to the command type.

If the Command Inlet FIFO becomes full, the Scratchpad controller will send a full signal to the 
command arbiter which will prevent it from sending further Scratchpad commands.

7.5.1.3.1 Scratchpad Commands

The basic read and write commands will transfer from 1 to 16 longwords of data to and from the 
Scratchpad.

Reads 

When a read command is at the head of the Command queue, the Push Arbiter is checked to see if 
it has enough room for the data. If so, the Scratchpad RAM is read, and the data is sent to the Push 
Arbiter one 32-bit word at a time (the Push_ID is updated for each word pushed). The Push Data is 
sent to the specified destination.

The read data is placed on the S_Push bus one 32-bit word at a time. If the master is an ME, it is 
signaled that the command is complete during the last phase of the push bus transfer. Other masters 
(Intel XScale® core and PCI) must count the number of data pushes to know when the transfer is 
complete.

Writes

When a write command is at the head of the Command Inlet FIFO, signals are sent to the Pull 
Arbiter. If there is room in the queue, the command is sent to the Command pipe.
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When a write command is at the head of the Command pipe, the command waits for a signal from 
the Pull Data FIFO, indicating the data to be written is valid. Once the first longword is received, 
the data is written on consecutive cycles to the Scratchpad RAM until the burst (up to 16 
longwords) is completed.

If the master is an ME, it is signaled that the command is complete during the last pull bus transfer. 
Other masters (Intel XScale® core and PCI) must count the number of data pulls to know when the 
transfer is complete.

Atomic Operations

The Scratchpad supports the following atomic operations.

• bit set

• bit clear

• increment

• decrement

• add

• subtract

• swap

The Scratchpad does read-modify-writes for the atomic operations, the pre-modified data also can 
be returned, if desired. The atomic operations operate on a single longword. There is one cycle 
between the read and write while the modification is done. In that cycle no operation is done, so an 
access cycle is lost.

When a read-modify-write command requiring pull data from a source is at the head of the 
Command Inlet FIFO, a signal is generated and sent to the Pull Arbiter—if there is room.

When the RMW command reaches the head of the Command pipe, the Scratchpad reads the 
memory location in the RAM. If the source requests the pre-modified data (Token[0] set), it is sent 
to the Push Arbiter at the time of the read. If the RMW requires pull data, the command waits for 
the data to be placed into the Pull Data FIFO before performing the operation; otherwise the 
operation is performed immediately. Once the operation has been performed, the modified data is 
written back to the Scratchpad RAM.

Up to two ME signals will be assigned to each read-modify-write reference. Microcode should 
always tag the read-modify-write reference with an even numbered signal. If the operation requires 
a pull, then the requested signal will be sent on the pull. If the read data is to be returned to the ME, 
then the ME will be sent (requested signal OR 1) when that data is pushed.

For all atomic operations, whether or not the read data is returned is determined by Command bus 
Token[0].

Note: Intel XScale® core can do atomic commands using aliased addresses in Scratchpad. (See the 
address map in the  chapter.) An Intel XScale® core Store instruction to an atomic command 
address will do the RMW without returning the read data, an Intel XScale® core Swap instruction 



Hardware Reference Manual 223

Intel® IXP2400 Network Processor
SHaC Unit

(SWP) to an atomic command address will do the RMW and return the read data to Intel XScale® 

core.

7.5.1.3.2 Ring Commands

The Scratchpad provides 16 Rings used for interprocess communication. The rings provide two 
operations.

• Get(ring, length)

• Put(ring, length)

Ring is the number of the ring (0 through 15) to get from or put to, and length specifies the number 
of longwords to transfer. A logical view of one of the rings is shown in Figure 90.

Head, Tail, Base and Size are registers in the Scratchpad Unit. Head and Tail point to the actual 
ring data, which is stored in the Scratchpad RAM. For each ring in use, a region of Scratchpad 
RAM must be reserved for the ring data. Head points to the next address to be read on a get, and 
Tail points to the next address to be written on a put. The size of each Ring is selectable from the 
following choices: 128, 256, 512, or 1,024 32-bit words. The size is specified in the Ring_Base 
register.

Note: The reservation is by software convention. The hardware does not prevent other accesses to the 
region of Scratchpad used by the Ring. Also, the regions of Scratchpad memory allocated to 
different Rings must not overlap. This no-overlap rule implies that many configurations are not 
legal. For example, programming 5 Rings to size of 1024 words would exceed the total size of 
Scratchpad memory, and therefore is not legal.

Note: The region of Scratchpad used for a Ring is naturally aligned to it size.

When the Ring is near full (see Table 69 for the exact number of entries) it asserts an output signal 
which is used as a state input to the MEs. They must use that signal to test, by doing a Branch on 
Input Signal, for room on the Ring before putting data onto it. There is a lag in time from a put 
instruction executing to the Full signal being updated to reflect that put. To be guaranteed that a put 

Figure 90. Ring Communication Logic Diagram
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will no overfill the ring there is a bound on the number of Contexts and the number of 32-bit words 
per write based on the size of the ring, as shown in Table 69. Each Context should test the Full 
signal, then do the put if not Full, and then wait until the Context has been signaled that the data has 
been pulled before testing the Full signal again.

For IXP2400 B0, the Full Flag can be configured as an Empty Flag instead of Full Flag, by the 
RING_STATUS_FLAG bit in the SCRATCH_RING_BASE_# register. Note that each Ring has its 
own RING_STATUS_FLAG bit.

The ring commands operate as outlined in the pseudo code in Example 31. The operations are 
atomic meaning that multi-word gets and puts do all the reads and writes with no other intervening 
Scratchpad accesses.

Table 69. Ring Full Signal Use — Number of Contexts and Length vs. Ring Size

Number of 
Contexts Ring Sizea

128 256 512 1024

1 16 16 16 16

2 16 16 16 16

4 8 16 16 16

8 4 12 16 16

16 2 6 14 16

24 1 4 9 16

32 1 3 7 15

40 Illegalb 2 5 12

48 Illegalb 2 4 10

64 Illegalb 1 3 7

128 Illegalb Illegalb 1 3

a. Number in each entry is the largest length that should be put. 16 is the largest length that a single put instruction
can generate.

b. Illegal with that number of Contexts, even a length of 1 could cause the Ring to overfill.

Example 31. Ring Command Pseudo Code
GET Command
Get(ring, length) 

If count[ring] >= length //enough data in the ring?

ME <-- Scratchpad[head[ring]] // each data phase

head[ring]+= length % ringSize

count[ring] -= length

else ME <--nil // 1 data phase signals read off empty list
NOTE: The ME signal is delivered with last data. In the case of nil, the signal is delivered with the 1 data 

phase.
PUT Command
Before issuing a PUT command, it is the responsibility of the ME thread issuing the command to check the 
SHTC_RING_FULL_RPH signal to make sure the Ring has enough room.
Put(ring, length)

SRAM[tail[ring]] <-- ME pull data // each data phase

tail[ring]+= length % ringSize

Count[ring] += length



Hardware Reference Manual 225

Intel® IXP2400 Network Processor
SHaC Unit

Prior to using the Scratchpad rings, software must initialize the Ring Registers through CSR writes. 
The Base address of the ring must be written, and also the size field which determines the number 
of 32-bit words for the Ring. 

(# = 0 - F) 

7.5.1.3.3 CAP Commands

Writes

For an APB or CAP CSR write, the Scratchpad arbitrates for the S_Pull_Bus, pulls the write data 
from the source identified in the instruction (either a ME transfer register or Intel XScale® core 
write buffer), and puts it into one of the Pull Data FIFOs. It then drives the address and writes data 
on to the appropriate bus. CAP CSRs locally decode the address to match their own. The 
Scratchpad generates a separate APB device select signal for each peripheral device (up to 15 
devices). If the write is to an APB CSR, the control logic maintains valid signaling until the 
APB_RDY_H1 signal is returned. Upon receiving the APB_RDY_H signal, the APB select signal 
will be deasserted and the state machine returns to the idle state between commands. The CAP 
CSR bus does not support a similar acknowledge signal on writes since the Fast Write functionality 
requires that a write operation be retired each cycle.

For writes using the Reflector mode, Scratchpad arbitrates for the S_Pull_Bus, pulls the write data 
from the source identified in the instruction (either a ME transfer register or Intel XScale® core 
write buffer), and puts it into one of the Pull Data FIFOs (same as for APB and CAP CSR writes). 
The data is then removed from the Pull Data FIFO and sent to the Push Arbiter.

For CSR Fast Writes, the command bypasses the Inlet Command FIFO and is acted on at first 
opportunity. The CSR control logic has an arbiter that gives highest priority to fast writes. If an 
APB write is in progress when a fast write arrives, both write operations will complete 

Table 70. Head/Tail, Base and Full by Ring Size

Size (# of 32-bit 
words) Base Addressa

a. Note that bits [1:0] of the address are assumed to be 00.

Head/Tail Offset
Full Threshold 

(number of empty 
entries)

128 13:9 8:2 32

256 13:10 9:2 64

512 13:11 10:2 128

1024 13:12 11:2 256

Table 71. Ring CSR Summary and Addresses

Address CSR name Description

0x0#00 Ring[#] Base Base address of the Ring

0x0#00 Ring[#] Head Offset of head entry from Base

0x0#00 Ring[#] Tail Offset of tail entry from Base

1. The APB RDY signal is an extension to the APB bus specification specifically added for the IXP Chassis.
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simultaneously. For a CSR fast write, the Scratchpad extracts the write data from the command 
rather than pulling the data from a source over the Pull bus. It then drives the address and writes 
data to all CSRs on the CAP CSR bus, using the same method used for the CAP CSR write. 

The Scratchpad unit supports CAP write operations with burst counts greater than 1, except for fast 
writes which only support a burst count of one. Burst support is required primarily for Reflector 
mode and software must ensure that burst is performed to a noncontiguous set of registers. CAP 
looks at the length field on the command bus and breaks each count into a separate APB write 
cycle, incrementing the CSR number for each bus access. 

Reads

For an APB read, the Scratchpad drives the address, write, select, and enable signals, and then 
waits for the acknowledge signal (APB_RDY_H) from APB device. For a CAP CSR read, the 
address is driven, which controls a tree of multiplexors to select the appropriate CSR. CAP then 
waits for the acknowledge signal (CAP_CSR_RD_RDY). In both cases, when the data is returned, 
the data is sent to the Push Arbiter and the Push Arbiter pushes the data to the destination. 

Note: The CSR bus can support an acknowledge signal since the read operations occur on a separate read 
bus and will not interfere with Fast Write operations.

For reads using the Reflector mode, the write data is pulled from the source identified in 
ADDRESS (either an ME transfer register or Intel XScale® core write buffer), and put into one of 
the Scratchpad Pull Data FIFOs. The data is then sent to the Push Arbiter. The arbiter then moves 
the data to the destination specified in the command. Note that this is the same as a Reflector mode 
write, except the source and destination are identified using opposite fields.

The Scratchpad performs one read operation at a time. In other words, CAP will not begin a APB 
read until a CSR read has completed or vice versa. This simplifies the design by ensuring that when 
lengths are greater than 1, the data is sent to the Push Arbiter in a contiguous order and not 
interleaved with data from a read on the other bus. 

Signal Done 

CAP can provide a signal to an ME upon completion of a command. For APB and CAP CSR 
operations, CAP signals the ME using the same method as any other target. For Reflector mode 
reads and writes, CAP uses the TOKEN field of the Command to determine whether to signal the 
command initiator, the ME that is the target of the reflection, both, or neither.

7.5.1.3.4 XScale® Core and ME Instructions

Table 72 shows the Intel XScale® core and ME instructions used to access devices on these buses 
and it shows which buses are used during the operation. For example, to read an APB peripheral 
such as a UART CSR, an ME would execute a csr[read] instruction and Intel XScale® core would 
execute a Load(ld) instruction. Data is then moved between the CSR and the Intel XScale® core/
ME by first reading the CSR via the APB bus and then writing the result to the Intel XScale® core/
ME via the Push Bus.
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The following ME registers are normally used by MEs in network processing and are included in 
the CSR block. They are connected to the CAP CSR bus, implying that they can be written at the 
rate of one per cycle. They may also be accessed by other command bus masters (for example, 
XScale), typically for test and debug use.

Table 72. Intel® XScale® Core and ME Instructions

Accessing Read Operation Write Operation

APB Peripheral

Access Method: 
ME: csr[read]
Intel XScale® core: ld

Access Method: 
ME: csr[write]
Intel XScale® core: st

Bus Usages: 
Read source: APB bus
Write dest: Push bus

Bus Usages: 
Read source: Pull Bus
Write dest: APB bus

CAP CSR

Access Method: 
ME: csr[read]
Intel XScale® core: ld

Access Method: 
ME: csr[write], fast_wr

Intel XScale® core: st

Bus Usages: 
Read source: CSR bus
Write dest: Push bus

Bus Usages: 
csr[write] and st

Read source: Pull Bus
Write dest: CSR bus

fast_wr
Write dest: CSR bus

ME CSR or Xfer Register
(Reflector Mode)

Access Method: 
ME: csr[read]
Intel XScale® core: ld

Access Method: 
ME: csr[write]
Intel XScale® core: st

Bus Usages: 
Read source: Pull bus (Address)
Write dest: Push bus(PP_ID)

Bus Usages: 
Reads: Pull Bus (PP_ID)
Write dest: Push bus (Address)



228 Hardware Reference Manual

Intel® IXP2400 Network Processor
SHaC Unit

Table 73. Inter-Process Communication Register Summary

CSR Name Address Description

THD_MSG
(Generic address) 0x000

Address for Microengine 
threads to write a message to 
their specific register.

Refer to Note 1.

THD_MSG_CLR_#_$_&
# = ME cluster number 0 to 1

$ = ME number in cluster. 0 to7 for 
IXP2800. 0 to 3 for IXP2400

& = thread number 0 to7

0x100–0x2FC
Address to read and clear each 
individual THD_MSG.

Refer to Note 1.

THD_MSG_#_$_&
# = ME cluster number 0 to 1

$ = ME number in cluster. 0 to 7 for 
IXP2800. 0 to 3 for IXP2400

& = thread number 0 to7

0x500–0x6FC

Address to read each individual 
THD_MSG_#_$_&.

Refer to Note 1.

For IXP2800, the offset for the 
128 registers are 0x500 + 
(cluster# * 64 + ME# * 8 + 
Thread#) * 4

For IXP2400, the offset for the 
64 registers are 0x500 + 
(cluster# * 64 + ME# * 8 + 
Thread#) * 4

THD_MSG_SUMMARY_0_0 0x004 - Bit vector registers that 
indicates which threads have 
new messages

THD_MSG_SUMMARY_#_$

# = ME cluster number 0 to 1

$ = register number 0 to1

Refer to Note 1.

THD_MSG_SUMMARY_0_1

(IXP2800 only)
0x008

THD_MSG_SUMMARY_1_0 0x00C

THD_MSG_SUMMARY_1_1

(IXP2800 only)
0x010

SELF_DESTRUCT_0 0x014 Write bit number to set a bit in 
these registers and a read 
clears all the bits in the registerSELF_DESTRUCT_1 0x018

INTERTHREAD_SIG 0x01C

Writing a thread and signal 
number to this register 
generates a signal event to the 
thread
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7.5.2 Hash Unit

7.5.2.1 Hash Unit Description

The SHaC unit contains a Hash Unit that can take 48-bit, 64-bit or 128-bit data and produces a 48-
bit, a 64-bit or a 128-bit hash index, respectively. The Hash Unit is accessible by the MEs and the 
Intel XScale® core.

7.5.2.1.1 Hashing Operation

Up to three hash indices can be created using a single ME instruction. The ME hash instructions are 
shown in Example 32.

XSCALE_INT_A 0xb20 Address for Microengine 
threads to set an interrupt to 
the XScale coreXSCALE_INT_B 0xb24

Note 1. 

Each Microengine thread can be programmed to write an 8-bit message to its own 
THD_MSG_#_$_& register. The intent of these registers is to provide a mechanism to have 
the Microengine threads report their current processing status. The interpretation of the 
message is a software semantic between the sender and receiver.

The numbering scheme of the Microengine threads involves the ME cluster, the ME 
number within the cluster and the thread number within each ME. There are two ME 
clusters for both IXP2800/2400. The IXP2800 offers eight MEs per cluster, with numbers 0 
through 7. IXP2400 offers four MEs per cluster, with numbers 0 through 3. 

A Microengine thread writes this register using the fast_wr or csr[write] instruction with the 
generic THD_MSG register address. The data supplied with the instruction is written to the 
actual register associated with the Microengine thread number. CAP takes the generic 
address concatenates it with the ME and context number of the sender to create the 
specific address. The write will also set the bit corresponding to the sender in the 
THD_MSG_SUMMARY_#_$ Register.

The csr[read] instruction or the Intel XScale® core processor read uses the actual 
THD_MSG register addresses to read these registers. There are two addresses to read 
THD_MSG. One will return the read data and clear the THD_MSG (and its corresponding 
THD_MSG_SUMMARY_#_$ bit), the other will return the read data and leave the contents 
of the register intact.

The csr[read] instruction can use either the generic THD_MSG address or the actual 
thread specific THD_MSG_#_$_& register addresses to read these registers. When the 
generic THD_MSG address is used for a read, CAP will determine the actual register in the 
same way as described above in the write description. There are two thread specific 
addresses for each THD_MSG; one will only read the data, the other will read the data and 
clear the THD_MSG register, and also clear the corresponding bit in the 
THD_MSG_SUMMARY_#_$ Register. Reading at the generic address does not do the 
clear function.

Table 73. Inter-Process Communication Register Summary (Continued)

CSR Name Address Description
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7.5.2.2 Hash Unit Block Diagram
Figure 91 shows a block diagram of the Hash Unit. Refer to Figure 91 when reading the following 
subsections.

Example 32. ME Hash Instructions
hash1_48[$xfer], optional_token

hash2_48[$xfer], optional_token

hash3_48[$xfer], optional_token

hash1_64[$xfer], optional_token

hash2_64[$xfer], optional_token

hash3_64[$xfer], optional_token

hash1_128[$xfer], optional_token

hash2_128[$xfer], optional_token

hash3_128[$xfer], optional_token

Where:

$xfer The beginning of a contiguous set of registers that supply the data used 
to create the hash input and receive the hash index upon completion of 
the hash operation.

optional_token sig_done, ctx_swap, defer [1]



Hardware Reference Manual 231

Intel® IXP2400 Network Processor
SHaC Unit

7.5.2.3 Hash Operation

An ME initiates a hash operation by writing a contiguous set of SRAM Transfer Registers and then 
executing the hash instruction. The SRAM Transfer Registers can be specified as either Context-
Relative, or Indirect; Indirect will allow any of the SRAM Transfer Registers to be used. Two 
SRAM Transfer Registers are required to create hash indices for 48-bit and 64-bit and four SRAM 
Transfer Registers to create 128-bit hash indices, as shown in Table 74. In the case of the 48-bit 
hash, the Hash Unit ignores the upper two bytes of the second Transfer Register.

Figure 91. Hash Unit Block Diagram
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Table 74. S Transfer Registers Hash Operands

Register Address

48-Bit Hash Operations

Don't care hash 3[47:32] $xfer n+5

hash 3 [31:0] $xfer n+4

Don't care hash 2[47:32] $xfer n+3

hash 2 [31:0] $xfer n+2

Don't care hash 1[47:32] $xfer n+1

hash 1 [31:0] $xfer n

64-Bit Hash Operations



232 Hardware Reference Manual

Intel® IXP2400 Network Processor
SHaC Unit

Intel XScale® core initiates a hash operation by writing a set of memory-mapped Hash Operand 
Registers, which are built in the Intel XScale® core gasket, with the data to be used to generate the 
hash index. There are separate registers for 48-bit, 64-bit, and 128-bit hashes, as shown in Table 75. 
Only one hash operation of each type can be done at a time. Writing to the last register in each 
group informs the gasket logic that it has all the operands for that operation, and it will then 
arbitrate for Command bus to send the command to the Hash Unit.

hash 3 [63:32] $xfer n+5

hash 3 [31:0] $xfer n+4

hash 2 [63:32] $xfer n+3

hash 2 [31:0] $xfer n+2

hash 1 [63:32] $xfer n+1

hash 1 [31:0] $xfer n

128-Bit Hash Operations

hash 3 [127:96] $xfer n+11

hash 3 [95:64] $xfer n+10

hash 3 [63:32] $xfer n+9

hash 3 [31:0] $xfer n+8

hash 2 [127:96] $xfer n+7

hash 2 [95:64] $xfer n+6

hash 2 [63:32] $xfer n+5

hash 2 [31:0] $xfer n+4

hash 1 [127:96] $xfer n+3

hash 1 [64:95] $xfer n+2

hash 1 [63:32] $xfer n+1

hash 1 [31:0] $xfer n

Table 74. S Transfer Registers Hash Operands (Continued)

Register Address

Table 75. Intel XScale® core Hash Operand Registers

Register Address

48-Bit Hash Operation

Don't care hash [47:32] tbd

hash [31:0] tbd

64-Bit Hash Operation

hash [63:32] tbd

hash [31:0] tbd

128-Bit Hash Operation

hash [127:96] tbd
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For both ME generated commands and Intel XScale® core generated commands, the command 
enters the Command Inlet FIFO. As with the Scratchpad write and RMW operations, signals are 
generated and sent to the Pull Arbiter. The Hash unit Pull Data FIFO allows the data for up to three 
hash operations to be read into the Hash Unit in a single burst. When the command is serviced, the 
first data to be hashed enters the hash array while the next two wait in the FIFO.

The Hash Unit uses a hard-wired polynomial algorithm and a programmable hash multiplier to 
create hash indices. Three separate multipliers are supported, one for 48-bit hash operations, one 
for 64-bit hash operations and one for 128-bit hash operations. The multiplier is programmed 
through registers (HASH_MULTIPLIER_64_1, HASH_MULTIPLIER_64_2, 
HASH_MULTIPLIER_48_1, HASH_MULTIPLIER_48_2, HASH_MULTIPLIER_128_1, 
HASH_MULTIPLIER_128_2, HASH_MULTIPLIER_128_3, HASH_MULTIPLIER_128_4).

The multiplicand is shifted into the hash array sixteen bits at a time. The hash array performs a ones 
complement multiply and polynomial divide, calculated using the multiplier and 16 bits of the 
multiplicand. The result is placed into an output register and also feeds back into the array. This 
process is repeated 3 times for a 48-bit hash (16 bits x 3 = 48), 4 times for a 64-bit hash (16 bits x 4 
= 64) and 8 times for a 128-bit hash (16 x 8 = 128). After an entire multiplicand has been passed 
through the hash array, the resulting hash index is placed into a two-stage output pipeline and the 
next hash is immediately started.

The Hash Unit shares the Scratchpad’s Push Data FIFO. After each hash index is completed, the 
index is placed into a three-stage output pipe and the Hash Unit sends a PUSH_DATA_REQ to the 
Scratchpad to indicate that it has a valid hash index to put into the Push Data FIFO for transfer. The 
Scratchpad will issue a SEND_HASH_DATA signal, transfers the hash index to the Push Data 
FIFO, and sends the data to the Arbiter.

For Intel XScale® core initiated hash operations, Intel XScale® core reads the results from its 
memory-mapped Hash Result Registers. The addresses of Hash Results are the same as the Hash 
Operand Registers. Because of queuing delays at the Hash Unit, the time to complete an operation 
is not fixed. Intel XScale® core can do one of two operations to get the hash results.

• Poll the Hash Done Register. This register is cleared when the Hash Operand Registers are 
written. Bit [0] of Hash Done Register is set when the Hash Result Registers get the return 
result from the Hash Unit (when the last word of the result is returned). Intel XScale® core 
software can poll on Hash Done, and read Hash Result when Hash Done is equal to 
0x00000001.

• Read Hash Result directly. The gasket logic will acknowledge the read only when the result is 
valid. This method will result in Intel XScale® core stalling if the result is not valid when the 
read happens.

The number of clock cycles required to perform a single hash operation is the sum of two or four 
cycles through the input buffers, three, four or eight cycles through the hash array, and two or four 
cycles through the output buffers. Because of the pipeline characteristics of the Hash Unit, 
performance is improved if multiple hash operations are initiated with a single instruction rather 
than separate hash instructions for each hash operation.

hash [64:95] tbd

hash [63:32] tbd

hash [31:0] tbd

Table 75. Intel XScale® core Hash Operand Registers (Continued)

Register Address
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7.5.2.4 Hash Algorithm

The hashing algorithm used by IXP2400 allows flexibility and uniqueness since it can be 
programmed to provide different results for a given input. The algorithm uses binary polynomial 
multiplication and division under modulo-2 addition. The input to the algorithm is a 48-bit, 64-bit 
or 128-bit value.

The data used to generate the hash index is considered to represent the coefficients of an order-47, 
order-63 or order-127 polynomial in x. The input polynomial (designated as A(x)) has the form:

Equation 1.  (48-bit hash operation)

Equation 2.  (64-bit hash operation)

Equation 3.  (128-bit hash operation)

This polynomial is multiplied by a programmable hash multiplier using a modulo-2 addition. The 
hash multiplier, M(x) is stored in Hash Unit CSRs and represents the polynomial.

Equation 4.  (48-bit hash operation)

Equation 5.  (64-bit hash operation)

Equation 6.  (128-bit hash operation)

Since multiplication is performed using modulo-2 addition, the result is an order-94 polynomial, an 
order-126 polynomial or an order-254 polynomial with coefficients that are also 1 or 0. This 
product is divided by a fixed generator polynomial given by:

Equation 7.  (48-bit hash operation)

Equation 8.  (64-bit hash operation)

Equation 9.  (128-bit hash operation)

The division results in a quotient Q(x), a polynomial of order-46, order-62 or order-126, and a 
remainder R(x), a polynomial of order-47, order-63 or order-127. The operands are related by the 
equation:

Equation 10. 

The generator polynomial has the property of irreducibility. As a result, for a fixed multiplier M(x), 
there is a unique remainder R(x) for every input A(x). The quotient Q(x), can then be then 
discarded, since input A(x) can be derived from its corresponding remainder R(x). A given 
bounded set of input values A(x) (say 8 K or 16 K table entries), with bit weights of an arbitrary 
density function can be mapped one-to-one into a set of remainders R(x) such that the bit weights 
of the resulting Hashed Arguments (a subset of all values of R(x) polynomials) are all about equal.

In other words, there is a high likelihood that the low order set of bits from the Hash Arguments are 
unique, so they can be used to build an index into the table. If the hash algorithm does not provide 
a uniform hash distribution for a given set of data, the programmable hash multiplier (M(x)) may 
be modified to provide better results.

A48 x( ) a0 a1x a2x
2 … a46x

46
a47x

47
+ + + + +=

A64 x( ) a0 a1x a2x
2 … a62x

62
a63x
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+ + + + +=
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126
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127
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69
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98
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Table 76. Scratchpad Memory Register Summary

CSR name Address Description

SCRATCH_RING_BASE_# 0x0#0 Base address of the Ring.

SCRATCH_RING_HEAD_# 0x0#4 Offset of head entry from Base.

SCRATCH_RING_TAIL_# 0x0#8 Offset of tail entry from Base.

RESERVED 0xFC

Table 77. Hash Multiplier Register Summary

CSR name Address Description

HASH_MULTIPLIER_48_0 0x00 Least significant 32 bits of 48-bit Hash 
Multiplier.

HASH_MULTIPLIER_48_1 0x04 Most significant 16 bits of 48-bit Hash 
Multiplier.

HASH_MULTIPLIER_64_0 0x08 Least significant 32 bits of 64-bit Hash 
Multiplier.

HASH_MULTIPLIER_64_1 0x0C Most significant 32 bits of 64-bit Hash 
Multiplier.

HASH_MULTIPLIER_128_0 0x10 Least significant 32 bits of 128-bit Hash 
Multiplier.

HASH_MULTIPLIER_128_1 0x14 Bits 32 to 63 of the 128-bit hash 
multiplier.

HASH_MULTIPLIER_128_2 0x18 Bits 64 to 95 of the 128-bit hash 
multiplier.

HASH_MULTIPLIER_128_3 0x1C Most significant 32 bits of 128-bit Hash 
Multiplier.

Table 78. Global Chassis Registers

Register Name Address Description

PRODUCT_ID 0x00

MISC_CONTROL 0x04

STRAP_OPTIONS 0x18

RESET_0 0x0C

RESET_1 0x10

CLOCK_CONTROL 0x14

MCCR (IXP2400 Only) 0x08
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Media and Switch Fabric Interface 8

8.1 Overview
The Media and Switch Fabric (MSF) Interface is used to connect IXP2400 to a physical layer 
device (PHY) and/or to a switch fabric. The MSF has the following major features:

• Separate and independent 32-bit receive and transmit buses. Each bus may be configured 
independently.

• A configurable bus interface; the bus may function as a single 32-bit bus, or it can be 
channelized into independent buses: two 16-bit or four 8-bit buses, or one 16-bit bus and two 
8-bit buses. Each channel may be configured to operate in either UTOPIA or POS-PHY 
modes.

• The Media bus operates from 25 to 133 MHz. 

• UTOPIA Level 1/2/3 and POS-PHY Level 2/3 single-PHY (SPHY) master operation; 8-, 16-, 
or 32-bit buses are supported.

• UTOPIA Level 3 multi-PHY (MPHY) master operation with a 32-bit-wide bus; up to 32 slave 
ports are supported (16 ports in IXP2400 A0/A1); polling may be single RxClav/TxClav, or 
Direct Status Indication (maximum of four slave ports).

• POS-PHY Level 3 multi-PHY (MPHY) master operation with a 32-bit-wide bus with in-band 
addressing; up to 32 slave ports (16 ports in A0/A1 silicon) are supported, with packet-level 
polling.

• POS-PHY Level 2 and UTOPIA Level 2 master mode operation on one 16-bit-wide bus; up to 
31 slave ports are supported; polled status mode is supported, and direct status indication is not 
supported. (This feature is only available in IXP2400 B0)

• POS-PHY Level 3 (SPI3) slave mode operation in SPHY mode on 32-bit bus, 2 x 16-bit bus, 4 
x 8-bit bus, 1 x 16-bit + 2 x 8-bit bus. Note that this slave mode is not fully SPI3-specification-
compliant and is intended primarily for daisy-chaining IXP2400s in certain applications. (This 
feature is only available in IXP2400 B0)

• Support for CSIX-L1 protocol with a 32-bit-wide bus. The only deviation from the CSIX-L1 
specification is that the IXP2400 is clocked by a globally synchronous clock and is electrically 
3.3V LVTTL.

• Support for interprocessor CBus for communicating link level and fabric level flow control 
information between egress and ingress processors in CSIX mode.

• Interface to internal buses: command, SRAM push/pull, and DRAM push/pull.

Figure 92 shows one expected usage model.
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Note: In this document, UTOPIA always refers to cell transport; POS-PHY refers to variable length 
packet transport; CSIX refers to CFrame transport.

8.2 Reference Documents
The reader should be familiar with the following specifications:

• UTOPIA Specification, Level 1, Version 2.01, March 21, 1994

• UTOPIA Level 2 Specification, Version 1.0, June 1995

• UTOPIA 3 Physical Layer Interface, November 1999

• POS-PHY Level 2 Specification, Issue 5, December 1998

• POS-PHY Level 3 Specification, Issue 4, June 2000

• SPI-3 Specification, June 2000

• Frame Based ATM Interface (Level 3), March 2000

• CSIX-L1: Common Switch Interface Specification -L1, Version 1.0, August 5, 2000

8.3 Media Bus Interface
The MSF consists of separate receive and transmit interfaces. Each of the receive and transmit 
interfaces can be separately configured for either UTOPIA (Level 1, 2, and 3), POS-PHY (Level 2 
and 3) or CSIX protocols.

Figure 92. An Expected Usage Model
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Note that any device that connects to the MSF interface must not exhibit any protocol violation 
with respect to the specifications of the protocols. Otherwise, the MSF hardware behavior is 
undefined. As an example, a device that operates in the POS-PHY Level 2 configuration must 
deassert RXVAL after the RXEOF of the frame has been observed, in order to comply with the 
POS-PHY Level 2 specification.

The receive and transmit ports are unidirectional and completely independent of each other. Each 
port has 32 data signals, two clocks, a set of control signals, and a set of parity signals, all of which 
use 3.3V LVTTL signalling. 

In UTOPIA and POS-PHY modes, each port can function as a single 32 bit interface, or can be 
subdivided into a combination of 16 bit or 8 bit channels. When running in channelized mode each 
channel operates independently. Each channel is a point-to-point connection to a single PHY. This 
is also known as single-PHY (SPHY) mode.

In addition to single-PHY mode, the IXP2400 also supports multi-PHY (MPHY) mode. In MPHY 
mode, the 32-bit bus is shared by up to 32 ports; per the UTOPIA Level 3 and POS-PHY Level 3 
specifications, all ports must reside within one physical device. Also, one 16-bit bus is shared by up 
to 31 ports per the UTOPIA Level 2 and POS-PHY Level 2 protocol. On the 16-bit bus, the ports 
can be resident in up to four physical devices.

Note: Only master mode is supported in UTOPIA, POS_PHY Level 2 and POS-PHY Level 3 MPHY 
mode; POS-PHY Level 3 (SPI3) SPHY slave mode is supported; however, this is not fully 
compliant with the SPI3 specification.

Each interface has two clocks; RXCLK01/TXCLK01 is used by the ports associated with bits 
[15:0]; RXCLK23/TXCLK23 is used by the ports associated with bits [31:16]. This applies only to 
the 4x8, 2x16, and 1x16+2x8 SPHY modes, and allows each half of the bus to be clocked 
independently. In 1x32 SPHY, MPHY, or CSIX modes, only RXCLK01/TXCLK01 is used and is 
internally routed to all the logic; RXCLK23/TXCLK23 are tied to ground.

All signals are sampled only on the rising edge of the clock.

In addition to the UTOPIA, POS-PHY, and CSIX interfaces, there is also an interface called CBus 
which is used in CSIX mode to forward link level and fabric level flow control information from 
the egress (receive) processor to the ingress (transmit) processor.

The use of the pins is based on whether or not the port is in UTOPIA, POS-PHY, or CSIX mode. 
Tables in Section 8.4 show how the external pin names map to the signal names referenced in the 
UTOPIA, POS-PHY, and CSIX specifications. The tables show all the possible signals that could 
be used for a particular standard. However, a particular mode within a standard, such as MPHY or 
SPHY, will not necessarily use all the signals shown in a column. 

Note: The Media bus is 3.3V LVTTL using globally synchronous (common) clocking. Thus the bus does 
not have electrical or clocking compatibility with the CSIX-L1 specification, which is 2.5V 
LVCMOS with source synchronous clocking.

8.3.1 UTOPIA
UTOPIA is a protocol for cell transfer between a physical layer (PHY) device and a link layer 
device (IXP2400). UTOPIA is optimized for the transfer of fixed sized ATM cells.

UTOPIA Levels 1, 2, and 3 are supported so that IXP2400 can talk to a wide variety of devices 
running at different speeds, as shown in Table 79.
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IXP2400’s implementation is more flexible in that all bus widths can be run from the frequency 
range of 25 to 133 MHz.

IXP2400 supports both single-PHY (SPHY) mode, described in Section 8.3.1.1 and multi-PHY 
(MPHY) mode, described in Section 8.3.1.2.

8.3.1.1 Single-PHY (SPHY) Mode

8.3.1.1.1 Bus Partitioning and Signal Grouping

In SPHY mode, the 32 bit interface may be subdivided into a combination of 8 or 16 bit channels 
(channelization); each channel has its own set of control signals (since there are only two clocks on 
each interface, adjacent 8 bit channels must share a common clock) and can operate independently 
of the other channels. Each channel is a point-to-point connection to a single PHY.

Note: The terms port and channel are used interchangeably throughout this document.

Table 80 shows the supported bus modes.

Table 79. UTOPIA Levels 1-, 2-, and 3-Supported Specifications

Specification Speed Bus Width Frequency

UTOPIA Level 1 OC-3 8 bits 25 MHz

UTOPIA Level 2 OC-12 16 bits 50 MHz

UTOPIA Level 3 OC-48 32 bits 104 MHz

Table 80. Supported Bus Modes

Bus Partitioning Port Number

1x32

0

N/A

N/A

N/A

2x16

0

N/A

2

N/A

4x8

0

1

2

3

1x16_2x8

0

N/A

2

3
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The bus partitioning is controlled by the MSF_Rx_Control[Rx_Width] and 
MSF_Tx_Control[Tx_Width] bits.

Each channel may be configured to operate in one of three modes: CSIX, UTOPIA, or POS-PHY. 
This is controlled using the MSF_Rx_Control[Rx_Mode], Rx_UP_Control_{0...3}[CP_Mode], 
MSF_Tx_Control[Tx_Mode], and Tx_UP_Control_{0...3}[CP_Mode] bits.

For example, if IXP2400 is configured for 4x8 mode, channels 0 and 3 can be configured for POS-
PHY mode, and channels 1 and 2 can be configured for UTOPIA mode. (CSIX only runs in 1x32 
mode.)

Table 81 shows which control and data signals are associated with a given port in SPHY UTOPIA 
mode.

Table 81. Signal Usage in SPHY UTOPIA Mode

Bus
Partitioning

Port
Number Signal Groupings

1x32

0
RX: RXCLK01, RXENB[0], RXSOF[0], RXPRTY[0], RXFA[0], RXDATA[31:0]
TX: TXCLK01, TXENB[0], TXSOF[0], TXPRTY[0], TXFA[0], TXDATA[31:0] 

1 N/A

2 N/A

3 N/A

2x16

0
RX: RXCLK01, RXENB[0], RXSOF[0], RXPRTY[0], RXFA[0], RXDATA[15:0]
TX: TXCLK01, TXENB[0], TXSOF[0], TXPRTY[0], TXFA[0], TXDATA[15:0] 

1 N/A

2
RX: RXCLK23, RXENB[2], RXSOF[2], RXPRTY[2], RXFA[2], RXDATA[31:16]
TX: TXCLK23, TXENB[2], TXSOF[2], TXPRTY[2], TXFA[2], TXDATA[31:16] 

3 N/A

4x8

0
RX: RXCLK01, RXENB[0], RXSOF[0], RXPRTY[0], RXFA[0], RXDATA[7:0]
TX: TXCLK01, TXENB[0], TXSOF[0], TXPRTY[0], TXFA[0], TXDATA[7:0]

1
RX: RXCLK01, RXENB[1], RXSOF[1], RXPRTY[1], RXFA[1], RXDATA[15:8]
TX: TXCLK01, TXENB[1], TXSOF[1], TXPRTY[1], TXFA[1], TXDATA[15:8]

2
RX: RXCLK23, RXENB[2], RXSOF[2], RXPRTY[2], RXFA[2], RXDATA[23:16]
TX: TXCLK23, TXENB[2], TXSOF[2], TXPRTY[2], TXFA[2], TXDATA[23:16]

3
RX: RXCLK23, RXENB[3], RXSOF[3], RXPRTY[3], RXFA[3], RXDATA[31:24]
TX: TXCLK23, TXENB[3], TXSOF[3], TXPRTY[3], TXFA[3], TXDATA[31:24]

1x16_2x8

0
RX: RXCLK01, RXENB[0], RXSOF[0], RXPRTY[0], RXFA[0], RXDATA[15:0]
TX: TXCLK01, TXENB[0], TXSOF[0], TXPRTY[0], TXFA[0], TXDATA[15:0] 

1 N/A

2
RX: RXCLK23, RXENB[2], RXSOF[2], RXPRTY[2], RXFA[2], RXDATA[23:16]
TX: TXCLK23, TXENB[2], TXSOF[2], TXPRTY[2], TXFA[2], TXDATA[23:16]

3
RX: RXCLK23, RXENB[3], RXSOF[3], RXPRTY[3], RXFA[3], RXDATA[31:24]
TX: TXCLK23, TXENB[3], TXSOF[3], TXPRTY[3], TXFA[3], TXDATA[31:24]
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8.3.1.1.2 Mode Selection

In order for a channel to operate in UTOPIA mode, the Rx_UP_Control_{0...3}[CP_Mode] or 
Tx_UP_Control_{0...3}[CP_Mode] bit must be 0.

In SPHY mode, each channel may be configured independently for either UTOPIA or POS-PHY 
operation.

8.3.1.1.3 Cell Size

The IXP2400 supports the following cell sizes, based on the port’s bus width, as shown in 
Table 82. This is controlled by the Rx_UP_Control_{0...3}[Cell_Size]/
Tx_UP_Control_{0...3}[Cell_Size] bits. The difference is that when Cell_Size = 0 it is expected 
that the PHY strips out the HEC/UDF byte, but when Cell_Size = 1, the HEC/UDF byte is left in 
the cell and replicated so that the cell size becomes an integral number of transfers on the bus.

Cell size is configurable on a per-port basis in SPHY mode.

Note: Cell_Size = 1 may cause the cell payload to fall on a non-longword (4 byte) boundary, making 
processing more difficult.

8.3.1.1.4 Decode Response Time

The decode response time is the number of clocks which are allowed to elapse between RXENB 
and receive control and data (RXDATA, RXSOF, and RXPRTY).

The UTOPIA Level 1 and Level 2 specifications specify one clock cycle; the UTOPIA Level 3 
specification specifies two clock cycles. The Rx_UP_Control_{0...3}[DR_Time]/
Tx_UP_Control_{0...3}[DR_Time] bit is used to tell the logic what the decode response time is.

Decode response time is configurable on a per-port basis in SPHY mode.

8.3.1.1.5 UTOPIA Level 3 Compatibility Mode

In IXP2400 A0/A1 chips, in UTOPIA SPHY mode, MSF keeps RXENB asserted as long as it has 
room in its receive FIFO. MSF essentially ignores RXFA. It monitors RXSOF for incoming cells. 
RXENB is deasserted only if there is no more room in the receive FIFO to hold any more cells. 
This is called “aggressive RXENB” and it is specifically allowed in the UTOPIA Level 2 
specification, and is useful to avoid bubbles between cells.

The UTOPIA Level 3 is less clear on whether this mode of operation is allowed. In order to 
accommodate slaves which cannot handle “aggressive RXENB” a mode bit has been added to 
provide a “conservative RXENB”.

This mode only works for devices which provide the UTOPIA Level 3 “early” RxClav (RXFA) 
timing; it will not work for UTOPIA Level 1/2 devices in which the RxClav signal for the next cell 
isn’t valid until after the end of the current cell.

Table 82. Supported Cell Sizes

Bus Width Cell_Size = 0 Cell_Size = 1

8 52 bytes 53 bytes

16 52 bytes 54 bytes

32 52 bytes 56 bytes
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In “conservative RXENB” mode, MSF will monitor RXFA and will not assert RXENB until RXFA 
is asserted. When the end of the cell is reached, the FSM will check RXFA again. If it is deasserted, 
it means no more cells are available and the FSM will deassert RXENB. If it is asserted, then the 
FSM will keep RXENB asserted.

“Conservative RXENB” works for x8, x16, and x32 SPHY modes.

8.3.1.1.6 Parity

UTOPIA uses single bit odd parity, independent of the bus width (x8, x16, or x32). Single bit odd 
parity mode is chosen using the Rx_UP_Control_{0...3}[Parity_Mode]/
Tx_UP_Control_{0...3}[Parity_Mode] bit.

Parity mode is configurable on a per-port basis in SPHY mode.

8.3.1.1.7 Handshaking

Only cell level handshaking is supported; octet level handshaking is not supported.

8.3.1.2 Multi-PHY (MPHY) Mode

In MPHY mode, the UTOPIA bus is shared between multiple ports: UTOPIA Level 3 MPHY on 
32-bit bus with up to 32 ports, and UTOPIA Level 2 operation on one 16-bit bus with up to 31 ports 
are supported. Both the above modes are referred to as MPHY-32 (the limitation of 31 ports on the 
16-bit bus is due to the protocol). The 32-bit-wide bus must be a point-to-point connection between 
IXP2400 and the PHY. This implies that all the ports must be implemented inside one physical 
device. The 16-bit-wide bus can support up to four loads, i.e., the total ports can be split across up 
to four physical devices. An 8-bit-wide bus is not supported in MPHY mode.

In MPHY mode, all ports must have the same characteristics; for example, it is not possible to have 
some ports operate in cell mode and others in packet mode, nor is it possible to have some channels 
use odd parity and others use even parity. The port characteristics are chosen using the 
Rx_UP_Control_0 and Tx_UP_Control_0 registers in MPHY-32 mode; in MPHY-4 mode, 
Rx_UP_Control_{0..3} and Tx_UP_Control_{0..3} are used to select the operating mode, and 
must all be programmed to identical values.

8.3.1.2.1 Bus Partitioning and Signal Grouping

Table 83 shows signal usage when running in MPHY mode.

Table 83. Signal Usage in MPHY Mode

Bus
Partitioning

Port
Number Signal Groupings

1x32

0–3 with 
direct 
status 

indication

RX: RXCLK01, RXENB[0], RXSOF[0], RXPRTY[0], RXFA[3:0], RXADDR[4:0], 
RXDATA[31:0]
TX: TXCLK01, TXENB[0], TXSOF[0], TXPRTY[0], TXFA[3:0], TXADDR[4:0], 
TXDATA[31:0] 

0–31 with 
single 

RxClav/
TxClav

RX: RXCLK01, RXENB[0], RXSOF[0], RXPRTY[0], RXPFA, RXADDR[4:0], 
RXDATA[31:0]
TX: TXCLK01, TXENB[0], TXSOF[0], TXPRTY[0], TXPFA, TXADDR[4:0], 
TXDATA[31:0]
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8.3.1.2.2 Mode Selection

UTOPIA MPHY mode is selected using MSF_Rx_Control[Rx_MPHY_Mode] and 
MSF_Tx_Control[Tx_MPHY_Mode]. MSF_Rx_Control[Rx_MPHY_Level2] and 
MSF_Tx_Control[Tx_MPHY_Level2] are used to select between UTOPIA Level 2 and Level 3 
operation.

8.3.1.2.3 Cell Size

Cell size support is the same as in SPHY mode. It is selected using Rx_UP_Control_0[Cell_Size]/
Tx_UP_Control_0[Cell_Size].

8.3.1.2.4 Decode Response Time

Decode response time is required to be two clock cycles, per the UTOPIA Level 3 specification. 
This is the time between the following event pairs:

• RXADDR[4:0] -> RXPFA

• RXENB -> RXSOF, RXDATA, RXPRTY

Rx_UP_Control_0[DR_Time] and Tx_UP_Control_0[DR_Time] must be programmed for two 
clock cycle decode response time.

The POS-PHY Level 2 specification specifies one clock cycle. However, the IXP2400 supports 
both 1- and 2-clock-cycle decode response times in POS-PHY Level 2 mode. The 2-clock-cycle 
option allows the bus to be overclocked beyond 50 MHz. Thus, the Rx_UP_Control_0[DR_Time] 
or Tx_UP_Control_0[DR_Time] bit may be programmed for 1- or 2-clock-cycle decode response 
time.

8.3.1.2.5 Parity

Parity is the same as SPHY mode. Parity mode is selected using Rx_UP_Control_0[Parity_Mode] 
or Tx_UP_Control_0[Parity_Mode].

8.3.1.2.6 Handshaking

There are two types of handshaking supported in MPHY mode. This is selected using 
MSF_Rx_Control[Rx_MPHY_Poll_Mode] and MSF_Tx_Control[Tx_MPHY_Poll_Mode].

The first type of handshaking is direct status. Each port has its own status signal, and no polling is 
required.The PHY cannot have more than four ports, and each port has its own status signal: 
RXFA[x] and TXFA[x].

The second is polled status. The PHY may have up to 32 ports, and provides only one shared status 
signal for all 32 ports: RXPFA and TXPFA. Status is obtained by polling using RxAddr[4:0] and 
TxAddr[4:0].

8.3.2 POS-PHY
IXP2400 supports POS-PHY (Packet Over SONET) mode. POS-PHY supports variable length 
packets rather than fixed size cells.

POS-PHY Levels 2 and 3 are supported so that IXP2400 can talk to a wide variety of devices 
running at different speeds, as shown in Table 84.
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IXP2400’s implementation is more flexible in that all bus widths can be run from the frequency 
range of 25 to 133 MHz.

Note: POS-PHY Level 3 has also been standardized through the Optical Internetworking Forum and is 
called SPI-3, and through the ATM Forum, where it is called “Frame Based ATM Interface (Level 
3)”.

Bus mode is programmable on a per-port basis. Bus mode is selected using the 
MSF_Rx_Control[Receive_Mode] and UP_Receive_Control{0..3}[CP_Mode] or 
MSF_Tx_Control[Transmit_Mode] and UP_Transmit_Control{0..3}[CP_Mode] bits.

The IXP2400 supports both single-PHY (SPHY) and multi-PHY (MPHY) modes. They are 
described separately in Section 8.3.2.1 and Section 8.3.2.2.

8.3.2.1 Single PHY (SPHY) Mode

8.3.2.1.1 Bus Partitioning and Signal Grouping

The bus partitioning is the same as for UTOPIA mode, but with additional signals and protocol 
added to support variable length packet transfer.

IXP2400 will support the POS-PHY protocol for 8-, 16-, 32-bit modes, with operating frequencies 
ranging from 25 to 133 MHz.

Table 85 shows which control and data signals are associated with a given port in POS-PHY mode.

Table 84. POS-PHY Levels 2 and 3-Supported Specifications

Specification Speed Bus Width Frequency

POS-PHY Level 2 OC-12 16 bits 50 MHz

POS-PHY Level 3 OC-12 8 bits 104 MHz

POS-PHY Level 3 OC-48 32 bits 104 MHz

Table 85. Signal Usage in POS-PHY Mode

Bus
Partitioning

Port
Number Signal Groupings

1x32

0

RX: RXCLK01, RXENB[0], RXSOF[0], RXEOF[0], RXVAL[0], RXERR[0], 
RXPRTY[0], RXFA[0], RXPADL[1:0], RXDATA[31:0]
TX: TXCLK01, TXENB[0], TXSOF[0], TXEOF[0], TXERR[0], TXPRTY[0], 
TXFA[0], TXPADL[1:0], TXDATA[31:0] 

1 N/A

2 N/A

3 N/A
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8.3.2.1.2 Mode Selection

In order for a channel to operate in POS-PHY mode, the Rx_UP_Control_{0...3}[CP_Mode] or 
Tx_UP_Control_{0...3}[CP_Mode] bit must be 1.

8.3.2.1.3 Decode Response Time

The decode response time is the number of clocks which are allowed to elapse between RXENB 
and receive control and data (RXDATA, RXSOF, RXEOF, RXVAL, and RXPRTY).

2x16

0

RX: RXCLK01, RXENB[0], RXSOF[0], RXEOF[0], RXVAL[0], RXERR[0], 
RXPRTY[0], RXFA[0], RXPADL[0], RXDATA[15:0]
TX: TXCLK01, TXENB[0], TXSOF[0], TXEOF[0], TXERR[0], TXPRTY[0], 
TXFA[0], TXPADL[0], TXDATA[15:0] 

1 N/A

2

RX: RXCLK23, RXENB[2], RXSOF[2], RXEOF[2], RXVAL[2], RXERR[2], 
RXPRTY[2], RXFA[2], RXPADL[1], RXDATA[31:16]
TX: TXCLK23, TXENB[2], TXSOF[2], TXEOF[2], TXERR[2], TXPRTY[2], 
TXFA[2], TXPADL[1], TXDATA[31:16] 

3 N/A

4x8

0

RX: RXCLK01, RXENB[0], RXSOF[0], RXEOF[0], RXVAL[0], RXERR[0], 
RXPRTY[0], RXFA[0], RXDATA[7:0]
TX: TXCLK01, TXENB[0], TXSOF[0], TXEOF[0], TXERR[0], TXPRTY[0], 
TXFA[0], TXDATA[7:0]

1

RX: RXCLK01, RXENB[1], RXSOF[1], RXEOF[1], RXVAL[1], RXERR[1], 
RXPRTY[1], RXFA[1], RXDATA[15:8]
TX: TXCLK01, TXENB[1], TXSOF[1], TXEOF[1], TXERR[1], TXPRTY[1], 
TXFA[1], TXDATA[15:8]

2

RX: RXCLK23, RXENB[2], RXSOF[2], RXEOF[2], RXVAL[2], RXERR[2], 
RXPRTY[2], RXFA[2], RXDATA[23:16]
TX: TXCLK23, TXENB[2], TXSOF[2], TXEOF[2], TXERR[2], TXPRTY[2], 
TXFA[2], TXDATA[23:16]

3

RX: RXCLK23, RXENB[3], RXSOF[3], RXEOF[3], RXVAL[3], RXERR[3], 
RXPRTY[3], RXFA[3], RXDATA[31:24]
TX: TXCLK23, TXENB[3], TXSOF[3], TXEOF[3], TXERR[3], TXPRTY[3], 
TXFA[3], TXDATA[31:24]

1x16_2x8

0

RX: RXCLK01, RXENB[0], RXSOF[0], RXEOF[0], RXVAL[0], RXERR[0], 
RXPRTY[0], RXFA[0], RXPADL[0], RXDATA[15:0]
TX: TXCLK01, TXENB[0], TXSOF[0], TXEOF[0], TXERR[0], TXPRTY[0], 
TXFA[0], TXDATA[15:0]

1 N/A

2

RX: RXCLK23, RXENB[2], RXSOF[2], RXEOF[2], RXVAL[2], RXERR[2], 
RXPRTY[2], RXFA[2], RXDATA[23:16]
TX: TXCLK23, TXENB[2], TXSOF[2], TXEOF[2], TXERR[2], TXPRTY[2], 
TXFA[2], TXDATA[23:16]

3

RX: RXCLK23, RXENB[3], RXSOF[3], RXEOF[3], RXVAL[3], RXERR[3], 
RXPRTY[3], RXFA[3], RXDATA[31:24]
TX: TXCLK23, TXENB[3], TXSOF[3], TXEOF[3], TXERR[3], TXPRTY[3], 
TXFA[3], TXDATA[31:24]

Table 85. Signal Usage in POS-PHY Mode

Bus
Partitioning

Port
Number Signal Groupings
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The POS-PHY Level 2 specification specifies one clock cycle. The POS-PHY Level 3 
specification specifies two clock cycles. The Rx_UP_Control_{0...3}[DR_Time] or 
Tx_UP_Control_{0...3}[DR_Time] bit is used to tell the logic what the decode response time is.

Decode response time is configurable on a per-port basis in SPHY mode.

8.3.2.1.4 Parity

POS-PHY allows both single bit even or odd parity, independent of the bus width (x8, x16, or x32). 
The parity mode is chosen using the Rx_UP_Control_{0...3}[Parity_Mode] or 
Tx_UP_Control_{0...3}[Parity_Mode] bit.

Parity mode is configurable on a per-port basis.

8.3.2.2 Multi-PHY (MPHY) Mode

Multi-PHY, or MPHY mode, is supported for POS-PHY mode. Both POS-PHY Level 2 and Level 
3 MPHY modes are supported.

8.3.2.2.1 POS-PHY Level 3 Mode

One of the major functional changes in POS-PHY Level 3 is the addition of in-band addressing. In-
band addressing allows up to 256 ports to be addressed. Addresses are transferred not using 
sideband address signals but using by multiplexing addresses on the data path (hence the name “in-
band”). The IXP2400 supports a maximum of 32 ports.

On receive, the PHY or framer device will be programmed to deliver data in 64, 128, or 256 byte 
bursts. The PHY will provide an eight bit address on the data bus and assert RSX, followed by a 
burst of data. In this model, the PHY is responsible for picking which port goes next; IXP2400 
cannot select the port to transfer receive data from.

On transmit, IXP2400 will also be limited to support 32 ports on the 32-bit bus.

In MPHY-4 mode, both direct status and polled modes will be supported. In direct status mode, 
status for each of the four ports carried on the TXFA[3:0] signals. In polled mode, TXADDR[4:0] 
is used to poll the TXPFA signal to determine which FIFOs in the PHY have room to hold transmit 
data.

In MPHY-32 mode, only polled mode will be supported. IXP2400 will use TXADDR[4:0] to poll 
the TXPFA signal to determine which FIFOs in the PHY have room to hold transmit data.

In-band addressing is supported only for 1x32 operation. The POS-PHY Level 3 spec also defines 
in-band addressing for 8 bit, but x8 (and x16) MPHY modes are not supported in IXP2400.

8.3.2.2.2 POS-PHY Level 2 Mode

POS-PHY Level 2 mode is supported only for a 16-bit bus. Only MPHY-32 mode is supported; in 
this mode a maximum of 31 ports is allowed. Per the specification, only out-of-band addressing is 
supported.

On receive, arbitration is performed by MSF rather than the PHY; this is the major functional 
difference between the Level 2 and Level 3 protocols.
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8.3.2.2.3 Bus Partitioning and Signal Grouping

Table 86 shows which control and data signals are associated with a given port in POS-PHY mode.

8.3.2.2.4 Mode Selection

POS-PHY MPHY mode is selected using MSF_Rx_Control[Rx_MPHY_En] or 
MSF_Tx_Control[Tx_MPHY_En] along with the Rx_UP_Control_0[CP_Mode] or 
Tx_UP_Control_0[CP_Mode].

8.3.2.2.5 Decode Response Time

The decode response time is the number of clocks which are allowed to elapse between the 
following event pairs:

• RXENB and receive control and data (RXDATA, RXSOF, RXEOF, RXVAL, and RXPRTY) 

• TXADDR[4:0] and TXPFA

The POS-PHY Level 3 specification specifies two clock cycles. The Rx_UP_Control_0[DR_Time] 
or Tx_UP_Control_0[DR_Time] bit must be programmed for two clock cycle decode response 
time.

The POS-PHY Level 2 specification specifies one clock cycle. However, IXP2400 supports both 1- 
and 2-clock cycle decode response times in POS-PHY Level 2 mode. The 2-clock cycle option 
allows the bus to be overclocked beyond 50 MHz. Thus, the Rx_UP_Control_0[DR_Time] or 
Tx_UP_Control_0[DR_Time] bit may be programmed for 1- or 2-clock cycle decode response 
time.

8.3.2.2.6 Parity

Same as POS-PHY SPHY mode. It is selected using Rx_UP_Control_0[Parity_Mode] or 
Tx_UP_Control_0[Parity_Mode]

8.3.2.3 SPI3 Slave Mode

In SPI3 (POS-PHY Level 3) SPHY mode, any given port may be configured to act as a slave as 
well. The tables below show how pins are used in slave mode for each channel in all the SPHY 
modes:

1. 1x32

2. 2x16

Table 86. Signal Usage in POS-PHY Mode

Bus
Partitioning

Port
Number Signal Groupings

1x32

0–3 byte 
level

RX: RXCLK01, RSX, RXENB[0], RXSOF[0], RXEOF[0], RXVAL[0], RXERR[0], 
RXPRTY[0], RXFA[3:0], RXPADL[1:0], RXDATA[31:0]
TX: TXCLK01, TSX, TXADDR[4:0], TXENB[0], TXSOF[0], TXEOF[0], TXERR[0], 
TXPRTY[0], TXFA[3:0], TXPADL[1:0], TXDATA[31:0] 

0–31 
packet 
level

RX: RXCLK01, RSX, RXADDR[4:0],RXENB[0], RXSOF[0], RXEOF[0], RXVAL[0], 
RXERR[0], RXPRTY[0], RXPADL[1:0], RXDATA[31:0]
TX: TXCLK01, TSX, TXADDR[4:0], TXPFA, TXSFA, TXENB[0], TXSOF[0], 
TXEOF[0], TXERR[0], TXPRTY[0], TXPADL[1:0], TXDATA[31:0]
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3. 4x8

4. 1x16_2x8

It is possible to mix and match master and slave modes; that is, when configured in 2x16, 4x8, or 
1x16+2x8 modes, some channels may act as master and other channels may act as slaves. 

Note: The slave mode implementation is not fully SPI3-compliant. In particular, on the receive slave 
interface, when the master deasserts RXENB, MSF will send up to four more clock cycles of data 
before stopping. The SPI3 specification only allows a maximum of two more clock cycles of data. 
This means the receive slave interface will not work with any receive master which cannot deal 
with this situation. However, the MSF’s receive master interface can handle this (as long as the 
receive FIFO high watermarks are correctly configured), so that loopback or daisy chaining of 
multiple IXP2400s are possible. In addition, the MSF will not hold the previous value on the 
outputs as required by the SPI3 specification when the master deasserts RXENB.

Note: SPI3 is not defined for a 16-bit bus; however, the non-compliant slave mode can be used even for a 
16-bit bus.

Note: In MPHY mode, only master mode is supported.

The pin names assume master mode operation. If a port is configured for slave mode operation, 
then the functions of the pin changes. A receive master port becomes a transmit slave port; 
likewise, a transmit master port becomes a receive slave port.

Figure 93 and Figure 94 show generic examples of master/slave connections.

Figure 93. IXP2400 Tx Master to Tx Slave Connection

Note: One major implication of the spec non-compliance described in the previous note is that when 
daisy chaining IXP2400s, the sending IXP2400 must be configured as a Tx master and the 
receiving IXP2400 must be configured as a Tx slave. Configuring it the other way, i.e., Rx master 
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to Rx slave, will not work. That is because the Rx master expects no more than two more additional 
clock cycles of data after it deasserts RXENB. However, a IXP2400 Rx slave can send up to four 
more clock cycles of data.

Note: While it is possible to configure IXP2400 as an Rx slave, the Rx master must be able to handle the 
non-standard RXENB deassertion to RXDATA latency.

Figure 94. IXP2400 Rx Master to Rx Slave Connection (WILL NOT WORK!)

8.3.2.4 Transmit Slave Operation

A master receive port becomes a slave transmit port. All signals connect one-to-one (the master’s 
TXSOF pin connects to the slave’s RXSOF pin, etc.) with the following three exceptions:
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invert the TXENB signal internally so that internally it behaves the same as the RXVAL 
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2. The slave’s RXENB pin is connected to the master’s TXFA pin. The slave transmit port will 
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8.3.3 CSIX
CSIX (Common Switch Interface) defines an interface between a Traffic Manager (TM) and a 
switch fabric (SF) for ATM, IP, MPLS, Ethernet, and similar data communications applications. 
The CSIX specification is controlled by CSIX, an international consortium organized to create and 
promote a Common Switch Interface—www.csix.org.

CSIX mode is selected using MSF_Rx_Control[Receive_Mode] and 
MSF_Tx_Control[Transmit_Mode].

The basic unit of information transferred between TMs and SFs is called a CFrame. There are a 
number of CFrame types defined as shown in Table 87.

For transmission from IXP2400, CFrames are constructed for transmit under ME software control, 
and written into the transmit buffer. Vertical and horizontal parity generation is done by hardware. 
Also, hardware will automatically handle transmission of idle CFrames with link level RDY bits 
constantly updated when there are no data or control CFrames to transmit.

On receive to IXP2400, Idle CFrames are recognized by hardware and discarded; Flow Control 
CFrames, as well as link level flow control information (DRDY and CRDY bits) are handled by 
hardware (using CBus); all other types are buffered and passed to a ME to be parsed by software. 
However, Link Level Flow Control information in the Base Header of all CFrames (including 
Idle), is handled by hardware.

CSIX mode will only work for 1x32 bus mode. CSIX mode is illegal for 4x8 or 2x16 or 1x16_2x8 
bus modes. Table 88 shows which control and data signals are associated with a given port in CSIX 
mode.

Table 87. CFrames Assignment

Type Encoding CFrame Type

0 Idle

1 Unicast

2 Multicast Mask

3 Multicast ID

4 Multicast Binary Copy

5 Broadcast

6 Flow Control

7 Command and Status

8-F CSIX Reserved

Table 88. Signal Usage in CSIX Mode

Bus
Partitioning

Port
Number Signal Groupings

1x32

0
RX: RXCLK01, RXSOF[0], RXPRTY[0], RXDATA[31:0]
TX: TXCLK01, TXSOF[0], TXPRTY[0], TXDATA[31:0] 

1 N/A

2 N/A

3 N/A
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8.4 MSF Mode Signal Usage
For tables specify the signal usage for each mode supported by the MSF and the mapping of these 
signals to the MSF pinout, see the Intel IXP2400 Network Processor Datasheet.

8.5 Receive
The Section 8.5 discusses the following topics:

• Receive Pins in Section 8.5.1.

• Receive Buffer (RBUF) in Section 8.5.2.

• Receive Status Word in Section 8.5.3.

• Full Element List in Section 8.5.4.

• Rx_Thread_Freelists in Section 8.5.5 and Section 8.5.6.

• Receive Operation Summary in Section 8.5.7

• Flow Control Status in Section 8.5.8

Figure 95 is a simplified Block Diagram of the Receive functionality.
Figure 95. Receive Functionality Simplified Block Diagram
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8.5.1 Receive Pins and Protocol Logic
The receive pins are shared between the three protocols supported by the IXP2400 media block. 
The pins have been covered in detail in Section 8.3, “Media Bus Interface” on page 8-238, so this 
section will concentrate on the protocol logic.

There are three distinct sets of protocol logic:

• UTOPIA

• POS-PHY

• CSIX

8.5.1.1 UTOPIA SPHY

When running in UTOPIA/POS SPHY mode, the 32 receive data pins can be divided into one, two, 
three, or four independent channels. The total width of all the channels must be no more than 32 
bits. Each receive channel has its own set of control signals; however, when running in any x8 
mode, adjacent channels must share a clock. It is also possible to program different characteristics 
(cell vs. packet mode, decode response time, cell size, parity mode) for each individual channel.

There is a separate set of protocol logic for each channel. In UTOPIA SPHY mode, the protocol 
logic is responsible for monitoring the RXFA[3:0] signals to see which PHY has cells available in 
its receive FIFO, and for asserting RXENB to drain cells from the PHY into IXP2400’s receive 
FIFOs. The protocol FSM monitors the RXSOF signal to determine the start of a cell. If IXP2400’s 
receive FIFO backs up, the protocol FSM will implement flow control by deasserting RXENB.

Parity is checked for all receive data.

8.5.1.2 UTOPIA MPHY

There are two distinct modes of operation for UTOPIA MPHY.

The first is direct status. Each port in the PHY has its own status signal (RXFA[3:0]). Only a 
maximum of four ports may be supported in this mode. The protocol logic monitors the RXFA[3:0] 
signals to determine which port has valid cells and uses RXADDR[4:0] to select a port to drain the 
cell from. Flow control is achieved by deasserting RXENB.

The second is polled status. The protocol logic uses RXADDR[4:0] to poll for FIFO status, which 
is returned on the RXPFA signal. RXADDR[4:0] is also used to perform device selection during 
data transfer. A maximum of 32 ports is supported on a 32b bus and a maximum of 31 ports is 
supported on one 16b bus.

Parity is checked for all receive data.

8.5.1.3 POS-PHY SPHY

In POS-PHY SPHY mode, the protocol logic is responsible for monitoring the RXFA[3:0] signals 
to see which PHY has data available in its receive FIFO, and for asserting the RXENB signal 
associated with that port to drain the data from the PHY into IXP2400’s receive FIFOs.
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Data is drained in bursts, based on the size of the RBUF entry. The protocol FSM monitors the 
RXSOF signal to determine the start of a cell, the RXEOF to determine end of cell, and RXERR to 
determine if the packet should be marked as bad. RXVAL is used to qualify receive data. If 
IXP2400’s receive FIFO backs up, the protocol FSM will implement flow control by deasserting 
RXENB to stop the flow of data from the PHY.

8.5.1.4 POS-PHY MPHY

In POS-PHY Level 3 MPHY mode, no polling is required. When IXP2400 is able and ready to 
accept receive data it asserts RXENB; the PHY will select a port to transfer data from, assert RSX 
to supply the address, then supply a burst of data. The protocol logic monitors RSX, address, 
RXSOF, RXEOF, RXVAL, and RXERR to delineate packet boundaries. Note that packets will 
generally not be delivered contiguously to IXP2400; packets from multiple ports will be 
interleaved. The PHY must support a minimum burst size of 64 bytes; 128 and 256 byte burst 
support is optional.

In POS-PHY Level 2 mode, polling is required. IXP2400 will output polling addresses on 
RXADDR[4:0] and examine the PHY’s FIFO status on RXPFA. The FIFO watermarks on the PHY 
should be configured so RXPFA is not asserted unless there is at lease one mpacket’s (64, 128, or 
256 bytes) worth of data (or an end-of-packet) in the FIFO. IXP2400 will also use RXADDR[4:0] 
for port selection. When IXP2400 selects a port, it will keep RXENB asserted for long enough to 
retrieve one mpacket of data. If an end-of-packet condition occurs and there is less than a full 
mpacket’s worth of data, the slave is expected to assert RXEOF and during the last cycle of data 
and keep RXVAL deasserted afterwards. IXP2400 will then deassert RXENB and perform port 
selection again.

8.5.1.5 CSIX

In CSIX mode, the protocol logic is responsible for performing the following functions:

• monitoring the RXSOF signal for incoming CFrames

• checking the length field in the base header and writing the appropriate number of bytes into 
the RBUF element or FCEFIFO

• decoding the type field in the base header to determine the CFrame type (data vs. control vs. 
flow control) and routing to the appropriate destination (RBUF data, RBUF control, 
FCEFIFO, or dropping)

• checking horizontal and vertical parity

• sending incoming link level flow control information from the base header (SF_CRDY and 
SF_DRDY bits) to the ingress processor via CBus

• monitoring for error conditions (such as unexpected RXSOF) and taking appropriate action

8.5.2 RBUF
RBUF is a RAM that holds received data. It stores received data in sub-blocks (referred to as 
elements), and is accessed by MEs reading the received information. RBUF contains a total of 8KB 
of data. RBUF can be divided into one or two segments, depending on 
MSF_Rx_Control[RBUF_Element_Size]. When data is received, the associated status is put into 
the Full_Element_List FIFO and subsequently sent to MEs to process. The Full_Element_List 
insures that received elements are sent to the MEs in the order that they were received.
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RBUF contains a total of 8 kb. of data. The data in each partition is divided into 64, 128, or 256 
bytes elements, based on MSF_Rx_Control[RBUF_Element_Size]. In the case of two partitions, 
both partitions must have the same element size.

Table 89 shows the options for partitioning, partition usage, and element size.

In any of the UTOPIA/POS-PHY modes, RBUF functions as one large pool of elements which are 
shared by all channels.

In CSIX mode, RBUF is partitioned into two segments, partition 0 is meant to be used for data 
CFrames and partition 1 is meant to be used for control CFrames. Partitioning guarantees that there 
will always be room reserved for incoming control CFrames.

Table 90 below shows the order in which received data is stored in RBUF. Each number represents 
a byte, in order of arrival from the receive interface.

MEs can read data from the RBUF to ME transfer registers using the msf[read] instruction, where 
they specify the element number, offset into the element (which must be four byte aligned), and 
number of longwords to read. The length in the instruction can either be in units of longwords or 
quadwords, using the single or double instruction modifiers, respectively. Data is pushed to ME via 
SRAM Push Bus by RBUF control logic.
msf[read, $s_xfer_reg, src_op_1, src_op_2, ref_cnt], optional_token

The source operands are added together to form the RBUF quadword address. ref_cnt is the 
number of longwords or quadwords, which are pushed into two sequential S_Transfer_In registers 
per quadword, starting with $s_xfer_reg.

Using the data in RBUF in Table 90, reading eight bytes from offset 0 into transfer registers 0 and 
1 would yield the following results.

Table 89. RBUF Partitioning Options

Number of 
Partitions Usage Element Size Partition 0 Partition 1

0 UTOPIA or 
POS-PHY

64 bytes 128 elements

N/A128 bytes 64 elements

256 bytes 32 elements

1 CSIX

64 bytes 96 elements (0x00-
0x5f) 32 elements (0x60-0x7f)

128 bytes 48 elements (0x00-
0x2f) 16 elements (0x30-0x3f)

256 bytes 24 elements (0x00-
0x17) 8 elements (0x18-0x1f)

Table 90. RBUF Byte Ordering

Byte Address (Hex) Address 
Offset

4 5 6 7 0 1 2 3 0x0

C D E F 8 9 A B 0x8

14 15 16 17 10 11 12 13 0x10
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MEs can move data from RBUF to DRAM using the instruction:
dram[rbuf_rd, $$s_xfer_reg, src_op1, src_op2, ref_cnt], optional_token

The src_op_1 and src_op_2 operands are added together to form the address in DRAM, so the 
dram instruction must use indirect mode to specify the RBUF address. The ref_cnt operand is the 
number of quadwords which are read from RBUF.

Using data in RBUF in Table 90, reading 16 bytes from offset 0 in RBUF into DRAM would yield 
the following.

Note: DRAM addresses must be aligned to 8 byte boundaries.

For both types of RBUF read, reading an element does not move any RBUF pointers or destroy any 
data, so an element (or parts of an element) can be read as many times as desired.

RBUF elements are not time-stamped in the MSF block; they are time-stamped by the receive 
thread.

The status is specific to UTOPIA/POS or CSIX mode based on MSF_Rx_Control[Receive_Mode].

A description of how RBUF elements are allocated and filled is based on the mode in 
MSF_Rx_Control[Receive_Mode] and is described in Section 8.5.3.1–Section 8.5.3.3.

8.5.3 Receive Status Word
For each RBUF element, a 64 bit Receive Status Word is generated to describe the contents and 
status of the contents of the RBUF element. The format of the RSW depends upon the protocol. 
The RSWs are placed into the Full Elements FIFO to be sent to a receive thread for processing. The 
next three sections describe the loading of RBUF and the format of the Receive Status Word for the 
three different supported protocols.

8.5.3.1 UTOPIA Mode

The RBUF load procedure includes:

1. At chip reset, all elements are marked invalid (available).

Table 91. SRAM Read Transfer Register Byte Ordering

Transfer 
Register 
Number

[31:24] [23:16] [15:8] [7:0]

0 0 1 2 3

1 4 5 6 7

Table 92. DRAM Byte Ordering

DRAM 
Address [63:56] [55:48] [47:40] [39:32] [31:24] [23:16] [15:8] [7:0]

0x0 4 5 6 7 0 1 2 3

0x8 C D E F 8 9 A B
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2. When RXSOF has been asserted, that is, when a new cell is received, an available RBUF 
element is allocated by receive control logic. The entire cell is written into the RBUF entry. 
Because the maximum size of the cell is 56 bytes (in 1x32 mode, with HEC/UDF bytes intact), 
it makes little sense to partition RBUF into 128 or 256 byte elements; 64 byte elements are the 
ideal size for RBUF entries in UTOPIA mode.

The status word contains the information in Table 93:

The definitions of the fields are shown in Table 94:

Table 93. UTOPIA Receive Status Word Format
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Table 94. UTOPIA Receive Status Word Field Definitions

Field Definition

Channel The channel number from which the cell originated. Valid values are 0x0 to 0xf.

MPHY-32 ida

MPHY-32 Channel Identifier. This bit, when set, is used to indicate that the mpacket 
originated from the MPHY-32 port (port 0). This bit is provided to guarantee the uniqueness 
of channel numbers. Data received on the MPHY-32 port will have channel numbers 0x00 to 
0x1f. However, in x16 MPHY-32 mode, the traffic received on the SPHY channels will have 
channel numbers of 0x01, 0x02, 0x03.

SOP Error Bita

This bit is set under the following two conditions
• Multiple RXSOFs seen within one cell time (applies to both SPHY and MPHY modes). If 

the UTOPIA receive logic sees RXSOF asserted again while it is receiving a cell, it will 
set this bit in the Receive Status Word. The two cells (the first interrupted cell and the 
subsequent interrupting cell(s)) will essentially be merged together to form a single cell 
in the RBUF entry. This cell should be discarded. After the error occurs UTOPIA receive 
logic will be processing a cell when it sees the next RXSOF.

• Late RXSOF (applies only to MPHY mode). When the Rx MPHY arbiter grants a port, 
the port number is placed on the RXADDR[4:0] pins and RXENB is asserted to select 
the port number and drain the cell from the PHY. The PHY is expected to respond with 
RXSOF one or two cycles later, depending up the PHY’s decode response time. If the 
PHY responds later than this, this indicates either a protocol violation or incorrect 
programming, and SOP Err will be set. (“Early” RXSOF and “unsolicited” RXSOF are 
ignored by MSF)

Null
Null receive. If this bit is set, it means that the Rx_Thread_Freelist timeout expired before 
any more data was received, and that a null Receive Status Word is being pushed in order to 
keep the receive pipeline flowing. The rest of the fields in the Receive Status Word must be 
ignored; there is no data or RBUF entry associated with a null Receive Status Word.

Par Err Parity Error. If this bit is set, it means that a parity error was detected
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The entire four bytes of the ATM cell header is copied into the upper half of the Receive Status 
Word in order to help accelerate table lookups by having the VCI/VPI information available and 
avoiding the extra step of having the thread retrieve this information from the RBUF entry.

The definitions of the cell header fields are shown in Table 95:

The entire cell, including the header, is written into RBUF. If the HEC/UDF byte(s) are not stripped 
by the PHY (for example, 53 byte cell size), then the payload will not be nicely aligned on a four 
byte boundary.

8.5.3.2 POS-PHY Mode

The way in which RBUF is loaded is:

1. At chip reset, all elements are marked invalid (available).

2. The POS receive logic is burst oriented and will pull in 64, 128, or 256 byte bursts from the 
PHY depending upon RBUF entry size. Each burst is placed into an RBUF entry and a 
Receive Status Word is constructed. If this is the first burst (RXSOF was asserted), then the 
SOP bit is set. If this is the last burst (RXEOF was asserted) then the EOP bit is set. If this is 
neither the first nor last, then neither SOP or EOP is set.

Err

Error. If this bit is set, it means that a parity error or a protocol violation has been detected. In 
general, software should detect protocol violations and discard corrupted cells. The MSF 
hardware does not detect all kinds of protocol violations. In UTOPIA mode, the MSF 
hardware can detect whether RXSOF is asserted before the current cell receive completes. 
If so, the MSF hardware can flag this situation as protocol violation. Note that the A-step 
hardware does not detect or flag any UTOPIA Rx protocol violation. When such situation 
occurs, the MSF hardware ignores it. In B-0, the MSF hardware detects and flags this 
situation as protocol violation.

SOP Start of packet bit. In UTOPIA mode this bit is always set.

EOP End of packet bit. In UTOPIA mode this bit is always set.

Byte_Count
Indicates the number of total number of data bytes present in the cell; this includes both cell 
header and cell payload. Byte_Count should range from 52 to 56 bytes, depending upon bus 
width and cell size. Any value outside of this range indicates that an error has occurred.

Element
The element number in the RBUF that holds the data. This is equal to the offset in RBUF of 
the first byte in the element, shifted right by 6/7/8 places based on the element size 
configured.

a. Bits 7 and 8 of this field are only available in IXP2400 B0.

Table 94. UTOPIA Receive Status Word Field Definitions (Continued)

Field Definition

Table 95. Cell Header Field Definitions

Field Definition

CLP Cell Loss Priority.

PTI Payload Type Identifier.

VCI Virtual Circuit Identifier.

VPI Virtual Path Identifier, bits [7:0]

GFC_VPI
UNI cells: Generic Flow Control
NNI cells: Virtual Path Identifier, bits [11:8]
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3. In POS-PHY SPHY or MPHY-4 operation, it is implied that all packets received through a 
given channel are contiguous; that is, there is no interleaving of mpackets from multiple 
packets; this is not true for MPHY-16 operation.

The status word contains the information in Table 96

The definitions of the fields are shown in Table 97:

The definitions of the fields are shown in Table 97:

Table 96. POS-PHY Receive Status Word Format
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Table 97. POS-PHY Receive Status Word Field Definitions

Field Definition

Channel The channel number from which the cell originated. Valid values are 0x0 to 0xf.

MPHY-32 ida

MPHY-32 Channel Identifier. This bit, when set, is used to indicate that the mpacket originated 
from the MPHY-32 port (port 0). This bit is provided to guarantee the uniqueness of channel 
numbers. Data received on the MPHY-32 port will have channel numbers 0x00 to 0x1f. 
However, in x16 MPHY-32 mode, the traffic received on the SPHY channels will have channel 
numbers of 0x01, 0x02, 0x03.

SOP Errora
If the POS-PHY receive logic sees RXSOF asserted more than once within the same mpacket, 
without RXEOF being asserted in between, it will set this bit, indicating that a protocol violation 
has occurred, and that microcode needs to discard this mpacket and continue discarding 
mpackets until it sees an mpacket with RSW[EOP] set.

Null
Null receive. If this bit is set, it means that the Rx_Thread_Freelist timeout expired before any 
more data was received, and that a null Receive Status Word is being pushed in order to keep 
the receive pipeline flowing. The rest of the fields in the Receive Status Word must be ignored; 
there is no data or RBUF entry associated with a null Receive Status Word.

RX Err Receive Error. If this bit is set, it means that RXERR was asserted during at the end of this 
packet. RX Err is valid if and only if EOP is also set.

Par Err Parity Error. If this bit is set, it means that a parity error was detected
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The Checksum is calculated over the entire packet, 16 bits at a time. The operator +' indicates 1's 
complement addition. If the mpacket is n bytes long, and n is an even number, the formula used to 
calculate the checksum is:

{byte 0, byte 1} +' {byte 2, byte 3} +' ...{byte n-2, byte n-1}

If the mpacket is n bytes long, and n is an odd number, then the formula used to calculate the 
checksum is:

{byte 0, byte 1} +' {byte 2, byte 3} +' ...{byte n-1, 0x00}

In general, it is up to microcode (software) to detect protocol violations. Protocol violations include 
such situations as two SOPs without an intervening EOP, or two EOPs without an intervening 
SOP.It is also up to microcode to drop the corrupted data. A properly designed slave device should 
never generate these protocol violations.The hardware does not filter out data, but attempts to put 
enough information in the Receive Status Word so that microcode can make the correct decision. 
Here are special situations that the receive microcode needs to be able to handle:

In-Band Addr 
Par Err

This is used only in SPI-3 MPHY-4/MPHY-32 mode to indicate that a parity error was seen 
during the in-band address cycle (RSX asserted). 
If the slave device sends one in-band address which results in a parity error, and sends multiple 
back-to-back bursts (mpackets) to that address, then all the mpackets will be marked with Addr 
Err.
If the slave devices sends one in-band address for every burst (mpacket), then only mpackets 
that were preceded by an address parity error will be marked with Addr Err.
The MSF_Interrupt_Status[HP_Error] bit will be set if an address parity error is seen.
AddrErr has no meaning in POS-PHY L2 MPHY mode since in-band addressing is not used in 
that protocol, and should always be 0.

Err

Error. If this bit is set, it means that a Receive error, a Parity error, or a protocol violation is 
detected. If the POS-PHY receive protocol logic sees RXSOF asserted twice within the same 
mpacket, without RXEOF being asserted in between, it raises a protocol violation. In general, 
software should detect protocol violations and discard corrupted packets. The MSF hardware 
does not detect all kinds of protocol violations.

SOP Start of Packet and End of Packet bits. These bits are used to delineate start and end of packet.
{SOP,EOP}
00: This is neither the first not last mpacket, but one in the middle. This also implies that the 
mpacket contains 64 bytes of valid data.
01: This is the last mpacket. The number of valid bytes is specified in the Byte_Count field.
10: This is the first mpacket of the packet. Since EOP wasn’t asserted, it is assumed that the 
mpacket contains 64 bytes of valid data.
11: The entire packet is contained within this mpacket. The length of the packet is in 
Byte_Count.

EOP

Byte_Count Indicates the number of total number of data bytes present; valid values range from 1 to 256 
bytes; 256 bytes is encoded as 0x00. 

Element The element number in the RBUF that holds the data. This is equal to the offset in RBUF of the 
first byte in the element, shifted right by 6/7/8 places based on the element size configured.

Checksum
Ones complement 16-bit checksum for the mpacket. The checksum is calculated over the entire 
mpacket, but excludes the Receive Status Word. It is up to software to sum up all the 
checksums for the mpackets comprising the packet, and subtract out any headers, trailers, etc.

a. Bit 7 and 8 of this field are only available in IXP2400 B0.

Table 97. POS-PHY Receive Status Word Field Definitions (Continued)

Field Definition
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1. If the receive microcode has seen an SOP, and is waiting for the EOP, but instead receives 
another SOP, then it should discard all of the previous packet (which is probably corrupted) 
and the next entire packet as well (which may also be corrupted).

2. If the receive microcode has seen an EOP, and is expecting the SOP for the next packet, but 
instead receives either another EOP or a mpacket with neither SOP nor EOP, then it should 
start discarding mpackets until it sees an EOP. The EOP mpacket should be discarded as well. 
After that, it can resume looking for the next SOP. (NOTE: this situation can only occur in 
MPHY-4 or MPHY modes, and should never occur in SPHY mode.)

3. If the receive microcode sees an mpacket with the Err bit set, but Par Err and Rx Err are not 
set, then what has happened is that the receive protocol logic has seen two SOPs within the 
same mpacket. Microcode should discard this mpacket, and continue discarding mpackets, 
until it sees an EOP. The EOP mpacket should be discarded as well. After that, it can resume 
looking for the next SOP.

8.5.3.3 CSIX Mode

CSIX CFrames are placed into either RBUF or FCEFIFO as follows:

1. At chip reset all RBUF elements are marked invalid (available) and FCEFIFO is empty.

2. When RxSof is asserted and a base header is received, it is stored in a temporary holding 
register. The CRDY and DRDY fields are extracted and held to be placed into 
FC_Egress_Status[SF_CRDY] and [SF_DRDY] fields at the start of a CFrame. If a parity 
error is detected, the flags are cleared as soon as the error is detected. The Type field is used to 
index into the CSIX_Type_Map CSR to determine what to do with the CFrame:

a. Discard (except for the CRDY/DRDY fields as described above)

b. Place into RBUF control partition.

c. Place into RBUF data partition.

d. Place into FCEFIFO.

Note: The CSIX_Type_Map register provides processing flexibility. Normally, Idle CFrames (type 0x0) 
are discarded. Command/Status CFrames (type 0x7) should be placed in the control partition. Flow 
control CFrames (type 0x6) should be placed into FCEFIFO. All others (unicast, multicast, 
broadcast) should be placed into the data partition.

3. If the action is discard, the entire CFrame is discarded, but the CRDY/DRDY bits are placed 
into FC_Egress_Status as described above.

4. If the destination is FCEFIFO, the entire CFrame is placed into FCEFIFO to be sent to the 
ingress IXP2400 over the TXCDATA pins. If there is not enough room in FCEFIFO for the 
entire CFrame (based on the Payload Length in the base header), the entire CFrame is 
discarded and MSF_Interrupt_Status[FCEFIFO_Overflow] is set.

5. If the destination is RBUF, either control or data, an available RBUF element of the 
corresponding type is allocated by the receive control logic. If there is no available element the 
CFrame is discarded and MSF_Interrupt_Status[RBUF_Overflow] is set. If an element is 
allocated, the Type, Payload Length, CR (CSIX reserved), P (private), and extension header 
are placed into a temporary holding registers. As the payload is received, it is placed into the 
RBUF element starting at offset 0x00.

Note: For unicast, multicast, and broadcast CFrames, the first four bytes after the base header is the 
extension header. This will be placed in the Extension Header field of the Receive Status Word. 
However, flow control CFrames have no extension header, so in this case the Extension Header is 
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undefined and should be ignored. Reserved CFrame types are handled as if they have an extension 
header.

6. When all of the payload data is received (per the Payload Length field), the element is marked 
valid. If another RxSof is received prior to receiving the entire payload, the element is marked 
valid and the Length Error status bit is set. If the Payload Length field of the base header is 
greater than the element size (as configured in MSF_Rx_Control[RBUF_Element_Size]), then 
the Length Error status bit is set and the payload bytes above the element size will be 
discarded. The temporary register value is put into Full_Element_List.

Note: In CSIX mode, the element partitioning must be programmed based on the switch fabric usage. For 
example, if the switch never sends a payload greater than 128 bytes, 128 byte elements can be 
selected. Otherwise, 256 byte elements must be selected.

Payload information is put into the Payload area of the element, and Base and Extension Header 
information is put into the Header Status area of the element.

Data received from the bus is placed into the element lowest offset first in big endian order (that is, 
with the first byte received in the most significant byte of the longword, etc).

The Header Status status word is described in Table 98:

The definitions of the fields are in Table 99:

Table 98. CSIX Receive Status Word Format
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Table 99. CSIX Receive Status Word Field Definitions

Field Definition

Type Type Field from the CSIX Base Header

Null

Null receive. If this bit is set, it means that the 
Rx_Thread_Freelist timeout expired before any more 
data was received, and that a null Receive Status Word 
is being pushed in order to keep the receive pipeline 
flowing. The rest of the fields in the Receive Status 
Word must be ignored; there is no data or RBUF entry 
associated with a null Receive Status Word.

VP Err Vertical Parity Error was detected on the CFrame. See 
the description in Section 8.5.9.

HP Err Horizontal Parity Error was detected on the CFrame. 
See the description in Section 8.5.9.
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8.5.4 Full Element List
Receive control hardware maintains the Full Element List to hold the element numbers of valid 
RBUF elements, in the order in which they were received. When an element is marked valid (as 
described previously), its element number is added to the tail of the Full Element List. When a ME 
is notified of element arrival (by having the status written to its SRAM Transfer register; see 
Section 8.5.5, “Rx_Thread_Freelists), it is removed from the head of the Full Element List.

Essentially, the Full Element list stores Receive Status Words. The RSW is autopushed to the 
receive thread in the following order:

1. [31:0] to xfer reg n

2. [63:32] to xfer reg n+1

There are four Full Element Lists, one for each SPHY channel or one of the four MPHY channels 
in MPHY4 mode. The capacity of these four Full Element Lists is as follows:

• Full Element List 0: 128 entries

Length Err

Length Error; the MSF hardware detects that another 
RxSof has been asserted before the full Payload was 
received. The MSF hardware does not detect the late 
RsSof case, i.e., the actual amount of Payload 
received is more than the length that the base header 
specifies. In this case, a Vertical Parity Error will likely 
result because the MSF hardware will be expecting to 
receive vertical parity but receiving payload data 
instead.
Length Error normally also results in a VP Err, although 
it is possible that only Length Err is asserted. This 
indicates that the CFrame that follows the interrupted 
CFrame contains the vertical parity for the interrupted 
CFrame. The user should not assume that if Length Err 
is asserted, VP Err is also asserted.

Err

Error. If this bit is set, it means that a Receive error, a 
Parity error, or a protocol violation is detected. If the 
POS-PHY receive protocol logic sees RXSOF asserted 
twice within the same mpacket, without RXEOF being 
asserted in between, it raises a protocol violation. In 
general, software should detect protocol violations and 
discard corrupted packets. The MSF hardware does 
not detect all kinds of protocol violations.

Element
The element number in the RBUF that holds the data. 
This is equal to the offset in RBUF of the first byte in 
the element, shifted right by 6/7/8 places based on the 
element size configured.

P P (Private) bit from the CSIX Base Header.

CR CR (CSIX Reserved) bit from the CSIX Base Header.

Payload Length Payload Length field from the CSIX Base Header. A 
value of 0x0 indicates 256 bytes.

Extension 
Header

The Extension Header from the CFrame. For flow 
control CFrames this field is undefined because flow 
control CFrames do not have an extension header.

Table 99. CSIX Receive Status Word Field Definitions

Field Definition
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• Full Element List 1: 32 entries

• Full Element List 2: 64 entries

• Full Element List 3: 32 entries

Full Element List 0 has the capacity to hold the maximum number of outstanding RBUF entries, 
which is 128 (8 Kbyte divided by 64-byte minimum RBUF element size). The size of the Full 
Element Lists does not change with RBUF element size. Since some of the Full Element Lists hold 
less than the maximum 128 entries, blocking may happen, even when there are available RBUF 
elements. For instance, when Full Element List 1 is full, a new mpacket that is targeted for channel 
1 can block subsequent mpackets, even though free RBUF elements are available. Note that in this 
case, the RBUF_Overflow_Counter register does not get incremented.

8.5.5 Rx_Thread_Freelists
The Rx_Thread_Freelists are four FIFOs which indicate ME Contexts that are awaiting an RBUF 
element to process. This allows the Contexts to indicate their ready status prior to the reception of 
the data, as a way to eliminate latency. Each entry added to the Freelist also has an associated 
SRAM transfer register and signal number. Each RX_Thread_Freelist is associated with a receive 
bus channel.

The number of entries in each RX_Thread_Freelist is shown in Table 100.

To be added as ready to receive an element, an ME does a msf[write] or msf[fast_write] to the 
Rx_Thread_Freelist address; the data of the CSR write is the ME/Context/S_Transfer Register 
number/Signal number to add to the Freelist. Note that using the data (rather than the command bus 
ID) permits a Context to add either itself or other Contexts as ready.

When there is a valid element at the head of the Full Element List its status will be pushed to an 
ME. The receive control logic pushes the element status information (which includes the element 
number) to the ME in the head entry of Rx_Thread_Freelist. It then removes that thread from the 
Rx_Thread_Freelist, sends an Event Signal to the ME, and removes the element from Full Element 
List. See Section 8.5.6, “Rx_Thread_Freelist Timeout” on page 8-266 for more detail.

Note: A Context waiting on status must not read the S_Transfer register until it has been signaled.

In the event that Rx_Thread_Freelist is empty, valid element numbers will be held in Full Element 
List until an entry is put into Rx_Thread_Freelist.

The number of available Rx_Thread_Freelists and how they are assigned to channels depends upon 
the operating mode.

Table 100. RX_Thread_Freelist Entries

FreeList # # of entries

RX_Thread_Freelist_0 64

RX_Thread_Freelist_1 16

RX_Thread_Freelist_2 32

RX_Thread_Freelist_3 16
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8.5.5.1 UTOPIA and POS-PHY SPHY Modes

Table 101 shows which Rx_Thread_Freelist is associated with a given channel when running in 
either UTOPIA or POS_PHY SPHY modes.

8.5.5.2 UTOPIA/POS-PHY MPHY-4 Mode

In UTOPIA/POS-PHY MPHY-4 mode, one to four ports share the 32 bit bus; each port has its own 
freelist, as shown in Table 102.

8.5.5.3 UTOPIA/POS-PHY MPHY-32 Mode

In UTOPIA or POS-PHY MPHY-32 mode, traffic from all 32 ports funnel into a single RBUF; 
each mpacket is tagged with the port number from which it originated, as shown in Table 103.

Table 101. Rx_Thread Freelist Association in UTOPIA and POS-PHY SPHY Modes

Receive Width Port Number RX Thread Freelist Number

1x32 0 Rx_Thread_Freelist_0

2x16
2 Rx_Thread_Freelist_2

0 Rx_Thread_Freelist_0

4x8

3 Rx_Thread_Freelist_3

2 Rx_Thread_Freelist_2

1 Rx_Thread_Freelist_1

0 Rx_Thread_Freelist_0 

1x16_2x8

3 Rx_Thread_Freelist_3

2 Rx_Thread_Freelist_2

0 Rx_Thread_Freelist_0

Table 102. Rx_Thread Freelist Association in UTOPIA/POS-PHY MPHY-4 Mode

Receive Width Port Number RX Thread Freelist Number

1x32 

0 Rx_Thread_Freelist_0

1 Rx_Thread_Freelist_1

2 Rx_Thread_Freelist_2

3 Rx_Thread_Freelist_3

Table 103. Rx_Thread Freelist Association in UTOPIA/POS-PHY MPHY-32 Mode

Receive Width Port Number RX Thread Freelist Number

1x32 0–31 Rx_Thread_Freelist_0
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8.5.5.4 UTOPIA/POS-PHY 16 Bit MPHY + 8 Bit 
SPHY + 8 Bit SPHY

8.5.5.5 UTOPIA/POS-PHY 16 Bit MPHY + 16 Bit SPHY

8.5.5.6 CSIX Mode

In CSIX mode, data and control CFrames can either have individual Rx_Thread_Freelists or share 
a Rx_Thread_Freelist, depending upon the MSF_Rx_Control[CSIX_Freelist] bit.

Table 104 shows freelist parameters when freelists are individual.

Table 105 shows freelist parameters when freelists are shared.

8.5.6 Rx_Thread_Freelist Timeout
Each Rx_Thread_Freelist has an associated countdown timer. If the timer expires and no new 
receive data is available, the receive logic will autopush a Null Receive Status Word to the next 
thread on the Rx_Thread_Freelist. A Null Receive Status Word has the Null bit set, and does not 
have any data or RBUF entry associated with it.

The Rx_Thread_Freelist timer is useful for certain applications. Its primary purpose is to keep the 
receive processing pipeline (implemented as microcode running on the MEs) moving even when 
the line has gone idle. It is especially useful if the pipeline is structured to handle mpackets in 
groups, for example, eight mpackets at a time. If seven mpackets are received, then the line goes 

Receive Width Port Number RX Thread Freelist Number

x16 MPHY 0 Rx_Thread_Freelist_0 

x8 SPHY 2 Rx_Thread_Freelist_2 

x8 SPHY 3 Rx_Thread_Freelist_3 

Receive Width Port Number RX Thread Freelist Number

x16 MPHY 0 Rx_Thread_Freelist_0 

x16 SPHY 2 Rx_Thread_Freelist_2 

Table 104. Rx_Thread Freelist Association in CSIX Mode,
MSF_Rx_Control[CSIX_Freelist]=0

Receive Width Port Number RX Thread Freelist Number

1x32 
Data Rx_Thread_Freelist_0

Control Rx_Thread_Freelist_1

Table 105. Rx_Thread Freelist Association in CSIX Mode,
MSF_Rx_Control[CSIX_Freelist]=1

Receive Width Port Number RX Thread Freelist Number

1x32 Data and 
Control Rx_Thread_Freelist_0
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idle, then the timeout will trigger the autopush of a null Receive Status Word, filling the eighth slot 
and allowing the pipeline to advance. Another example is if one valid mpacket is received before 
the line goes idle for a long period; seven null Receive Status Words will be autopushed, allowing 
the pipeline to proceed. Typically the timeout interval is programmed to be slightly larger than the 
minimum arrival time of the incoming cells or packets.

The timer is controlled using the Rx_Thread_Freelist_Timeout_# CSR. The timer may be enabled 
or disabled, and the timeout value specified using this CSR.

The following rules define the operation of the Rx_Thread_Freelist timer.

1. Writing a non-zero value to the Rx_Thread_Freelist_Timeout_# CSR both resets the timer and 
enables it. Writing a zero value to this CSR resets the timer and disables it.

2. If the timer is disabled, then only valid (non-null) Receive Status Words are autopushed to the 
receive threads; null Receive Status Words are never pushed.

3. If the timer expires and the Rx_Thread_Freelist is non-empty, but there is no mpacket 
available, this will trigger the autopush of a null Receive Status Word.

4. If the timer expires and the Rx_Thread_Freelist is empty, the timer stays in the EXPIRED state 
and is not restarted. A null Receive Status Word cannot be autopushed, since the logic has no 
destination to push anything to.

5. An expired timer is reset and restarted if and only if an autopush, null or non-null, is 
performed.

8.5.7 Receive Operation Summary
Received cells, CFrames, or packets (which in this context are both called mpackets) are placed 
into the RBUF, and then, when marked valid, are immediately handed off to ME to process. 
Normally some number of Contexts will be assigned to receive processing. Those Contexts will 
have their number added to the Rx_Thread_Freelist (via msf[write] or msf[fast_write]) and 
then will go to sleep to wait for arrival of an mpacket (or alternatively poll waiting for arrival of an 
mpacket). When an mpacket becomes valid as previously described, receive control logic will 
autopush eight bytes of information (the entire Receive Status Word) for the element to the ME/
Context/S_Transfer Registers at the head of Rx_Thread_Freelist

To handle the case where the receive Contexts temporarily fall behind and Rx_Thread_Freelist is 
empty, all received element numbers are held in the Full Element List. In that case, as soon as a 
Rx_Thread_Freelist entry is entered, the status of the head element of Full Element List will be 
pushed to it.

The MEs may read part of (or the entire) RBUF element to their SRAM transfer registers (via 
msf[read] instruction) for header processing, etc, and may also move the element data to SDRAM 
(via dram[rbuf_rd] instruction).

When a Context is done with an element it does a msf[write] or msf[fast_write] to 
RBUF_Element_Done address; the data of the CSR write is the element number. This marks the 
element as free and available to be re-used.

The states that an RBUF element goes through are shown in Figure 96.
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Table 106 summarizes the differences in UTOPIA mode, POS-PHY mode, and CSIX mode.

8.5.8 Receive Flow Control Status
Flow control is handled in hardware, and is based on MSF_Rx_Control[Receive_Mode], which 
selects UTOPIA/POS or CSIX mode.

Figure 96. RBUF Element State Transition Diagram
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Table 106. UTOPIA, POS-PHY, and CSIX Mode Comparison

Comparison Point UTOPIA Mode POS-PHY Mode CSIX Mode

Point at which RBUF 
Element is allocated

When new cell is 
received (RXSOF 
asserted)

When the start of a new 
packet is received 
(RXSOF asserted) or a 
new burst of data arrives.

Start of Frame and Base 
Header Type is anything 
except Idle or Flow 
Control.

Quantity of Data put into 
Element The entire cell.

A burst length worth of 
data, or until RXEOF is 
asserted (signaling end 
of packet); whichever 
comes first. The burst 
length is equal to the size 
of the RBUF entry (64, 
128, or 256 bytes).

Number of bytes 
specified in Payload 
Length field of Base 
Header.

Mechanism for setting 
RBUF Element Valid

When the entire cell has 
been received and the 
Receive Status Word has 
been created for the cell.

When the entire burst has 
been received and the 
Receive Status Word has 
been created for the 
burst.

Number of bytes 
specified in Payload 
Length field of Base 
Header (or if new SOF, 
which is an error).

Mechanism to hand 
RBUF Element to ME

Element status is pushed to ME at the head of the appropriate 
Rx_Thread_Freelist.

Mechanism to return 
RBUF Element to free list CSR write to RBUF_Element_Done.
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8.5.8.1 UTOPIA and POS-PHY Mode

Link level flow control information is passed directly from the PHY to the protocol logic in 
IXP2400 using sideband signals. There is no need to communicate this information via CBus.

8.5.8.2 CSIX Mode

When running in CSIX half-duplex mode, both link level and fabric level flow control information 
is forwarded from the egress processor to the ingress processor using the CBus. This is described in 
detail in Section 8.7, “CBus Interface” on page 8-287.

8.5.9 Parity

8.5.9.1 UTOPIA Mode

UTOPIA requires odd single bit parity.

8.5.9.2 POS-PHY Mode

POS-PHY Level 2 allows both single bit even and odd parity; POS-PHY Level 3 only allows 
single bit odd parity. IXP2400 supports both single bit even and odd parity.

8.5.9.3 CSIX Mode

CSIX specifies both horizontal and vertical parity. Both are odd.

8.5.9.3.1 Horizontal Parity

The receive logic computes Horizontal Parity on each received CWord. There is an internal HP 
Error Flag. At the end of each CFrame the flag is reset.

As each CWord is received, the expected odd parity value is computed from the data, and 
compared to the value received on RxPar. If there is a mismatch the 
MSF_Interrupt_Status[HP_Error] flag is set. The value of the flag becomes the element status HP 
Err bit.

If the HP Error Flag is set, the SF_CRDY and SF_DRDY bits are cleared, and the 
MSF_Interrupt_Enable[HP_Error] bit is set, this will send an interrupt to Intel XScale® core.

8.5.9.3.2 Vertical Parity

The receive logic computes Vertical Parity on CFrames. There is a VP Error Flag and a 16-bit VP 
Accumulator Register. At the end of each CFrame the flag is reset and the register is cleared. As 
each CWord is received, odd parity is accumulated in the register as defined in the CSIX spec. That 
is, 16 bits of vertical parity are formed on 32 bits of received data by treating the data as words; bit 
0 and bit 16 of the data are accumulated into parity bit 0, bit 1 and bit 17 of the data are 
accumulated into parity bit 1, etc. After the entire CFrame has been received (including the Vertical 
Parity field; the two bytes following the Payload) the accumulated vertical parity value should be 
0xFFFF. If it is not, then the VP Error Flag is set. The value of the flag becomes the element status 
VP Err bit.
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Any padding that was inserted to force the CFrame to be an integral multiple of CWords is also 
stripped out by the protocol logic.

If the VP Error Flag is set, the SF_CRDY and SF_DRDY bits are cleared, and the 
MSF_Interrupt_Status[VP_Error] bit is set, which can interrupt Intel XScale® core.

8.5.10 Error Cases
Receive errors are specific to the selected mode, UTOPIA, POS-PHY, or CSIX. The element 
status, described above, has appropriate error bits defined. Also, there are some IXP2400 specific 
error cases, like when an mpacket arrives with no free elements, which are logged in the 
MSF_Interrupt_Status register, which can interrupt Intel XScale® core if enabled.

8.6 Transmit
This section covers:

• Transmit Pins (Section 8.6.1)

• TBUF and Transmit Control Word (Section 8.6.2)

• Byte Aligner

Figure 97 is a simplified Block Diagram of the Transmit function. 

Figure 97. Transmit Function Simplified Block Diagram

B0493-01

Full
Element

Logic

Byte Align/
Merge

TBUFTBUF_Pull_Data
(32 bits from ME)

TBUF_Push_Data
(64 bits from DRAM)

Control

From
Other
CSRs

Protocol
Logic

Tx Pins

CSR Read
(SRAM_Push_Bus)

From CBus
FCIFIFO



Hardware Reference Manual 271

Intel® IXP2400 Network Processor
Media and Switch Fabric Interface

8.6.1 Transmit Pins
The transmit pins are shared between the three protocols supported by the IXP2400 media block. 
There are three distinct sets of protocol logic:

• UTOPIA

• POS-PHY

• CSIX

The transmit pins include 32 transmit data pins, two transmit clocks, and four sets of control 
signals. There are two major modes: CSIX mode and UTOPIA/POS mode.

When running in CSIX mode, all 32 transmit data pins are used, but only one transmit reference 
clock and one set of control signals are needed.

When running in UTOPIA/POS-PHY SPHY mode, the 32 transmit data pins can be divided into 
one, two, three, or four independent channels. The total width of all the channels must be no more 
than 32 bits. Each transmit channel has its own set of control signals and may be programmed for 
either UTOPIA or POS-PHY operating modes; however, when running in x8 mode, adjacent 
channels must share a clock. It is also possible to program different characteristics (cell size, parity 
mode) for each individual channel.

When running in UTOPIA/POS-PHY MPHY mode, the 32 transmit data pins are shared by one to 
sixteen channels, all of which must reside in a single physical device.

8.6.2 TBUF and Transmit Control Word
The TBUF is a RAM that holds data and status to be transmitted. The data is written into subblocks 
referred to as elements, by MEs or Intel XScale® core. TBUF contains a total of 8KB of data and 
associated control. 

The data is partitioned into elements, based on MSF_Tx_Control[TBUF_Element_Size]. 

Table 107 shows the order in which data is written into TBUF. Each number represents a byte, in 
order of transmission on the TX interface. Note that this is reversed on a 32 bit basis relative to 
RBUF. The swap of the low longword and the high longword is done by hardware to facilitate the 
transmission of bytes as defined below.

MEs can write data from ME SRAM write transfer registers to the TBUF using the msf[write] 
instruction, where they specify the starting byte number (which must be aligned to four bytes) and 
the number of longwords to write. The length in the instruction can be either the number of 
longwords or the number of quadwords, using the single and double instruction modifiers, 
respectively. Data is pulled from ME to TBUF via SRAM Pull Bus.
msf[write, $s_xfer_reg, src_op_1, src_op_2, ref_cnt], optional_token

Table 107. TBuf Byte Ordering

Byte Address (Hex) Address 
Offset

0 1 2 3 4 5 6 7 0x0

8 9 A B C D E F 0x8

10 11 12 13 14 15 16 17 0x10
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The src_op_1 and src_op_2 operands are added together to form the address in TBUF (note that the 
base address of TBUF is 0x2000). ref_cnt is the number of longwords or quadwords, which are 
pulled from two S_Transfer_Out registers per quadword, starting with $s_xfer_reg. For example, 
when writing a quadword from S_Transfer_Out register 0/1 to address 0x0 in the TBUF entry (as 
shown in Table 107), the byte ordering is shown in Table 108.

MEs can also write data from DRAM to TBUF using the dram instruction. Data is pushed to TBUF 
via DRAM Push Bus by DRAM controller.
dram[tbuf_wr, --, src_op_1, src_op_2, ref_cnt], indirect_ref

The src_op_1 and src_op_2 operands are added together to form address in DRAM, so the dram 
instruction must use indirect mode to specify the TBUF address. ref_cnt is the number of 
quadwords which are written into TBUF.

Data is stored in big-endian order. The most significant byte of each longword is transmitted first.

All data is transmitted in the order in which it is put into the TBUF. Control information associated 
with the element (and defined below), defines which bytes are valid. The data from the TBUF will 
be shifted and aligned to the TXDATA pins as required. Four parameters are defined.

1. Prepend Offset: number of the first byte to send. This is information that is prepended to the 
payload (for example, a header). The offset can range from 0x0 to 0x7 within the first 
quadword of the TBUF element.

2. Prepend Length: number of bytes in the prepend. This can range from 0 to 31 bytes. 

3. Payload Offset: number of bytes to skip, from the last quadword of the prepend to the start of 
payload. 

4. Payload Length: number of bytes in the payload.

Here are some rules and observations:

1. If prepend length is zero, then the prepend offset must also be zero.

2. The absolute byte number of the first byte of the payload is given by the following formula: 
((Prepend Offset + Prepend Length + 0x7) && 0xF8) + Payload Offset)

3. The sum (((Prepend Offset + Prepend Length + 0x7) && 0xF8) + Payload Offset) + 
Payload Length) must not exceed the size of the TBUF element.

4. In UTOPIA mode, the sum of Prepend Length and Payload Length must be equal to the cell 
size.

5. In POS-PHY mode, the sum of the Prepend Length and Payload Length must be an integral 
multiple of the bus width, except if EOP is set.

The following examples illustrates the use of the offset and length parameters. The element is 
shown as eight bytes wide, because that is the smaller unit which can be written to TBUF. In this 
example:

Table 108. SRAM Write Transfer Register Byte Ordering

Transfer 
Register 
Number

[31:24] [23:16] [15:8] [7:0]

0 0 1 2 3

1 4 5 6 7
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1. Prepend Offset = 0x6 (bytes 0x0 to 0x5 are skipped)

2. Prepend Length = 0x10 (16 bytes)

3. Payload Offset = 0x7 (bytes 0x16 to 0x1E are not transmitted). This starts in the next eight 
byte row (that is, the next empty row above where the prepend data stops), even if there is 
room in the last row containing prepend data. This is done because the TBUF does not have 
byte write capability, and the msf[write] and dram[tbuf_write] cannot be merged. The 
software computing the Payload Offset only needs to know how many bytes of the payload 
that were put into DRAM need to be removed.

4. Payload Length = 0x20 (32 bytes)

Table 109 shows a 64 byte TBUF entry. Bytes 0x06 to 0x15 are the prepend data and bytes 0x1f to 
0x3E are the payload data.

Table 110 shows, in bold type and for a 32 bit bus, what data is transmitted. The transmit hardware 
will discard unwanted leading and trailing bytes, merge the prepend and payload data, and realign 
to fit the 32 bit bus.

Table 109. Example of Offset and Length Usage
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F

0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27

0x28 0x29 0x2A 0x2B 0x2C 0x2D 0x2E 0x2F

0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37

0x38 0x39 0x3A 0x3B 0x3C 0x3D 0x3E 0x3F

Table 110. Example of TBUF Element Transmission

clock cycle [31:24] [23:16] [15:8] [7:0]

0 0x06 0x07 0x08 0x09

1 0x0A 0x0B 0x0C 0x0D

2 0x0E 0x0F 0x10 0x11

3 0x12 0x13 0x14 0x15

4 0x1f 0x20 0x21 0x22

5 0x23 0x24 0x25 0x26

6 0x27 0x28 0x29 0x2A

7 0x2B 0x2C 0x2D 0x2E

8 0x2F 0x30 0x31 0x32

9 0x33 0x34 0x35 0x36

10 0x37 0x38 0x39 0x3A

11 0x3B 0x3C 0x3D 0x3E
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8.6.2.1 UTOPIA/POS-PHY SPHY TBUF Partitioning

The transmit control logic manages the TBUF as either one, two, three, or four separate segments 
based on the selected operating mode. The mapping of elements to channels, as well as to the 
associated freelist, depends on the operating mode.

Table 111. UTOPIA/POS-PHY SPHY TBUF Partitioning

TX Channels Number of TBUF 
Elements

Channel 
Number

Elements Used by 
Channel

1x32

32 x 256 bytes 0 0–31

64 x 128 byte 0 0–63

128 x 64 bytes 0 0–127

2x16

32 x 256 bytes
0 0–15

2 16–31

64 x 128 bytes
0 0–31

2 32–63

128 x 64 bytes
0 0–63

2 64–127

4x8

32 x 256 bytes

0 0–7

1 8–15

2 16–23

3 24–31

64 x 128 bytes

0 0–15

1 16–31

2 32–47

3 48–63

128 x 64 bytes

0 0–31

1 32–63

2 64–95

3 96–127

1x16_2x8

32 x 256 bytes

0 0–15

2 16–23

3 24–31

64 x 128 bytes

0 0–31

2 32–47

3 48–63

128 x 64 bytes

0 0–63

2 64–95

3 96–127
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8.6.2.2 UTOPIA/POS-PHY MPHY-4 TBUF Partitioning

8.6.2.3 UTOPIA/POS-PHY MPHY-32 TBUF Partitioning

Table 112. UTOPIA/POS-PHY MPHY-4 TBUF Partitioning

TX Channels Number of TBUF 
Elements

Channel 
Number

Elements Used by 
Channel

1x32

32 x 256 bytes

0 0–7

1 8–15

2 16–23

3 24–31

64 x 128 bytes

0 0–15

1 16–31

2 32–47

3 48–63

128 x 64 bytes

0 0–31

1 32–63

2 64–95

3 96–127

Table 113. UTOPIA/POS-PHY MPHY-32 TBUF Partitioning

TX Channels Number of TBUF 
Elements

Channel 
Number

Elements Used by 
Channel

1x32

32 x 256 bytes 0–31 0–31

64 x 128 bytes 0–31 0–63

128 x 64 bytes 0–31 0–127
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8.6.2.4 UTOPIA/POS-PHY16 Bit MPHY + 8 Bit
SPHY + 8 Bit SPHY

8.6.2.5 UTOPIA/POS-PHY 16 Bit MPHY + 16 Bit SPHY

8.6.2.6 CSIX TBUF Partitioning

Three quarters of TBUF is allocated for data CFrames; the remaining quarter is allocated for 
control CFrames.

Number of TBUF 
Elements

Channel 
Number

Elements Used by 
Channel

32 x 256 bytes

0 (x16 MPHY) 0–15

2 (x8 SPHY) 16–23

3 (x8 SPHY) 24–31

64 x 128 bytes

0 (x16 MPHY) 0–31

2 (x8 SPHY) 32–47

3 (x8 SPHY) 48–63

128 x 64 bytes

0 (x16 MPHY) 0–63

2 (x8 SPHY) 64–95

3 (x8 SPHY) 96–127

Number of TBUF 
Elements

Channel 
Number

Elements Used by 
Channel

32 x 256 bytes
0 (x16 MPHY) 0–15

2 (x16 SPHY) 16–31

64 x 128 bytes
0 (x16 MPHY) 0–31

2 (x16 SPHY) 32–63

128 x 64 bytes
0 (x16 MPHY) 0–63

2 (x16 SPHY) 64–127

Table 114. CSIX TBUF Partitioning

TX Channels Number of TBUF 
Elements

Channel 
Number

Elements Used by 
Channel

1x32

32 x 256 bytes
data 0–23

control 24–31

64 x 128 bytes
data 0–47

control 48–63

128 x 64 bytes
data 0–95

control 96–127
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8.6.2.7 UTOPIA Transmit Control Word Format

In UTOPIA mode, the complete cell is put into the data portion of the element, and information for 
the Control Word is written. The Control Word format is in Table 115:

The definitions of the fields are in Table 116:

8.6.2.8 POS-PHY Transmit Control Word Format

In POS-PHY mode, a packet is divided into a number of mpackets, where the mpacket size is 
equivalent to the TBUF element size. The Control Word format is in Table 117:

Table 115. UTOPIA Transmit Control Word Format
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Table 116. UTOPIA Transmit Control Word Field Definitions

Field Definition

Payload Length

Indicates the number of bytes in the payload, from 1 to 256 bytes, in the element. The 
value of 0x00 means 256 bytes. The sum of Prepend Length and Payload Length will be 
sent, and should be equal to the cell size, as specified by 
MSF_Tx_Control[Transmit_Width] and Tx_UP_Control_{0..3}[Cell_Size]. The only valid 
cell sizes in UTOPIA mode are 52, 53, 54, and 56 bytes.

Prepend Offset Indicates the first valid byte of the prepend, from 0 to 7 bytes.

Prepend Length Indicates the number of bytes of the prepend from 0 to 31 bytes.

Payload Offset Indicates the first valid byte of the payload, with respect to the last valid quadword of the 
prepend.

Skip
Allows software to allocated a TBUF element and then not transmit any data from it.
0: transmit data according to other fields of the Control Word
1: free the element without transmitting any data

ERR Error bit. If this bit is set, the transmit logic will force bad parity on the entire cell. This is 
useful for testing only; this bit should never be set during normal operation.

SOP Indicates if the element is the start of a packet. This field is ignored by hardware in 
UTOPIA mode, as each element must contain a complete cell.

EOP Indicates if the element is the end of a packet. This field is ignored by hardware in 
UTOPIA mode, as each element must contain a complete cell.

MPHY-32 id

MPHY-32 Channel Identifier. This bit, when set, is used to indicate that the mpacket is 
intended for the MPHY-32 port (port 0). This bit is used by the hardware to differentiate 
between channels 0x00 to 0x1f of the MPHY-32 channel, and SPHY channels 0x1, 0x2, 
and 0x3. It is intended for use in x16 MPHY-32 mode; in x32 MPHY-32 mode, it is a don’t 
care. In any MPHY-4 mode, it is a don’t care

Channel In MPHY mode other than MPHY4, the port number to which the data is directed. In 
SPHY or MPHY4 mode, this field has no effect.
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Table 117. POS-PHY Transmit Control Word Format

The definitions of the fields are in Table 118:

8.6.2.9 CSIX Mode

In CSIX Mode, the transmit control logic manages the TBUF as two separate segments, one for 
Data traffic and one for Control traffic. The lowest 8 elements are for Control traffic, and the 
highest 24 elements are for Data traffic.

Payload information is put into the Payload area of the element, and Base and Extension Header 
information is put into the Header Control area of the element.

Data is stored in big-endian mode. The most significant byte of each longword is transmitted first.
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Table 118. POS-PHY Transmit Control Word Field Definitions

Field Definition

Payload Length
Indicates the number of bytes in the payload, from 1 to 256 bytes, in the element. The 
value of 0x00 means 256 bytes. The sum of Prepend Length and Payload Length will be 
sent, and must be an integral multiple of the bus width (in bytes), except if EOP = 1.

Prepend Offset Indicates the first valid byte of the prepend, from 0 to 7 bytes.

Prepend Length Indicates the number of bytes of the prepend from 0 to 31 bytes.

Payload Offset Indicates the first valid byte of the payload, with respect to the last valid quadword of the 
prepend.

Skip
Allows software to allocated a TBUF element and then not transmit any data from it.
0: transmit data according to other fields of the Control Word
1: free the element without transmitting any data

ERR
Error bit. If this bit is set, the transmit logic will force the TXERR signal to be asserted 
during the last word of the packet, when TXEOF is asserted. This bit is only valid if EOP is 
set, otherwise it is ignored. This is useful for testing only; this bit should never be set 
during normal operation.

SOP Indicates if the element is the start of a packet.

EOP Indicates if the element is the end of a packet.

MPHY-32 id

MPHY-32 Channel Identifier. This bit, when set, is used to indicate that the mpacket is 
intended for the MPHY-32 port (port 0). This bit is used by the hardware to differentiate 
between channels 0x00 to 0x1f of the MPHY-32 channel, and SPHY channels 0x1, 0x2, 
and 0x3. It is intended for use in x16 MPHY-32 mode; in x32 MPHY-32 mode, it is a don’t 
care. In any MPHY-4 mode, it is a don’t care

Channel
In POS-PHY MPHY mode other than MPHY4, the port number to which the data is 
directed. The port number will be sent in-band by the transmit logic. In SPHY or MPHY4 
mode, this field has no effect. 
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The status word contains the information in Table 119.

The definitions of the fields are in Table 120.

8.6.3 Transmit Operation Summary
During transmit processing, data to be transmitted is placed into the TBUF under ME control. The 
ME allocates an element in software; the transmit hardware processes TBUF elements within a 
partition in strict sequential order so the software can track which element to allocate next. 

MEs may write directly into an element by msf[write] instruction, or have data from DRAM 
written into the element by dram[tbuf_wr] instruction. Data can be merged into the element by 
doing both.

There is a Transmit Valid bit per element, which marks the element as ready to be transmitted. MEs 
move all data into the element, by either or both the msf[write] and dram[tbuf_wr] instructions to 
the TBUF. MEs also write the element Transmit Control Word (TCW) using msf[write] with 
information about the element. The order of the TCW is:

1. s_xfer reg n contains TCW[31:0]

2. s_xfer reg n+1 contains TCW[63:32]

Table 119. CSIX Transmit Control Word Format
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Table 120. CSIX Transmit Control Word Field Definitions

Field Definition

Payload Length
Indicates the number of bytes in the payload, from 1 to 256 bytes, in the element. The 
value of 0x00 means 256 bytes. The sum of Prepend Length and Payload Length will be 
sent, and also put into the CSIX base header Length field.

Prepend Offset Indicates the first valid byte of the prepend, from 0 to 7 bytes.

Prepend Length Indicates the number of bytes of the prepend from 0 to 31 bytes.

Payload Offset Indicates the first valid byte of the payload, with respect to the last valid quadword of the 
prepend.

Skip
Allows software to allocate a TBUF element and then not transmit any data from it.

• 0–transmit data according to other fields of the Control Word
• 1–free the element without transmitting any data 

CR CR (CSIX Reserved) bit to put into the CSIX Base Header.

P P (Private) bit to put into the CSIX Base Header.

Type Type Field to put into the CSIX Base Header. Idle type is not legal here.

Extension 
Header

The Extension Header to be sent with the CFrame. For flow control CFrames this field is 
not used by the hardware because flow control CFrames do not have an extension 
header.
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When all the data movement is complete the ME sets the element valid bit. The complete sequence 
is:

1. Move data into TBUF by either or both of msf[write] and dram[tbuf_wr] instruction to the 
TBUF.

2. Wait for (1.) to complete.

3. Write the Transmit Control Word by msf[write] at the TBUF_Element_Control_V_# address. 
Using this address sets the Transmit Valid bit.

Note: When moving data from DRAM to TBUF using dram[tbuf_wr], it is possible that there could be 
an uncorrectable error on the data read from DRAM (if ECC is enabled). In that case, the ME does 
not get an Event Signal, to prevent use of the corrupt data. The error is recorded in the DRAM 
controller, and will interrupt Intel XScale® core, if enabled, so that it can take appropriate action. 
Such action is beyond the scope of this document,. However, it must include recovering the TBUF 
element. Note that the transmit pipeline will be stalled since all TBUF elements must be 
transmitted in order.

After an element has been sent on the transmit pins, the valid bit for that element is cleared. The 
Tx_Sequence register is incremented when the element has been transmitted. By also maintaining a 
sequence number of elements that have been allocated (in software), the microcode can determine 
how many elements are in-flight.

The remainder of Section 8.6.3 describes the detailed transmit flow for each mode of operation.

8.6.3.1 UTOPIA SPHY Mode

The TX thread decides which port a cell is to be sent out on. Because the TBUF entries are 
transmitted sequentially by the hardware, the thread also uses the TBUF entries sequentially. The 
thread knows if the TBUF entry is free because it keeps track of how many entries it has used and, 
by reading the Tx_Sequence_{0...3} CSR, it knows how many have been transmitted. It then 
writes the cell into the TBUF entry, and writes the Transmit Control Word into the control field. 
When the necessary valid bits have been set, the transmit protocol hardware will send this cell out 
through the transmit pins. When transmission of the cell has been completed, the transmit protocol 
hardware will update the appropriate Tx_Sequence_{0...3} CSR and clear the three associated bits 
(Data Valid, Control Valid, and Transmit Valid).

If the PHY’s transmit FIFO is full, then transmission stalls until space is freed up.

8.6.3.2 UTOPIA MPHY-4 Mode

UTOPIA MPHY-4 mode is very similar to UTOPIA SPHY mode, except that TBUF is always 
partitioned into four independent segments; each port has its own segment. The same process used 
for UTOPIA SPHY is used here. If hardware is configured for Direct Status Indication, then it uses 
TXFA[3:0] for flow control; if hardware is configured for polling, then it uses TXADDR[4:0] to 
poll the PHY’s transmit FIFOs and looks for the result on the TXPFA input signal. In either case, 
polling is taken care of automatically by hardware.
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8.6.3.3 UTOPIA MPHY-32 Mode

UTOPIA MPHY-32 (supporting up to 32 ports in 1x32b mode and up to 31 ports one 16b bus) 
mode requires that software do some amount of software-driven status polling as well as transmit 
scheduling in order to minimize hardware requirements and to provide a solution which is scalable 
to an even larger number of ports in the future (i.e., 48 ports). Hardware will provide some hints to 
help software; this is described in detail below.

In UTOPIA MPHY-32 mode, TBUF functions as a single large segment; all traffic for the MPHY 
ports funnels into a single, large TBUF. (Partitioning TBUF into 31 or 32 equal sized segments 
would potentially short change ports which carry higher bandwidth. Also, that solution would not 
scale well to 48 ports.)

After the PHY has been initialized and enabled, the transmit polling FSM will update the 
Tx_MPHY_Status[Tx_Status] flags. Initially, the Tx_Status flags are all zero. The TX thread must 
poll the flags and wait for them to become set before initiating transmission to that channel. If the 
Tx_Status flag is set, that means that the transmit FIFO in the PHY is able to accept at least one 
cell. The TX thread pushes out one cell to each port which is able to accept. Note that only one cell 
may be pushed out to a port at any given time; the TXFA[3:0] status signal only says that the PHY 
can accept at least one more cell; it does not provide any lookahead beyond one cell.

When a transmit control word is written, thereby initiating the transmission of a cell to a certain 
port, the appropriate bit in Tx_MPHY_Status[Tx_Pending] corresponding to the port is set. This 
indicates two things:

• A cell transmission is in progress for that given port.

• The Tx_Status flag for that port is now stale and should be ignored.

When the cell appears on the TX pins, the transmit hardware will make a request to clear the 
Tx_Pending flag. However, the Tx_Pending does not actually get cleared until the polling FSM has 
updated the status for that port. That means that when Tx_Pending makes the transition back to 0, 
Tx_Status is guaranteed to be up to date again.

If Tx_Pending is not equal to 0, meaning that cell transfer is still pending, then the Tx_Status bit 
for that port must be ignored, as it is impossible to tell if it is stale or not. 

Ideally, software should batch cell transfers for all the ports, rather than doing multiple CSR reads 
and writes for each cell transfer.

By avoiding pushing a cell out to port unless it is known that the port can accept the cell, this 
avoids head-of-line blocking. If a cell is written to a port which is already full, the cell will not be 
lost, as hardware performs its own polling. It may, however, result in sub-optimal performance due 
to head-of-line blocking. The Tx_MPHY_Status CSR is provided to give software some visibility 
and to allow software the option of doing transmit scheduling.

Alternatively, since TBUF should drain at a known rate, the TX thread can use a timer, based on the 
number of cells transmitted, to determine when to perform the Tx_MPHY_Status read.

8.6.3.4 POS-PHY SPHY Mode

The TX thread decides which port a packet is to be sent out on. It is up to software to break up the
packet into a number of mpackets, where the mpacket size is equal to the TBUF entry size. 
Because the TBUF entries are transmitted sequentially by the hardware, the thread also uses the 
TBUF entries sequentially. The thread knows if the TBUF entry is free because it keeps track of 
how many entries it has used and, by reading the Tx_Sequence_{0...3} CSR, it knows how many 
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have been transmitted. It then writes the first mpacket into the TBUF data element, constructs the 
Transmit Control Word and writes it into the TBUF control element, making sure to set the SOP 
bit. It writes the Transmit Control Word by msf[write] at the TBUF_Element_Control_V_# 
address. Using this address sets the Transmit Valid bit. It continues this process until the entire 
packet has been pushed into TBUF. For the last mpacket, the TX thread must set the EOP bit, and 
for “middle” mpackets neither SOP nor EOP bits are set. In POS-PHY SPHY mode all mpackets 
that make up a packet must be transmitted contiguously for a given channel.

The transmit protocol hardware processes one mpacket at a time, send out the data, generating the 
correct parity, and generating the necessary control signals (TXENB, TXSOF, TXEOF, TXERR) 
and managing flow control for each direction. If the mpacket arrival rate is slower than the POS-
PHY interface rate it deasserts TXENB; if the PHY’s transmit FIFO runs out of space it will 
deassert TXFA[3:0]; hardware will detect this and will stop transmitting until there is more space 
available (indicated by TXFA[3:0] being reasserted).

8.6.3.5 POS-PHY MPHY-4 Mode

POS-PHY MPHY-4 mode is similar to POS-PHY SPHY mode, except that TBUF is always 
partitioned into four independent segments; each port has its own segment. The same process used 
for POS-PHY SPHY is used here. If hardware is configured for Direct Status Indication, then it 
uses TXFA_x for flow control; if hardware is configured for polling, then it uses TXADDR[4:0] to 
poll the PHY’s transmit FIFOs and looks for the result on the TXPFA input signal. In either case, 
polling is taken care of automatically by hardware. Address is sent in-band.

8.6.3.6 POS-PHY MPHY-32 Mode

POS-PHY MPHY-32 (supporting up to 32 ports in 1x32b mode or supporting up to 31 ports on one 
16b bus) mode requires that software do some amount of software-driven status polling as well as 
transmit scheduling in order to minimize hardware requirements and to provide a solution which is 
scalable to an even larger number of ports in the future (i.e., 48 ports). Hardware will provide some 
hints to help software; this is described in detail below.

In POS-PHY MPHY-32 mode, TBUF functions as a single large segment; all traffic for the MPHY 
ports funnels into a single, large TBUF. (Partitioning TBUF into 31 or 32 equal sized segments 
would potentially short change ports which carry higher bandwidth. Also, that solution would not 
scale well to 48 ports.)

After the PHY has been initialized and enabled, the transmit polling FSM will update the 
Tx_MPHY_Status[Tx_Status] flags. Initially, the Tx_Status flags are all zero. The TX thread must 
poll the flags and wait for them to become set before initiating transmission to that channel; the 
flags indicate which transmit FIFOs in the PHY is able to accept data. In POS-PHY mode, the 
transmit FIFO in the PHY has a programmable threshold. If the PHY’s transmit FIFO contains less 
data than the threshold, then TXPFA will be asserted in response to a status poll. If the transmit 
FIFO contains more data than the threshold, then TXPFA will be deasserted in response to a status 
poll. Since software knows both the size of the FIFO and the threshold, software also knows that if 
TXPFA is deasserted, then the FIFO should be able to accept at least “n” mpackets of data, where 
"n" is the difference between the FIFO size and the threshold.

The TX thread pushes out up to n mpackets of data to each port which is able to accept data. 
Hardware maintains an mpacket-based counter for each port. When a transmit control word is 
written, thereby initiating the transmission of a mpacket to a certain port, the counter for that port is 
incremented; whenever an mpacket has been completely sent to the PHY, the counter is 
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decremented. The summary bit for each port is visible in Tx_MPHY_Status[Tx_Pending]; if the 
counter is zero, indicating no pending transmit activity for that port, then Tx_Pending is 0; if the 
counter is non-zero, then Tx_Pending is 1.

Before Tx_Pending makes the transition back to 0, the polling FSM will update Tx_Status. When 
Tx_Pending = 0, this means that Tx_Status is guaranteed to be updated with the latest FIFO status.

After all transmit data is pushed out, the TX thread waits, then reads Tx_MPHY_Status.

1. If Tx_Pending[x] = 0, then Tx_Status[x] contains up to date status. If Tx_Status[x] = 1, it is 
OK to send another batch of “n” mpackets to that port. If Tx_Status[x] = 0, that port’s FIFO 
does not have sufficient space to accept a batch of “n” mpackets and the TX scheduler has to 
wait and poll again later. The value "n" is the difference between the FIFO size and the 
threshold.

2. If Tx_Pending[x] = 1, then Tx_Status[x] is indeterminate. It is impossible to tell if the port 
FIFO can accept any more data because it is unknown how many mpackets are in flight and 
when the last time Tx_Status has been updated. The TX schedule has to wait and poll again 
later.

By following the above rules, the TX thread may then push out more transmit data to ports which 
are able to accept more data. By avoiding pushing data out to port unless it is known that the port 
can accept the data helps avoids unnecessary head-of-line blocking.

If data is written to a port which is full or near full, the data will not be lost as long as the high 
watermarks in the PHY are correctly set to avoid overflow. It may, however, result in sub-optimal 
performance due to head-of-line blocking. The Tx_MPHY_Status CSR is provided to give 
software some visibility and to allow software the option of doing transmit scheduling.

POS-PHY Level 3 MPHY-4 and MPHY-32 modes support “packet level” transfers only, in that 
TXPFA or TXFA asserted high means that the PHY can accept some fixed amount of transmit data. 
In polled mode, TXPFA (in MPHY-4 or MPHY-32 polled mode) or TXFA[3:0] (in MPHY-4 direct 
status mode) is used to decide if the PHY’s transmit FIFO can accept more data. TXSFA is not used 
and should be tied low. Arbitration is mpacket based; once the arbiter selects a port, IXP2400 will 
send out one entire mpacket to the PHY (may be less than one full mpacket if TXEOF is asserted). 
This means that the high watermarks in the PHY that control TXPFA or TXFA[3:0] must be set 
low enough so that if TXPFA/TXFA is asserted, the slave is guaranteed to be able to accept at least 
one entire mpacket. In order to account for various latencies, the high watermark on the slave’s 
transmit FIFO should be configured so that TXPFA or TXFA[3:0] are deasserted if the amount of 
remaining space in the slave’s transmit FIFO is less than (TBUF element size + 8 clock cycles) of 
data, or (TBUF element size + 32 bytes).

In POS-PHY Level 2 MPHY-32 mode, two modes of transfer are supported: non-TXSFA and 
TXSFA. 

In non-TXSFA mode, TXSFA is ignored and the behavior is the same as described in the previous 
paragraph for POS-PHY Level 3 MPHY mode. TXSFA should be tied high, and the same rule 
regarding high watermark settings applies. In order to avoid FIFO overflow, the high watermark on 
the slave’s transmit FIFO should be configured so that TXPFA or TXFA[3:0] are deasserted if the 
amount of remaining space in the slave’s transmit FIFO is less than (TBUF element size + 8 clock 
cycles) of data, or (TBUF element size + 16 bytes).

In TXSFA mode, TXSFA is used as described in the POS-PHY Level 2 spec. Here are the rules 
describing IXP2400’s behavior:

1. It is assumed that both TXPFA and TXSFA are controlled by the same high watermark level.
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2. The decision to grant a port is based purely on TXPFA.

3. If there is data ready to be transmitted to a given port, and if the TXPFA for that port is high, 
the port will be selected. Once the port is selected, IXP2400 will ignore TXSFA for the first 
four clock cycles of data transfer.

4. Once IXP2400 sees TXSFA deasserted, it will send out up to four more clock cycles of data. 
This means that the high watermark in the PHY must be set lower than eight clock cycles, or 
16 bytes, from the end of the FIFO.

5. Once data transferred is stopped, IXP2400 will not restart data transfer until it polls TXPFA 
high again for that port. IXP2400 will not switch to another port until the data transfer from the 
current port is completed.

The advantage of TXSFA mode over non-TXSFA mode is that the high watermark can be set 
lower.

In order to achieve maximum performance it is important to push out the maximum amount of data 
in the loop and overlap status updates with transmit.

8.6.3.7 CSIX Mode

Transmit control logic sends valid elements on the transmit pins in element order. Each element 
sends a single CFrame—the Base Header is sent first using the information in the Transmit Control 
Word for the element. The Ready Field placed into the Base Header is taken from TM_CRDY and 
TM_DRDY bits generated by the egress processor (described in greater detail in Section 8.7, 
“CBus Interface” on page 8-287). Next the Extension Header is sent, using the information in the 
Control for the element. Finally the Payload is sent. The Payload Length Field determines how 
many CWords of Payload are sent. Both Horizontal Parity and Vertical Parity are transmitted, as 
described below.

When transmitting a flow control CFrame, the entire payload must be written into the TBUF entry. 
The extension header field of the Transmit Control Word is ignored by hardware for flow control 
CFrames.

TBUF is divided into two segments, one for data and one for control. (Note: there is no hardware 
restriction on what type of CFrames can be placed into either segment. For example, it is possible 
to put control CFrames in the data segment and vice versa.)

Control elements and Data elements share use of the transmit pins. Each will alternately transmit a 
valid element in a round-robin fashion.

Table 121. Transmit Control Word to CSIX Header Mapping

CSIX Header 
Field Derivation

DRDY FC_Ingress_Status[TM_DRDY]; received via RXCSRB pin from egress processor

CRDY FC_Ingress_Status[TM_CRDY]; received via RXCSRB pin from egress processor

Type Type field from Transmit Control Word

CR CR bit from Transmit Control Word

P P bit from Transmit Control Word

Payload Length Prepend Length + Payload_Length

Extension 
Header

Extension Header field from Transmit Control Word. For flow control CFrames there is no 
extension header so the Extension Header field is not used.
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If the next sequential element is not valid when its turn comes up, then transmit logic will alternate 
sending Idle CFrames with Dead Cycles; it will continue to do so until a valid element is ready. Idle 
CFrames get the value for the Ready Field from the TM_CRDY and TM_DRDY bits, and the 
Payload Length is set to 0.

After an element has been sent on the transmit pins, all valid bits for that element are cleared, 
which marks the element as available to be re-used.

8.6.3.8 Transmit Summary

The states that a TBUF element goes through are shown in Figure 98.

8.6.4 Transmit Flow Control Status
Transmission of TBUF elements is controlled by MSF_Tx_Control[Tx_En] bit for a given TBUF 
segment. Software can allocate and fill TBUF elements, and then (temporarily) disable them from 
being transmitted by setting bits in MSF_Tx_Control[Tx_En] bit. Note that 
MSF_Tx_Control[Tx_En] bit does not invalidate any elements, nor prevent allocation of elements.

When MSF_Tx_Control[Tx_En] bit changes to disable transmission, any element whose 
transmission is in-progress will be completed.

Communication of flow control information between IXP2400 and other external devices is 
handled in hardware through the CBus interface, and is based on 
MSF_Tx_Control[Transmit_Mode], and is only applicable to CSIX mode. Link level and fabric 
level flow control information is sent by the egress processor to the ingress processor using CBus. 
This is described in further detail in Section 8.7.

Figure 98. TBUF State Transition Diagram
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8.6.5 Parity

8.6.5.1 UTOPIA Mode

Single bit odd parity, as selected by the Tx_UP_Control_{0...3}[Parity_Mode] bits, is always 
generated for transmit data. If parity is not needed, then the TxPrty pin should be left unconnected.

8.6.5.2 POS-PHY Mode

Single bit odd or even parity, as selected by the Tx_UP_Control_{0...3}[Parity_Mode] bits, is 
always generated for transmit data. If parity is not needed, then the TxPrty pin should be left 
unconnected.

8.6.5.3 CSIX Mode

8.6.5.3.1 Horizontal Parity

The transmit logic computes Horizontal Parity for each transmitted Cword, and transmits it on 
TxPar.

8.6.5.3.2 Vertical Parity

The transmit logic computes Vertical Parity on CFrames. There is a 16-bit VP Accumulator 
Register. At the beginning of each CFrame the register is cleared. As each CWord is transmitted, 
odd parity is accumulated in the register as defined in the CSIX spec. The 16 bits of vertical parity 
are formed on 32 bits of transmitted data by treating the data as words; that is, bit 0 and bit 16 of 
the data are accumulated into parity bit 0, bit 1 and bit 17 of the data are accumulated into parity bit 
1, etc. The accumulated value is transmitted in the Cword along with the last two bytes of Payload.

8.6.6 RBUF and TBUF Summary
Table 122 compares RBUF and TBUF operations.
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8.7 CBus Interface
Note: Per the CSIX specification, the terms “egress” and “ingress” are with respect to the switch fabric. 

So the egress processor handles traffic received from the switch fabric and the ingress processor 
handles traffic sent to the switch fabric.

Table 122. RBUF and TBUF Summary

Operation RBUF TBUF

Allocate an 
element

UTOPIA
Hardware allocates an element upon receipt of a 
cell. Any available element may be allocated, 
however, elements are guaranteed to be handed 
to threads in the order they arrive.

POS-PHY
Hardware allocates an element upon the receipt 
of a burst. Any available may be allocated, 
however, elements are guaranteed to be handed 
to threads in the order they arrive.

CSIX
Hardware allocates an element upon receipt of 
RxSof asserted. Any available element may be 
allocated, however, elements are guaranteed to 
be handed to threads in the order they arrive.
Any element can be allocated to Control or Data 
CFrame.

ME allocates an element. Because 
the elements are transmitted in 
FIFO order (within each TBUF 
partition), the ME can keep the 
number of the next element in 
software.

Fill an element

UTOPIA
Hardware fills the element with the entire cell.

POS-PHY
Hardware fills the element with data.

CSIX
Hardware fills the element with Payload.

Microcode fills the element from 
DRAM using dram[tbuf_wr…] 
instruction and from ME registers 
using msf[write] instruction.

Set an element 
valid

UTOPIA
Set valid by hardware then the entire cell has 
been received.

POS-PHY
Set valid by hardware when either the element 
has been filled or RXEOF is asserted, whichever 
comes first.

CSIX
Set valid by hardware when the number of bytes 
in Payload Length have been received.

The element’s Transmit Valid bit is 
set. This is done by a write to the 
Transmit_Control_Word_V_# CSR, 
where # is the element number.

Remove data from 
an element

Microcode moves data from the element to DRAM 
using dram[rbuf_rd…] instruction and to ME 
registers using msf[read] instruction.

Hardware transmits information 
from the element to the Tx pins. 
Transmission of elements is in 
FIFO order; that is an element will 
be transmitted only when all 
preceding elements have been 
transmitted.

Return an element 
to its Free List

Microcode writes to Rx_Element_Done with the 
number of the element to free.

Hardware returns the element 
when its information has been 
transmitted.
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CBus has two major modes of operation: full duplex and simplex. 

In full duplex mode, the CBus interface is used to communicate link level and fabric level flow 
control information from the egress (receive) processor to the ingress (transmit) processor. Full 
duplex mode is described in detail in Section 8.7.2.

In simplex mode, the CBus interface is used to communicate link level and fabric level flow 
control information directly with the switch fabric. Simplex mode is described in detail in 
Section 8.7.3.

Note: Per the CSIX specification, the terms egress and ingress are with respect to the switch fabric. So 
the egress processor handles traffic received from the switch fabric and the ingress processor 
handles traffic sent to the switch fabric.

8.7.1 CBus Signals

8.7.1.1 TXCSOF/TXCDATA/TXCPAR 
and RXCSOF/RXCDATA/RXCPAR

The CBus data width can be programmed to either 4-bits TXCDATA[3:0] or 8 bits TXCDATA[7:0] 
as specified in the MSF_Rx_Control and MSF_Tx_Control registers (see the Intel® IXP2400/
IXP2800 Programmer’s Reference Manual for details). The mapping of the exact pins used for 
these signals is shown in Section 8.4.

CFrames are transmitted from the egress processor using TXCSOF, TXCDATA[3:0] (or 
TXCDATA[7:0] depending on the mode), and TXCPAR and received on the ingress processor 
using RXCSOF, RXCDATA[3:0] (or RXCDATA[7:0] depending on the mode), and RXCPAR. 
These signals can be thought of as a thin version of CSIX-L1. The protocol is identical except that 
data is transferred four or eight bits at a time rather than 32 bits at a time. Since CBus runs at the 
same clock rate as the CSIX interface, this implies that amount of traffic that is forwarded or 
generated as a result of CSIX traffic cannot be more than an eighth or a quarter of the total CSIX 
traffic depending on the mode selected.

TXCSOF is used to mark the start of frame. In the 4-bit mode, data is sent one nibble at a time, and 
is transferred in big-endian order:

1. [31:28]

2. [27:24]

3. [23:20]

4. [19:16]

5. [15:12]

6. [11:8]

7. [7:4]

8. [3:0]

TXCPAR is generated for every 32 bits and is valid only when the final nibble of the CWord (bits 
[3:0]) are valid on the bus.

In the 8-bit mode, data is sent one byte at a time, and is transferred in the big-endian order:
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1. [31:24]

2. [23:16]

3. [15:8]

4. [7:0]

TXCPAR is generated for every 32 bits and is valid only when the final byte of the CWord (bits 
[7:0]) are valid on the bus.

8.7.1.2 TXCSRB and RXCSRB

TXCSRB and RXCSRB are used only in full duplex mode.

The egress processor uses TXCSRB to transmit the Serialized Ready Bits. This consists of five 
framing bits and the SF_xRDY and TM_xRDY bits. The bits are transmitted in the following 
order:

1. 00001 (framing)

2. SF_CRDY

3. SF_DRDY

4. TM_CRDY

5. TM_DRDY

The Serialized Ready Bits are received in the ingress processor using the RXCSRB input pin.

8.7.1.3 TXCFC and RXCFC

TXCFC and RXCFC are used only in full duplex mode.

RXCFC is a flow control output signal that is used by the ingress processor to indicate that its 
FCIFIFO has exceeded a high watermark. It is connected to the TXCFC input pin of the egress 
processor.

8.7.2 Full Duplex Mode
In full duplex mode, flow control information is communicated from the egress processor to the 
ingress processor using CBus.

Figure 99 contains a block diagram which shows the CBus interconnections and usage.
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8.7.2.1 Link Level

Link level flow control information is transmitted serially on the TXCSRB output pin on the egress 
processor and received serially on the RXCSRB input pin on the ingress processor. Four bits of 
information are sent: SF_CRDY, SF_DRDY, TM_CRDY, and TM_DRDY.

Figure 99. Full Duplex Mode Block Diagram
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The switch fabric supplies link level flow control information in the base header of each CFrame 
that it sends to the egress processor. Every CFrame base header contains a Ready Field, which 
contains two bits; one for Control traffic (bit 6 of byte 1) and one for Data traffic (bit 7 of byte 1). 
These are referred to in this document as the SF_CRDY and SF_DRDY bits, because they 
originate from the switch fabric. The SF_*RDY bits reflect the state of the switch fabric’s ingress 
FIFOs. If one of the bits is deasserted by the switch fabric, that means it is running out of space in 
its control or data ingress FIFO.

In addition to the SF_CRDY and SF_DRDY bits, the egress processor also provides TM_CRDY 
and TM_DRDY bits to the ingress processor. (TM stands for Traffic Manager; IXP2400 is the 
traffic manager.) These bits reflect the state of the control and data receive FIFOs in the egress 
processor and are sent to the ingress processor to be forwarded to the switch fabric in the base 
header of all outgoing CFrames. TM_CRDY and TM_DRDY are deasserted whenever the egress 
processor is running out of space in its receive FIFOs. These high watermarks are set using 
HWM_Control[RBUF_C_HWM] and HWM_Control[RBUF_D_HWM]. When the egress 
processor detects a horizontal or vertical parity error in any incoming CFrame, it deasserts 
SF_CRDY and SF_DRDY bits.

On the egress processor, the ready bits are readable via the FC_Egress_Status register. Table 123 
shows how the ready bits are derived in the egress processor.

Table 124 summarizes how the serialized ready bits should be handled by the ingress processor. On 
the ingress processor, these bits are readable via the FC_Ingress_Status register.

Table 123. Egress Processor Ready Bit Handling

Ready Bit Derivation

SF_CRDY READY[0] of all incoming base headers. This bit is visible to software as 
FC_Egress_Status[SF_CRDY].

SF_DRDY READY[1] of all incoming base headers. This bit is visible to software as 
FC_Egress_Status[SF_DRDY].

TM_CRDY
RBUF control partition above/below high watermark set by HWM_Control[RBUF_C_HWM] 
or FCEFIFO above/below high watermark set by HWM_Control[FCEFIFO_HWM]. This bit 
is visible to software as FC_Egress_Status[TM_CRDY].

TM_DRDY RBUF data partition above/below high watermark set by HWM_Control[RBUF_D_HWM]. 
This bit is visible to software as FC_Egress_Status[TM_DRDY].

Table 124. Ingress Processor Ready Bit Handling

Bit Value
Ready Bit = 0 = 1

SF_CRDY
Stop sending control CFrames to 
the switch fabric.

OK to send control CFrames to the 
switch fabric.

This bit is visible to software as FC_Ingress_Status[SF_CRDY].

SF_DRDY
Stop sending data CFrames to the 
switch fabric.

OK to send data CFrames to the 
switch fabric.

This bit is visible to software as FC_Ingress_Status[SF_DRDY].

TM_CRDY
Place this bit in the READY[0] field of all outgoing base headers.
This bit is visible to software as FC_Ingress_Status[TM_CRDY].

TM_DRDY
Place this bit in the READY[1] field of all outgoing base headers.
This bit is visible to software as FC_Ingress_Status[TM_DRDY].



292 Hardware Reference Manual

Intel® IXP2400 Network Processor
Media and Switch Fabric Interface

On the egress processor, software has some control over what gets transmitted on the TXCSRB 
output pin by using CBus_Control[TXCSRB_En] and CBus_Control[TXCSRB_Force]. If 
TXCSRB_En =0, then the SF_*RDY and TM_*RDY bits will be sent on the TXCSRB pin; if 
TXCSRB_En = 1, then the values specified in TXCSRB_Force are transmitted. This can be used 
for debug, test, and to allow software to override hardware.

On the ingress processor, software also has some control over what gets used by hardware by using 
CBus_Control[RXCSRB_En] and CBus_Control[RXCSRB_Force]. If RXCSRB_En = 0, then the 
values received on the RXCSRB input pin are used; if RXCSRB_En = 1, then the values specified 
in RXCSRB_Force are used instead. This can be used for debug, test, and to allow software to 
override hardware.

8.7.2.2 Buffering and Link Level Flow Control Latency

In the full duplex connection, the latency for the switch fabric to respond to a change in the 
TM_CRDY/TM_DRDY is large. The worst case latency for the total time elapsed from the time 
the egress processor de-asserts the TM_xRDY bits to when the switch fabric stops sending traffic 
to the egress processor is estimated as shown in the following steps:

1. latency for sending TM_xRDY across the c-bus (pipeline delay, synchronization delays etc) 
from the egress processor to the ingress processor is 18 cycles. 

2. The ingress processor will append the incoming TM_xRDY bits to the next cframe that will be 
sent out. Assuming that the ingress processor just missed a maximum size cframe that is being 
sent out - 2B base header + 4B extension header + 256B payload + 2B vertical parity = 264B = 
66 cycles, the TM_xRDY bit will be delayed by 66 cycles before it is sent across the CSIX 
interface.

3. If the ingress processor appends the TM_xRDY bit on a maximum size cframe, then assuming 
that a parity error occurs on the READY[0/1] bit of the base header, it will be detected only 
when VP parity is computed for the entire cframe, adding another 66 cycles.

4. According to the CSIX spec. the fabric has 32 cycles to react to change in the TM_xRDY bits.

5. Assume that just before the fabric decided to stop, a maximum size cframe slipped out, adding 
another 66 cycles.

Thus the total latency for the link level flow control to respond can be 248 cycles. Assume that 
during this interval, the switch fabric transmits a series of minimum size cframes (2B base header + 
4B extension header + 1B payload + 3B padding + 2B vertical parity = 12B or 3 cycles) followed 
by the last maximum size cframe. Thus the total number of cframes received will be 62 (61 cframes 
in the first 182 cycles + 1 cframe in the next 66 cycles). Assuming that the RBUF element size in 
the egress processor is configured to be 256B, the total number of elements is 32. In other words, 
the egress processor can buffer only up to 32 cframes. Thus, even if the high watermark control, 
HWM_Control[RBUF_x_HWM] is set to 0, buffer overflow may occur.

In order to overcome this condition, an additional level of buffering is provided on the receive 
interface of each processor. This buffer, comprising of Rx Data Fifo and Rx Status FIFO, is not 
visible to software. The Rx Data Fifo is sized to be 256 c-words (256 32-bit entries) to buffer the 
248 cycles worth of data. The Rx Status FIFO is 64 entries, enough to buffer the status of the 62 
received cframes.
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8.7.2.3 Fabric Level

The CBus interface on the egress processor contains a 256 x 32 FIFO called FCEFIFO. The 
CSIX_Type_Map CSR allows any CFrame type to be routed into FCEFIFO, although typically 
only flow control CFrames are put into FCEFIFO. The entire CFrame is placed into FCEFIFO. All 
CFrames in FCEFIFO are sent out of the egress processor on the TXCSOF, TXCDATA[1:0], and 
TXCPAR output pins. 

In order to minimize latency, CFrames are forwarded in a cut-through manner. CFrames which get 
routed to FCEFIFO never become visible to software running on the egress processor. In order to 
minimize latency, CFrames are forwarded using a cut-through approach. If there is no data in 
FCEFIFO then the egress processor sends Idle CFrames.

FCEFIFO has its own high watermark, set using HWM_Control[FCEFIFO_HWM]. If the high 
watermark is exceeded, this will cause TM_CRDY to be deasserted.

Flow control CFrames are received by the ingress processor on the RXCDATA, RXCPAR, and 
RXCSOF pins. They are deposited into the FCIFIFO. FCIFIFO is 256 x 32. The ingress processor 
is responsible for checking horizontal and vertical parity and length error (premature RXCSOF) for 
each incoming CFrame. If an error is detected, the CFrame is dropped and 
MSF_Interrupt_Status[FCIFIFO_Error] is set.

The FCIFIFO has two signals which are used to signal a thread: not-empty and nearly-full. These 
two signals are connected to the STATE inputs of every Microengine and can be tested using the 
BR_STATE instruction:

• FCI_Not_Empty: if asserted, this indicates that there is at least one CWord in FCIFIFO. This 
signal stays asserted until all CWords have been read. This signal is not asserted until there is a 
complete, valid, error-free CFrame in FCIFIFO. As the CFrame is dequeued by the ME 
handler thread, this signal stays asserted until all CWords have been removed, including 
subsequent CFrames.

• FCI_Near_Full: if asserted, this dictates that FCIFIFO is above the high watermark set in 
HWM_Control[FCIFIFO_Int_HWM].

The not-empty signal is asserted if and only if an entire CFrame has been received without error 
into the FCIFIFO. The thread that has been assigned to handle FCIFIFO is woken up, then must 
read the CFrame, 32 bits at a time, from the FCIFIFO by issuing msf[read] to the FCIFIFO CSR. 
(Burst read of up to sixteen words is allowed.) The FCIFIFO handler thread must examine the base 
header to determine how long the CFrame and perform the necessary number of CSR reads from 
the FCIFIFO register to dequeue the entire CFrame, including padding and vertical parity. If a read 
is issued to an empty FCIFIFO, or if the FCIFIFO does not yet contain a complete CFrame, then an 
four byte idle CFrame (0x0000FFFF) will be read back.

The nearly-full signal is based on the high watermark programmed into 
HWM_Control[FCIFIFO_Int_HWM]. The nearly-full is asserted, this means that the FCIFIFO 
handler thread should contain multiple CFrames (unless the high watermark has been set low) and 
that higher priority needs to be given to draining the FCIFIFO to prevent flow control from being 
asserted to the switch fabric.

In addition, FCIFIFO has a flow control signal called RXCFC which is connected to the TXCFC 
input pin of the egress processor. If asserted, this tells the egress processor to stop on the CBus. 
RXCFC is triggered by a high watermark set in HWM_Control[FCIFIFO_Ext_HWM].
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Note: FCIFIFO in the ingress processor never enqueues Idle CFrames in either full duplex or simplex 
modes. The transmitted Idle CFrames are injected by the control state machine, not taken from the 
FCEFIFO.

8.7.3 Simplex Mode
In simplex mode, the CBus is connected directly to the switch fabric; flow control information is 
exchanged directly between the egress processor and the switch fabric, and directly between the 
ingress processor and the switch fabric. IXP2400 MSF does not support transmit of flow control 
CFrames on CBus in simplex mode whose length is not n*4 bytes in length (there is no such 
restriction on non-flow control CFrames, they can have arbitrary length).

Figure 100 contains a block diagram which shows how CBus is connected and used in simplex 
mode.
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8.7.3.1 Link Level

The TXCSRB/RXCSRB and TXCFC/RXCFC pins are not used at all in simplex mode.

Figure 100. Simplex Mode Block Diagram
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The egress processor uses the TXCSOF, TXCDATA, and TXCPAR pins to send flow control 
CFrames directly to the switch fabric. The TM_CRDY and TM_DRDY bits are placed directly into 
the base header of outgoing CFrames by hardware. The TM_xRDY bits are also visible to software 
through FC_Egress_Status[TM_CRDY] and FC_Egress_Status[TM_DRDY].

The switch fabric uses the SF_CRDY bit to indicate that its flow control FIFO cannot accept any 
more data. This bit is set by the egress processor to stop transmission of CFrames from the 
FCEFIFO onto the CBus transmit bus. If SF_CRDY is deasserted, the CFrame currently being 
transmitted will complete. SF_DRDY is ignored by the egress processor.

The ingress processor uses the RXCSOF, RXCDATA, and RXCPAR pins to receive flow control 
CFrames directly from the switch fabric. The SF_CRDY and SF_DRDY bits are extracted from the 
base header of incoming CFrames. Transmit hardware in the ingress processor uses the SF_xRDY 
bits to flow control the data and control transmit. The SF_xRDY bits are also visible to software 
via FC_Ingress_Status[SF_CRDY] and FC_Ingress_Status[SF_DRDY].

The ingress processor uses the TM_CRDY bit to indicate that FCIFIFO is nearly full and cannot 
accept any more CFrames. If the ingress processor deasserts TM_CRDY, the switch fabric should 
finish transmitting the current CFrame from its flow control FIFO, then stop until TM_CRDY is 
asserted again. TM_DRDY is not used by the ingress processor and is always asserted.

8.7.3.2 Fabric Level

The ingress processor receives flow control CFrames through the CBus interface into FCIFIFO. 
FCIFIFO is accessed exactly the same way as in half-duplex mode. The steps are the same.

If FCIFIFO exceeds its high watermark, as determined by HWM_Control[FCIFIFO_Ext_HWM], 
it will cause the TM_CRDY bit to be deasserted. This bit is carried in all outgoing CFrames on the 
main CSIX interface. 

The egress processor transmits flow control CFrames through the CBus interface using FCEFIFO. 
This is done by performing CSR writes, using msf[write], to the FCEFIFO register. The ME must 
test FC_Egress_Status[FCEFIFO_Full] to check if the FCEFIFO has sufficient space before 
writing to it. The ME creating the CFrame must first write a valid header followed by the payload; 
hardware will generate horizontal and vertical parity and insert any necessary padding.

After the CFrame has been written to the FCEFIFO, the ME writes to the FCEFIFO_Validate CSR 
to indicate that the CFrame is ready to be sent out on TXCDATA. This is required to prevent 
underflow by insuring that the entire CFrame is in FCEFIFO before transmission is started. A 
validated CFrame at the head of FCEFIFO will be transmitted only if the SF_CRDY bit from the 
switch fabric is asserted; transmission is held off if it is deasserted. Once CFrame transmission 
begins, the entire CFrame is sent regardless of changes in SF_CRDY. SF_DRDY is ignored.

If there is no valid CFrame in FCEFIFO or if SF_CRDY is deasserted, then idle CFrames are sent 
on TXCDATA. The idle CFrames will carry TM_CRDY and TM_DRDY information. In all cases, 
the switch fabric must honor the ready bits to prevent overflowing RBUF.

Note: Although the intent is to transmit flow control CFrames via CBus, there are no hardware 
restrictions on transmitting any type of CFrame through this interface.

Note: If there is no switch fabric present, the CBus ports can be used for interchip communication. The 
hardware configuration would be the same as for Full Duplex Mode, but the CBus interfaces would 
be configured for Simplex mode operation. This makes it possible for software running on one 
processor to write messages, in CFrame format, into FCEFIFO and have the messages passed to 
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the other processor via CBus. TXCFC/RXCFC is used to indicate that the FCIFIFO has exceeded 
the high watermark. 

8.8 Interface to Command and Push and Pull Buses
Figure 101 shows the interface of the MSF block to the command and push and pull buses.

Data transfers to and from the TBUF/RBUF are done in the following cases.

8.8.1 RBUF or CSR to ME SRAM Read Transfer Register
msf[read, $s_xfer_reg, src_op_1, src_op_2, ref_cnt], optional_token

Figure 101. Block Diagram of the MSF Block to the Command and Push and Pull Buses
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For transfers to ME, the MSF act as a target. Commands from MEs are received on the command 
bus. The commands are checked to see if they are targeted to MSF. If so they are enqueued into the 
Command Inlet FIFO, and then moved to the Read Command FIFO. When the Command Inlet 
FIFO is near full, it asserts a signal to the command arbiters. The command arbiters will prevent 
further commands to MSF until after the full signal is deasserted. The RBUF element or CSR 
specified in the address field of the command is read and the data is registered in the 
SPUSH_DATA register. The control logic then arbitrates for S_PUSH_BUS, and when granted it 
drives the data.

8.8.2 ME SRAM Write Transfer Register to TBUF or CSR
msf[write, $s_xfer_reg, src_op_1, src_op_2, ref_cnt], optional_token

For transfers from ME, MSF acts as a target. Commands from MEs are received on the command 
bus. The commands are checked to see if they are targeted to MSF. If so they are enqueued into the 
Command Inlet FIFO, and then moved to the Write Command FIFO. When the Command Inlet 
FIFO is near full, it asserts a signal to the command arbiters. The command arbiters will prevent 
further commands to MSF until after the full signal is deasserted. The control logic then arbitrates 
for S_PULL_BUS, and when granted it receives and registers the data from the ME into the 
S_PULL_DATA register. It then writes that data into the TBUF element or CSR specified in the 
address field of the command.

8.8.3 ME to MSF CSR Fast Write
msf[fast_write, src_op1, src_op2]

For fast write transfers from ME, MSF acts as a target. Commands from MEs are received on the 
command bus. The commands are checked to see if they are targeted to MSF. If so they are 
enqueued into the Command Inlet FIFO, and then moved to the Write Command FIFO. When the 
Command Inlet FIFO is near full, it asserts a signal to the command arbiters. The command 
arbiters will prevent further commands to MSF until after the full signal is deasserted. The control 
logic uses the address and data, both found in the address field of the command (see the IXP2400/
IXP2800 Network Processor Programmer’s Reference Manual for register details). It then writes 
the data into the CSR specified.

8.8.4 Transfer from RBUF to DRAM
dram[rbuf_rd, -, src_op1, src_op2, ref_cnt], indirect_ref

For the transfers to DRAM, the RBUF acts like a slave. The address of the data to be read is given 
in D_PULL_ID. The data is read from RBUF and registered in D_PULL_DATA Register. It is then 
multiplexed and driven to the DRAM channel on D_PULL_BUS.

8.8.5 Transfer from DRAM to TBUF
dram[tbuf_wr, -, src_op1, src_op2, ref_cnt], indirect_ref

For the transfers from DRAM, the TBUF acts like a slave. The address of the data to be written is 
given in D_PUSH_ID. The data is registered and assembled from D_PUSH_BUS, and then written 
into TBUF.
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8.9 Registers
Please see the IXP2400/IXP2800 Network Processor Programmer’s Reference Manual for 
IXP2400 MSF register information.
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PCI Unit 9

This section contains information on the IXP2400 Network Processor PCI Unit.

9.1 Overview
The PCI Unit allows PCI target transactions to internal registers, SRAM, and DRAM. It also 
generates PCI initiator transactions from the DMA Engine, Intel XScale® core, and Microengines. 

The PCI Unit main functional blocks are shown in Figure 102 and include:

• PCI Core Logic

• PCI Bus Arbiter

• DRAM Interface Logic

• SRAM Interface Logic

• Mailbox and Message Registers

• DMA Engine

• XScale core Direct Access to PCI

The main function of the PCI Unit is to transfer data between the PCI Bus and the internal devices. 

These are the data transfer paths supported as shown in Figure 103:

• PCI Slave read and write between PCI and internal buses

— CSRs (PCI_CSR_BAR)

— SRAM (PCI_SRAM_BAR)

— DRAM (PCI_DRAM_BAR)

• Push/Pull Master (XScale core, Microengine) accesses to internal registers within PCI unit

• DMA 

— Descriptor read from SRAM.

— Data transfers between PCI and DRAM.

•  Push/Pull Master (XScale core and Microengines) direct read and write to PCI Bus
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Figure 102. PCI Functional Blocks
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9.2 PCI Protocol Interface Block
This block generates the PCI-compliant protocol logic. It operates either as an initiator or a target 
device on the PCI Bus. As an initiator, all bus cycles are generated by the core. As a PCI target, the 
core responds to bus cycles that have been directed towards it. 

On the PCI Bus, the interface supports interrupts, 64-bit data path, 32-bit addressing, and single 
configuration space. The local configuration registers are accessible from the PCI Bus or from the 
XScale core through an internal path.

The PCI block interfaces with the other sub-blocks with a FIFO bus called FBus. The FBus speed 
is the same as the internal Push/Pull bus speed. The FIFOs are implemented with clock 
synchronization logic between the PCI speed and the internal Push/Pull bus speed.

There are eight data FIFOs and four address FIFOs in the core. The separate slave and master data 
FIFOs allows simultaneous operations and multiple outstanding PCI bus transfers. The target 
address FIFO latches up to four PCI read or write addresses. If a read address is latched, the 
subsequent cycles will be retried and no address will be latched until the read completes. The 
initiator address FIFO can accumulate up to four addresses, which can be PCI reads or writes.

Figure 103. Data Access Paths
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These FIFOs are inside the PCI core, which stores data that are received from the PCI Bus or to be 
sent out to the PCI Bus. There are additional buffers implemented in other sub-blocks that buffers 
data to and from the internal push/pull buses.

Table 127 lists the maximum PCI Interface loading.

9.2.1 PCI Commands
Table 128 lists the supported PCI commands and identifies them as either a target or initiator. 

Table 125. Atomic Target Write to Memory Option

Stepping Description

IXP2400 A0/A1 The address FIFO is always set as a 4-entry FIFO.

IXP2400 B0

If the PCI Control CSR bit[18] of the ATWE Atomic 
Write Enable register is set to 0, the address FIFO will 
always be set as a 4-entry FIFO.

If the PCI Control CSR bit[18] of the ATWE Atomic 
Write Enable register is set to 1, the address FIFO will 
be set to a single-entry FIFO. The write to memory will 
always be a single burst if the address is aligned. And, 
the burst size must be 64 bytes (or less) for atomic 
write purposes.

Table 126. PCI Core FIFO Sizes

Location Depth

Target Address 4

Target Write Data 8

Target Read Data 8

Initiator Address 4

Initiator Write Data 8

Initiator Read Data 8

Table 127. Maximum Loading

Bus Interface Max # of Loads Trace Length (inches)

PCI
4 loads at 66 MHz bus frequency 
8 loads at 33 MHz bus frequency

5 to 7 

Table 128. PCI Commands  (Sheet 1 of 2)

C_BE_L Command
Support

Target Initiator

0x0 Interrupt Acknowledge Not Supported Supported

0x1 Special Cycle Not Supported Supported

0x2 IO Read cycle Not Supported Supported
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PCI functions not supported by the PCI Unit include:

• IO Space response as a target

• Cacheable memory

• VGA palette snooping 

• PCI Lock Cycle

• Multi-function Devices

• Dual Address cycle

9.2.2 IXP2400 Network Processor Initialization 
When the IXP2400 Network Processor is a target, the internal CSR, DRAM, or SRAM address is 
generated when the PCI address matches the appropriate base address register. The window sizes to 
the SRAM and DRAM BARs can be optionally set by PCI_SWIN and PCI_DWIN strap pins or 
mask registers depending on the state of the PROM_BOOT signal.

There are two initialization modes supported. They are determined by the PROM_BOOT signal 
sampled on the de-assertion edge of Chip Reset. If PROM_BOOT is asserted, which indicates that 
there is a boot prom in the system. The XScale core will boot from the prom and be able to 
program the BAR space mask registers. If PROM_BOOT is not asserted, the XScale core is held in 
reset and the BAR sizes are determined by strap pins. 

0x3 IO Write cycle Not Supported Supported

0x4 Reserved - -

0x5 Reserved - -

0x6 Memory Read Supported Supported

0x7 Memory Write Supported Supported

0x8 Reserved - -

0x9 Reserved - -

0xA Configuration Read Supported Supported

0xB Configuration Write Supported Supported

0xC Memory Read 
Multiple

Aliased as Memory Read except 
SRAM accesses where the number 

of Dwords to read is given by the 
cache line size 

Supported

0xD Reserved

0xE Memory read line
Aliased as Memory Read except 

SRAM accesses where the number 
of Dwords to read is given by the 

cache line size 
Supported

0xF Memory Write and 
Invalidate Aliased as Memory Write Not Supported

Table 128. PCI Commands  (Sheet 2 of 2)

C_BE_L Command
Support

Target Initiator
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9.2.2.1 Initialization by the Intel® XScale® Core

The PCI unit is initialized to an inactive, disabled state until the XScale core has set the Initialize 
Complete bit in the Control register. This bit is set after the XScale core has initialized the various 
PCI base address and mask registers (which should occur within 1 ms of the end of PCI_RESET). 
The mask registers are used to initialize the PCI base address registers to values other than the 
default power-up values which includes the base address visible to the PCI host and the 
prefetchable bit in the base registers (see Table 129).

When the PCI unit is in the inactive state, it returns retry responses as the target of PCI 
configuration cycles if the PCI Unit is not configured as the PCI host. In the case of PCI Unit being 
configured as the PCI host, the PCI bus will be held in reset until the XScale core completes the 
PCI Bus configurations and clears the PCI Reset (as described in Section 9.2.11).

9.2.2.2 Initialization by an External PCI Host

In this case, the internal PCI Unit is not hosting the PCI Bus. The host processor is allowed to 
configure the internal CSRs while the XScale core is held in reset. The host processor configures 
the PCI address space, the memory controllers, and other interfaces. Also, the program code for the 
XScale core may be downloaded into local memory. 

The host processor then clears the XScale core reset bit in the PCI Reset Register. This de-asserts 
the internal reset signal to the XScale core and the core begins its initialization process. The 
PCI_SWIN and PCI_DWIN strap signals are used to select the window sizes to SRAM BAR and 
DRAM BAR (see Table 130).

9.2.3 PCI Type 0 Configuration Cycles 
A PCI access to a configuration register occurs when the following conditions are satisfied:

• PCI_IDSEL is asserted. (PCI_IDSEL only support PCI_AD[23:16] bits)

• The PCI command is a configuration write or read.

• The PCI_AD [1:0] are 00.

Table 129. PCI BAR Programmable Sizes

Base Address
Register

Address
Space Sizes

PCI_CSR_BAR CSR 1Mbyte

PCI_SRAM_BAR SRAM 0Byte,256Kbyte,512Kbyte,1Mbyte,2Mbyte,4Mbyte, 
8Mbyte,16Mbyte,32Mbyte,64MByte,128Mbyte,256Mbyte

PCI_DRAM_BAR DRAM 0Byte,1Mbyte,2Mbyte,4Mbyte,8Mbyte,16Mbyte,32Mbyte,64Mbyte,128Mbyte,
256Mbyte,512Mbyte,1Gbyte

Table 130. PCI BAR Sizes with PCI host Initialization

Base Address 
Register

Address 
Space Sizes

PCI_CSR_BAR CSR 1MByte

PCI_SRAM_BAR SRAM 32M/64MByte/128MByte/256MByte

PCI_DRAM_BAR DRAM 128M/256M/512M/1GByte
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A configuration register is selected by PCI_AD[7:2]. If the PCI master attempts to do a burst 
longer than one 32 bit Dword, the PCI unit signals a target disconnect. PCI unit does not issue 
PCI_ACK64 for configuration cycle.

9.2.3.1 Configuration Write

A write occurs if the PCI command is a Configuration Write. The PCI byte enables determine 
which bytes are written.If a nonexistent configuration register is selected within the configuration 
register address range, the data is discarded and no error action is taken. 

9.2.3.2 Configuration Read

A read occurs if the PCI command is a Configuration Read. The data from the configuration 
register selected by PCI_AD[7:2] is returned on PCI_AD[31:0]. If a nonexistent configuration 
register is selected within the configuration register address range, the data returned are zeros and 
no error action is taken. 

9.2.4 PCI 64-Bit Bus Extension
The PCI Unit is in 64-bit mode when PCI_REQ64# is sampled active on the de-assertion edge of 
PCI Reset. The 64-bit mode can be overridden by writing to IXP_PARA CSR bit 1.

These are the general rules in assertions of PCI_REQ64# and PCI_ACK64#:

As a target:

1. PCI Unit asserts PCI_ACK64# only in 64 bit mode.

2. PCI Unit asserts PCI_ACK64# only to target cycles that matches the PCI_SRAM_BAR and 
PCI_DRAM_BAR and a 64-bit transaction is negotiated

3. PCI Unit does not assert PCI_ACK64# target cycles that matches the PCI_CSR_BAR even a 
64-bit transaction is negotiated.

As an initiator:

1. PCI Unit asserts PCI_REQ64# only in 64 bit mode.

2. PCI Unit asserts PCI_REQ64# to negotiate a 64-bit transaction only if the address is double 
Dword aligned (PCI_AD[2] must be 0 during the address phase).

3. If the target responses to PCI_REQ#64 with PCI_ACK64# de-asserted, PCI Unit will 
complete the transaction acting as a 32-bit master by not asserting PCI_REQ64# on 
subsequent cycle.

9.2.5 PCI Target Cycles
The following PCI transactions are not supported by the PCI Unit as a target:

• IO read or write

• Type 1 configuration read or write

• Special cycle

• IACK cycle
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• PCI Lock Cycle

• Multi-function Devices

• Dual Address cycle

9.2.5.1 PCI Accesses to CSR

A PCI access to a CSR occurs if the PCI address matches the CSR base address register 
(PCI_CSR_BAR).The PCI Bus will be disconnected after the first data-phase if the data is more 
than one data phase. For 64-bit CSR accesses, the PCI Unit will not assert PCI_ACK64# on the 
PCI bus.

9.2.5.2 PCI Accesses to DRAM

A PCI access to DRAM occurs if the PCI address matches the DRAM base address register 
(PCI_DRAM_BAR).

9.2.5.3 PCI Accesses to SRAM

A PCI access to SRAM occurs if the PCI address matches the SRAM base address register 
(PCI_SRAM_BAR). The SRAM is organized as two distinct channels and the address is not 
contiguous. The PCI_SRAM_BAR programmed window size will be used as the total memory 
space. The upper two bits of the address will be used as channel number in addressing the 
particular channel and the remaining address bits will be used as the memory address.

9.2.5.4 Target Write Accesses From PCI Bus

A PCI write occurs if the PCI address matches one of the base address registers and the PCI 
command is either a Memory Write or Memory Write and Invalidate. The core will store up to 4 
write addresses into the target address FIFO along with the BAR IDs of the transaction. The write 
data will be stored into the target write FIFO.When either the address FIFO or data FIFO is full, a 
retry is forced on the PCI Bus in response to write accesses.

A long-burst enable mode ensures that long bursts will not be disconnected unless the write buffer 
data cannot be appropriately drained.

The FIFO data is forwarded to an internal slave buffer before being written into SRAM or DRAM. 
If the FIFO fills during the write, the address is crossing the 64 byte address boundary, or in the 
case of the command being a burst to the CSR space, the PCI unit signals target disconnect to the 
PCI master.

9.2.5.5 Target Read Accesses From PCI Bus

A PCI read occurs if the PCI address matches one of the base address registers and the PCI 
command is either a Memory Read, Memory Read Line, or Memory Read Multiple. 

The read is completed as a PCI delayed read. That is, on the first occurrence of the read, the PCI 
unit signals a retry to the PCI master,. If there is no prior read pending, the PCI unit latches the 
address and command and places it into the target address FIFO. When the address reaches the 
head of the FIFO, the PCI unit reads the DRAM. Subsequent reads or writes will also get retry 
responses until data is available.
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When the read data is returned into the PCI Read FIFO, the PCI unit begins to decrement its 
discard timer. If the PCI bus master has not repeated the read by the time the timer reaches zero, the 
PCI unit discards the read data, invalidates the delayed read address and sets Discard Timer 
Expired (bit 16) in the Control Register (PCI_CONTROL). If enabled, the PCI unit interrupts the 
XScale core. The discard timer counts 215 (32768) PCI clocks.

When the master repeats the read command, the PCI unit compares the address and checks that the 
command is a Memory Read, a Memory Read Line, or a Memory Read Multiple. If there is a 
match, the response is as follows:

• If the read data has not yet been read, the response is retry. 

• If the read data has been read, assert PCI_TRDY# and deliver the data. If the master attempts 
to continue the burst past the amount of data read, the PCI unit signals a target disconnect.

• CSR reads are always 32 bit reads.

• If the discard timer has expired for a read, the subsequent read will be treated as a new read.

9.2.6 PCI Initiator Transactions
PCI master transactions are caused by either the XScale core loads and stores that fall into the 
various PCI address spaces, Microengine read and write commands, or by DMA engine. The 
command register (PCI_CMD_STAT) bus master bit (BUS_MASTER) must be set for the PCI unit 
to perform any of the initiator transactions.

The PCI cycle is initiated when there is an entry in the PCI Core Interface initiator address FIFO. 
The core handshakes with the master interface with the FBus FIFO status signals. The PCI core 
supports both burst and non-burst master read transfers by the burst count inputs, driven by Master 
Interface to inform the core the burst size. For a Master write, FB_WBstonN indicates to the PCI 
core whether the transfers are burst or non-burst, on a 64 bit double Dword basis.

The PCI core supports read and write memory cycles as an initiator while taking care of all 
disconnect/retry situations on the PCI Bus. 

9.2.6.1 PCI Request Operation

If an external arbiter is used (CFG_PCI_ARB is not active), the reql[0] and gnt[0] are connected to 
the PCI_REQ# and PCI_GNT# pins. Otherwise, they are connected to the internal arbiter.

The PCI unit asserts req_l[0] to act as a bus master on the PCI. If gnt_l[0] is asserted, the PCI unit 
can start a PCI transaction regardless of the state of req_l[0]. When the PCI unit requests the PCI 
bus, it performs a PCI transaction when gnt_l[0] is received. Once req_l[0] is asserted, the PCI unit 
never de-asserts it prior to receiving gnt_l[0] or de-asserts it after receiving gnt_l[0] without doing 
a transaction. PCI Unit de-asserts req_l[0] for two cycles when it receives a retry or disconnect 
response from the target.

9.2.6.2 PCI Commands

The following PCI transactions are not generated by PCI Unit as an initiator:

• PCI Lock Cycle

• Dual Address cycle

• Memory Write and Invalidate
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9.2.6.3 Initiator Write Transactions

The following general rules apply to the write command transactions:

• If the PCI unit receives either a target retry response or a target disconnect response before all 
of the write data has been delivered, it resumes the transaction at the first opportunity, using 
the address of the first undeliverable data.

• If the PCI unit receives a master abort, it discards all of the write data from that transaction and 
sets the status register (PCI_CMD_STAT) received master abort bit, which, if enabled, 
interrupts the XScale core.

• If the PCI unit receives a target abort, it discards all of the remaining write data from that 
transaction, if any, and sets the status registers (PCI_CMD_STAT) received target abort bit, 
which, if enabled, interrupts the XScale core.

• The PCI unit can dessert frame_l prior to delivering all data due to the master latency timer, If 
this occurs, it resumes the write at the first opportunity, using the address of the first 
undeliverable data.

9.2.6.4 Initiator Read Transactions

The following general rules apply to the read command transactions:

• If the PCI unit receives a target retry, it repeats the transaction at the first opportunity until the 
whole transaction is completed.

• If the PCI unit receives a master abort, it substitutes 0xFFFF FFFF for the read data and sets 
the status register (PCI_CMD_STAT) received master abort bit, which, if enabled, interrupts 
the XScale core.

• If the PCI unit receives a target abort, it sets the status registers (PCI_CMD_STAT) received 
target abort bit, which, if enabled, interrupts the XScale core and does not try to get any more 
read data. PCI unit will substitute 0xFFFF FFFF for the data which are not read and complete 
the cycle.

9.2.6.5 Initiator Latency Timer

When the PCI unit begins PCI transaction as an initiator, asserting PCI_FRAME#, it begins to 
decrement its master latency timer. When the timer value reaches zero, the PCI unit checks the 
value of gnt_l[0]. If gnt_l[0] is de-asserted, the PCI unit de-asserts frame_l (if it is still asserted) at 
the earliest opportunity. This is normally the next data phase for all transactions.

9.2.6.6 Special Cycle

As an initiator, special cycles are broadcast to all PCI agents, so PCI_DEVSEL# will not be 
received, and therefore no errors can be received.

9.2.7 PCI Fast Back to Back Cycles
The core supports fast back-to-back target cycles on the PCI Bus. The core does not generate 
initiator fast back-to-back cycles on the PCI Bus regardless of the value in the fast back to back 
enable bit of the Command and Status register in the PCI configuration space. 
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9.2.8 PCI retry
As a slave, the PCI Unit generates retry on:

• A slave write when the Data write FIFO is full.

• When address FIFO is full

• Data read is handled as delay transactions. 

As an initiator, the core supports retry by maintaining an internal counter of the current address. On 
receiving a retry, the core de-asserts PciFrameN and then re-assert PciFrameN with the current 
address from the counter.

9.2.9 PCI Disconnect
As a slave, it disconnects for the following conditions:

• Bursted PCI configuration cycle.

• Bursted access to PCI_CSR_BAR.

• PCI reads past the amount of data in the read FIFO.

• Crossing the 64-byte boundary on the SRAM and DRAM BAR (except on burst writes, where 
the long-burst enable bit is set).

• PCI burst cycles that cross 1K PCI address boundary which includes PCI burst cycles that 
cross memory decodes from the core as a target to decodes that are outside the core (e.g. 
started inside a BAR and ends outside of that BAR).

As an initiator, the core supports retry and disconnect by maintaining an internal counter of the 
current address. On receiving a retry or disconnect, the core de-asserts PCIFRAMEN# and then re-
assert PCIFRAMEN# with the current address +”current transfer byte size” from the counter.

9.2.10 PCI Built In System Test 
The IXP2400 Network Processor supports BIST when there is an external PCI host. The PCI host 
will set the STRT bit in the PCI_CACHE_LAT_HDR_BIST configuration register. An interrupt is 
generated to the XScale core if it is enabled by the XScale core Interrupt Enable Register. The 
XScale software can respond to the interrupt by running an application specific test. Upon 
successful completion of the test, the XScale core will reset the STRT bit. If this bit is not reset 2 
seconds after the PCI host sets the STRT bit, the host will indicate that the IXP failed the test.

9.2.11  PCI Central Functions
The CFG_RST_DIR pin is active high for enabling the PCI Unit central function.

The CFG_PCI_ARB(GPIO[2]) pin is the strap pin for the internal arbiter. When this strap pin is 
high during reset then the PCI Unit owns the arbitration.

The CFG_PCI_BOOT_HOST(GPIO[1]) pin is the strap pin for the PCI host.When 
PCI_BOOT_HOST is asserted during reset then PCI Unit will support as a PCI host.
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Note * CFG_RST_DIR = 1 then central function.
* CFG_PCI_HOST must be central function.
* CFG_PCI_ARB must be central function.

9.2.11.1 PCI Interrupt Inputs

The PCI Unit supports two interrupt lines from the PCI Bus as host. One of the interrupt lines will 
be open-drain output and input. The other interrupt line will be selected as PCI interrupt input. 
Both the interrupt lines can be enabled in the XScale core Interrupt Enable Register.

9.2.11.2 PCI Reset Output

If the IXP2400 Network Processor is central function (CFG_RST_DIR =1), PCI Unit will be 
asserting the PCI_RST# after the system power-on. The XScale core has to write to the PCI 
External Reset bit in the IXP Reset register to de-assert the PCI_RST#. In this case, chip reset 
(SYS_RESET_L) is driven by a signal other than PCI_RST#.

When the PCI Unit is not configured as the central function (CFG_RST_DIR =0), PCI_RST# is 
used as a chip reset input.

9.2.11.3 PCI Internal Arbiter

The PCI unit contains a PCI bus arbiter that supports two external masters in addition to the PCI 
Unit’s initiator interface. To enable the PCI arbiter, the CFG_PCI_ARB(GPIO[2]) strapping pin 
must be 1 during reset. As shown in Figure 104, the local bus request and grant pair become 
externally not visible. 

Table 131. Legal Combinations of the Strap Pin Options 

CFG_PCI_HOST
(GPIO[1])

CFG_PCI_ARB
(GPIO[2])

CFG_RST_DIR
(Central function)

CFG_PROM_BOO
T

(GPIO[0])

ok 0 0 0 0

ok 0 0 0 1

ok 0 0 1 1

Not support 0 1 0 x

ok 0 1 1 1

Not support 1 0 0 x

ok 1 0 1 1

Not supported 1 1 0 x

ok 1 1 1 1
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The arbiter uses a simple round-robin priority algorithm, The arbiter asserts the grant signal 
corresponding to the next request in the round-robin during the current executing transaction on the 
PCI bus (this is also called hidden arbitration). If the arbiter detects that an initiator has failed to 
assert PCI_FRAME# after 16 cycles of both grant assertion and PCI bus idle condition, the arbiter 
de-asserts the grant. That master does not receive any more grants until it de-asserts its request for 
at least one PCI clock cycle. Bus parking is implemented in that the last bus grant will stay asserted 
if no request is pending.

To prevent bus contention, if the PCI bus is idle, the arbiter never asserts one grant signal in the 
same PCI cycle in which it de-asserts another, It de-asserts one grant, and then asserts the next 
grant after one full PCI clock cycle has elapsed to provide for bus driver turnaround.

9.3 Slave Interface Block
The slave interface logic supports internal slave devices interfacing to the target port of the FBus.

• CSR—register access cycles to local CSRs. 

• DRAM—memory access cycles to the DRAM push/pull Bus.

• SRAM—memory access cycles to the SRAM push/pull Bus.

The slave port of the Fbus is connected to a 64 byte write buffer to support bursts of up to 64 bytes 
to the memory interfaces. The slave read data are directly downloaded into the FBus read FIFO. 
See Table 132.

Figure 104. PCI Arbiter Configuration Using CFG_PCI_ARB(GPIO[2])
f
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As a push/pull command bus master, the PCI Unit translates these accesses into different types of 
push/pull command. As the push/pull data bus target, the write data is sent through the pull data 
bus and the read data is received on the push data bus.

9.3.1 CSR Interface 
The internal Control and Status registers data is directed to or from the Slave FIFO port of the PCI 
core FBus when the BAR id matches PCI_CSR_BAR (BAR0). The CSR accesses from the PCI 
Bus directed towards CSRs not in PCI Unit is translated into a push/pull CSR type command. PCI 
local CSRs are handled within the PCI Unit.

For writes, the data is sent when the pull bus is valid and the ID matches. The address is unloaded 
from the FBus target address FIFO as indication to the PCI core logic that the cycle is completed. 
The slave write buffer is not used for CSR access.

For reads, the data is loaded into the target receive FIFO as soon as the push bus is valid and the ID 
matches. The address is unloaded from the FBus address FIFO.

One example of a PCI host access to internal registers is the initialization of internal registers and 
memory to enable the XScale core to boot off the DRAM in the absence of a boot up PROM. 

The accesses to the CSRs inside the PCI Unit are completed internally without sending the 
transaction out to the push pull bus.

9.3.2 SRAM Interface
The SRAM interface connects the FBus to the internal push/pull command bus and the 32-bit 
SRAM push/pull data buses. Request to memory is sent on the command bus. Data request is 
received as valid push/pull ID sent by the SRAM push/pull data bus.

If the PCI_SRAM_BAR is used, the target state machine generates a request to the command bus 
for SRAM access. Once the grant is received, the address, then data is directed between the slave 
FIFOs of the PCI core and the SRAM push/pull bus. 

9.3.2.1 SRAM Slave Writes

The slave write buffer is used to support memory burst accesses. The buffer is added so that the 
data transfer for each clock and burst size can be determined before a memory request is issued. 
Data is assembled in the buffers before being sent to memory for SRAM write.

On the push/pull bus, SRAM access can start at any address and have length up to 16 Dwords as 
shown in Figure 105. For masked writes, only size 1 is supported to transfer up to four bytes. 

Table 132. Slave Interface Buffer Sizes

Location Slave Address Slave Write Slave Read

Buffer Depth 1 64Byte 0

Usage CSR, SRAM, DRAM SRAM, DRAM NONE



Hardware Reference Manual 315

Intel® IXP2400 Network Processor
PCI Unit

The slave interface also has to make sure there is enough data in the slave write buffer to complete 
the memory data transfer before making a memory request.

9.3.2.2 SRAM Slave Reads

For a slave read from SRAM, a 32 bit DWORD is fetched from the memory for memory read 
command, one cache line is fetched for memory read line command, and two cache lines are read 
for memory read multiple command. Cache line size is programmable in the CACHE_LINE field 
of the PCI_CACHE_LAT_HDR_BIST configuration register. If the computed read size is greater 
than 64 bytes, the PCI SRAM read will default to the minimum of 8 bytes. No pre-fetch is 
supported in that the PCI Unit will not read beyond the computed read size.

The PCI core resets the target read FIFO before issuing a memory read data request on FBus. The 
maximum size of SRAM data read is 64 bytes. The PCI core will disconnect at the 64 byte address 
boundary.

Figure 105. Example of Target Write to SRAM of 68 bytes
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9.3.3 DRAM Interface
The memory is accessed using the push/pull mechanism. Request to memory is sent on the 
command bus. If the PCI_DRAM_BAR is used, the target state machine generates a request to the 
command bus for DRAM access with the address in the slave address FIFO. Once the push/pull 
request is received. The data is directed between the Slave FIFOs of the PCI core and DRAM push/
pull bus.

9.3.3.1 DRAM Slave Writes

The slave write buffer is used to support memory burst accesses. The buffer is added to guarantee 
data transfer for each clock and burst size can be determined before memory request is issued. Data 
is assembled in the buffers before being sent to memory for memory write.

DRAM target write access is only required to be 8-byte address aligned and the address does not 
wrap around the 64-byte address boundary on a DRAM burst. Each 8-byte access which is a partial 
write to the memory is treated as single write. Remaining writes of the 64-byte segment is written 
as one single burst. Transfers which cross a 64 -byte segment are split in to separate transfers. 
Figure 107 splits the 68 bytes transfers in to two partial 8-byte transfer to address 06 and address 48 
and one 56 byte burst transfer in the first 64-byte segment from address 08 to 38 and one 8-byte 
transfer to address 40.

For write to DRAM on the push/pull bus, the burst must be broken down into address aligned 
smaller transfer sizes (see Figure 106).

The Target interface also must make sure there is enough data in the target write buffer to complete 
the memory data transfer before making a memory request.
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9.3.3.2 DRAM Slave Reads

For a target read from memory, the whole 64 byte is fetched from the DRAM in the case of system 
using DDR memory technology. In the case of a DRAM system using RDRAM, the block size is 
16 bytes. Depending on the address for the target request, extra data is discarded at the beginning 
until the target address is reached. Also, extra data is discarded at the end of the transfer also when 
the burst ends in the middle of a data block. No pre-fetch is supported for DRAM access. See 
Figure 107.

Figure 106. Example of Target Write to DRAM of 68 bytes
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The PCI core resets the read FIFO before issuing a memory read data request on FBus. The 
maximum size of DRAM data read is 64 bytes. The PCI core will disconnect at the 64 byte address 
boundary.

9.3.4 Mailbox and Doorbell Registers 
Mailbox and Doorbell registers provide hardware support for communication between the XScale 
core and a device on the PCI Bus.

Four mailbox registers are provided so that messages can be passed between the XScale core and a 
PCI device. All four registers are 32 bits and can be read and written from both the XScale core and 
PCI. How the registers are used is application dependent and the messages are not used internally 
by the PCI Unit in any way. The mailbox registers are often used with the Doorbell interrupts.

Doorbell interrupts provide an efficient method of generating an interrupt as well as encoding the 
purpose of the interrupt. The PCI Unit supports an XScale core Doorbell register that is used by a 
PCI device to generate an XScale core FIQ and a separate PCI Doorbell register that is used by the 
XScale core to generate a PCI interrupt. A source generating the Doorbell interrupt can write a 
software defined bitmap to the register to indicate a specific purpose. This bitmap is translated into 
a single interrupt signal to the destination (either a PCI interrupt or a IXP2400 Network Processor 

Figure 107. Example of Target Read from DRAM using 64-Byte Burst.
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interrupt). When an interrupt is received, the Doorbell registers can be read and the bit mask can be 
interpreted. If a larger bit mask is required than that is provided by the Doorbell register, the 
Mailbox registers can be used to pass up to four 32 bits of data.

The doorbell interrupts are controlled through the registers shown in Table 133.

The XScale core and PCI devices write to the corresponding DOORBELL register to generate up 
to 32 doorbell interrupts. Each bit in the DOORBELL register is implemented as an SR flip-flop. 
The XScale core writes a 1 to set the flip-flop and the PCI device writes a 1 to clear the flip-flop. 
Writing a 0 has no effect on the registers. The PCI interrupt signal is the output of an NOR 
functions of all the PCI DOORBELL register bits (outputs of the SR flip-flops). The XScale core 
interrupt signal is the output of an NAND function of all the XScale core DOORBELL register bits 
(outputs of the SR flip-flops).

To assert an interrupt (i.e. to “push a doorbell”):

• A write of 1 to the corresponding bit of the DOORBELL Register generates an interrupt. This 
is the case for either PCI device or the XScale core, since writing 1 changes the doorbell bit to 
the proper asserted state (i.e., 0 for an XScale core interrupt and 1 for a PCI interrupt).

To dismiss an interrupt:

• A write of 1 to the corresponding bit of the DOORBELL Register clears an interrupt. This is 
the case for either PCI device or the XScale core, since writing 1 changes the doorbell bit to 
the proper de-asserted state (i.e., 1 for an XScale core interrupt and 0 for a PCI interrupt).

Figure 108 and Figure 109 illustrates how a Doorbell interrupt is asserted and cleared by both the 
XScale core and a PCI device. 

Table 133. Doorbell Interrupt Registers

Register Name Description

XScale core Doorbell Used to generate the XScale core Doorbell interrupts

XScale core Doorbell 
Setup Used to initialize the XScale core Doorbell register and for diagnostics.

PCI Doorbell Used to generate the PCI Doorbell interrupts

PCI Doorbell Setup Used to initialize the PCI Doorbell register and for diagnostics.
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The Doorbell Setup register allows the XScale core and a PCI device to perform two functions that 
are not possible using the Doorbell register. This register is used during setup and diagnostics and 
is not used during normal operations. First, it allows the XScale core and PCI device to clear an 
interrupt that it has generated to the other device. If the XScale core sets an interrupt to PCI device 
using the Doorbell register, the PCI device is the only one that can use the Doorbell register to clear 
the interrupt by writing one. With the Doorbell setup register, the XScale core can clear the 
interrupt by write 0 to it.

Second, it allows the XScale core and PCI device to generate a doorbell interrupt to itself. This can 
be used for diagnostic testing. Each bit in the Doorbell Setup register is mapped directly to the data 
input of the Doorbell register such that the data is directly written into the Doorbell register.

Figure 108. Generation of the Doorbell Interrupts to PCI

Figure 109. Generation of the Doorbell Interrupts to the Intel® XScale® Core
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During system initialization, the doorbell registers must be initialized by clearing the interrupt bits 
in the Doorbell register using the Doorbell Setup register by writing zeros to the PCI Doorbell 
setup register and ones to the XScale core Doorbell setup register.

9.3.5 PCI Interrupt Pin 
An external PCI interrupt can be generated in the following ways:

• The XScale core initiates a Doorbell interrupt XSCALE_INT_ENABLE. 

• One or more of the DMA channels have completed the DMA transfers.

• The XS_INT bit is set by XScale to generate a PCI Interrupt.

• Internal-unit-generated error or interrupt

• Watchdog interrupt

Figure 110 shows how PCI interrupts are managed via the PCI and the XScale core.

Figure 110. PCI Interrupts
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9.4 Master Interface Block
The Master Interface consists of the DMA engine and the Push/pull target interface. Both can 
generate initiator PCI transactions:

9.4.1 DMA Interface
There are three DMA channels, each of which can move blocks of data from DRAM to the PCI or 
from the PCI to DRAM. The DMA channels read parameters from a list of descriptors in SRAM, 
perform the data movement to or from DRAM, and stop when the list is exhausted. The descriptors 
are loaded from predefined SRAM entries or may be set directly by CSR writes to DMA registers. 
There is no restriction on byte alignment of the source address or the destination address. For PCI 
to DRAM transfers, the PCI command is Memory Read, Memory Read line, or Memory Read 
Multiple. For DRAM to PCI transfers, the PCI command is Memory Write. Memory Write 
Invalidate is not supported.

DMA reads are unmasked reads (all byte enables asserted) from DRAM. After each transfer, the 
byte count is decremented by the number of bytes read, and the source address is incremental by 
one 64-bit double Dword. The whole data block is fetched from the DRAM. The DRAM read is 
always 64-byte.

DMA reads are masked reads from the PCI and writes are masked for both the PCI and DRAM. 
When moving a block of data, the internal hardware adjusts the byte enables so that the data is 
aligned properly on block boundaries and that only the correct bytes are transferred if the initial 
and final data requires masking.

Table 134. Internal Unit Interrupt Directly to PCI Option

Stepping Description

A0, A1
The IRQ registers are in the XScale gasket; the PCI 
does not have IRQ status information. If the XScale 
gasket is in reset mode, the interrupt resources cannot 
be handled by the PCI host.

B0

The IRQ status registers are in both XScale gasket and 
PCI.
If PCI_OUT_INT_MASK[0] set to 1 then the PCI will 
not pass the interrupt information to an external PCI.
If PCI_OUT_INT_MASK[0] set to 0, the XScale gasket 
is in reset mode. The interrupt resources can be 
handled by the PCI host, PCI IRQ CSR. 
PCI_OUT_INT_STATUS[0] will collect all the different 
unit interrupts from XScale_Interrupt_Status or 
Xscale_Error_Status CSR to external PCI.
Add DRAM, SRAM, Slowport, ME interrupt to the 
following CSR:
XScale Error Status (XSCALE_ERR_STATUS)
XScale Error Enable (XSCALE_ERR_ENABLE)
XScale Interrupt Status (XSCALE_INT_STATUS)
XScale Interrupt Enable (XSCALE_INT_ENABLE)
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For DMA data, the DMA FIFO consists of separate FBus initiator read FIFO and initiator write 
FIFO, which are inside the PCI Core and three DMA buffers (corresponding to the three DMA 
channels), which is for buffering data to and from the DRAM. Since there is no simultaneous DMA 
read and write outstanding, one shared 128-byte buffer is used for both read and write DRAM data 

Up to three DMA channels are running at a time with three descriptors outstanding. The three 
DMA channels and the direct access channel to PCI Bus from Command Bus Master are 
contending to use the address, read and write FIFOs inside the Core.

Effectively, the active channels interleave bursts to or from the PCI Bus. Each channel is required 
to arbitrate for the PCI FIFOs after each PCI burst request.

9.4.1.1 Allocation of the DMA Channels

Static allocation are employed such that the DMA resources are controlled exclusively by a single 
device for each channel. The XScale core, a Microengine and the external PCI host can access the 
three DMA channels. The first two channels can function in one of the following modes, as 
determined by the DMA_INF_MODE register:

• The XScale core owns both DMA channel 1 and channel 2

• The Microengines own both DMA channels1 and channel 2

• PCI host owns both DMA channel 1 and channel 2

• The XScale core owns DMA channel 1 and the Microengines own DMA channel 2 (default).

The third channel can be allocated to either the XScale core, PCI host, or Microengines.

The DMA mode can be changed only by the XScale core under software control. The software 
should signal to suspend DMA transactions and wait until all DMA channels are free before 
changing the mode. Software should determine when all DMA channels are free either by polling 
XSCALE_INT_STATUS register bits DMA1, DMA2, and DMA3 until all three DMA channels 
are done.

9.4.1.2 Special Registers for Microengine Channels

Interrupts are generated at the end of DMA operation for the XScale core and PCI initiated DMA. 
However, the Microengine does not provide the interrupt mechanism. The PCI Unit will instead 
use an “Auto-Push” mechanism to signal the particular Microengine on completion of DMA. 

When the Microengine sets up the DMA channel, it would also write the CHAN_X_ME_PARAM 
with Microengine number, Context number, Register number, and Signal number. When the DMA 
channel completes, it writes the contents of DMA control to the Microengine/Context/Register/
Signal. PCI Unit will arbitrate for the SRAM Push bus. The Push ID is from the parameters in the 
register. 

The ME_PUSH_STATUS reflects the DMA Done bit in each of the CHAN_X_CONTROL 
registers. The Auto-Push operation will proceed after the DMA is done for the particular DMA 
channel if the corresponding enable bit in the ME_PUSH_ENABLE is set.

9.4.1.3 DMA Descriptor

Each descriptor occupies four 32 bit Dwords and is aligned on a 16 byte boundary. The DMA 
channels read the descriptors from local SRAM into the four DMA working registers once the 
control register has been set to initiate the transaction. This control must be set explicitly. This 
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starts the DMA transfer. After a descriptor is processed, the next descriptor is loaded in the 
working registers. This process repeats until the chain of descriptors is terminated (i.e., the End of 
Chain bit is set). See Table 135.

9.4.1.4 DMA Channel Operation

Since a PCI device, Microengine, or the XScale core can access the internal CSRs and memory in a 
similar way, the DMA channel operation description that follows will apply to all channels. 
CHAN_1_, CHAN_2_, or CHAN_3_ can be placed before the name for the DMA registers.

The DMA channel owner can either set up the descriptors in SRAM or it can write the first 
descriptor directly to the DMA channel registers.

When descriptors and the descriptor list are in SRAM, the procedure is as follows:

1. The DMA channel owner writes the address of the first descriptor into the DMA Channel 
Descriptor Pointer register (CHAN_X_DESC_PTR).

2. The DMA channel owner writes the DMA Channel Control register (CHAN_X_CONTROL) 
with miscellaneous control information and also sets the channel enable bit (bit 0). The 
channel initial descriptor bit (bit 4) in the CHAN_X_CONTROL register must also be cleared 
to indicate that the first descriptor is in SRAM.

3. Depending on the DMA channel number, the DMA channel reads the descriptor block into the 
corresponding DMA registers, CHAN_X_BYTE_COUNT, CHAN_X_PCI_ADDR, 
CHAN_DRAM_ADDR, and CHAN_X_DESC_PTR.

4. The DMA channel transfers the data until the byte count is exhausted, and then sets the 
channel transfer done (bit 2) in the CHAN_X_CONTROL register.

5. If the end of chain bit (bit 31) in the CHAN_X_BYTE_COUNT register is clear, the channel 
checks the Chain Pointer value. If the Chain Pointer value is not equal to 0. it reads the next 
descriptor and transfers the data (step 3 and 4 above). IF the Chain Pointer value is equal to 0, 
it waits for the Descriptor Added bit of the Channel Control Register to be set before reading 
the next descriptor and transfers the data (step 3 and 4 above). If bit 31 is set, the channel sets 
the channel chain done bit (bit 7) in the CHAN_X_CONTROL register and then stops.

6. Proceed to the Channel End Operation.

When single descriptors are written directly into the DMA channel registers, the procedure is as 
follows:

1. The DMA channel owner writes the descriptor values directly into the DMA channel registers. 
The end of chain bit (bit 31) in the CHAN_X_BYTE_COUNT register must be set, and the 
value in the CHAN_X_DESC_PTR register is not used. (If the end of chain bit is not set, the 
CHAN_X_DESC_PTR will point to the next description in a chain.)

2. The DMA channel owner writes the base address of the DMA transfer into the 
CHAN_X_PCI_ADDR to specify the PCI starting address.

Table 135. DMA Descriptor Format

Offset from Descriptor Pointer Description

0x0 Byte Count

0x4 PCI Address

0x8 DRAM Address

0xC Next Descriptor Address
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3. When the first descriptor is in the CHAN_X_BYTE_COUNT register, the 
CHAN_X_DRAM_ADDR register must be written with the address of the data to be moved.

4. The DMA channel owner writes the CHAN_X_CONTROL register with miscellaneous 
control information, along with setting the channel enable bit (bit 0). The channel initial 
descriptor in register bit (bit 4) in the CHAN_X_CONTROL register must also be set to 
indicate that the first descriptor is already in the channel descriptor registers.

5. The DMA channel transfers the data until the byte count is exhausted, and then sets the 
channel transfer done bit (bit 2) in the CHAN_X_CONTROL register.

6. Since the end of the chain bit (bit 31) in the CHAN_X_BYTE_CONT register is set, the 
channel sets the channel chain done bit (bit 7) in the CHAN_X_CONTROL register and then 
stops.

7. Proceed to the Channel End Operation.

9.4.1.5 DMA Channel End Operation

1. Channel owned by PCI
If not masked via the PCI Outbound Interrupt Mask register, the DMA channel interrupts the 
PCI host after the setting of the DMA done bit in the CHAN_X_CONTROL register, which is 
readable in the PCI Outbound Interrupt Status register.

2. Channel owned by the XScale core
If enabled via the XScale core Interrupt Enable registers, the DMA channel interrupts the 
XScale core by setting the DMA channel done bit in the CHAN_X_CONTROL register, 
which is readable in the XScale core Interrupt Status register.

3. Channel owned by Microengine
If enabled via the Microengine Auto-Push Enable registers, the DMA channel signals the 
Microengine after setting the DMA channel done bit in the CHAN_X_CONTROL register, 
which is readable in the Microengine Auto-Push Status register. 

9.4.1.6 Adding Descriptor to an Unterminated Chain

It is possible to add a descriptor to a chain while a channel is running. To do so the chain should be 
left un-terminated, that is the last descriptor should have End of Chain clear, and the Chain Pointer 
value equal to 0. A new descriptor (descriptors) can be added to the chain by overwriting the Chain 
Pointer value of the un-terminated descriptor (in SRAM) with the Local Memory address of the 
(first) added descriptor (Note that the added descriptor must actually be valid in Local Memory 
prior to that). After updating the Chain Pointer field, the software must write a 1 to the Descriptor 
Added bit of the Channel Control Register. This is necessary for the case where the channel was 
paused in order to re-activate the channel. However, software need not check the state of the 
channel before writing that bit; there is no side-effect of writing that bit in the case where the 
channel had not yet read the unlinked descriptor.

If the channel was paused or had read an unlinked Pointer, it will re-read the last descriptor 
processed (i.e. the one that originally had the zero value for Chain Pointer) to get the address of the 
newly added descriptor.

A descriptor can not be added to a descriptor which has End of Chain set.
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9.4.1.7 DRAM to PCI Transfer

For a DRAM-to-PCI transfer, the DMA channel reads data from DRAM and places it into the 
DMA buffer for transfer to the FBus FIFO when the following conditions are met:

• There is at least free space for a read block in the buffer.

• The DRAM controller issues data valid on DRAM push data bus to the DMA engine.

• DMA transfer is not done.

Before data is stored into the DMA buffer, the DRAM starting address is evaluated. Extra data will 
be discarded in case the DRAM starting address does not start at aligned addresses. The lower 
address bits determine the byte enables for the first data double Dword. At the end of the DMA 
transfer, extra data will be discarded and byte enables are calculated for the last 64 bit double 
Dword. After the data is loaded into the buffer, the PCI starting address is evaluated and the buffer 
is shifted byte wise to align the starting DRAM data with the starting PCI starting address. 

A 64 bit double Dword with byte enables is pushed into the FBus FIFO from the DMA buffers as 
soon as there is data available in the buffer and there is space in the Fbus FIFO. The Core logic will 
transfer the exact number of bytes to the PCI Bus. 

9.4.1.8 PCI to DRAM Transfer

The DMA channel issues a sequence of PCI read request commands through the FBus address 
FIFO to read the precise byte count from PCI.

The DMA engine will continue to load the DMA write buffer with FBus FIFO data as soon as data 
is available.

The DMA engine determines the largest size of memory request possible with the current DRAM 
address and remaining byte count. It also has to make sure there is enough data in the write buffer 
before sending the memory request. 

9.4.2 Push/Pull Command Bus Target Interface
Through the command bus target interface, the command bus masters (PCI, XScale core, and 
Microengines) can access the PCI Unit internal registers including the local PCI configuration 
registers and the local PCI Unit CSRs. Also, the Microengine and the XScale core can issue 

Table 136. PCI Maximum Burst Size

Stepping Description

IXP2400 A0/A1 The maximum burst size on the PCI Bus is always 64 
bytes.

IXP2400 B0

The maximum burst size on the PCI Bus is a 64-bytes 
if the PCI_LONG_EN bit is not set.
If DMA Control (CHAN_1:3_CONTROL) register for 
DMA long burst enable is set, the PCI will continue 
burst DMA as long as data is available from the FIFO.
If the PCI_CONTROL register for Target Write long 
burst enable is set, the PCI Target will continue to burst 
as long as data is available from the FIFO.
PCI Target read will not support long burst.
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transactions on the PCI bus. The requests are generated from the command master to the command 
bus arbiter. The arbiter selects a master and sends it a grant. That master then sends a command, 
which is passed through by the arbiter.

PCI Unit will issue the push and pull data responses to the SRAM push/pull data buses. When the 
read command is received, the PCI Unit will issue the push data request on the SRAM push data 
bus. When the write command is received, PCI Unit will issue the pull command on the SRAM 
pull data bus.

9.4.2.1 Command Bus Master Access to Local 
Configuration Registers

The configuration register within the PCI unit can be accessed by push/pull command bus access to 
configuration space through the FBus interface of the PCI core. When the IXP2400 Network 
Processor is a PCI host, these registers have to be accessed through this internal path and no PCI 
bus cycle will be generated.

9.4.2.2 Command Bus Master Access to Local 
Control and Status Registers

These are CSRs within the PCI Unit that are accessible from push/pull bus masters. The masters 
include the XScale core, Microengines. There is no PCI bus cycles generated. The CSRs within the 
PCI Unit can be accessed internally by external PCI devices. 

9.4.2.3 Command Bus Master Direct Access to PCI Bus

The XScale core and Microengines are the only command bus masters that have direct access to 
the PCI bus as a PCI Bus initiator. The PCI Bus can be accessed by push/pull command bus access 
to PCI bus address space. The PCI Unit will share the internal SRAM push/pull data bus with 
SRAM for the data transfers. 

The data from the SRAM push/pull data bus are transferred through the master data port of the 
FBus interface of the PCI core. The PCI Core will handle all the PCI Bus protocol handshakes. The 
SRAM pull data received for a write command will be transferred to the Master write FIFO for PCI 
writes. For PCI reads, data is transferred from the read FIFO to the SRAM push data bus. A 32 byte 
Direct buffer is used to support up to 32 byte of data responses to the direct access to PCI Bus.

The Command Bus Master access to PCI bus will require internal arbitration to gain access to the 
data FIFOs inside the core, which are shared between the DMA engine and direct access to PCI.

9.4.2.3.1 PCI Address Generation for IO and MEM cycles

When push/pull command bus master is accessing the PCI Bus, the PCI address is generated based 
on the PCI address extension register (PCI_ADDR_EXT). Figure 111 shows how the address is 
generated from a Command Bus Master address.
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9.4.2.3.2 PCI Address Generation for Configuration cycles

When a push/pull command bus master is accessing the PCI Bus to generate a configuration cycle, 
the PCI address is generated based on the a Command Bus Master address as shown in Table 137 
and Figure 112:

9.4.2.3.3 PCI Address Generation for Special and IACK cycles

The PCI address is undefined for special and IACK PCI cycles

9.4.2.3.4 PCI Enables

The PCI byte enables are generated based on the Command Bus Master instruction and the PCI 
unit does not change the states of the enables. The XScale core doesn’t generate byte enables for 
reads; XScale-to-PCI, memory or IO reads require that all byte enables be active.

Figure 111. PCI Address Generation for Command Bus Master to PCI

B2865-01

31 2627282930 232425 19202122 15161718 1214 13 891011 4567 3 2 1 0

PMSA
PCI Extension
Register

PCI Address for PCI
Memory Accesses

PIOADD RES

31 2627282930 232425 19202122 15161718 1214 13 891011 4567 3 2 1 0

PCI Address for
PCI I/O AccessesPIOADD

I/O
[1:0]

31 2627282930 232425 19202122 15161718 1214 13 891011 4567 3 2 1 0

PMSA 00Intel XScale® Core / ME[28:2]

Intel XScale® Core
/ME Address[15:2]

Table 137. Command Bus Master Configuration Transactions

Cycle Result

Type 1 Configuration Cycle Command Bus address bits [31:24] are equal to 0xDA

Type 0 Configuration Cycle Command Bus address bits [31:24] are equal to 0xDB.

Figure 112. PCI Address Generation for Command Bus 
Master to PCI Configuration Cycle

0000 0000 00

031 2324 2 1

XScale® Address[23:2]
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9.4.2.3.5 PCI Command

The PCI command is derived from the Command Bus Master address space map. The different 
spaces supported are listed in Table 138:

9.5 PCI Unit Error Behavior

9.5.1 PCI Target Error Behavior

9.5.1.1 Target Access Has an Address Parity Error

1. If PCI_CMD_STAT[PERR_RESP] is not set, PCI Unit will ignore the parity error.

2. If PCI_CMD_STAT[PERR_RESP] is set:

a. PCI core will not claim the cycle regardless of internal device select signal.

b. PCI core will let the cycle terminate with master abort. 

c. PCI core will not assert PCI_SERR#

d. Slave Interface sets PCI_CONTROL[TGT_ADR_ERR], which will interrupt the XScale 
core if enabled

9.5.1.2 Initiator Asserts PCI_PERR# in Response to One of Our 
Data Phases

1. Core does nothing

2. Responsibility lies with the initiator to discard data, report this to the system, etc.

9.5.1.3 Discard Timer Expires on a Target Read

1. PCI unit discards the read data,

2. PCI Unit invalidates the delayed read address 

3. PCI Unit sets Discard Timer Expired bit (DTX) in the PCI_CONTROL. 

4. If enabled (XSCALE_INT_ENABLE [DTE]), the PCI unit interrupts the XScale core. 

Table 138. Command Bus Master Address Space Map to PCI

PCI Command Intel® XScale® Core Address Space

PCI Memory 0xE000 0000 to 0xFFFF FFFF

Local CSR 0xDF00 0000 to 0xDFFF FFFF

Local Configuration Register 0xDE00 0000 to 0xDEFF FFFF

PCI Special Cycle/PCI IACK Read 0xDC00 0000 to 0xDDFF FFFF

PCI Type 1 Configuration Cycle 0xDB00 0000 to 0xDBFF FFFF

PCI Type 0 Configuration Cycle 0xDA00 0000 to 0xDAFF FFFF

PCI I/O 0xD800 0000 to 0xD8FF FFFF
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9.5.1.4 Target Access to the PCI_CSR_BAR 
Space Has Illegal Byte Enables

Note: The acceptable byte enables are BE[3:0] = 0x0 or 0xF.

1. Slave Interface will sets PCI_CONTROL[TGT_CSR_BE] 

2. Slave Interface will issue target abort for target read and drop the transaction for target write.

9.5.1.5 Target Write Access Receives Bad 
Parity PCI_PAR With the Data

1. If PCI_CMD_STAT[PERR_RESP] is not set, PCI Unit will ignore the parity error.

2. If PCI_CMD_STAT[PERR_RESP] is set:

a. core asserts PCI_PERR# and sets PCI_CMD_STAT[PERR].

b. Slave Interface sets PCI_CONTROL[TGT_WR_PAR], which will interrupt the XScale 
core if enabled.

c. Data is discarded

9.5.1.6 SRAM Responds With a Memory Error on One or More 
Data Phases on a Target Read

1. Slave Interface sets PCI_CONTROL[TGT_SRAM_ERR], which will interrupt the XScale 
core if enabled

2. Assert PCI Target Abort at or before the data in question is driven on PCI.

9.5.1.7 DRAM Responds With a Memory Error on One or More Data 
Phase on a Target Read

1. Slave Interface sets PCI_CONTROL[TGT_DRAM_ERR], which will interrupt the XScale 
core if enabled.

2. Slave Interface asserts PCI Target Abort at or before the data in question is driven on PCI.

9.5.2 As a PCI Initiator During a DMA Transfer

9.5.2.1 DMA Read From DRAM (Memory-to-PCI Transaction) 
Gets a Memory Error

1. Set PCI_CONTROL[DMA_DRAM_ERR] which will interrupt the XScale core if enabled.

2. Master Interface terminates transaction before bad data is transferred (okay to terminate 
earlier)

3. Master Interface clears the Channel Enable bit in CHAN_X_CONTROL.

4. Master Interface sets DMA channel error bit in CHAN_X_CONTROL. 

5. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer pointing to 
the DMA descriptor of the failed transfer.



Hardware Reference Manual 331

Intel® IXP2400 Network Processor
PCI Unit

6. Master Interface resets the state machines and DMA buffers

9.5.2.2 DMA Read From SRAM (Descriptor Read) 
Gets a Memory Error

1. Set PCI_CONTROL[DMA_SRAM_ERR] which will interrupt the XScale core if enabled.

2. Master Interface clears the Channel Enable bit in CHAN_X_CONTROL.

3. Master Interface sets DMA channel error bit in CHAN_X_CONTROL. 

4. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer pointing to 
the DMA descriptor of the failed transfer.

5. Master Interface resets the state machines and DMA buffers

9.5.2.3 DMA From DRAM Transfer (Write to PCI)
Receives PCI_PERR# on PCI Bus

1. If PCI_CMD_STAT[PERR_RESP] is not set, PCI Unit will ignore the parity error.

1. If PCI_CMD_STAT[PERR_RESP] is set:

a. Master Interface sets PCI_CONTROL[DPE] which will interrupt the XScale core if 
enabled

b. Master Interface clears the Channel Enable bit in CHAN_X_CONTROL.

c. Master Interface sets DMA channel error bit in CHAN_X_CONTROL. 

d. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer 
pointing to the DMA descriptor of the failed transfer.

e. Master Interface resets the state machines and DMA buffers

f. Core sets PCI_CMD_STAT[PERR] if properly enabled

9.5.2.4 DMA To DRAM (Read from PCI) Has Bad Data Parity 

1. If PCI_CMD_STAT[PERR_RESP] is not set, PCI Unit will ignore the parity error.

2. if PCI_CMD_STAT[PERR_RESP] is set:

a. Core asserts PCI_PERR# on PCI if PCI_CMD_STAT[PERR_RESP] is set

b. Master Interface sets PCI_CONTROL[DPED] which can interrupt the XScale core if 
enabled.

c. Master Interface clears the Channel Enable bit in CHAN_X_CONTROL.

d. Master Interface sets DMA channel error bit in CHAN_X_CONTROL. 

e. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer 
pointing to the DMA descriptor of the failed transfer.

f. Master Interface resets the state machines and DMA buffers
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9.5.2.5 DMA Transfer Experiences a Master Abort 
(Time-Out) on PCI 

Note: That is, nobody asserts DEVSEL during the DEVSEL window.

1. Master Interface sets PCI_CONTROL[RMA] which will interrupt the XScale core if enabled.

2. Master Interface clears the Channel Enable bit in CHAN_X_CONTROL.

3. Master Interface sets DMA channel error bit in CHAN_X_CONTROL. 

4. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer pointing to 
the DMA descriptor of the failed transfer.

5. Master Interface resets the state machines and DMA buffers

9.5.2.6 DMA Transfer Receives a Target Abort Response 
During a Data Phase

1. Core terminates the transaction. 

2. Master Interface sets PCI_CONTROL[RTA] which can interrupt the XScale core if enabled.

3. Master Interface clears the Channel Enable bit in CHAN_X_CONTROL.

4. Master Interface sets DMA channel error bit in CHAN_X_CONTROL. 

5. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer pointing to 
the DMA descriptor of the failed transfer.

6. Master Interface resets the state machines and DMA buffers

9.5.2.7 DMA Descriptor Has a 0x0 Word Count (Not an Error)

1. No data is transferred

2. Descriptor is retired normally.

9.5.3 As a PCI Initiator During a Direct 
Access from the Intel® XScale® Core or Microengine

9.5.3.1 Master Transfer Experiences a Master Abort 
(Time-Out) on PCI

1. Core aborts the transaction 

2. Master Interface sets PCI_CONTROL[RMA] which will interrupt the XScale core if enabled.

9.5.3.2 Master Transfer Receives a Target Abort Response 
During a Data Phase

1. Core aborts the transaction. 

2. Master Interface sets PCI_CONTROL[RTA] which will interrupt the XScale core if enabled.
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9.5.3.3 Master from the Intel® XScale® Core or Microengine Transfer 
(Write to PCI) Receives PCI_PERR# on PCI bus

1. If PCI_CMD_STAT[PERR_RESP] is not set, PCI Unit will ignore the parity error.

2. If PCI_CMD_STAT[PERR_RESP] is set:

a. Core sets PCI_CMD_STAT[PERR] 

b. Master Interface sets PCI_CONTROL[DPE] which will interrupt the XScale core if 
enabled.

9.5.3.4 Master Read From PCI (Read from PCI)
Has Bad Data Parity

1. If PCI_CMD_STAT[PERR_RESP] is not set, PCI Unit will ignore the parity error.

2. If PCI_CMD_STAT[PERR_RESP] is set:

a. Core asserts PCI_PERR# on PCI 

b. Master Interface sets PCI_CONTROL[DPED] which will interrupt the XScale core if 
enabled.

c. Data that has been read from PCI is sent to the XScale core or Microengine.

9.5.3.5 Master Transfer Receives PCI_SERR# from the PCI Bus

Master Interface sets PCI_CONTROL[RSERR] which will interrupt the XScale core if enabled.

9.5.3.6 Intel® XScale® Core Microengine Requests Direct 
Transfer When the PCI Bus is in Reset

Master Interface will complete the transfer and drop the write data and return all ones on the read 
data.

9.6 PCI Data Byte Lane Alignment
During any endian conversion, the PCI doesn’t need to do any long word swapping between two 32 
bits long words (LW1, LW0). But the PCI may need to do byte swapping within the 32 bits long 
word. Because of the different endian convention between PCI Bus and the memory, all data going 
between the PCI core FIFO and memory data bus passes through the byte lane reversal as shown in 
Table 139 through Table 146:

PCI is allow to do byte enable swapping only without the data swapping or allow data swapping 
only without byte enable swapping. When the PCI handle the mis-aligned data in the above two 
cases, PCI will only care about valid data. So the PCI will drive any data values for those mis-
aligned and invalid data portions.
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Table 139. Byte Lane Alignment for 64 bit PCI Data In 
(64 bits PCI little endian to big endian with Swap)

PCI Data IN[63:56] IN[55:48] IN[47:40] IN[39:32] IN[31:24] IN[23:16] IN[15:8] IN[7:0]

SRAM Data
OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]

Long Word1 (32 bits)
LW1 drive after LW0

Long Word0 (32 bits)
LW0 drive first

DRAM Data OUT[39:32] OUT[47:40] OUT[55:48] OUT[63:56] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]

Table 140. Byte Lane Alignment for 64 bit PCI Data In 
(64 bits PCI big endian to big endian without Swap)

PCI Data IN[39:32] IN[47:40] IN[55:48] IN[63:56] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

SRAM Data
OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]

Long Word1 (32 bits)
LW1 drive after LW0

Long Word0 (32 bits)
LW0 drive first

DRAM Data OUT[39:32] OUT[47:40] OUT[55:48] OUT[63:56] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]

Table 141. Byte Lane Alignment for 32 bit PCI Data In 
(32 bits PCI little endian to big endian with Swap)

PCI Add[2]=1 PCI Add[2]=0

Long Word1 (32 bits)
LW1 drive after LW0

Long Word0 ((32 bits)
LW0 drive first

PCI Data IN[31:24] IN[23:16] IN[15:8] IN[7:0] IN[31:24] IN[23:16] IN[15:8] IN[7:0]

SRAM Data
OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]

Long Word1 (32 bits)
LW1 drive after LW0

Long Word0 ((32 bits)
LW0 drive first

DRAM Data OUT[39:32] OUT[47:40] OUT[55:48] OUT[63:56] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]

Table 142. Byte Lane Alignment for 32 bit PCI Data In 
(32 bits PCI big endian to big endian without Swap)

PCI Add[2]=1 PCI Add[2]=0

Long Word1 (32 bits)
LW1 drive after LW0

Long Word0 ((32 bits)
LW0 drive first

PCI Data IN[7:0] IN[15:8] IN[23:16] IN[31:24] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

SRAM Data
OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]

Long Word1 (32 bits)
LW1 drive after LW0

Long Word0 ((32 bits)
LW0 drive first

direct map
PCI to 
DRAM

IN[7:0] IN[15:8] IN[23:16] IN[31:24] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

DRAM Data OUT[39:32] OUT[47:40] OUT[55:48] OUT[63:56] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]
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Table 143. Byte Lane Alignment for 64 bit PCI Data Out 
(big endian to 64 bits PCI little endian with Swap)

SRAM Data
IN[7:0] IN[15:8] IN[23:16] IN[31:24] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

Long Word1 (32 bits)
LW1 drive after LW0

Long Word0 ((32 bits)
LW0 drive first

DRAM Data IN[39:32] IN[47:40] IN[55:48] IN[63:56] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

PCI Side OUT[63:56] OUT[55:48] OUT[47:40] OUT[39:32] OUT[31:24] OUT[23:16] OUT[15:8] OUT[7:0]

Table 144. Byte Lane Alignment for 64 bit PCI Data Out 
(big endian to 64 bits PCI big endian without Swap)

SRAM Data IN[7:0] IN[15:8] IN[23:16] IN[31:24] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

Long Word1 (32 bits)
LW1 drive after LW0

Long Word0 ((32 bits)
LW0 drive first

DRAM Data IN[39:32] IN[47:40] IN[55:48] IN[63:56] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

direct map
PCI to DRAM IN[7:0] IN[15:8] IN[23:16] IN[31:24] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

PCI Side OUT[39:32] OUT[47:40] OUT[55:48] OUT[63:56] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]

Table 145. Byte Lane Alignment for 32 bit PCI Data Out 
(big endian to 32 bits PCI little endian with Swap)

SRAM Data IN[7:0] IN[15:8] IN[23:16] IN[31:24] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

Long Word1 (32 bits)
LW1 drive after LW0

Long Word0 ((32 bits)
LW0 drive first

DRAM Data IN[39:32] IN[47:40] IN[55:48] IN[63:56] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

PCI Data OUT[31:24] OUT[23:16] OUT[15:8] OUT[7:0] OUT[31:24] OUT[23:16] OUT[15:8] OUT[7:0]

Long Word1 (32 bits)
LW1 drive after LW0

Long Word0 ((32 bits)
LW0 drive first

PCI Add[2]=1 PCI Add[2]=0

Table 146. Byte Lane Alignment for 32 bit PCI Data Out 
(big endian to 32 bits PCI big endian without Swap)

SRAM Data IN[7:0] IN[15:8] IN[23:16] IN[31:24] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

Long Word1 (32 bits)
LW1 drive after LW0

Long Word0 ((32 bits)
LW0 drive first

DRAM Data IN[39:32] IN[47:40] IN[55:48] IN[63:56] IN[7:0] IN[15:8] IN[23:16] IN[31:24]

PCI Data OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24] OUT[7:0] OUT[15:8] OUT[23:16] OUT[31:24]

Long Word1 (32 bits)
LW1 drive after LW0

Long Word0 ((32 bits)
LW0 drive first

PCI Add[2]=1 PCI Add[2]=0
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The BE_DEI bit of the PCI_CONTROL register can be set to enable big endian on the incoming 
data from the PCI Bus to both the SRAM and DRAM. The BE_DEO bit of the PCI_CONTROL 
register can be set to enable big endian on the outgoing data to the PCI Bus from both the SRAM 
and DRAM.

9.6.1 Endian for Byte Enable
During any endian conversion, PCI do not need to do any long word byte enable swapping between 
two 32 bits long words(LW1, LW0). But PCI may need to do byte enable swapping within the 32 
bits long word byte enable. Because of the different endian convention between PCI Bus and the 
memory, all data going between the PCI core FIFO and memory data bus passes through the byte 
lane reversal as shown in Table 147 through Table 154:

Table 147. Byte Enable Alignment for 64 bit PCI Data In 
(64 bits PCI little endian to big endian with Swap)

PCI Data IN_BE[7] IN_BE[6] IN_BE[5] IN_BE[4] IN_BE[3] IN_BE[2] IN_BE[1] IN_BE[0]

SRAM Data
OUT_BE[3] OUT_BE[2] OUT_BE[1] OUT_BE[0] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]

Long Word1byte enable
LW1 byte enable drive after LW0 byte enable

Long Word0 byte enable
LW0 byte enable drive first

DRAM Data OUT_BE[4] OUT_BE[5] OUT_BE[6] OUT_BE[7] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]

Table 148. Byte Enable Alignment for 64 bit PCI Data In 
(64 bits PCI big endian to big endian without Swap)

PCI Data IN_BE[4] IN_BE[5] IN_BE[6] IN_BE[7] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

SRAM Data
OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]

Long Word1byte enable
LW1 byte enable drive after LW0 byte enable

Long Word0 byte enable
LW0 byte enable drive first

DRAM Data OUT_BE[4] OUT_BE[5] OUT_BE[6] OUT_BE[7] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]

Table 149. Byte Enable Alignment for 32 bit PCI Data In 
(32 bits PCI little endian to big endian with Swap)

PCI Add[2]=1 PCI Add[2]=0

Long Word1byte enable
LW1 byte enable drive after LW0 byte enable

Long Word0 byte enable
LW0 byte enable drive first

PCI Data IN_BE[3] IN_BE[2] IN_BE[1] IN_BE[0] IN_BE[3] IN_BE[2] IN_BE[1] IN_BE[0]

SRAM Data
OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]

Long Word1byte enable
LW1 byte enable drive after LW0 byte enable

Long Word0 byte enable
LW0 byte enable drive first

DRAM Data OUT_BE[4] OUT_BE[5] OUT_BE[6] OUT_BE[7] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]
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Table 150. Byte Enable Alignment for 32 bit PCI Data In 
(32 bits PCI big endian to big endian without Swap)

PCI Add[2]=1 PCI Add[2]=0

Long Word1byte enable
LW1 byte enable drive after LW0 byte enable

Long Word0 byte enable
LW0 byte enable drive first

PCI Data IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

SRAM Data OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]

Long Word1byte enable
LW1 byte enable drive after LW0 byte enable

Long Word0 byte enable
LW0 byte enable drive first

direct map
PCI to 
DRAM

IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

DRAM Data OUT_BE[4] OUT_BE[5] OUT_BE[6] OUT_BE[7] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]

Table 151. Byte Enable Alignment for 64 bit PCI Data Out 
(big endian to 64 bits PCI little endian with Swap)

SRAM Data
IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

Long Word1byte enable
LW1 byte enable drive after LW0 byte enable

Long Word0 byte enable
LW0 byte enable drive first

DRAM Data IN_BE[4] IN_BE[5] IN_BE[6] IN_BE[7] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

PCI Side OUT_BE[7] OUT_BE[6] OUT_BE[5] OUT_BE[4] OUT_BE[3] OUT_BE[2] OUT_BE[1] OUT_BE[0]

Table 152. Byte Enable Alignment for 64 bit PCI Data Out 
(big endian to 64 bits PCI big endian without Swap)

SRAM Data IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

Long Word1byte enable
LW1 byte enable drive after LW0 byte enable

Long Word0 byte enable
LW0 byte enable drive first

DRAM Data IN_BE[4] IN_BE[5] IN_BE[6] IN_BE[7] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

PCI Side OUT_BE[4] OUT_BE[5] OUT_BE[6] OUT_BE[7] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]

Table 153. Byte Enable Alignment for 32 bit PCI Data Out 
(big endian to 32 bits PCI little endian with Swap)

SRAM Data IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

Long Word1byte enable
LW1 byte enable drive after LW0 byte enable

Long Word0 byte enable
LW0 byte enable drive first

DRAM Data IN_BE[4] IN_BE[5] IN_BE[6] IN_BE[7] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

PCI Data OUT_BE[3] OUT_BE[2] OUT_BE[1] OUT_BE[0] OUT_BE[3] OUT_BE[2] OUT_BE[1] OUT_BE[0]

Long Word1byte enable
LW1 byte enable drive after LW0 byte enable

Long Word0 byte enable
LW0 byte enable drive first

PCI Add[2]=1 PCI Add[2]=0
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The BE_BEI bit of the PCI_CONTROL register can be set to enable big endian on the incoming 
byte enable from the PCI Bus to both the SRAM and DRAM. The BE_BEO bit of the 
PCI_CONTROL register can be set to enable big endian on the outgoing byte enable to the PCI 
Bus from both the SRAM and DRAM.

Table 154. Byte Enable Alignment for 32 bit PCI Data Out 
(big endian to 32 bits PCI big endian without Swap)

SRAM Data IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

Long Word1byte enable
LW1 byte enable drive after LW0 byte enable

Long Word0 byte enable
LW0 byte enable drive first

DRAM Data IN_BE[4] IN_BE[5] IN_BE[6] IN_BE[7] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]

PCI Data OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3] OUT_BE[0] OUT_BE[1] OUT_BE[2] OUT_BE[3]

Long Word1 byte enable
LW1 byte enable drive after LW0 byte enable

Long Word0 byte enable
LW0 byte enable drive first

PCI Add[2]=1 PCI Add[2]=0

Table 155. PCI I/O Cycles Generate Data Swap Enable Option

Stepping Description

A0, A1 PCI I/O cycle is treated like a CSR, where the data bytes are not swapped; it will be sent in the 
same byte order even if the PCI bus is configured in Big or Little endian mode.

B0

When PCI Control (PCI_CONTROL) CSR bit 17 IEE is 0, then it will be sent in the same byte 
order even if the PCI bus is configured in Big or Little endian mode.
When PCI Control (PCI_CONTROL) CSR bit 17 IEE is 1, then PCI IO data will follow the same 
memory space-swapping rule. The address always follows the physical location, for example:

BEs swapped (1 byte access) BEs not swapped (1 byte access)

ad[1:0] BE3 BE2 BE1 BE0 ad[1:0] BE3 BE2 BE1 BE0

0 0 1 1 1 0 1 1 0 1 1 1

0 1 1 1 0 1 1 0 1 0 1 1

1 0 1 0 1 1 0 1 1 1 0 1

1 1 0 1 1 1 0 0 1 1 1 0

BEs swapped (2 byte access) BEs not swapped (2 byte access)

ad[1:0] BE3 BE2 BE1 BE0 ad[1:0] BE3 BE2 BE1 BE0

0 0 1 1 0 0 1 0 0 0 1 1

0 1 1 0 0 1 0 1 1 0 0 1

1 0 0 0 1 1 0 0 1 1 0 0

BEs swapped (3 byte access) BEs not swapped (3 byte access)

ad[1:0] BE3 BE2 BE1 BE0 ad[1:0] BE3 BE2 BE1 BE0

0 0 1 0 0 0 0 1 0 0 0 1

0 1 0 0 0 1 0 0 1 0 0 0

BEs swapped (4 byte access) BEs not swapped (4 byte access)

ad[1:0] BE3 BE2 BE1 BE0 ad[1:0] BE3 BE2 BE1 BE0

0 0 0 0 0 0 0 0 0 0 0 0
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9.7 PCI Strap Pins Options
Table 156. PCI Strap Pins

Signal Name Description

CFG_RST_DIR PCF0
PCI central function pin:
1: IXP is supporting central function
0: IXP is non central function

CFG_PCI_ARB
PCF1

PCI Internal Arbiter pin:1—IXP2400 internal arbiter is used
• PCI_Host must be central function.
• PCI_Arbiter must be central function.

CFG_PROM_BOOT
PCF2

PCI Prom Boot pin: 
 1—IXP will boot from PROM
 0—IXP will boot from DRAM initialized by PCI Host.

CFG_PCI_BOOT_HOST
PCF3

PCI Prom Boot pin: 
 1—IXP will configure the PCI system
 0—The external host will configure the PCI system.

• PCI_Host must be central function.
• PCI_Arbiter must be central function.

CFG_PCI_SWIN[1:0] SWIN

SRAM BAR Window
11: SRAM BAR size of 256 Mbyte
10: SRAM BAR size of 128 Mbyte
01: SRAM BAR size of 64 Mbyte
00: SRAM BAR size of 32 Mbyte

CFG_PCI_DWIN[1:0] DWIN

DRAM BAR Window
11: SRAM BAR size of 1024 Mbyte
10: SRAM BAR size of 512 Mbyte
01: SRAM BAR size of 256 Mbyte
00: SRAM BAR size of 128 Mbyte
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Clocks, Reset, and Initialization 10

10.1 Overview
This chapter describes the IXP2400 clocks, reset and initialization sequence.

10.2 Clocks
Figure 113 shows the overall clock generation and distribution.

As shown in Figure 113, there is a centralized clock generator. It takes an external reference clock 
and multiplies it to a higher frequency clock using a PLL. That clock is then divided down by a set 
of programmable dividers to provide clocks to the Intel XScale® core, Microengines (MEs), 
SRAM and DRAM controllers, peripheral units. The Media, Switch Fabric Interface and PCI 
controller use external clocks.

Figure 113. Overall Clock Generation and Distribution
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The fast frequency on IXP2400 is generated by an on-chip PLL that multiplies a reference 
frequency provided by an on the board oscillator (frequency 100MHz) by a fixed multiplier. The 
multiplier value is 12 so the PLL will generate 1.2 GHz clock. Dividing the PLL frequency clock 
by various programmable integers (in the Clock Control CSR) generates internal clocks. All of 
these frequencies will be at 50% duty cycle with the accuracy determined by the symmetry of the 
PLL output.

Table 158 shows the frequencies that are available for DRAM and SRAM units based on various 
values of fast clock (Core PLL Output Frequency), for the supported divisor values of 3 to 6. For 
each value of the divisor the divider will provide the 2x clock and divide again by two to drive the 
1x clock. This is shown for divide by 3 as 400/200.

Table 157. Clock Usage Summary

Unit Name Description Comment

ME MEs internal. Nominal value = 600 MHz

Internal 
Buses

Command/Push/Pull interface of 
DRAM controller, SRAM 
controller, XScale, Peripheral, 
MSF, and PCI Units.

½ ME frequency. Nominal Value = 300 MHz.

XPI
Peripheral block consisting of 
UART, GPIO, timers and 
Performance Monitor Unit. This 
clock is APB clock.

Operating at 1/6 of CPP clock Frequency. i.e 50MHz. The 
50-MHz clock is delayed with respect to the 300 MHz. Any 
use of APB clock logic to interface with the peripheral units 
clocks and the CPP clock units should involve 
synchronization and handshake logic. APB clock runs at 50 
MHz and does not bear any phase relationship with other 
clocks in the design.

XScale XScale core, caches, core side of 
Gasket. Same as ME, nominal value = 600 MHz

DRAM
DRAM pins and control logic (all 
of DRAM unit except Internal Bus 
interface).

Divide of PLL frequency. The DRAM channel uses two 
clocks, one at the data rate (2x clock) and one at the output 
frequency (1x clock).
Clocks are driven by IXP2400 to external DRAMs.

SRAM
SRAM pins and control logic (all 
of SRAM unit except Internal Bus 
interface).

Divide of PLL frequency. Each SRAM channel has its own 
frequency selection. Each SRAM channel uses two clocks, 
one at the data rate (2x clock) and one at the output 
frequency (1x clock).
Clocks are driven by IXP2400 to external SRAMs and/or 
Coprocessors.

Scratch, 
Hash, CSR

Scratch RAM, Hash Unit, CSR 
access block

½ of ME. Note that SlowPort has no clock. Timing for 
SlowPort accesses is defined in SlowPort registers.

MSF Receive and Transmit pins and 
control logic.

The receive clock for the Media and Switch interface can be 
derived:

• From two external RX reference clocks (supplied by 
media or switch fabric PHY device) to two internal RX 
PLL then driven by IXP2400.

• From two external Tx reference clocks (supplied by 
media or switch fabric PHY device) to two internal TX 
PLL then driven by IXP2400.

PCI PCI pins and control logic. 

External reference. 
The receive clock for the PCI interface can be derived:

• From external PCI reference clock (supplied by either 
from Host system or on-board oscillator) to internal PCI 
then driven by IXP2400.
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Table 158 shows the clock generation circuit in IXP2400. When the chip is powered up, a ring 
oscillator clock will be sent to all units as the chip begins to power up. When the internal RC detect 
circuit is active, the clock unit will switch from using the ring oscillator to using the PLL clock. 

10.2.1 CSRs

10.2.1.1 Clock Control CSR (CCR)

Clock Control selects the clock ratio for the SRAM and DRAM controllers. This register must be 
programmed before accesses to the SRAM/DRAM are done. In all cases a value of 0x3 indicates 
divide by 3, 0x4 is divide by 4, etc. up to 0x6, which is divide by 6. This register is part of the 
Global Chassis registers. Please see the IXP2400/IXP2800 Network Processor Programmer’s 
Reference Manual for additional CSR register information.

10.2.1.2 MSF Clock Control CSR (MCCR)

MSF Clock Control Register (MCCR) selects the clock ratio for the four MSF PLLs: RX0, RX1, 
TX0, and TX1. This register must be programmed before an application accesses the MSF. Please 
see the IXP2400/IXP2800 Network Processor Programmer’s Reference Manual for additional 
MCCR register information.
These steps must be followed during power on initialization:

1. Set the PLL in PLL disable mode (MCCR[MSF_POWERDOWN] =1 default) 

2. Set the PLL in bypass mode (MCCR[MSF_BYPASS_SEL] =1 default)

3. Set up each of MSF clock ratio (MCCR[MSF_CLKCFG])

4. Disable the PLL bypass mode (MCCR[MSF_BY_PASS_SEL] = 0)

5. Enable the PLL(MCCR[MSF_POWERDOWN] =0)

6. Wait for MSF PLL lock (MCCR[MSF_PLL_LOCK] = 1)

7. Enable MSF block (via MSF_Rx_Control[Rx_En] or MSF_Tx_Control[Tx_En])

Table 158. Available Clock Rates by Dividing Core PLL Output 

Divisor(n)

PLL Output Frequency 
(MHz) / Sys_clock OSC 

(MHZ)

800 / 66.7 1200 / 100

Divide by 2 (Microengine,
XScale core Frequency)

400 600

Divide by 4 (CPP Frequency) 200 300

Divide by 8 (DRAM Frequency) 100 150

Divide by 12 (DRAM Frequency) 66.7 100

Divide by 6 (SRAM Frequency) 133.3 200

Divide by 8 (SRAM Frequency) 100 150

Divide by 12 (SRAM Frequency) 66.7 100

Divide by 24 (APB Frequency) 33.4 50
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8. Initialize the MSF CSR registers.

10.2.1.3 Reset History CSR

10.3 Reset
There are four different ways IXP2400 can be reset.

• Hardware reset via SYS_RESET_L

• CFG_RSTDIR is not asserted and PCI_RST_L is asserted
CFG_RSTDIR is a strap pin to select the IXP2400 to drive the PCI_RST_L signal. When 
CFG_RSTDIR is not asserted, PCI_RST_L signal is a chip input signal.

• Watchdog timer expires and Watchdog enable bit in Timer Watchdog Enable register is set
Once the timer expires, reset sequence is initiated. In this reset sequence, IXP_RESET0 
register is reset, which in turn generates PCI_RST_L (if CFG_RSTDIR is asserted).

• Software Initiated Reset
PCI host or XScale writes 1 at bit [16] (RSTALL) in IXP_RESET0 register. In addition to this, 
individual units can be reset using their respective bits in IXP_RESET0 and IXP_RESET1 
registers.

10.3.1 Hardware Reset 
The IXP2400 provides the SYS_RESET_L pin so that an external device can reset the IXP2400. 
Asserting this pin resets the internal functions and generates an external reset via the 
RESET_OUT# pin.

Upon power-up, SYS_RESET_L must remain asserted for 1ms after VDD is stable to properly 
reset the IXP2400 and ensure that the external clock is stable. While SYS_RESET_L is asserted, 
the processor is held in reset. When SYS_RESET_L is released, the Intel XScale® core processor 
begins executing from address 0X0 after the initial reset sequence is completed.

If SYS_RESET_L is asserted, while the Intel XScale® core is executing, the current instruction is 
terminated abnormally and the reset sequence is initiated.

Bits Field Description RW Reset

[0] Watchdog history
Set when watchdog timer expires.
Reset when hard reset is applied or the register is read.

RW 0x0

[1] Soft Reset history

Reserved
Set when application software sets the IXP_RESET0[16] 
RSTALL to 1.
Reset when hard reset is applied or the register is read.

RW 0x0

[2] Hard Reset history
Reserved
Set when Hardware resets the IXP.
Reset when the register is read.

RW 0x1

[31:3] Reserved reserved RO 0x0
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The RESET_OUT# signal remain asserted until deasserted by the Intel XScale® core. It deasserts 
the signal by writing bit [15] of the IXP_RESET0 register.

10.3.2 PCI Initiated Reset
The IXP2400 can be reset by an external PCI Bus master when the IXP2400 is not the PCI central 
function (CFG_RSTDIR = 0) and PCI_RST_L is an input. The entire IXP2400 is reset during a 
PCI initiated reset. 

When the IXP2400 is reset and CFG_RSTDIR = 1 (the IXP2400 is assigned as the PCI central 
function), IXP2400 drives PCI_RST_L as an output to the other devices on the PCI bus.

The RESET_OUT# signal remains asserted until deasserted by the XScale core. It deasserts the 
signal by writing bit [15] of the IXP_RESET0 register.

10.3.3 Watchdog Timer Initiated Reset
The IXP2400 provides a watchdog timer that can reset the Intel XScale® core. There are four 
timers in the IXP2400 architecture. Timer 4 can be set to be a watch dog timer. Please refer the XPI 
EAS in the Timer section for more details. The Intel XScale® core should be programmed to reset 
the watchdog timer periodically to ensure that the timer does not expire. If a watchdog timer 
expires, it is assumed that the Intel XScale® core has ceased executing instructions properly. 

The reset generated by the Watchdog timer will reset each of the functions in the IXP2400 if 
Watchdog reset enable bit is set (IXP_RESET0[22]=1). In this reset sequence, IXP_RESET0 
register is reset after 512 cycles later, which in turn generates PCI_RST_L (if CFG_RSTDIR = 1 is 
set, IXP is the PCI central function).

The reset generated by the Watchdog timer will not reset each of the functions in the IXP2400 if 
Watchdog reset enable bit is not set (IXP_RESET0[22]=0). Instead of reset each of the functions in 
the IXP2400, It will generate PCI interrupt (PCI_INTA_L) to external if PCI Outbound Interrupt 
Mask Register[3] to 0.It will also set PCI Outbound Interrupt Status Register[3] to 1. 

The RESET_OUT# signal remain asserted until deasserted by the Intel XScale® core. It deasserts 
the signal by writing bit [15] of the IXP_RESET0 register.

Table 159. Watchdog Timer Reset

XPI WD Timer 
Expired

WatchDog Reset Enable
IXP RESET0[24] PCI Iutbound Interrupt Mask[3]

PCI Interrupt

Software can set the 
IXP_RESET0[24] to 0 if IXP is non 
central function or any cases [not 
grammatical but I don’t know what 
it means.]

1. WD Timer History bit will set to 1.
2. PCI Interrupt will be generated if PCI outbound 

Interrupt Mask[3] set to 0.
3. PCI outbound Interrupt status[3] set to 1

Reset IXP

Software can set the 
IXP_RESET0[24] to 1 if IXP is PCI 
Host & Central Function or any 
cases [not grammatical but I don’t 
know what it means.]

1. WD Timer History bit will set to 1.
2. PCI Interrupt will not be generated.
3. PCI outbound Interrupt status[3] set to 0.
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10.3.4 Software-Initiated Reset
The Intel XScale® core or an external PCI bus master can reset specific functions in the IXP2400 
by writing to the IXP_RESET0 and IXP_RESET1 register. All the individual microengines or 
specific units can be reset. 

1. If software write IXP_RESET0[16] to 1(Reset All), Reset Unit need to hold 512 cycles then set 
the each of reset unit registers to 1 (include PCI).During this 512 cycles PCI should be in the PCI 
bus IDLE state, once PCI bus get IDLE PCI unit need to reset all the PCI blocks. IXP is bus parked 
during soft reset, IXP need to drive these I/O devices PCI_AD[31:0], PCI_BE[3:0], and PCI_PAR 
to known values even in soft reset mode. otherwise all these I/O devices to tristates.

2. If software write IXP_RESET0[1] to 1(Reset PCI only), PCI unit need to reset all the PCI blocks 
right away without PCI bus get idle. There is no 512 idle cycles in reset period. All these I/O 
devices to tristates regardless of bus parking.

The RESET_OUT# signal remain asserted until deasserted by the Intel XScale® core. It deasserts 
the signal by writing bit [15] of the IXP_RESET0 register.



Hardware Reference Manual 347

Intel® IXP2400 Network Processor
Clocks, Reset, and Initialization

10.3.5 Strap Pins
The following are the strap pins required for reset. These strap pins determine the initialization 
sequence.

Table 160. Strap Pins required for IXP2400

Signal Name Description External Pin

CFG_RSTDIR PCF0

PCI central function pin:
• 1–IXP is supporting central functions

PCI_RST_L is an output (SYS_RST_L is 
input).
PCI_REQ64 is an output.(drive low during 
PCI reset)

PCI AD[31:0], PCI_BE[3:0], and PCI_PAR 
drive to Low during PCI reset. After PCI reset 
all these I/O lines to tristates unless IXP bus 
parked.

PCI AD[63:32], BE[7:4] and PAR64 during 
PCI reset or after PCI reset all these I/O lines 
to tristates.

NOTE: If the PCI bus is 32 bits wide, the board must 
support external pull up of I/O lines.

.
• 0–External PCI is supporting central functions

PCI_RST_L is an input.

Both PCI_RST_L and SYS_RST_L are 
inputs; tie both reset lines together.

PCI_REQ64 is an input.

PCI AD[31:0], PCI_BE[3:0], and PCI_PAR 
during PCI reset or after PCI reset all these
I/O to tristates.

During PCI reset or after PCI reset PCI 
AD[63:32], BE[7:4] and PAR64 I/O are 
tristate.

NOTE: If PCI bus is 32 bits wide, the board need to 
support external pull up of I/O lines.

This pin is stored at XSC[31] (XSCALE_CONTROL 
Register) at the trailing edge of reset.

Explicit Pin

CFG_PROM_BOOT 
PCF2

PCI Prom Boot pin (BOOT_PROM)
• 1–IXP will boot from PROM
• 0–IXP will boot from DRAM initialized by PCI Host

This pin is stored at XSC[29] (XSCALE_CONTROL 
register) at the trailing edge of reset.

GPIO[0]

CFG_PCI_BOOT_HOST PCF3

PCI BOOT HOST
• 1–Intel XScale® core will configure the PCI system
• 0–Intel XScale® core will not configure the PCI 

system
This pin is stored at XSC[28] (XSCALE_CONTROL 
register) at the trailing edge of reset.
If CFG_PCI_BOOT_HOST set to 1 then 
CFG_RSTDIR must set to 1 (central function).

GPIO[1]
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10.3.6 Power Up Reset Sequence
The basic sequence for reset is shown in Figure 114.

CFG_PCI_ARB PCF1

PCI Arbiter Pin
• 1–IXP will do the PCI arbitration function
• 0–IXP will not do the PCI arbitration function

If CFG_PCI_ARB set to 1 then CFG_RSTDIR must 
set to 1 (central function).

GPIO[2]

CFG_PCI_DWIN[1:0] 
DWIN

DRAM BAR Window
• 11–DRAM BAR size:1024 MByte
• 10–DRAM BAR size: 512 MByte
• 01–DRAM BAR size: 256 MByte
• 00–DRAM BAR size: 128 MByte

This is part of the PCI_DRAM_BAR register.

GPIO[4:3]

CFG_PCI_SWIN[1:0] SWIN 

SRAM BAR Window
• 11–SRAM BAR size:256 MByte
• 10–SRAM BAR size:128 MByte
• 01–SRAM BAR size: 64 MByte
• 00–SRAM BAR size: 32 MByte

This is part of the PCI_SRAM_BAR register.

GPIO[6:5]

Table 161. Legal Combinations of the Strap Pin Optionsa

a. PCI_Host and PCI_Arbiter must be central function.

Support for 
Combination CFG_PCI_HOST CFG_PCI_Arbiter CFG_PCI_RSTDIR

(Central function) CFG_PROM_BOOT

ok 0 0 0 0

ok 0 0 0 1

ok 0 0 1 1

Not supported 0 1 0 X

ok 0 1 1 1

Not supported 1 0 0 X

ok 1 0 1 1

Not supported 1 1 0 X

ok 1 1 1 1

Table 160. Strap Pins required for IXP2400

Signal Name Description External Pin
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Figure 114. Reset Sequence 

When the system is powered up, the SYS_RESET_L must be stay asserted (L) for at least 1ms after 
VDD and SYS_CLK have reached their proper DC and AC levels. All the I/O must de-asserted 
their output within 2 cycles. 

When the system is powered up, a ring oscillator clock will be sent to all units as the chip begins to 
power up. It will merely be used to allow a gradual power up and to begin clocking state elements 
to remove possible circuit contention. When the internal RC detect circuit is active, the clock unit 
will switch from using the ring oscillator to using the PLL clock. Throughout this time the 
SYS_RESET_L is asserted. After the SYS_RESET_L pin transitions to an inactive state, the 
internal reset signal (GLB_RST) will remain active for a number of clocks to allow the IXP2400 to 
achieve a clean reset state. The GLB_RST signal will be used to reset the IXP_RESET0 and 
IXP_RESET1 registers. During warm reset, the PLL is already locked and the internal reset 
sequence is initiated on detecting a SYS_RESET_L signal. 

The reset sequence shown above is the same in the case when reset happens through the 
PCI_RST_L signal and CFG_RSTDIR is 0.

Once in operation, if watchdog timer expires with watchdog timer enable bit ON, reset pulse from 
the watchdog timer logic resets the IXP_RESETn registers and in turn causes entire chip to be 
reset.

The IXP2400 has the following power supplies:

1. VCC3.3 3.3V power supply for the Media Switch Fabric interface, PCI, GPIO,
SlowPort and Misc.

2. VCC and VCCA 1.3V power supply for the Core and for the PLL

3. VCC2.5 2.5V power supply for the DDR DRAM

4. VCC1.5 1.5V power supply for the QDR SRAM

5. D_Vref 1.25V for the DDR DRAM

6. Sn_Vref 0.75V for QDR SRAM channel 0, and channel 1

The power supplies for the IXP2400 should be brought up in a controlled sequence. The delay 
between the power-up of the power supplies should be 5 ms or less.
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INT_CLK

PCI_RST_L

GLB_RST

Reset 
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before 
VDD

On - chip 
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starts power 
up

Switch to External 
clock. PLL completes 
lock and samples 
configuration pins at 
the deasserting edge 
of SYS_RESET_L

Internal Reset 
Sequence. Set the 
IXP_RESETn 
registers.

Internal reset deasserted. 
Code starts executing.

1 ms
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1. The 3.3V must be brought up before the1.3V

2. The 1.3V must be brought up before the 1.5V and 2.5V

3. The 1.5V must be brought up before or at the same time as the 0.75V

4. The 2.5V must be brought up before or at the same time as the 1.25V

10.3.7 Power-Down Sequence

All the power supplies should be brought down simultaneously. If the user cannot power down all 
the supplies simultaneously, the Power-down sequence is recommended to be the reverse order of 
the Power-up sequence shown in Section 10.3.6.

Note: Please see the IXMB2400 Base Board Design Guide for the timing and algorithm of power 
sequencing.

10.4 Reset Register
IXP System Reset Register consists of two 32-bit registers: IXP_RESET0 [31:0] and 
IXP_RESET1 [31:0]. IXP_RESET0 [31:0] is used to reset everything except microengines. 
IXP_RESET1 [31:0] is used to reset the microengines. Bits from these registers going to different 
modules should be synchronized when they are going to different frequency domain. These bits are 
read/write by both PCI host and the Intel XScale® core. Please see the IXP2400/IXP2800 Network 
Processor Programmer’s Reference Manual for additional IXP System Reset Register information.

10.5 Boot Mode
Upon deassertion of the external reset signals, the internal reset signals in the IXP_RESET0 
registers are cleared based on the pin strapping options. Figure 115 outlines the initialization 
sequence.
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As shown in Figure 115, IXP2400 can boot in following two boot modes:

• Flash ROM

• PCI Host Download

Figure 115. IXP2400 Initialization Sequence

B2855-01

No Yes

Reset Signal asserted
(hardware, software, PCI or Watchdog)

CFG_PROM_BOOT-
Boot From Present

START

Yes NoCFG_PROM_
BOOT_HOST

STARTSTARTSTARTSTART

1. Intel XScale® Core is 
held in reset.

2. PCI BAR window sizes 
are configured by strap 
options.

3. External PCI host 
configures PCI registers 
and DRAM registers.

4. External PCI host loads 
boot image in DRAM.

5. Release Intel XScale® 
Core from reset and Intel 
XScale® starts code fetch 
from DRAM at 0x0.

Intel XScale® Core 
initializes the system 
by initiating PCI 
config cycles.

1. Intel XScale® Core boots 
off PROM.

2. Configures SRAM, DRAM, 
Media, etc.

3. If CFG_RST# signal after 
1 ms timeout once PCI 
clock active is detected.

4. Retries PCI config cycles.
5. Programs PCI BAR 

window size.
5. Intel XScale® Core writes 

the IXP_RESET0[21] 
register to enable PCI bus.

Reset Signal deasserted. If CFG_RST_DIR 
is 1, Intel® IXP2000 Network Processor 
drives PCI RST# signal. If CFG_RST_DIR 
is 0, PCI_RST# is input. 

END
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10.5.1 Flash ROM
At power up, if FLASH_ROM is present, strap pin CFG_PROM_BOOT should be sampled “1” 
(should be pulled up). Therefore after reset being removed by the PLL logic from the 
IXP_RESET0 register, the Intel XScale® core reset is automatically removed. “Flash Alias 
Disable” (bit [8] of Misc Control Register) information is used by the XScale gasket to decide 
where to forward address “0” from the XScale core when the XScale core wakes up and starts 
accessing the code from address 0. In this mode, since “flash alias disable: bit is reset to “0”,the 
XScale gasket will convert access to address “0” to PROM access from address “0” using the CAP 
command. Based on the code residing inside PROM, the XScale core starts removing reset from 
SRAM, PCI, DRAM, Microengines, etc., by writing “0” in their corresponding bit location of 
IXP_RESETn register and then initializing their configuration registers.

Boot code in PROM can change flash alias disable bit to "1" any time to map DRAM at address 
zero and therefore block further accesses to PROM at address "0". This change should be done 
before putting any data in DRAM at address “0”. 

The XScale core also sets different BARs inside PCI unit to define memory requirements for 
different windows.

The XScale core behavior as a host is controlled by CFG_PCI_BOOT_HOST strap option. If 
CFG_PCI_BOOT_HOST is sampled asserted in the de-asserting edge of reset, the XScale core 
will behave as boot host and configure the PCI system.

10.5.2 PCI Host Download
At power up, if FLASH_ROM is not present, strap pin CFG_PROM_BOOT should be sampled 
“0” (should be pulled down). In this mode CFG_RST_DIR pin should be “0” at power up signaling 
PCI_RST# pin is an input that behaves as global chip reset.

1. Even after reset is removed by the PLL logic from IXP_RESET0 register (after PCI_RST# 
reset is de-asserted), the XScale core reset is not removed.

2. PCI Reset through IXP_RESET0 [16] is removed automatically after being set and reset being 
removed.

3. IXP_RESET0[21] is set after PCI_RST# has been removed and PLL_LOCK is sampled 
asserted.

4. Once IXP_RESET0[21] is set, PCI unit starts responding to transactions.

5. PCI Host first configures CSR, SRAM and DRAM base address registers after reading size 
requirements for these BARs. The size for CSR, SRAM and DRAM is defined by the use of 
Strap pins. Pre-fetchability for the window is defined by bit [3] of the respective BAR registers 
therefore when host reads these registers, bit [3] is returned as “0” for CSR, SRAM and 
DRAM defining CSRs and also if SRAM and DRAM are to be non-prefetchable. “Type” Bits 
[2:0] are always Read-Only and return the value of “0x0” when read for CSR, SRAM and 
DRAM BAR registers.

6. PCI Host also programs “Clock Control CSR”, for PLL unit to generate proper clocks for 
SRAM, DRAM and other units.

Once these base address registers have been programmed, PCI host programs DRAM channels by 
initializing DU_CONTROL, DU_CONTROL2 and DU_INIT" registers. Once these registers have 
been programmed, PCI host writes the BOOT Code in DRAM starting at DRAM address “0”. PCI 
Host can also program other registers if required. Once the boot code is written in DRAM, PCI host 
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writes “1” at bit [8] of Misc_Control register called “Flash Alias Disable” (Reset value “0”). Alias 
Disable bit can be wired to the XScale gasket directly so that gasket knows how to transform 
address 0 from the XScale core After writing “1” at “Flash Alias Disable” bit, host removes reset 
from the XScale core by writing “0” in bit [0] of IXP_RESET0 register. The XScale core starts 
booting from address 0, which is now directed by the gasket to DRAM.

10.6 Reset Strategy for Different Sections in IXP2400
Table 163 defines the strategy for resetting IXP2400 for logic not directly affected by 
IXP_RESETn registers. Table 164 and Table 165 defines the strategy for resetting IXP2400 for 
logic affected by IXP_RESETn registers. The contents of Table 163, Table 164, and Table 165 are 
described in Table 162.

.

Table 162. Description of the Content of Table 163 through Section 165

Column Contents

Unit Name of the unit where reset is applied

Reset Bit # Bit number from IXP_RESETn register that is used to 
reset this unita

a. Not applicable to Table 163.

When Set Conditions to set this bit

When Reset Conditions to reset this bit

Comments Special behavior

Table 163. Resettinga IXP2400 Strategy—Logic Unrelated to IXP_RESETn

a. Reset definitions:
Hard Reset: combine PCI_RST_L (if CFG_RSTDIR =1) and SYS_RESET_L.
Soft Reset: combine Watchdog timer, Reset_All_Reg (IXP_RESET0[16] =1 and each reset bit set to 1).

Unit When Set
Reset

When Clear
Reset Comment

PLL
(Core_pll,
MSF_pll,
PCI_pll)

Hard Reset
Active

Hardware Reset
De-Active

PCI_RST_L (if CFG_RSTDIR =1) and 
SYS_RESET_L are combined to 
generate a HARD RESET for the PLL 
logic.
Based on this input reset, 
IXP_RESET0 and IXP_RESET1 
registers are reset causing the entire 
chip to be reset.

Stepping 
Stone Logic

Hard Reset
Active

Hardware Reset
De-Active
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Table 164. Resetting IXP2400 Scheme—Logic Related to IXP_RESET0[31:0]

Unit Reset Bit 
#

When Set
Reset

When Clear
Reset Comment

XScale [0]

Hard Reset
Active

or
Soft Reset

Active

• CFG_PROM_BOOT=1
After Reset it 
will automati-
cally take about 
256 cycles to 
clear the reset 
bit.

• CFG_PROM_BOOT=0
This bit need to 
be cleared by 
software.

PCI Unit [1]

Hard Reset
Active

or
Soft Reset

Active

• CFG_PROM_BOOT=1
After Reset 
happen it need 
to be cleared by 
XScale

• CFG_PROM_BOOT=0
After Reset 
happen it will 
automatically 
take about 256 
cycles to clear 
the reset bit.

PCIRST [2] See Comment See Comment 

If the CFG_RSTDIR pin is asserted 
high, PCI_RST_L is an output and 
PCIRST is:

• 1–IXP2400 asserts the 
PCI_RST_L pin

• 0–IXP2400 does not assert the 
PCI_RST_L pin

The Intel XScale® core clears this 
bit after a reset to release the PCI 
bus from reset.
If the CFG_RSTDIR pin is asserted 
low, PCI_RST_L is an input and 
PCIRST is:

• 1–reset was caused by a PCI 
device

• 0–reset was not caused by a 
PCI device

The Intel XScale® core can read 
this bit to determine whether a PCI 
device reset the IXP2400.

SRAM[1:0] [4:3]

Hard Reset
Active

or
Soft Reset

Active

After Reset it will 
automatically take about 
256 cycles to clear the 
reset bit.

SRAM[3:2] [6:5] Reserved
Bits[6:5] are reserved.
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Media[0] [7]

Hard Reset 
Active

or
Soft Reset

Active

This bit need to be 
cleared by software. 
Wait until all the MSF 
PLL are locked then 
clear the Media reset 
bit.

Media[10:8] [10:8] Reserved
This bit need to be 
cleared by software. Bits[10:8] are reserved right now.

DRAM[0] [11]

Hard Reset 
Active

or
Soft Reset

Active

After Reset happen it 
will automatically take 
about 256 cycles to 
clear the reset bit.

DRAM[3:1] [14:12] Reserved
Bits[14:12] are reserved right now.

EXRST [15]

Hard Reset 
Active

or
Soft Reset

Active

This bit need to be 
cleared by software.

RSTALL [16]
Soft Reset

Active

When RSTALL is set, 
Intel XScale® core will 
idlea 512 cycles then it 
resets the whole unit 
except PLLs and some 
registers.
After Reset it will 
automatically take about 
256 cycles to clear the 
reset bit.

When this bit is set, both 
IXP_RESET registers are reset.

SHaCb [17]

Hard Reset 
Active

or
Soft Reset

Active

After Reset it will 
automatically take about 
256 cycles to clear the 
reset bit.

CMD_ARBIT
ER [18]

Hard Reset 
Active

or
Soft Reset

Active

After Reset it will 
automatically take about 
256 cycles to clear the 
reset bit.

SBUS_ARBI
TER [19]

Hard Reset 
Active

or
Soft Reset

Active

After Reset it will 
automatically take about 
256 cycles to clear the 
reset bit.

Table 164. Resetting IXP2400 Scheme—Logic Related to IXP_RESET0[31:0]

Unit Reset Bit 
#

When Set
Reset

When Clear
Reset Comment
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10.7 Initialization
The boot sequence task must be performed by the IXP2400 after reset for proper processor 
functioning. The boot sequence tasks configure IXP2400 resources to a predetermined state by 
writing values to certain registers. Some of these register settings are determined by the 
components selected, such as SDRAM, SRAM, and BootROM. Other register settings are 
determined by the desired processor performance and system configuration.

The resources that must be configured after reset are the PROM interface, the SRAM controller, 
the SDRAM controller and the Memory Management Unit (MMU). There are other resources that, 
if used during the boot sequence, must be configured at this time; specifically the UART and the 
PCI Interface. 

The configuration tasks must be performed in the following sequence:

1. Configure XPI Interface to access PROM; if CFG_PROM_BOOT (BOOT_PROM) is present 
the following registers should be programmed:

DBUS_
ARBITER [20]

Hard Reset 
Active

or
Soft Reset

Active

After Reset it will 
automatically take about 
256 cycles to clear the 
reset bit.

INIT_COMP [21]

Hard Reset 
Active

or
Soft Reset

Active

See comment

When CFG_PROM_BOOT 
(BOOT_PROM) = 0 INIT_COMP is 
set when GLB_RST is deasserted
When CFG_PROM_BOOT 
(BOOT_PROM) = 1 INIT_COMP is 
set when Intel XScale® core sets

WatchDog_
Reset_En [24] Set By Software Reset By Software.

When WatchDog_Reset_En is:
• 0–Watchdog reset will trigger 

the PCI interrupt to external 
PCI host 

• 1–Watchdog reset will trigger 
the soft reset (set IXP 
RESET0[16] RSTALLto 1), 
then it will reset all units after 
512 cycles

a. Waiting for PCI bus to IDLE and PCI unit to start PCI unit Reset.
b. SHaC is Scratch, Hash and CSR.

Table 165. Resetting IXP2400 Scheme—Logic Related to IXP_RESET1[31:0]

Unit Reset 
Bit #

When Set
Reset

When Clear
Reset Comment

Microengines
[3:0]

[19:16]

Hard Reset 
Active

or
Soft Reset

Active

This bit need to be 
cleared by software.

Table 164. Resetting IXP2400 Scheme—Logic Related to IXP_RESET0[31:0]

Unit Reset Bit 
#

When Set
Reset

When Clear
Reset Comment
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—SP_CCR: configures the clocks for the SlowPort; initially these clocks start at some 
default value which may not be optimal

—SP_WTC: program this register for PROM interface to define proper write timing 

—SP_RTC: program this register for PROM interface to define proper read timing

—SP_FAC: defines the address size of flash memory device used

—SP_FRM: defines the data width of the read back from the flash memory

2. Configure Clock Ratio CCR and MCCR CSR; to define the operating frequency of SRAM and 
DRAM interface the following registers define the operation of stepping stone logic and must 
be initialized:

—CCR: Clock Control CSR to define the frequency of SRAM and DRAM channels

—MCCR Media Clock Control CSR to define the frequency of RX and TX

—Set up each of the MSF clock ratios (each of the MCCR[MSF_CLKCFG] bits)

—Disable the PLL bypass mode (MCCR[MSF_BY_PASS_SEL] = 0)

—Turn on PLL (MCCR[MSF_POWERDOWN] =0)

—Wait for MSF PLL lock (MCCR[MSF_PLL_LOCK] = 1) 

3. Release from Reset; after reset, units not coming out of reset automatically are brought out of 
reset by programming the IXP_RESET0 and IXP_RESET1 registers. For a description of 
what units come out of reset automatically, please refer to Section 10.6 of this document.

4. Configure the SRAM controller using the following registers:

—SRAM_Control:To define the configuration of SRAM Controller

—SRAM_Parity_Status1:For parity control and recording of last faulty address

—SRAM_Parity_Status2:Recording of source of request which generated parity Error

The following registers are application specific and must be programmed if required.

—Q_Array_Entry_nn_Low:To access EOP, Cell Count and Head Fields. “nn” is entry #

—Q_Array_Entry_nn_Med:To access Tail Fields. “nn” is entry #

—Q_Array_Entry_nn_High:To access Q Count. “nn” is entry #

5. Configure the in-use DRAM channels through a sequence of register writes:

a. DU_CONTROL

b. DU_CONTROL2

c. DU_INIT

6. Configure the Memory Mapped Unit, Cache, and Buffer by configuring the following register:
XScale Coprocessor 15—CONTROL_CP15

7. Configure PCI; if CFG_PROM_BOOT (BOOT_PROM) is not present, loading the boot 
image into DRAM by the PCI host is required. To do this,

a. The following registers should be set to their required value on the de-asserting edge of 
reset:

—PCI_DRAM_BAR: strap pins define the window size

—PCI_SRAM_BAR: strap pins define the window size
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—PCI_CSR_BAR

b. IXP_RESET0[21] should be set to “1”

c. After boot image is loaded into DRAM, Flash_Alias_Disable bit in Misc Control register 
from IXP_CHASSIS should be set to 1 so that DRAM appears at address 0.

d. If CFG_PROM_BOOT (BOOT_PROM) is present, configure the following four 
registers:

— SRAM_BASE_ADDR_MASK:
— DRAM_BASE_ADDR_MASK:
— PCI_Command _Status:
— PCI_Write_Address_Ext:

Note: In this mode, code jumps to normal flash location and then disables the “map flash to zero” feature. 
If PCI_CFN[3](BOOT_HOST) is not true, then the external PCI host will configure IXP2400 PCI 
interface based on its memory requirements. If PCI_CFN[3](BOOT_HOST) is true, then IXP2400 
will program the PCI interface.

8. Configure Serial Port, if required by configuring the following registers:

—UART_DLRH

—UART_DLRL

—UART_IER

—UART_FCR

—UART_LCR

9. Configure Media

—Initialize the MSF

—Enable MSF block (via MSF_Rx_Control[Rx_En] or MSF_Tx_Control[Tx_En])
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Performance Monitor Unit 11

11.1 Introduction
Performance Monitor Unit is a hardware block consisting of counters and comparators which may 
be programmed and controlled using a set of configured registers to monitor and to fine tune 
performance of different hardware units in the IXP2400. The total number of such counters needed 
is determined based on the different events and functions that need to be monitored concurrently. 
Observation of such events on chip is used for statistical analysis, uncovering bottlenecks and to 
tune the software to fit the hardware resources.

11.1.1 Motivation for Performance Monitors
For a given set of functionality, a measure of performance is very important to make decisions on 
feature sets to be supported and to tune the embedded software on chip. An accurate estimate of 
latency and speed in hardware blocks enables firmware and software designers to understand the 
limitations of the chip and make prudent judgments of their software architecture. The current 
generation IXP1200 processors do not provide any performance monitor hooks. Since IXP2400 
processors are targeted for high performance segments (OC48 and above), the need for tuning the 
software to get the most of out the hardware resources becomes extremely critical. The 
performance monitors provide valuable insight into the chip by providing real time data on latency 
and utilization of various resources. These monitors also enable hardware architects to make 
effective design trade-off in future generation of the product by uncovering implementation glass 
jaws, flaws and limitations. See Figure 116.
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11.1.2 Motivation for Choosing CHAP Counters
The Chipset Hardware Architecture Performance (CHAP) counters enable gathering statistics of 
internal hardware events in real-time. This implementation provides users with direct event 
counting and timing for performance monitoring purposes, provides enough visibility into the 
internal architecture to perform utilization studies and workload characterization and can also be 
used for chipset validation, higher-performing future chipset, and applications tuned to the current 
chipset. The goal is that this will benefit both internal and external hardware and software 
development. Primary motivation for selecting the CHAP architecture for use in the IXP2400 
product family is that it has been designed and validated in several Intel desktop chipset and the 
framework also provides a set of software suite which may be reused with a very limited 
modification.

11.1.3 Functional Overview of CHAP Counters
At the heart of the CHAP counters functionality are counters, each with associated registers. Each 
counter has a corresponding command, event, status, and data register. The smallest 
implementation will have 2 counters, but if justified for a particular product, this architecture can 

Figure 116. Performance Monitor Interface Block Diagram
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support many more counters. The primary consideration is available silicon area. The memory-
mapped space currently defined can accommodate registers for 256 counters. It could be 
configured for more, but that is beyond what is currently practical.

Signals representing events from throughout the chip are routed to the CHAP unit. Software can 
select events that will be recorded during a measurement session. The number of counters in an 
implementation defines the numbers of events that can be recorded simultaneously. Software and 
hardware events can control the starting, stopping, and sampling of the counters. This can be done 
in a time-based (polling) or event-based fashion. Each counter can be increment or decrement by 
different events. In addition to simple counting of events the unit can provide data for histograms, 
queue analysis, and conditional event counting (example: How many times did event A happen 
before the first event B took place).

When a counter is sampled, the current value of the counter is latched into the corresponding data 
register. The command, event, status, and data registers are accessible via standard APB memory 
mapped registers in order to facilitate high-speed sampling.

Two optional external pins allow for external visibility and control of the counters. The output pin 
signals that one of the following conditions generated an interrupt from any one of the counters:

• A programmable threshold condition was true,

• A command was triggered to begin

• A counter overflow or underflow occurred.

The input pin allows an external source to control when a CHAP command is executed.

Figure 117 represents a single counter block. The muxes, registers, and all other logic are repeated 
for each counter that is present. There is a threshold event from each counter block that feeds into 
each mux.
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11.1.4 Basic Operation of Performance Monitor Unit
At power up, the XScale core invokes performance monitoring software code. PMU software has 
the application code to generate different types of data such as histograms and graphs. It also has 
device driver to configure and read data from PMU in IXP2400. This software programs the 
configuration registers in the PMU block to perform a certain set of monitoring and data collection. 
PMU CHAP counters execute the commands programmed by XScale and they collect various 
types of data such as latency and counts. Upon collection it triggers an interrupt to XScale to 
indicate the completion of monitoring.

XScale either periodically monitors the PMU registers or waits for an interrupt to collect the 
observed data. XScale uses the APB bus to communicate with the PMU configuration registers.

Figure 118 represents a block diagram of IXP2400 and Performance Monitor Unit’s (PMU) in 
relation to other hardware blocks in the chip.

Figure 117. Block Diagram of a Single CHAP Counter
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11.1.5 Definition of CHAP Terminology
Duration Count The counter is increment for each clock for which the event signal is 

asserted logic high.

MMR Memory Mapped Register

OA Observation Architecture. The predecessor to CHAP counters that 
facilitates counting of hardware events.

Occurrence Count The counter is increment each time a rising edge of the event signal is 
detected.

Preconditioning Altering a design block signal that represents an event such that it can be 
counted by the CHAP unit. The most common preconditioning is likely 
to be a ‘one-shot’ in order to be able to count occurrences.

RO (register) Read Only. If a register is read only, writes to this register location have 
no effect.

R/W (register) Read/Write. A register with this attribute can be read and written

WO (register) Write Once. Once written, a register with this attribute becomes Read 
Only. This Register can only be cleared by a Reset.

Figure 118. Basic Block Diagram of IXP2400 with PMU
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WC (register) Write Clear. A register bit with this attribute can be read and written. 
However, a write of 1 clears (sets to 0) the corresponding bit and a write 
of 0 has no effect.

11.2 Interface and CSR Description
CAP is a standard logic block provided as part of the IXP Chassis that provides a method of 
interfacing to the following:

ARM Advanced Peripheral Bus (APB): This bus supports standard APB peripherals such as 
PMU, UART, Timers and GPIO as well as CSRs that are not required to be accessed by the 
MEs.

As shown in Figure 119, CAP uses three bus interfaces to support these modes. CAP supports a 
target ID of 0101 which ME assemblers should identify as a CSR instruction.

Table 166 shows the XScale and ME instructions used to access devices on these buses and it 
shows which buses are used during the operation. For example, to read an APB peripheral such as 
a UART CSR, an ME would execute a csr[read] instruction and XScale would execute a Load (ld) 
instruction. Data is then moved between the CSR and the XScale/ME by first reading the CSR via 
the APB bus and then writing the result to the XScale/ME via the Push Bus.

Figure 119. CAP Interface to APB Bus

Bus Masters 
(e.g. ME)

Gasket
XScale® 
Core
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CAP
APB Bus

CSR Command

CAP CSR Bus
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Table 166. APB Bus Usage

Accessing Read Operation Write Operation

APB Peripheral

Access Method: 
• ME: csr[read]
• XScale®: ld 

Access Method: 
• ME: csr[write]
• XScale: st

Bus Usages: 
• Read source: APB bus
• Write dest: Push bus

Bus Usages: 
• Read source: Pull Bus
• Write dest: APB bus
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11.2.1 APB Bus Peripheral
The Advanced Peripheral Bus (APB) is part of the Advanced Micro controller Bus Architecture 
(AMBA) hierarchy of buses that is optimized for minimal power consumption and reduced design 
complexity. PMU needs to operate as an APB peripheral interfacing with rest of the chip via APB 
bus. PMU needs to have APB bus interface unit, which can perform a APB bus reads and writes to 
enable data transfer to and from the PMU registers.

11.2.2 CAP Description

11.2.2.1 Selecting the Access Mode

The CAP selects the appropriate access mode based on the COMMAND and ADDRESS fields 
from Command Bus.

11.2.2.2 PMU CSR 

Please refer to Intel IXP2400/IXP2800 Programmer's Reference Manual. 

11.2.2.3 CAP Writes

For an APB write, CAP arbitrates for the S_Pull_Bus, pulls the write data from the source 
identified in PP_ID (either a ME transfer register or XScale core write buffer), and puts it into the 
CAP Pull Data FIFO. It then drives the address and writes data on to the appropriate bus. CAP 
CSRs locally decode the address to match their own. CAP generates a separate APB devices select 
signal for each CAP device (up to 15 devices). If the write is to an APB CSR, the Control Logic 
maintains valid signaling until the APB_RDY_H signal is returned (The APB RDY signal is an 
extension to the APB bus specification specifically added for the IXP Chassis).

CAP supports write operations with burst counts greater than 1. CAP looks at the length field on 
the command bus and breaks each count into a separate APB write cycle, incrementing the CSR 
number for each bus access.

11.2.2.4 CAP Reads

For an APB read, CAP drives the address, write, select, and enable signals, waits for the 
acknowledge signal (APB_RDY_H) from APB device, For a CAP CSR read, CAP drives the 
address, which controls a tree of multiplexors to select the appropriate CSR. CAP then waits for the 
acknowledge signal (CAP_CSR_RD_RDY). When the data is returned, CAP then puts the read 
data into the Push Data FIFO, arbitrates for the S_Push_Bus, and then the Push/Pull Arbiter pushes 
the data to the destination identified in PP_ID.

11.2.3 Configuration Registers
Because the CHAP unit resides on the APB bus, the offset associated with each of these registers is 
relative to the Memory Base Address that configuration software will set in the PMUADR register.
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Each counter has one command, one event, one status, and one data register associated with it. 
Each counter is “packaged” with these four registers in a “counter block”. Each implementation 
selects the number of counters it will implement, and therefore how many counter blocks (or slices) 
it will have. These registers are numbered 0 through N - 1 where N represents the number of 
counters - 1. See Figure 120.

11.3 Performance Measurements
There are several measurements that could be made on each of the hardware blocks. These 
measurements together would enable improvements in hardware and software implementation and 
architectural issues. The following sections discuss different blocks and their associated 
performance measurement events.

11.3.1 XScale®

11.3.1.1 DRAM Read Head of Queue Latency Histogram

11.3.1.1.1 Description

The Intel XScale® core generates a read command or write command to the DRAM primarily to 
either push or pull data of the DDRAM. These commands are scheduled to the DRAM through the 
push pull arbiter through a command FIFO in the gasket. DRAM read head of queue enables the 
PMU to monitor when the read and write commands posted by XScale in the gasket gets fetched 
and delivered to DDRAM.

Figure 120. Conceptual Diagram of Counter Array
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11.3.1.2 SRAM Read Head of Queue Latency Histogram

11.3.1.2.1 Description:

The XScale core generates a read command or write command to the SRAM primarily to either 
push or pull data of the SRAM. These commands are scheduled to the SRAM through the push pull 
arbiter through a command FIFO in the gasket. SRAM read head of queue enables the PMU to 
monitor when the read and write commands posted by XScale in the gasket gets fetched and 
delivered to SRAM.

11.3.1.3 Interrupts

11.3.1.3.1 Description:

Number of interrupts seen

Histogram of time between interrupts

11.3.2 Microengines

11.3.2.1 Command Fifo number of commands

11.3.2.1.1 Description:

This statistics will give the number of the commands issued by the ME in a particular period of 
time. It is also can count each different threads.

11.3.2.2 Control Store Measures

11.3.2.2.1 Description:

Count time between two micro store locations (locations can be set by instrumentation software).

Histogram time between two microstore locations (locations can be set by instrumentation 
software)

11.3.2.3 Execution Unit Status

11.3.2.3.1 Description:

Histogram of stall time. Histogram of aborted time. Histogram of swapped out time. Histogram of 
idle time.

11.3.2.4 Command Fifo Head of Queue Wait Time 
Histogram (Latency)

11.3.2.4.1 Description:

This is to measure the latency of a command, which is at the head to the queue and is waiting to be 
send out to the destination over the Chassis.
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11.3.3 SRAM

11.3.3.1 SRAM Commands

11.3.3.1.1 Description:

A count of SRAM commands received. These are maskable by command type such as put and get.

11.3.3.2 SRAM Bytes, Cycles Busy

11.3.3.2.1 Description:

This measurement describes the number of bytes transferred and SRAM busy time.

11.3.3.3 Queue Depth Histogram

11.3.3.3.1 Description:

This measurement analyses the different queues such as Ordered, priority, push queue, pull queue, 
read lock fail, HW queues and provides the information on utilization.

11.3.4 DDRAM

11.3.4.1 DRAM Commands

11.3.4.1.1 Description:

This measurement lists the total commands issued to the DRAM and they can be counted based on 
command type and error type. 

11.3.4.2 DRAM Bytes, Cycles Busy

11.3.4.2.1 Description:

This measurement indicates the DRAM busy time and bytes transferred.

11.3.4.3 Maskable by Read/Write, ME, PCI or XScale®

11.3.4.3.1 Description:

This measurement indicates different accesses that are initiated to the DRAM. These measurement 
s could be for all the accesses to the memory or can be masked using a specific source such as PCI, 
XScale, or ME. This can further measured based on read or write cycles.
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11.3.5 Chassis/Push-Pull

11.3.5.1 Command Bus utilization

11.3.5.1.1 Description:

This statistics will give the number of the command request issued by the different Master in a 
particular period of time. 

This measurement also indicates how long it take to issue the grant from request being issued by 
the different Master. 

11.3.5.2 Push and Pull Bus Utilization.

11.3.5.2.1 Description:

This measurement keep track of the number of accesses issued and how long it take to send the 
data to destination. 

11.3.6 Hash

11.3.6.1 Number of Accesses by Command type

11.3.6.1.1 Description:

This measurement indicates the number of hash accesses issued and this count is maskable based 
on command type.

11.3.6.2 Latency of Histogram 

11.3.6.2.1 Description:

This monitors the latency through each of the HASH queues.

11.3.7 Scratch

11.3.7.1 Number of Accesses by Command type

11.3.7.1.1 Description:

This measurement indicates the number of Scratch accesses issued and this count is maskable 
based on command type.

11.3.7.2 Number of bytes transfer

11.3.7.2.1 Description:

This measurement indicates total number of bytes transferred to or from Scratch.
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11.3.7.3 Latency of Histogram

11.3.7.3.1 Description:

This measurement indicates the latency of performing read or write from the Scratch. Latency is 
command executions may also be measured. 

11.3.8 PCI

11.3.8.1 Master Accesses

11.3.8.1.1 Description:

This statistics will give the number of Master accesses that were generated by the PCI blocks. This 
measurement could be counted based on individual command type.

11.3.8.2 Slave Accesses

11.3.8.2.1 Description:

This statistics will give the number of Slave accesses that were generated by the PCI blocks. This 
measurement could be counted based on individual command type.

11.3.8.3 Master/Slave Read Byte Count

11.3.8.3.1 Description:

This statistics will give total the number of bytes of data that were generated by the PCI Master/
Slave reads access. This measurement could be counted based on individual command type.

11.3.8.4 Master/Slave Write Byte Count

11.3.8.4.1 Description:

This statistics will give total the number of bytes of data that were generated by the PCI Master/
Slave write accesses. This measurement could be counted based on individual command type.

11.3.8.5 Burst Size Histogram

11.3.8.5.1 Description:

This statistics will give a histogram of number of various burst size.
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11.3.9 Media Interface

11.3.9.1 TBUF Occupancy Histogram

11.3.9.1.1 Description:

This measurement shows the occupancy rate at different depth of FIFO. This can help in better 
utilization of TBUF.

11.3.9.2 RBUF Occupancy Histogram

11.3.9.2.1 Description:

This measurement shows the occupancy rate at different depth of FIFO. This can help in better 
utilization of RBUF

11.3.9.3 Packet/Cell/Frame Count on a Per Port Basis

11.3.9.3.1 Description:

This measurement give the count of number of packets or cells or frames transferred in 
Transmitting mode.This measurement give the count of number of packets or cells or frames 
transferred in the receiving mode.

This may be measured per port basis.

11.3.9.4 Inter-Arrival Time for Packets on a Per Port Basis

11.3.9.4.1 Description:

This measurement can provide information on gap between packets thereby indicating effective 
line rate.

11.3.9.5 Burst Size Histogram

11.3.9.5.1 Description

This measurement give the various burst sizes packets being transmitted and received.

11.4 Events Monitored in Hardware
Tables in this section describe the events that can be measured, including the name of the event, the 
Event Selection Code (ESC), Please refer to Section 11.4 for tables showing event selection codes.

The acronyms in the event names typically represent unit names.

The guidelines for which events a particular component must implement are as follow:
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11.4.1 Queue Statistics Events

11.4.1.1 Queue Latency

Latency of Queue is an indicator of performance of the control logic in terms of effective execution 
of the commands enqueued in to the Control/Command queue or performance of control logic to 
effectively transfer data from the Data Queue.

This kind of monitoring needs observation of specific events such as

• Enqueue in to the Queue
This event indicates when an entry was made to the queue.

• Dequeue in to the Queue
This event indicates when an entry was removed from the queue. Time period between when a 
particular entry was made in to the queue and when the entry was removed from the queue 
indicates the latency of the queue for that entry.

• Queue Full Event
This event indicates when the queue has no room for additional entries.

• Queue Empty Event
This event indicates when the queue has no entries

Queue Full and Queue Empty events can be used to determine Queue Utilization and bandwidth 
available in the queue to handle more traffic.

11.4.1.2 Queue Utilization

Utilization of Queue is determined by observing the percentage of time each queue is operating at a 
particular threshold level. Based on Queue size multiple threshold values can be predetermined and 
monitored. The result of these observations can be used to provide histograms for Queue 
utilization. This kind of observation helps us better utilize the available resources in the queue.

11.4.2 Count Events

11.4.2.1 Hardware Block Execution Count

On each of the hardware blocks events are importance such as number of commands executed, no 
of bytes transferred, total amount of clocks block was free, Total amount of time all the Contexts in 
the ME was idle can be counted for statistics and to better manage the available resources.

11.4.3 Design Block Select Definitions
Once an event is defined, its definition must remain consistent between products. If the definition 
changes it should have a new event selection code. This document contains the master list of all 
ESCs in all CHAP enabled products. Not all of the ESCs in this document are listed in numerical 
order. The recommendation is to group like events within the following ESC ranges. See 
Table 167.
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Table 167. PMU Design Unit Selection

Target Device Target ID PMU Design Group Block # Description

Null xxx xxx 0000 Null (False) Event

PMU_Counter xxx xxx
0001

(PMU) 

CHAP Counters Internal 
Threshold Events
Event bit 0 CHAP Counter 0
Event bit 1 CHAP Counter 1
Event bit 2 CHAP Counter 2
Event bit 3 CHAP Counter 3
Event bit 4 CHAP Counter 4
Event bit 5 CHAP Counter 5

SRAM Group

SRAM_DP1 001 001

0010
(SRAM Group)

one and only one will be 
selected from same group

IXP2800 only
SRAM channel 0
SRAM channel 1
SRAM channel 2
SRAM channel 3
SRAM d-push
SRAM d-pull 
IXP2400 only
SRAM channel 0
SRAM channel 1
SRAM d-push
SRAM d-pull 

SRAM_DP0
001 010

SRAM_CH3
001 011

SRAM_CH2
001 100

SRAM_CH1
001 101

SRAM_CH0 001 110

DRAM Group

DRAM_CR1 010 000

0011
(DRAM)

one and only one will be 
selected from same group

IXP2800 only
DRAM channel 0
DRAM channel 1
DRAM channel 2
DRAM d-push
DRAM d-pull 
IXP2400 only
DRAM channel 0
DRAM d-push
DRAM d-pull 

DRAM_CR0
010 001

DRAM_DPLA
010 010

DRAM_DPSA
010 011

DRAM_CH2
010 100

DRAM_CH1
010 101

DRAM_CH0 010 110

XPI 000 001
0100
(XPI)

XPI

SHaC 000 010 0101
SHaC 
HASH
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11.4.4 Null Event
Not an actual event. When used as an increment or decrement event, no action will take place. 
When used as Command Trigger it will cause command to be triggered immediately after 
command register is written to by software. Also called False Event. Not reserved.

MSF 000 011 0110 Media

XScale® 000 100 0111 XScale®

PCI 000 101 1000 PCI

ME Cluster 0 Group

ME07
ME06
ME05
ME04
ME03
ME02
ME01
ME00

100 111
100 110
100 101
100 100
100 011
100 010
100 001
100 000

1001
(MEC0)

one and only one will be 
selected from same group

IXP2800 only
ME Channel 0
ME00 
ME01
ME02
ME03
ME04 
ME05 
ME06
ME07 
IXP2400 only
ME Channel 0
ME00 
ME01 
ME02
ME03

ME Cluster 1 Group

ME17
ME16
ME15
ME14
ME13
ME12
ME11
ME10

110 111
110 110
110 101
110 100
110 011
110 010
110 001
110 000

1010
(MEC0)

one and only one will be 
selected from same group

IXP2800 only
ME Channel 1
ME10 
ME11
ME12
ME13
ME14 
ME15 
ME16
ME17 
IXP2400 only
ME Channel 1
ME10 
ME11 
ME12
ME13

1011-1111 Reserved

Table 167. PMU Design Unit Selection (Continued)

Target Device Target ID PMU Design Group Block # Description



Hardware Reference Manual 375

Intel® IXP2400 Network Processor
Performance Monitor Unit

11.4.5 Threshold Events
These are the outputs of the threshold comparators. When the value in a data register is compared 
to its corresponding counter value and the condition is true, a threshold event is generated. This 
results in:

Pulse on the signal lines that are routed to the events input port (one signal line from each 
comparator).

One piece of functionality this enables is to allow for CHAP commands to be completed only when 
a Threshold Event occurs. In other words, a Threshold Event can be used as a Command Trigger to 
control the execution of any CHAP command (start, stop, sample, etc.). See Table 168.

11.4.6 External Input Events

11.4.6.1 XPI Events Target ID(000001) / 
Design Block #(0100)

Table 168. Chap Counter Threshold Events (Design Block # 0001)

Mux # Event Name Clock
Domain

Single 
pulse/
Long
pulse

Burst Description 

000 Counter 0 Threshold pp
single separate Threshold Condition True on 

Event Counter 0

001 Counter 1 Threshold pp
single separate Threshold Condition True on 

Event Counter 1

010 Counter 2 Threshold pp
single separate Threshold Condition True on 

Event Counter 2

011 Counter 3 Threshold pp
single separate Threshold Condition True on 

Event Counter 3

100 Counter 4 Threshold pp
single separate Threshold Condition True on 

Event Counter 4

101 Counter 5 Threshold pp
single separate Threshold Condition True on 

Event Counter 5

Table 169. XPI PMU Event List (Sheet 1 of 6)

Event 
Number Event Name Clock 

Domain

Single 
pulse/
Long
pulse

Burst Description

0 XPI_RD_P APB single separate It includes all the read accesses, PMU, 
timer, GPIO, UART, and SlowPort.

1 XPI_WR_P APB single separate It includes all the write accesses, PMU, 
timer, GPIO, UART, and SlowPort.

2 PMU_RD_P APB single separate It executes the read access to the PMU 
unit.
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3 PMU_WR_P APB single separate It executes the write access to the PMU 
unit.

4 UART_RD_P APB single separate It executes the read access to the UART 
unit.

5 UART_WR_P APB single separate It executes the write access to the UART 
unit.

6 GPIO_RD_P APB single separate It executes the read access to the GPIO 
unit.

7 GPIO_WR_P APB single separate It executes the write access to the GPIO 
unit.

8 TIMER_RD_P APB single separate It executes the read access to the Timer 
unit.

9 TIMER_WR_P APB single separate It executes the write access to the Timer 
unit.

10 SPDEV_RD_P APB single separate It executes the read access to the 
SlowPort Device.

11 SPDEV_WR_P APB single separate It executes the write access to the 
SlowPort Device.

12 SPCSR_RD_P APB single separate It executes the read access to the 
SlowPort CSR.

13 SPCSR_WR_P APB single separate It executes the write access to the 
SlowPort CSR.

14 TM0_UF_P APB single separate It shows the occurrence of timer 1 counter 
underflow.

15 TM1_UF_P APB single separate It shows the occurrence of timer 2 counter 
underflow.

16 TM2_UF_P APB single separate It shows the occurrence of timer 3 counter 
underflow.

17 TM3_UF_P APB single separate It shows the occurrence of timer 4 counter 
underflow.

18 IDLE0_0_P APB single separate It displays the idle state of the state 
machine 0 for the mode 0 of SlowPort.

19 START0_1_P APB single separate It enters the start state of the state 
machine 0 for the mode 0 of SlowPort.

20 ADDR10_3_P APB
single separate It enters the first address state, AD[9:2], of 

the state machine 0 for the mode 0 of 
SlowPort.

21 ADDR20_2_P APB
single separate It enters the second address state, 

AD[17:10], of the state machine 0 for the 
mode 0 of SlowPort.

22
ADDR30_6_P

APB
single separate It enters the third address state, 

AD[24:18], of the state machine 0 for the 
mode 0 of SlowPort.

23
SETUP0_4_P

APB
single separate It enters data setup state of the state 

machine 0 for the mode 0 of SlowPort.

24 PULW0_5_P APB single separate It enters data duration state of the state 
machine 0 for the mode 0 of SlowPort.

25 HOLD0_D_P APB single separate It enters data hold state of the state 
machine 0 for the mode 0 of SlowPort.

Table 169. XPI PMU Event List (Sheet 2 of 6)
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26 TURNA0_C_P APB single separate It enters the termination state of the state 
machine 0 for the mode 0 of SlowPort.

27 IDLE1_0_P APB single separate It displays the idle state of the state 
machine 1 for the mode 1 of SlowPort.

28 START1_1_P APB single separate It enters the start state of the state 
machine 1 for the mode 1 of SlowPort.

29 ADDR11_3_P APB
single separate It enters the first address state, AD[7:0], of 

the state machine 1 for the mode 1 of 
SlowPort.

30 ADDR21_2_P APB
single separate It enters the second address state, 

AD[15:8], of the state machine 1 for the 
mode 1 of SlowPort.

31 ADDR31_6_P APB
single separate It enters the second address state, 

AD[23:16], of the state machine 1 for the 
mode 1 of SlowPort.

32 ADDR41_7_P APB
single separate It enters the second address state, 

AD[24], of the state machine 1 for the 
mode 1 of SlowPort.

33 WRDATA1_5_P APB
single separate It unpacks the data from the APB bus onto 

the SlowPort bus for the state machine 1 
for the mode 1 of SlowPort.

34 PULW1_4_P APB
single separate It enters the pulse width of the data 

transaction cycle for the state machine 1 
for the mode 1 of SlowPort.

35 CHPSEL1_C_P APB
single separate It enters the chip select assertion pulse 

width when the state machine 1 is active 
for the mode 1 of SlowPort.

36 OUTEN1_E_P APB
single separate It enters the cycle when the OE is 

asserted during running on the state 
machine 1 for the mode 1 of SlowPort.

37 PKDATA1_F_P APB
single separate It enters the read data packing state when 

the state machine 1 is active for the mode 
1 of SlowPort.

38 LADATA1_D_P APB
single separate It enters the data capturing cycle when the 

state machine 1 is active for the mode 1 of 
SlowPort.

39 READY1_9_P APB
single separate It enters the acknowledge state to 

terminate the read cycle when the state 
machine 1 is active for the mode 1 of 

SlowPort.

40 TURNA1_8_P APB
single separate It enters the turnaround state of the 

transaction when the state machine 1 is 
active for the mode 1 of SlowPort.

41
IDLE2_0_P

APB
single separate It displays the idle state of the state 

machine 2 for the mode 2 of SlowPort.

42 START2_1_P APB single separate It enters the start state of the state 
machine 2 for the mode 2 of SlowPort.

43 ADDR12_3_P APB
single separate It enters the first address state, AD[7:0], of 

the state machine 2 for the mode 2 of 
SlowPort.

Table 169. XPI PMU Event List (Sheet 3 of 6)
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44 ADDR22_2_P APB
single separate It enters the second address state, 

AD[15:8], of the state machine 2 for the 
mode 2 of SlowPort.

45 ADDR32_6_P APB
single separate It enters the second address state, 

AD[23:16], of the state machine 2 for the 
mode 2 of SlowPort.

46 ADDR42_7_P APB
single separate It enters the second address state, 

AD[24], of the state machine 2 for the 
mode 2 of SlowPort.

47 WRDATA2_5_P APB
single separate It unpacks the data from the APB bus onto 

the SlowPort bus for the state machine 2 
for the mode 2 of SlowPort.

48 SETUP2_4_P APB
single separate It enters the pulse width of the data 

transaction cycle for the state machine 2 
for the mode 2 of SlowPort.

49 PULW2_C_P APB
single separate It enters the pulse width of the data 

transaction cycle for the state machine 2 
for the mode 2 of SlowPort.

50 HOLD2_E_P APB single separate It enters the data hold period for the state 
machine 2 for the mode 2 of SlowPort.

51 OUTEN2_F_P APB
single separate It starts to assert the OE when the state 

machine 2 is active for the mode 2 of 
SlowPort.

52 PKDATA2_D_P APB
single separate It enters the read data packing state 

during the active state machine 2 for the 
mode 2 of SlowPort.

53 LADATA2_9_P APB
single separate It enters the data capturing cycle during 

the active state machine 2 for the mode 2 
of SlowPort.

54 READY2_B_P APB
single separate It enters the acknowledge state to 

terminate the read cycle when the state 
machine 2 is active for the mode 2 of 

SlowPort.

55 TURNA2_8_P APB
single separate It enters the turnaround state of the 

transaction when the state machine 2 is 
active for the mode 2 of SlowPort.

56 IDLE3_0_P APB single separate It displays the idle state of the state 
machine 3 for the mode 3 of SlowPort.

57 START3_1_P APB single separate It enters the start state of the state 
machine 3 for the mode 3 of SlowPort.

58 ADDR13_3_P APB
single separate It enters the first address state, AD[7:0], of 

the state machine 3 for the mode 3 of 
SlowPort.

59 ADDR23_2_P APB
single separate It enters the second address state, 

AD[15:8], of the state machine 3 for the 
mode 3 of SlowPort.

60 ADDR33_6_P APB
single separate It enters the second address state, 

AD[23:16], of the state machine 3 for the 
mode 3 of SlowPort.

61 ADDR43_7_P APB
single separate It enters the second address state, 

AD[24], of the state machine 3 for the 
mode 3 of SlowPort.

Table 169. XPI PMU Event List (Sheet 4 of 6)
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62 WRDATA3_5_P APB
single separate It unpacks the data from the APB bus onto 

the SlowPort bus for the state machine 3 
for the mode 3 of SlowPort.

63 SETUP3_4_P APB
single separate It enters the pulse width of the data 

transaction cycle for the state machine 3 
for the mode 3 of SlowPort.

64 PULW3_C_P APB
single separate It enters the pulse width of the data 

transaction cycle for the state machine 3 
for the mode 3 of SlowPort.

65 HOLD3_E_P APB single separate It enters the data hold period for the state 
machine 3 for the mode 3 of SlowPort.

66 OUTEN3_F_P APB
single separate It starts to assert the OE when the state 

machine 3 is active for the mode 3 of 
SlowPort.

67 PKDATA3_D_P APB
single separate It enters the read data packing state 

during the active state machine 3 for the 
mode 3 of SlowPort.

68 LADATA3_B_P APB
single separate It enters the data capturing cycle during 

the active state machine 3 for the mode 3 
of SlowPort.

69 READY3_9_P APB
single separate It enters the acknowledge state to 

terminate the read cycle when the state 
machine 3 is active for the mode 3 of 

SlowPort.

70 TURNA3_8_P APB
single separate It enters the turnaround state of the 

transaction when the state machine 3 is 
active for the mode 3 of SlowPort.

71 IDLE4_0_P APB single separate It displays the idle state of the state 
machine 4 for the mode 4 of SlowPort.

72 START4_1_P APB single separate It enters the start state of the state 
machine 4 for the mode 4 of SlowPort.

73 ADDR14_3_P APB
single separate It enters the first address state, AD[7:0], of 

the state machine 4 for the mode 4 of 
SlowPort.

74 ADDR24_2_P APB
single separate It enters the second address state, 

AD[15:8], of the state machine 4 for the 
mode 4 of SlowPort.

75 ADDR34_6_P APB
single separate It enters the second address state, 

AD[23:16], of the state machine 4 for the 
mode 4 of SlowPort.

76 ADDR44_7_P APB
single separate It enters the second address state, 

AD[24], of the state machine 4 for the 
mode 4 of SlowPort.

77 WRDATA4_5_P APB
single separate It unpacks the data from the APB bus onto 

the SlowPort bus for the state machine 4 
for the mode 4 of SlowPort.

78 SETUP4_4_P APB
single separate It enters the pulse width of the data 

transaction cycle for the state machine 4 
for the mode 4 of SlowPort.

79 PULW4_C_P APB
single separate It enters the pulse width of the data 

transaction cycle for the state machine 4 
for the mode 4 of SlowPort.

Table 169. XPI PMU Event List (Sheet 5 of 6)
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11.4.6.2 SHaC Events Target ID(000010) / 
Design Block #(0101)

80 HOLD4_E_P APB single separate It enters the data hold period for the state 
machine 4 for the mode 4 of SlowPort.

81 OUTEN4_F_P APB
single separate It starts to assert the OE when the state 

machine 4 is active for the mode 4 of 
SlowPort.

82 PKDATA4_D_P APB
single separate It enters the read data packing state 

during the active state machine 4 for the 
mode 4 of SlowPort.

83 LADATA4_B_P APB
single separate It enters the data capturing cycle during 

the active state machine 4 for the mode 4 
of SlowPort.

84 READY4_9_P APB
single separate It enters the acknowledge state to 

terminate the read cycle when the state 
machine 4 is active for the mode 4 of 

SlowPort.

85 TURNA4_8_P APB
single separate It enters the turnaround state of the 

transaction when the state machine 4 is 
active for the mode 4 of SlowPort.

Table 170.  SHaC PMU Event List (Sheet 1 of 4)

Event 
Number Event Name Clock 

Domain

Single 
pulse/
Long
pulse

Burst Description

0
Scratch

Cmd_Inlet_Fifo 
Not_Empty

P_CLK
single separate

!sh_scratch.sh_cmd_ctl.sh_qcmd_valid_r
ph

1
Scratch 

Cmd_Inlet_Fifo 
Full

P_CLK
single separate SHTA_CMD_Q_FULL_RPH

2
Scratch 

Cmd_Inlet_Fifo 
Enqueue

P_CLK
single separate sh_scratch.sh_cmd_ctl.sh_scr_cmd_queu

e.shcmd_wr_queue_wph

3
Scratch 

Cmd_Inlet_Fifo 
Dequeue

P_CLK
single separate sh_scratch.sh_cmd_ctl.sh_adv_cmd_wph

4 Scratch Cmd_Pipe 
Not_Empty P_CLK

single separate sh_scratch.scr_cmd_valid_rph

5 Scratch Cmd_Pipe 
Full P_CLK

single separate sh_scratch.sh_cmd_ctl.sh_cmd_pipe_full
_wph

6 Scratch Cmd_Pipe 
Enqueue P_CLK

single separate sh_scratch.sh_cmd_ctl.sh_adv_cmd_wph
; duplicate with event 3
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7 Scratch Cmd_Pipe 
Dequeue P_CLK

single separate sh_scratch.sh_cmd_ctl.scr_deq_cmd_pip
e_wph

8
Scratch 

Pull_Data_Fifo 0 
Full

P_CLK
single separate sh_scratch.sh_cmd_ctl.scr_pull0_fifo_full_

wph

9
Scratch 

Pull_Data_Fifo 1 
Full

P_CLK
single separate sh_scratch.sh_cmd_ctl.scr_pull1_fifo_full_

wph

10
Hash 

Pull_Data_Fifo 0 
Full

P_CLK
single separate sh_scratch.sh_cmd_ctl.hash_pull0_fifo_fu

ll_wph

11
Hash 

Pull_Data_Fifo 1 
Full

P_CLK
single separate sh_scratch.sh_cmd_ctl.hash_pull1_fifo_fu

ll_wph

12
Scratch 

Pull_Data_Fifo 0 
Not_Empty

P_CLK
single separate !sh_scratch.scr_pull0_data_valid_rph

13
Scratch 

Pull_Data_Fifo 0 
Enqueue

P_CLK
single separate sh_scratch.sh_scr_take_pull0_data_wph

14
Scratch 

Pull_Data_Fifo 0 
Dequeue

P_CLK
single separate sh_scratch.scr_read_pull0_data_wph

15
Scratch 

Pull_Data_Fifo 1 
Not_Empty

P_CLK
single separate !sh_scratch.scr_pull1_data_valid_rph

16
Scratch 

Pull_Data_Fifo 1 
Enqueue

P_CLK
single separate sh_scratch.sh_scr_take_pull1_data_wph

17
Scratch 

Pull_Data_Fifo 1 
Dequeue

P_CLK
single separate sh_scratch.scr_read_pull1_data_wph

18 Scratch State 
Machine Idle P_CLK

single separate sh_scratch.scr_sm_idle_wph

19 Scratch RAM 
Write P_CLK

single separate RAM_SCRATCH_WR_WPH

20 Scratch RAM 
Read P_CLK

single separate RAM_SCRATCH_RD_WPH

21 Scratch Ring_0 
Full P_CLK

single separate SHXX_RING_FULL_RPH[0]

22 Scratch Ring_1 
Full P_CLK

single separate SHXX_RING_FULL_RPH[1]

23 Scratch Ring_2 
Full P_CLK

single separate SHXX_RING_FULL_RPH[2]

24 Scratch Ring_3 
Full P_CLK

single separate SHXX_RING_FULL_RPH[3]
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25 Scratch Ring_4 
Full P_CLK

single separate SHXX_RING_FULL_RPH[4]

26 Scratch Ring_5 
Full P_CLK

single separate SHXX_RING_FULL_RPH[5]

27 Scratch Ring_6 
Full P_CLK

single separate SHXX_RING_FULL_RPH[6]

28 Scratch Ring_7 
Full P_CLK

single separate SHXX_RING_FULL_RPH[7]

29 Scratch Ring_8 
Full P_CLK

single separate SHXX_RING_FULL_RPH[8]

30 Scratch Ring_9 
Full P_CLK

single separate SHXX_RING_FULL_RPH[9]

31 Scratch Ring_10 
Full P_CLK

single separate SHXX_RING_FULL_RPH[10]

32 Scratch Ring_11 
Full P_CLK

single separate SHXX_RING_FULL_RPH[11]

33 Scratch Ring_12 
Full P_CLK

single separate SHXX_RING_FULL_RPH[12]

34 Scratch Ring_13 
Full P_CLK

single separate SHXX_RING_FULL_RPH[13]

35 Scratch Ring_14 
Full P_CLK

single separate SHXX_RING_FULL_RPH[14]

36 Scratch Ring_15 
Full P_CLK

single separate SHXX_RING_FULL_RPH[15]

37 CAP CSR Write P_CLK
single separate sh_scratch.scr_csr_write_wph

38 CAP CSR Fast 
Write P_CLK

single separate sh_scratch.SCR_FAST_WRITE_RPH

39 CAP CSR Read P_CLK
single separate sh_scratch.scr_csr_read_wph

40 DEQUEUE APB 
data P_CLK single separate sh_scratch.sh_apb_slave.SCR_DEQ_AP

B_DATA_WPH

41 apb_push_cmd_w
ph P_CLK single separate sh_scratch.sh_apb_slave.apb_push_cmd

_wph

42 APB_PUSH_DAT
A_REQ_RPH P_CLK single separate sh_scratch.sh_apb_slave.APB_PUSH_D

ATA_REQ_RPH

43 APB pull1 FIFO 
dequeue P_CLK single separate sh_scratch.sh_apb_slave.apb_deq_pull1_

data_wph

44 apb_deq_pull1_da
ta_wph P_CLK single separate sh_scratch.sh_apb_slave.SCR_APB_TAK

E_PULL1_DATA_WPH

45 data valid in apb 
pull1 FIFO P_CLK single separate sh_scratch.sh_apb_slave.apb_pull1_data

_valid_wph

46 APB pull0 FIFO 
dequeue P_CLK single separate sh_scratch.sh_apb_slave.apb_deq_pull0_

data_wph
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47
SCR_APB_TAKE_
PULL0_DATA_WP

H
P_CLK

single separate sh_scratch.sh_apb_slave.SCR_APB_TAK
E_PULL0_DATA_WPH

48 data valid in apb 
pull0 FIFO P_CLK single separate sh_scratch.sh_apb_slave.apb_pull0_data

_valid_wph

49 CAP APB read P_CLK single separate sh_scratch.sh_apb_slave.apb_rd_wph

50 CAP APB write P_CLK single separate sh_scratch.sh_apb_slave.apb_wr_wph

51 APB cmd dequeue P_CLK single separate sh_scratch.sh_apb_slave.apb_deq_cmd_
wph

52 APB CMD FIFO 
enqueue P_CLK single separate sh_scratch.sh_apb_slave.SH_ENQ_APB

_CMD_WPH

53 APB CMD FIFO 
FULL P_CLK single separate sh_scratch.sh_apb_slave.APB_CMD_Q_

FULL_RPH

54 APB CMD valid P_CLK single separate sh_scratch.sh_apb_slave.apb_cmd_valid
_wph

55
Hash 

Pull_Data_Fifo 0 
Not_Empty

P_CLK
single separate sh_hash.hash_pull0_data_valid_rph

56
Hash 

Pull_Data_Fifo 0 
Enqueue

P_CLK
single separate sh_hash.SCR_HASH_TAKE_DATA0_RP

H

57
Hash 

Pull_Data_Fifo 0 
Dequeue

P_CLK
single separate sh_hash.hash_read_pull0_data_wph

58
Hash 

Pull_Data_Fifo 1 
Not_Empty

P_CLK
single separate sh_hash.hash_pull1_data_valid_rph

59
Hash 

Pull_Data_Fifo 1 
Enqueue

P_CLK
single separate sh_hash.SCR_HASH_TAKE_DATA1_RP

H

60
Hash 

Pull_Data_Fifo 1 
Dequeue

P_CLK
single separate sh_hash.hash_read_pull1_data_wph

61 Hash Active P_CLK
single separate sh_hash.hash_active_rph

62 Hash Cmd_Pipe 
Not_Empty P_CLK

single separate sh_hash.hash_cmd_valid_p3_rph

63 Hash Cmd_Pipe 
Full P_CLK

single separate !HASH_REQ_CMD_WPH

64
Hash 

Push_Data_Pipe 
Not_Empty

P_CLK
single separate !HASH_PUSH_DATA_REQ_RPH

65
Hash 

Push_Data_Pipe 
Full

P_CLK
single separate !sh_hash.hash_adv_push_data_wph
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11.4.6.3 XScale® Events Target ID(000100) / 
Design Block #(0111)

Table 171. XScale® Gasket PMU Event List (Sheet 1 of 4)

Event 
Number Event Name Clock 

Domain

Single 
pulse/
Long
pulse

Burst Description

0 XG_CFIFO_WR_EVEN_XS C_CLK single separate XG command FIFO even enqueue

1 XG_CFIFO_WR_ODD_XS C_CLK single separate XG command FIFO odd enqueue

2 XG_DFIFO_WR_EVEN_XS C_CLK single separate XG DRAM data FIFO even enqueue

3 XG_DFIFO_WR_ODD_XS C_CLK single separate XG DRAM data  FIFO odd enqueue

4 XG_SFIFO_WR_EVEN_XS C_CLK single separate XG SRAM data FIFO even enqueue

5 XG_SFIFO_WR_ODD_XS C_CLK single separate XG SRAM data FIFO odd enqueue

6 XG_LCFIFO_WR_EVEN_X
S

C_CLK single separate XG lcsr command FIFO even 
enqueue

7 XG_LCFIFO_WR_ODD_XS C_CLK single separate XG lcsr command FIFO odd enqueue

8 XG_LDFIFO_WR_EVEN_X
S

C_CLK single separate XG lcsr data FIFO even enqueue

9 XG_LDFIFO_WR_ODD_XS C_CLK single separate XG lcsr data FIFO odd enqueue

10 XG_LCSR_RD_EVEN_XS C_CLK single separate XG lcsr return data FIFO even 
dequeue

11 XG_LCSR_RD_ODD_XS C_CLK single separate XG lcsr return data FIFO odd dequeue

12 XG_LCSR_RD_OR_XS C_CLK single separate XG lcsr return data FIFO even_or_odd 
dequeue

13 XG_PUFF0_RD_EVEN_XS C_CLK single separate XG push fifo0 even dequeue

14 XG_PUFF0_RD_ODD_XS C_CLK single separate XG push fifo0 odd dequeue

15 XG_PUFF0_RD_OR_XS C_CLK single separate XG push fifo0 even_or_odd dequeue

16 XG_PUFF1_RD_EVEN_XS C_CLK single separate XG push fifo1 even dequeue

17 XG_PUFF1_RD_ODD_XS C_CLK single separate XG push fifo1 odd dequeue

18 XG_PUFF1_RD_OR_XS C_CLK single separate XG push fifo1 even_or_odd dequeue

19 XG_PUFF2_RD_EVEN_XS C_CLK single separate XG push fifo2 even dequeue

20 XG_PUFF2_RD_ODD_XS C_CLK single separate XG push fifo2 odd dequeue

21 XG_PUFF2_RD_OR_XS C_CLK single separate XG push fifo2 even_or_odd dequeue

22 XG_PUFF3_RD_EVEN_XS C_CLK single separate XG push fifo3 even dequeue

23 XG_PUFF3_RD_ODD_XS C_CLK single separate XG push fifo3 odd dequeue

24 XG_PUFF3_RD_OR_XS C_CLK single separate XG push fifo3 even_or_odd dequeue

25 XG_PUFF4_RD_EVEN_XS C_CLK single separate XG push fifo4 even dequeue

26 XG_PUFF4_RD_ODD_XS C_CLK single separate XG push fifo4 odd dequeue

27 XG_PUFF4_RD_OR_XS C_CLK single separate XG push fifo4 even_or_odd dequeue

28 XG_SYNC_ST_XS C_CLK single separate XG in sync. state

29 reserved
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30 reserved

31 reserved

32 reserved

33 reserved

34 XG_CFIFO_EMPTYN_CPP P_CLK single separate XG command FIFO empty flag

35 XG_DFIFO_EMPTYN_CPP P_CLK single separate XG DRAM data FIFO empty flag

36 XG_SFIFO_EMPTYN_CPP P_CLK single separate XG SRAM data FIFO empty flag

37 XG_LCFIFO_EMPTYN_CP
P

P_CLK single separate XG lcsr command FIFO empty flag

38 XG_LDFIFO_EMPTYN_CP
P

P_CLK single separate XG lcsr data FIFO empty flag

39 reserved

40 XG_OFIFO_EMPTYN_CPP P_CLK single separate XG cpp command FIFO empty flag

41 XG_OFIFO_FULLN_CPP P_CLK single separate XG cpp command FIFO full flag

42 XG_DP_EMPTYN_CPP P_CLK single separate XG DRAM pull data FIFO empty flag

43 XG_SP_EMPTYN_CPP P_CLK single separate XG SRAM pull data FIFO empty flag

44 XG_HASH_48_CPP P_CLK single separate hash_48 command on cpp bus

45 XG_HASH_64_CPP P_CLK single separate hash_64 command on cpp bus

46 XG_HASH_128_CPP P_CLK single separate hash_128 command on cpp bus

47 XG_LCSR_FIQ_CPP P_CLK single separate XG FIQ generated by interrupt CSR

48 XG_LCSR_IRQ_CPP P_CLK single separate XG IRQ generated by interrupt CSR

49 XG_CFIFO_RD_CPP P_CLK single separate XG command FIFO dequeue

50 XG_DFIFO_RD_CPP P_CLK single separate XG DRAM data FIFO dequeue

51 XG_SFIFO_RD_CPP P_CLK single separate XG SRAM data FIFO dequeue

52 XG_LCFIFO_RD_CPP P_CLK single separate XG lcsr command FIFO dequeue

53 XG_LDFIFO_RD_CPP P_CLK single separate XG lcsr data FIFO dequeue

54 XG_LCSR_WR_CPP P_CLK single separate XG lcsr return data FIFO enqueue

55 XG_OFIFO_RD_CPP P_CLK single separate XG cpp command FIFO dequeue

56 XG_OFIFO_WR_CPP P_CLK single separate XG cpp command FIFO enqueue

57 XG_DPDATA_WR_CPP P_CLK single separate XG DRAM pull data FIFO enqueue

58 XG_DPDATA_RD_CPP P_CLK single separate XG DRAM pull data FIFO dequeue

59 XG_SPDATA_WR_CPP P_CLK single separate XG SRAM pull data FIFO enqueue

60 XG_SPDATA_RD_CPP P_CLK single separate XG SRAM pull data FIFO dequeue

61 XG_PUFF0_WR_CPP P_CLK single separate XG push fifo0 enqueue

62 XG_PUFF1_WR_CPP P_CLK single separate XG push fifo1 enqueue

63 XG_PUFF2_WR_CPP P_CLK single separate XG push fifo2 enqueue

64 XG_PUFF3_WR_CPP P_CLK single separate XG push fifo3 enqueue

65 XG_PUFF4_WR_CPP P_CLK single separate XG push fifo4 enqueue

66 XG_SRAM_RD_CPP P_CLK single separate XG SRAM read command on cpp bus

67 XG_SRAM_RD_1_CPP P_CLK single separate XG SRAM read length=1 on cpp bus
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68 XG_SRAM_RD_8_CPP P_CLK single separate XG SRAM read length=8 on cpp bus

69 XG_SRAM_WR_CPP P_CLK single separate XG SRAM write command on cpp bus

70 XG_SRAM_WR_1_CPP P_CLK single separate XG SRAM write length=1 on cpp bus

71 XG_SRAM_WR_2_CPP P_CLK single separate XG SRAM write length=2 on cpp bus

72 XG_SRAM_WR_3_CPP P_CLK single separate XG SRAM write length=3 on cpp bus

73 XG_SRAM_WR_4_CPP P_CLK single separate XG SRAM write length=4 on cpp bus

74 XG_SRAM_CSR_RD_CPP P_CLK single separate XG SRAM csr read command on cpp 
bus

75 XG_SRAM_CSR_WR_CPP P_CLK single separate XG SRAM csr write command on cpp 
bus

76 XG_SRAM_ATOM_CPP P_CLK single separate XG SRAM atomic command on cpp 
bus

77 XG_SRAM_GET_CPP P_CLK single separate XG SRAM get command on cpp bus

78 XG_SRAM_PUT_CPP P_CLK single separate XG SRAM put command on cpp bus

79 XG_SRAM_ENQ_CPP P_CLK single separate XG SRAM enq command on cpp bus

80 XG_SRAM_DEQ_CPP P_CLK single separate XG SRAM deq command on cpp bus

81 XG_S0_ACC_CPP P_CLK single separate XG SRAM channel0 access on cpp 
bus

82 XG_S1_ACC_CPP P_CLK single separate XG SRAM channel1 access on cpp 
bus

83 XG_S2_ACC_CPP P_CLK single separate XG SRAM channel2 access on cpp 
bus

84 XG_S3_ACC_CPP P_CLK single separate XG SRAM channel3 access on cpp 
bus

85 XG_SCR_RD_CPP P_CLK single separate XG scratch read command on cpp bus

86 XG_SCR_RD_1_CPP P_CLK single separate XG scratch read length=1 on cpp bus

87 XG_SCR_RD_8_CPP P_CLK single separate XG scratch read length=8 on cpp bus

88 XG_SCR_WR_CPP P_CLK single separate XG scratch write command on cpp 
bus

89 XG_SCR_WR_1_CPP P_CLK single separate XG scratch write length=1 on cpp bus

90 XG_SCR_WR_2_CPP P_CLK single separate XG scratch write length=2 on cpp bus

91 XG_SCR_WR_3_CPP P_CLK single separate XG scratch write length=3 on cpp bus

92 XG_SCR_WR_4_CPP P_CLK single separate XG scratch write length=4 on cpp bus

93 XG_SCR_ATOM_CPP P_CLK single separate XG scratch atomic command on cpp 
bus

94 XG_SCR_GET_CPP P_CLK single separate XG scratch get command on cpp bus

95 XG_SCR_PUT_CPP P_CLK single separate XG scratch put command on cpp bus

96 XG_DRAM_RD_CPP P_CLK single separate XG DRAM read command on cpp bus

97 XG_DRAM_RD_1_CPP P_CLK single separate XG DRAM read length=1 on cpp bus

98 XG_DRAM_RD_4_CPP P_CLK single separate XG DRAM read length=4 on cpp bus

99 XG_DRAM_WR_CPP P_CLK single separate XG DRAM write on cpp bus

100 XG_DRAM_WR_1_CPP P_CLK single separate XG DRAM write length=1 on cpp bus
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101 XG_DRAM_WR_2_CPP P_CLK single separate XG DRAM write length=2 on cpp bus

102 XG_DRAM_CSR_RD_CPP P_CLK single separate XG DRAM csr read command on cpp 
bus

103 XG_DRAM_CSR_WR_CPP P_CLK single separate XG DRAM csr write command on cpp 
bus

104 XG_MSF_RD_CPP P_CLK single separate XG msf read command on cpp bus

105 XG_MSF_RD_1_CPP P_CLK single separate XG msf read length=1 on cpp bus

106 reserved

107 XG_MSF_WR_CPP P_CLK single separate XG msf write command on cpp bus

108 XG_MSF_WR_1_CPP P_CLK single separate XG msf write length=1 on cpp bus

109 XG_MSF_WR_2_CPP P_CLK single separate XG msf write length=2 on cpp bus

110 XG_MSF_WR_3_CPP P_CLK single separate XG msf write length=3 on cpp bus

111 XG_MSF_WR_4_CPP P_CLK single separate XG msf write length=4 on cpp bus

112 XG_PCI_RD_CPP P_CLK single separate XG pci read command on cpp bus

113 XG_PCI_RD_1_CPP P_CLK single separate XG pci read length=1 on cpp bus

114 XG_PCI_RD_8_CPP P_CLK single separate XG pci read length=8 on cpp bus

115 XG_PCI_WR_CPP P_CLK single separate XG pci write command on cpp bus

116 XG_PCI_WR_1_CPP P_CLK single separate XG pci write length=1 on cpp bus

117 XG_PCI_WR_2_CPP P_CLK single separate XG pci write length=2 on cpp bus

118 XG_PCI_WR_3_CPP P_CLK single separate XG pci write length=3 on cpp bus

119 XG_PCI_WR_4_CPP P_CLK single separate XG pci write length=4 on cpp bus

120 XG_CAP_RD_CPP P_CLK single separate XG cap read command on cpp bus

121 XG_CAP_RD_1_CPP P_CLK single separate XG cap read length=1 on cpp bus

122 XG_CAP_RD_8_CPP P_CLK single separate XG cap read length=8 on cpp bus

123 XG_CAP_WR_CPP P_CLK single separate XG cap write command on cpp bus

124 XG_CAP_WR_1_CPP P_CLK single separate XG cap write length=1 on cpp bus

125 reserved

126 reserved

127 reserved
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11.4.6.4 PCI Events Target ID(000101) / 
Design Block #(1000)

Table 172. PCI PMU Event List (Sheet 1 of 5)

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

0 PCI_TGT_AFIFO_FULL C_CLK single separate PCI Target Address FIFO Full

1 PCI_TGT_AFIFO_NEMPTY C_CLK single separate PCI Target Address FIFO Not 
Empty

2 PCI_TGT_AFIFO_WR C_CLK single separate PCI Target Address FIFO Write

3 PCI_TGT_AFIFO_RD C_CLK single separate PCI Target Address FIFO Read

4 PCI_TGT_RFIFO_FULL C_CLK single separate PCI Target Read FIFO Full

5 PCI_TGT_RFIFO_NEMPTY C_CLK single separate PCI Target Read FIFO Not 
Empty

6 PCI_TGT_RFIFO_WR C_CLK single separate PCI Target Read FIFO Write

7 PCI_TGT_RFIFO_RD C_CLK single separate PCI Target Read FIFO Read

8 PCI_TGT_WFIFO_FULL C_CLK single separate PCI Target Write FIFO Full

9 PCI_TGT_WFIFO_NEMPTY C_CLK single separate PCI Target Write FIFO Not 
Empty

10 PCI_TGT_WFIFO_WR C_CLK single separate PCI Target Write FIFO Write

11 PCI_TGT_WFIFO_RD C_CLK single separate PCI Target Write FIFO Read

12 PCI_TGT_WBUF_FULL C_CLK single separate PCI Target Write Buffer Full

13 PCI_TGT_WBUF_NEMPTY C_CLK single separate PCI Target Write Buffer Not 
Empty

14 PCI_TGT_WBUF_WR C_CLK single separate PCI Target Write Buffer Write

15 PCI_TGT_WBUF_RD C_CLK single separate PCI Target Write Buffer Read

16 PCI_MST_AFIFO_FULL C_CLK single separate PCI Master Address FIFO Full

17 PCI_MST_AFIFO_NEMPTY C_CLK single separate PCI Master Address FIFO Not 
Empty

18 PCI_MST_AFIFO_WR C_CLK single separate PCI Master Address FIFO Write

19 PCI_MST_AFIFO_RD C_CLK single separate PCI Master Address FIFO Read

20 PCI_MST_RFIFO_FULL C_CLK single separate PCI Master Read FIFO Full

21 PCI_MST_RFIFO_NEMPTY C_CLK single separate PCI Master Read FIFO Not 
Empty

22 PCI_MST_RFIFO_WR C_CLK single separate PCI Master Read FIFO Write
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23 PCI_MST_RFIFO_RD C_CLK single separate PCI Master Read FIFO Read

24 PCI_MST_WFIFO_FULL C_CLK single separate PCI Master Write FIFO Full

25 PCI_MST_WFIFO_NEMPTY C_CLK single separate PCI Master Write FIFO Not 
Empty

26 PCI_MST_WFIFO_WR C_CLK single separate PCI Master Write FIFO Write

27 PCI_MST_WFIFO_RD C_CLK single separate PCI Master Write FIFO Read

28 PCI_DMA1_BUF_FULL C_CLK single separate PCI_DMA_Channel 1 

29 PCI_DMA1_BUF_NEMPTY

30 PCI_DMA1_BUF_WR

31 PCI_DMA1_BUF_RD

32 PCI_DMA2_BUF_FULL PCI_DMA_Channel 2

33 PCI_DMA2_BUF_NEMPTY

34 PCI_DMA2_BUF_WR P_CLK single separate

35 PCI_DMA2_BUF_RD P_CLK single separate

36 PCI_DMA3_BUF_FULL P_CLK single separate PCI_DMA_Channel 3

37 PCI_DMA3_BUF_NEMPTY P_CLK single separate

38 PCI_DMA3_BUF_WR P_CLK single separate

39 PCI_DMA3_BUF_RD P_CLK single separate

40 PCI_TCMD_FIFO_FULL P_CLK single separate PCI TARGET Command Fifo

41 PCI_TCMD_FIFO_NEMPTY P_CLK single separate

42 PCI_TCMD_FIFO_WR P_CLK single separate

43 PCI_TCMD_FIFO_RD P_CLK single separate

44 PCI_TDATA_FIFO_FULL P_CLK single separate PCI Push/Pull Data Fifo

45 PCI_TDATA_FIFO_NEMPTY P_CLK single separate

46 PCI_TDATA_FIFO_WR P_CLK single separate

47 PCI_TDATA_FIFO_RD P_CLK single separate

48 PCI_CSR_WRITE P_CLK single separate PCI Write to PCI_CSR_BAR

49 PCI_CSR_READ P_CLK single separate

50 PCI_DRAM_WRITE P_CLK single separate PCI Write to PCI_DRAM_BAR

51 PCI_DRAM_READ P_CLK single separate

Table 172. PCI PMU Event List (Sheet 2 of 5)
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52 PCI_DRAM_BURST_WRITE P_CLK single separate PCI Burst Write to 
PCI_CSR_BAR

53 PCI_DRAM_BURST_READ P_CLK single separate PCI Burst Read to 
PCI_CSR_BAR

54 PCI_SRAM_WRITE P_CLK single separate PCI Write to PCI_SRAM_BAR

55 PCI_SRAM_READ P_CLK single separate

56 PCI_SRAM_BURST_WRITE P_CLK single separate PCI Burst Write to 
PCI_SRAM_BAR

57 PCI_SRAM_BURST_READ P_CLK single separate

58 PCI_CSR_CMD P_CLK single separate PCI CSR Command Generated

59 PCI_CSR_PUSH P_CLK single separate PCI CSR Push Command 

60 PCI_CSR_PULL P_CLK single separate PCI CSR Pull Command 

61 PCI_SRAM_CMD P_CLK single separate PCI SRAM Command 

62 PCI_SRAM_PUSH P_CLK single separate PCI SRAM Push Command 

63 PCI_SRAM_PULL P_CLK single separate PCI SRAM Pull Command 

64 PCI_DRAM_CMD P_CLK single separate PCI DRAM Command 

65 PCI_DRAM_PUSH P_CLK single separate

66 PCI_DRAM_PULL P_CLK single separate

67 PCI_CSR_2PCI_WR P_CLK single separate PCI Target Write to PCI local 
CSR

68 PCI_CSR_2PCI_RD P_CLK single separate

69 PCI_CSR_2CFG_WR P_CLK single separate PCI Target Write to PCI local 
Config CSR

70 PCI_CSR_2CFG_RD P_CLK single separate

71 PCI_CSR_2SRAM_WR P_CLK single separate PCI Target Write to SRAM CSR

72 PCI_CSR_2SRAM_RD P_CLK single separate

73 PCI_CSR_2DRAM_WR P_CLK single separate PCI Target Write to DRAM CSR

74 PCI_CSR_2DRAM_RD P_CLK single separate

75 PCI_CSR_2CAP_WR P_CLK single separate PCI Target Write to CAPCSR

76 PCI_CSR_2CAP_RD P_CLK single separate

77 PCI_CSR_2MSF_WR P_CLK single separate PCI Target Write to MSFCSR

78 PCI_CSR_2MSF_RD P_CLK single separate

79 PCI_CSR_2SCRAPE_WR P_CLK single separate PCI Target Write to Scrape CSR

80 PCI_CSR_2SCRAPE_RD P_CLK single separate

81 PCI_CSR_2SCRATCH_RING_W
R

P_CLK single separate PCI Target Write to Scratch 
Ring CSR

82 PCI_CSR_2SCRATCH_RING_R
D

P_CLK single separate

83 PCI_CSR_2SRAM_RING_WR P_CLK single separate PCI Target Write to SRAM Ring 
CSR

Table 172. PCI PMU Event List (Sheet 3 of 5)
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84 PCI_CSR_2SRAM_RING_RD P_CLK single separate

85 PCI_XS_LCFG_RD P_CLK single separate PCI XScale® Read Local Config 
CSR

86 PCI_XS_LCFG_WR P_CLK single separate

87 PCI_XS_CSR_RD P_CLK single separate PCI XScale Read Local CSR

88 PCI_XS_CSR_WR P_CLK single separate

89 PCI_XS_CFG_RD P_CLK single separate PCI XScale Read PCI Bus Con-
fig Space

90 PCI_XS_CFG_WR P_CLK single separate

91 PCI_XS_MEM_RD P_CLK single separate PCI XScale Read PCI Bus 
Memory Space

92 PCI_XS_MEM_WR P_CLK single separate

93 PCI_XS_BURST_RD P_CLK single separate PCI XScale Burst Read PCI 
Bus Memory Space

94 PCI_XS_BURST_WR P_CLK single separate

95 PCI_XS_IO_RD P_CLK single separate PCI XScale Read PCI Bus I/O 
Space

96 PCI_XS_IO_WR P_CLK single separate

97 PCI_XS_SPEC P_CLK single separate PCI XScale Read PCI Bus as 
Special

98 PCI_XS_IACK P_CLK single separate PCI XScale Read PCI Bus as 
IACK

99 PCI_ME_CSR_RD P_CLK single separate PCI ME Read Local CSR

100 PCI_ME_CSR_WR P_CLK single separate

101 PCI_ME_MEM_RD P_CLK single separate PCI ME Read PCI Bus Memory 
Space

102 PCI_ME_MEM_WR P_CLK single separate

103 PCI_ME_BURST_RD P_CLK single separate PCI ME Burst Read PCI Bus 
Memory Space

104 PCI_ME_BURST_WR P_CLK single separate

105 PCI_MST_CFG_RD P_CLK single separate PCI Initiator Read PCI Bus Con-
fig Space

106 PCI_MST_CFG_WR P_CLK single separate

107 PCI_MST_MEM_RD P_CLK single separate PCI Initiator Read PCI Bus 
Memory Space

108 PCI_MST_MEM_WR P_CLK single separate

109 PCI_MST_BURST_RD P_CLK single separate PCI Initiator Burst Read PCI 
Bus Memory Space

110 PCI_MST_BURST_WR P_CLK single separate

111 PCI_MST_IO_READ P_CLK single separate PCI Initiator Read PCI Bus I/O 
Space

112 PCI_MST_IO_WRITE P_CLK single separate

Table 172. PCI PMU Event List (Sheet 4 of 5)
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11.4.6.5 ME00 Events Target ID(100000) / 
Design Block #(1001)

113 PCI_MST_SPEC P_CLK single separate PCI Initiator Read PCI Bus As a 
Special Cycle

114 PCI_MST_IACK P_CLK single separate PCI Initiator Read PCI Bus As 
IACK Cycle

115 PCI_MST_READ_LINE P_CLK single separate PCI Initiator Read Line Com-
mand to PCI

116 PCI_MST_READ_MULT P_CLK single separate PCI Initiator Read Line Multilple 
Command to PCI

117 PCI_ARB_REQ[2] P_CLK single separate Internal Arbiter PCI Bus 
Request 2

118 PCI_ARB_GNT[2] P_CLK single separate Internal Arbiter PCI Bus Grant 2

119 PCI_ARB_REQ[1] P_CLK single separate

120 PCI_ARB_GNT[1] P_CLK single separate

121 PCI_ARB_REQ[0] P_CLK single separate

122 PCI_ARB_GNT[0] P_CLK single separate

123 PCI_TGT_STATE[4] P_CLK single separate PCI Target State Machine State 
Bit 4

124 PCI_TGT_STATE[3] P_CLK single separate

125 PCI_TGT_STATE[2] P_CLK single separate

126 PCI_TGT_STATE[1] P_CLK single separate

127 PCI_TGT_STATE[0] P_CLK single separate

Table 173. ME00 PMU Event List (Sheet 1 of 2)
Note:
1. All the ME has same event list. 
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in ME CSR, This field holds the number of context to be monitored. 
The event count will only reflect the events that occurred when this context is executing.

CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,
.......
CC_Enable[2:0] = 111, select context number 7.

3. T_CLK = 2x P_CLK

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

0 ME_FIFO_ENQ_EVEN T_CLK single separate Even version of Command FIFO 
Enqueue (pair with event #8)

1 ME_IDLE_EVEN T_CLK single separate Even version of No Thread run-
ning in ME (pair with event #9)

Table 172. PCI PMU Event List (Sheet 5 of 5)
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11.4.6.6 ME01 Events Target ID(100001) / 
Design Block #(1001)

2 ME_EXECUTING_EVEN T_CLK single separate Even version of Valid Instruction 
(pair with event #10)

3 ME_STALL_EVEN T_CLK single separate Even version of ME stall caused 
by FIFO Full (pair with event #11)

4 ME_CTX_SWAPPING_EVE
N

T_CLK single separate Even version of Occurrence of 
context swap (pair with event #12)

5 ME_INST_ABORT_EVEN T_CLK single separate Even version of Instruction 
aborted due to branch taken (pair 
with event #13)

6 ME_FIFO_ENQ_ODD T_CLK single separate Odd version of Command FIFO 
Enqueue (pair with event #0)

7 ME_IDLE_ODD T_CLK single separate Odd version of No Thread running 
in ME (pair with event #3)

8 ME_EXECUTING_ODD T_CLK single separate Odd version of Valid Instruction 
(pair with event #4)

9 ME_STALL_ODD T_CLK single separate Odd version of ME stall caused by 
FIFO Full (pair with event #5)

10 ME_CTX_SWAPPING_ODD T_CLK single separate Odd version of Occurrence of 
context swap (pair with event #6)

11 ME_INST_ABORT_ODD T_CLK single separate Odd version of Instruction aborted 
due to branch (pair with event #7)

12 ME_FIFO_DEQ P_CLK single separate Command FIFO Dequeue

13 ME_FIFO_NOT_EMPTY P_CLK single separate Command FIFO NOT Empty

Table 174. ME01 PMU Event List

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the ME has same event list. 
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in ME CSR, This field holds the number of context to be monitored. 
The event count will only reflect the events that occurred when this context is executing.

CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,
.......
CC_Enable[2:0] = 111, select context number 7.

3. T_CLK = 2x P_CLK

Table 173. ME00 PMU Event List (Sheet 2 of 2)
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11.4.6.7 ME02 Events Target ID(100010) / 
Design Block #(1001)

11.4.6.8 ME03 Events Target ID(100011) / Design Block #(1001)

Table 175. ME02 PMU Event List

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the ME has same event list. 
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in ME CSR, This field holds the number of context to be monitored. 
The event count will only reflect the events that occurred when this context is executing.

CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,
.......
CC_Enable[2:0] = 111, select context number 7.

3. T_CLK = 2x P_CLK

Table 176. ME03 PMU Event List

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the ME has same event list. 
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in ME CSR, This field holds the number of context to be monitored. 
The event count will only reflect the events that occurred when this context is executing.

CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,
.......
CC_Enable[2:0] = 111, select context number 7.

3. T_CLK = 2x P_CLK
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11.4.6.9 ME10 Events Target ID(110000) / Design Block #(1010)

11.4.6.10 ME11 Events Target ID(110001) / Design Block #(1010)

Table 177. ME10 PMU Event List

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the ME has same event list. 
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in ME CSR, This field holds the number of context to be monitored. 
The event count will only reflect the events that occurred when this context is executing.

CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,
.......
CC_Enable[2:0] = 111, select context number 7.

3. T_CLK = 2x P_CLK

Table 178. ME11 PMU Event List

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the ME has same event list. 
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in ME CSR, This field holds the number of context to be monitored. 
The event count will only reflect the events that occurred when this context is executing.

CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,
.......
CC_Enable[2:0] = 111, select context number 7.

3. T_CLK = 2x P_CLK
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11.4.6.11 ME12 Events Target ID(110010) / Design Block #(1010)

11.4.6.12 ME13 Events Target ID(110011) / Design Block #(1010)

Table 179. ME12 PMU Event List

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the ME has same event list. 
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in ME CSR, This field holds the number of context to be monitored. 
The event count will only reflect the events that occurred when this context is executing.

CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,
.......
CC_Enable[2:0] = 111, select context number 7.

3. T_CLK = 2x P_CLK

Table 180. ME13 PMU Event List

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the ME has same event list. 
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in ME CSR, This field holds the number of context to be monitored. 
The event count will only reflect the events that occurred when this context is executing.

CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,
.......
CC_Enable[2:0] = 111, select context number 7.

3. T_CLK = 2x P_CLK
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11.4.6.13 SRAM DP1 Events Target ID(001001) / 
Design Block #(0010)

11.4.6.14 SRAM DP0 Events Target ID(001010) / 
Design Block #(0010)

Table 181. SRAM DP1 PMU Event List

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. SRAM DP1/DP0 push/pull arbiter has same event lists. 

2. S_CLK = SRAM clock domain
3. P_CLK = PP clock domain

signals that begin with sps_  correspond to S-Push Arb
signals that begin with spl_ correspond to S-Pull Arb

signals that contain _pc_  (after the unit designation) correspond to the PCI target interface
signals that contain _pc_  (after the unit designation) correspond to the PCI target interface
signals that contain _m_  (after the unit designation) correspond to the MSF target interface
signals that contain _sh_  (after the unit designation) correspond to the SHAC target interface
signals that contain _s0_  (after the unit designation) correspond to the SRAM0 target interface
signals that contain _s1_  (after the unit designation) correspond to the SRAM1 target interface
signals that contain _s2_  (after the unit designation) correspond to the SRAM2 target interface
signals that contain _s3_  (after the unit designation) correspond to the SRAM3 target interface

Table 182. SRAM DP0 PMU Event List

Event 
Number Event Name Clock 

Domain

Single 
pulse/
Long
pulse

Burst Description

0 sps_pc_cmd_valid_rph P_CLK Long separate

1 sps_pc_enq_wph P_CLK single separate

2 sps_pc_deq_wph P_CLK single separate

3 sps_pc_push_q_full_wp
h P_CLK Long separate

4 sps_m_cmd_valid_rph P_CLK Long separate

5 sps_m_enq_wph P_CLK single separate

6 sps_m_deq_wph P_CLK single separate

7 sps_m_push_q_full_wp
h P_CLK Long separate

8 sps_sh_cmd_valid_rph P_CLK Long separate

9 sps_sh_enq_wph P_CLK single separate

10 sps_sh_deq_wph P_CLK single separate

11 sps_sh_push_q_full_wp
h P_CLK Long separate
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12 sps_s0_cmd_valid_rph P_CLK Long separate

13 sps_s0_enq_wph P_CLK single separate

14 sps_s0_deq_wph P_CLK single separate

15 sps_s0_push_q_full_wp
h P_CLK Long separate

16 sps_s1_cmd_valid_rph P_CLK Long separate

17 sps_s1_enq_wph P_CLK single separate

18 sps_s1_deq_wph P_CLK single separate

19 sps_s1_push_q_full_wp
h P_CLK Long separate

20 sps_s2_cmd_valid_rph P_CLK Long separate

21 sps_s2_enq_wph P_CLK single separate

22 sps_s2_deq_wph P_CLK single separate

23 sps_s2_push_q_full_wp
h P_CLK Long separate

24 sps_s3_cmd_valid_rph P_CLK Long separate

25 sps_s3_enq_wph P_CLK single separate

26 sps_s3_deq_wph P_CLK single separate

27 sps_s3_push_q_full_wp
h P_CLK Long separate

28 spl_pc_cmd_valid_rph P_CLK Long separate

29 spl_pc_enq_cmd_wph P_CLK single separate

30 spl_pc_deq_wph P_CLK single separate

31 spl_pc_cmd_que_full_w
ph P_CLK Long separate

32 spl_m_cmd_valid_rph P_CLK Long separate

33 spl_m_enq_cmd_wph P_CLK single separate

34 spl_m_deq_wph P_CLK single separate

35 spl_m_cmd_que_full_w
ph P_CLK Long separate

36 spl_sh_cmd_valid_rph P_CLK Long separate

37 spl_sh_enq_cmd_wph P_CLK single separate

38 spl_sh_deq_wph P_CLK single separate

39 spl_sh_cmd_que_full_w
ph P_CLK Long separate

40 spl_s0_cmd_valid_rph P_CLK Long separate

41 spl_s0_enq_cmd_wph P_CLK single separate

42 spl_s0_deq_wph P_CLK single separate

43 spl_s0_cmd_que_full_w
ph P_CLK Long separate

44 spl_s1_cmd_valid_rph P_CLK Long separate

45 spl_s1_enq_cmd_wph P_CLK single separate

Table 182. SRAM DP0 PMU Event List
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11.4.6.15 SRAM CH3 Events Target ID(001011) / 
Design Block #(0010)

46 spl_s1_deq_wph P_CLK single separate

47 spl_s1_cmd_que_full_w
ph P_CLK Long separate

48 spl_s2_cmd_valid_rph P_CLK Long separate

49 spl_s2_enq_cmd_wph P_CLK single separate

50 spl_s2_deq_wph P_CLK single separate

51 spl_s2_cmd_que_full_w
ph P_CLK Long separate

52 spl_s3_cmd_valid_rph P_CLK Long separate

53 spl_s3_enq_cmd_wph P_CLK single separate

54 spl_s3_deq_wph P_CLK single separate

55 spl_s3_cmd_que_full_w
ph P_CLK Long separate

Table 183. SRAM CH3 PMU Event List

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the SRAM Channel has same event lists. 

2. S_CLK = SRAM clock domain
3. P_CLK = PP clock domain

signals that begin with sps_  correspond to S-Push Arb
signals that begin with spl_ correspond to S-Pull Arb

signals that contain _pc_  (after the unit designation) correspond to the PCI target interface
signals that contain _pc_  (after the unit designation) correspond to the PCI target interface
signals that contain _m_  (after the unit designation) correspond to the MSF target interface
signals that contain _sh_  (after the unit designation) correspond to the SHAC target interface
signals that contain _s0_  (after the unit designation) correspond to the SRAM0 target interface
signals that contain _s1_  (after the unit designation) correspond to the SRAM1 target interface
signals that contain _s2_  (after the unit designation) correspond to the SRAM2 target interface
signals that contain _s3_  (after the unit designation) correspond to the SRAM3 target interface

Table 182. SRAM DP0 PMU Event List
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11.4.6.16 SRAM CH2 Events Target ID(001100) /
Design Block #(0010)

11.4.6.17 SRAM CH1 Events Target ID(001101) / 
Design Block #(0010)

Table 184. SRAM CH3 PMU Event List

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the SRAM Channel has same event lists. 

2. S_CLK = SRAM clock domain
3. P_CLK = PP clock domain

signals that begin with sps_  correspond to S-Push Arb
signals that begin with spl_ correspond to S-Pull Arb

signals that contain _pc_  (after the unit designation) correspond to the PCI target interface
signals that contain _pc_  (after the unit designation) correspond to the PCI target interface
signals that contain _m_  (after the unit designation) correspond to the MSF target interface
signals that contain _sh_  (after the unit designation) correspond to the SHAC target interface
signals that contain _s0_  (after the unit designation) correspond to the SRAM0 target interface
signals that contain _s1_  (after the unit designation) correspond to the SRAM1 target interface
signals that contain _s2_  (after the unit designation) correspond to the SRAM2 target interface
signals that contain _s3_  (after the unit designation) correspond to the SRAM3 target interface

Table 185. SRAM CH3 PMU Event List

Event 
Number Event Name Clock 

Domain
Pulse/
Level Burst Description

Note:
1. All the SRAM Channel has same event lists. 

2. S_CLK = SRAM clock domain
3. P_CLK = PP clock domain

signals that begin with sps_  correspond to S-Push Arb
signals that begin with spl_ correspond to S-Pull Arb

signals that contain _pc_  (after the unit designation) correspond to the PCI target interface
signals that contain _pc_  (after the unit designation) correspond to the PCI target interface
signals that contain _m_  (after the unit designation) correspond to the MSF target interface
signals that contain _sh_  (after the unit designation) correspond to the SHAC target interface
signals that contain _s0_  (after the unit designation) correspond to the SRAM0 target interface
signals that contain _s1_  (after the unit designation) correspond to the SRAM1 target interface
signals that contain _s2_  (after the unit designation) correspond to the SRAM2 target interface
signals that contain _s3_  (after the unit designation) correspond to the SRAM3 target interface
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11.4.6.18 SRAM CH0 Events Target ID(001110) / 
Design Block #(0010)

Table 186. SRAM CH0 PMU Event List (Sheet 1 of 3)

Event 
Number Event Name Clock 

Domain

Single 
pulse/
Long
pulse

Burst Description

0 QDR I/O Read S_CLK single separate QDR I/O Read

1 QDR I/O Write S_CLK single separate QDR I/O Write

2 Read Cmd Dis-
patched P_CLK single separate Read Cmd Dispatched

3 Write Cmd Dis-
patched P_CLK single separate Write Cmd Dispatched

4 Swap Cmd Dis-
patched P_CLK single separate Swap Cmd Dispatched

5 Set Dispatched P_CLK single separate Set Dispatched

6 Clear Cmd Dis-
patched P_CLK single separate Clear Cmd Dispatched

7 Add Cmd Dis-
patched P_CLK single separate Add Cmd Dispatched

8 Sub Cmd Dis-
patched P_CLK single separate Sub Cmd Dispatched

9 Incr Cmd Dis-
patched P_CLK single separate Incr Cmd Dispatched

10 Decr Cmd Dis-
patched P_CLK single separate Decr Cmd Dispatched

11 Ring Cmd Dis-
patched P_CLK single separate Ring Cmd Dispatched

12 Jour Cmd Dis-
patched P_CLK single separate Jour Cmd Dispatched

13 Deq Cmd Dis-
patched P_CLK single separate Deq Cmd Dispatched

14 Enq Cmd Dis-
patched P_CLK single separate Enq Cmd Dispatched

15 CSR Cmd Dis-
patched P_CLK single separate CSR Cmd Dispatched

16 WQDesc Cmd 
Dispatched P_CLK single separate WQDesc Cmd Dispatched

17 RQDesc Cmd Dis-
patched P_CLK single separate RQDesc Cmd Dispatched

18 FIFO Deque – 
CmdA0 Inlet Q P_CLK single separate FIFO Deque – CmdA0 Inlet Q

19 FIFO Enque – 
CmdA0 Inlet Q P_CLK single separate FIFO Enque – CmdA0 Inlet Q

20 FIFO Valid  – 
CmdA0 Inlet Q P_CLK long separate FIFO Valid  – CmdA0 Inlet Q
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21 FIFO Full  – 
CmdA1 Inlet Q P_CLK long separate FIFO Full  – CmdA1 Inlet Q

22 FIFO Deque – 
CmdA1 Inlet Q P_CLK single separate FIFO Deque – CmdA1 Inlet Q

23 FIFO Enque – 
CmdA1 Inlet Q P_CLK single separate FIFO Enque – CmdA1 Inlet Q

24 FIFO Valid  – 
CmdA1 Inlet Q P_CLK long separate FIFO Valid  – CmdA1 Inlet Q

25 FIFO Full  – 
CmdA1 Inlet Q P_CLK long separate FIFO Full  – CmdA1 Inlet Q

26 FIFO Deque – Wr 
Cmd Q S_CLK single separate FIFO Deque – Wr Cmd Q

27 FIFO Enque – Wr 
Cmd Q P_CLK single separate FIFO Enque – Wr Cmd Q

28 FIFO Valid  – Wr 
Cmd Q S_CLK long separate FIFO Valid  – Wr Cmd Q

29 FIFO Full  – Wr 
Cmd Q P_CLK long separate FIFO Full  – Wr Cmd Q

30 FIFO Deque – 
Queue Cmd Q S_CLK single separate FIFO Deque – Queue Cmd Q

31 FIFO Enque – 
Queue Cmd Q P_CLK single separate FIFO Enque – Queue Cmd Q

32 FIFO Valid – 
Queue Cmd Q S_CLK long separate FIFO Valid  – Queue Cmd Q

33 FIFO Full  – 
Queue Cmd Q P_CLK long separate FIFO Full  – Queue Cmd Q

34 FIFO Deque – Rd 
Cmd Q S_CLK single separate FIFO Deque – Rd Cmd Q

35 FIFO Enque – Rd 
Cmd Q P_CLK single separate FIFO Enque – Rd Cmd Q

36 FIFO Valid  – Rd 
Cmd Q S_CLK long separate FIFO Valid  – Rd Cmd Q

37 FIFO Full  – Rd 
Cmd Q P_CLK long separate FIFO Full  – Rd Cmd Q

38 FIFO Deque – 
Oref Cmd Q S_CLK single separate FIFO Deque – Oref Cmd Q

39 FIFO Enque – 
Oref Cmd Q P_CLK single separate FIFO Enque – Oref Cmd Q

40 FIFO Valid  – Oref 
Cmd Q S_CLK long separate FIFO Valid  – Oref Cmd Q

41 FIFO Full  – Oref 
Cmd Q P_CLK long separate FIFO Full  – Oref Cmd Q

42 FIFO Deque – 
SP0 Pull Data Q S_CLK single separate FIFO Deque – SP0 Pull Data Q

43 FIFO Enque – 
SP0 Pull Data Q P_CLK single separate 1 = FIFO Enque – SP0 Pull Data Q

Table 186. SRAM CH0 PMU Event List (Sheet 2 of 3)
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44 FIFO Valid  – SP0 
Pull Data Q S_CLK long separate FIFO Valid  – SP0 Pull Data Q

45 FIFO Full  – SP0 
Pull Data Q P_CLK long separate FIFO Full  – SP0 Pull Data Q

46 FIFO Deque – 
SP1 Pull Data Q S_CLK single separate FIFO Deque – SP1 Pull Data Q

47 FIFO Enque – 
SP1 Pull Data Q P_CLK single separate FIFO Enque – SP1 Pull Data Q

48 FIFO Valid  – SP1 
Pull Data Q S_CLK long separate FIFO Valid  – SP1 Pull Data Q

49 FIFO Full  – SP1  
Pull Data Q P_CLK long separate FIFO Full  – SP1  Pull Data Q

50 FIFO Deque – 
Push ID/Data Q P_CLK single separate FIFO Deque – Push ID/Data Q

51 FIFO Enque – 
Push ID/Data Q S_CLK single separate FIFO Enque – Push ID/Data Q

52 FIFO Valid  – Push 
ID/Data Q P_CLK long separate FIFO Valid  – Push ID/Data Q

53 FIFO Full  – Push 
ID/Data Q S_CLK long separate FIFO Full  – Push ID/Data Q

Table 186. SRAM CH0 PMU Event List (Sheet 3 of 3)
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11.4.6.19 IXP2400 DRAM Events Target ID(010000) / 
Design Block #(0011)

Table 187. IXP2400 DRAM PMU Event List (Sheet 1 of 3)

Event 
Number Event Name Clock Domain Pulse/

Level Burst Description

0
inlet_cmdq_enq 

P_CLK Single Separate Inlet Command Queue Enqueue 

1 inlet_cmdq_deq d2_CLK Single Separate
Inlet Command Queue Dequeue          

2 inlet_cmdq_notem
pty     d2_CLK Single Separate Inlet Command Queue Not Empty 

3 inlet_cmdq_full P_CLK Single Separate Inlet Command Queue Full 

4 bnk0_opq_enq d2_CLK Single Separate Bank0 Op Queue Enqueue 

5 bnk0_opq_deq d2_CLK Single Separate Bank0 Op Queue Dequeue 

6 bnk0_opq_notemp
ty d2_CLK Single Separate Bank0 Op Queue Not Empty 

7 bnk0_opq_full d2_CLK Single Separate Bank0 Op Queue Full 

8 bnk1_opq_enq d2_CLK Single Separate Bank1 Op Queue Enqueue 

9 bnk1_opq_deq d2_CLK Single Separate Bank1 Op Queue Dequeue

10 bnk1_opq_notemp
ty d2_CLK Single Separate Bank1 Op Queue Not Empty 

11 bnk1_opq_full d2_CLK Single Separate Bank1 Op Queue Full 

12 bnk2_opq_enq d2_CLK Single Separate Bank2 Op Queue Enqueue

13 bnk2_opq_deq d2_CLK Single Separate Bank2 Op Queue Dequeue 

14 bnk2_opq_notemp
ty d2_CLK Single Separate Bank2 Op Queue Not Empty

15 bnk2_opq_full d2_CLK Single Separate Bank2 Op Queue Full 

16 bnk3_opq_enq d2_CLK Single Separate Bank3 Op Queue Enqueue 

17 bnk3_opq_deq d2_CLK Single Separate Bank3 Op Queue Dequeue

18 bnk3_opq_notemp
ty d2_CLK Single Separate Bank3 Op Queue Not Empty

19 bnk3_opq_full d2_CLK Single Separate Bank3 Op Queue Full

20 push_cmdq_enq d2_CLK Single Separate Push Command Queue Enqueue 

21 push_cmdq_deq P_CLK Single Separate Push Command Queue Dequeue

22 push_cmdq_note
mpty P_CLK Single Separate Push Command Queue Not Empty 

23 push_dataq_enq d2_CLK Single Separate
Push Data Queue Enqueue          

24 push_dataq_deq P_CLK Single Separate
Push Data Queue Dequeue          

25 push_dataq_note
mpty P_CLK Single Separate Push Data Queue Not Empty

26 pull_cmdq_enq d2_CLK Single Separate Pull Command Queue Enqueue 
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27 pull_cmdq_deq P_CLK Single Separate Pull Command Queue Dequeue 

28 pull_cmdq_notem
pty P_CLK Single Separate SeparatePull Command Queue Not 

Empty

29 pull_cmdq_full d2_CLK Single Separate Pull Command Queue Full 

30 pull_dataq_enq P_CLK Single Separate Pull Data Queue Enqueue 

31 pull_dataq_deq d2_CLK Single Separate Pull Data Queue Dequeue 

32 pull_dataq_notem
pty d2_CLK Single Separate Pull Data Queue Not Empty 

33 pull_dataq_full P_CLK Single Separate Pull Data Queue Full 

34 bnk0_dataq_enq d2_CLK Single Separate Bank0 Data Queue Enqueue

35 bnk0_dataq_deq d2_CLK Single Separate
Bank0 Data Queue Dequeue          

36 bnk0_dataq_note
mpty d2_CLK Single Separate Bank0 Data Queue Not Empty

37 bnk0_dataq_full d2_CLK Single Separate Bank0 Data Queue Full

38 bnk1_dataq_enq d2_CLK Single Separate Bank1 Data Queue Enqueue

39 bnk1_dataq_deq d2_CLK Single Separate Bank1 Data Queue Dequeue 

40 bnk1_dataq_note
mpty d2_CLK Single Separate Bank1 Data Queue Not Empty 

41 bnk1_dataq_full d2_CLK Single Separate Bank1 Data Queue Full 

42 bnk2_dataq_enq d2_CLK Single Separate Bank2 Data Queue Enqueue

43 bnk2_dataq_deq d2_CLK Single Separate Bank2 Data Queue Dequeue 

44 bnk2_dataq_note
mpty d2_CLK Single Separate Bank2 Data Queue Not Empty

45 bnk2_dataq_full d2_CLK Single Separate Bank2 Data Queue Full 

46 bnk3_dataq_enq d2_CLK Single Separate Bank3 Data Queue Enqueue 

47 bnk3_dataq_deq d2_CLK Single Separate SeparateBank3 Data Queue 
Dequeue

48 bnk3_dataq_note
mpty d2_CLK Single Separate Bank3 Data Queue Not Empty 

49 bnk3_dataq_full d2_CLK Single Separate Bank3 Data Queue Full

50 pending_pullq_en
q d2_CLK Single Separate Pending Pull Queue Enqueue

51 pending_pullq_de
q d2_CLK Single Separate Pending Pull Queue Dequeue 

52 pending_pullq_not
empty d2_CLK Single Separate Pending Pull Queue Not Empty

53 dram_activate_bn
k0side0 d2_CLK Single Separate DRAM Activate Bank0side0 

54 dram_activate_bn
k1side0 d2_CLK Single Separate DRAM Activate Bank1side0

55 dram_activate_bn
k2side0 d2_CLK Single Separate DRAM Activate Bank2side0

56 dram_activate_bn
k3side0 d2_CLK Single Separate DRAM Activate Bank3side0 

Table 187. IXP2400 DRAM PMU Event List (Sheet 2 of 3)
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57 dram_activate_bn
k0side1 d2_CLK Single Separate DRAM Activate Bank0side1

58 dram_activate_bn
k1side1 d2_CLK Single Separate DRAM Activate Bank1side1

59 dram_activate_bn
k2side1 d2_CLK Single Separate DRAM Activate Bank2side1

60 dram_activate_bn
k3side1 d2_CLK Single Separate DRAM Activate Bank3side1

61 dram_read_bnk0si
de0 d2_CLK Single Separate DRAM Read Bank0side0

62 dram_read_bnk1si
de0 d2_CLK Single Separate DRAM Read Bank1side0 

63 dram_read_bnk2si
de0 d2_CLK Single Separate DRAM Read Bank2side0 

64 dram_read_bnk3si
de0 d2_CLK Single Separate DRAM Read Bank3side0

65 dram_read_bnk0si
de1 d2_CLK Single Separate DRAM Read Bank0side1 

66 dram_read_bnk1si
de1 d2_CLK Single Separate DRAM Read Bank1side1

67 dram_read_bnk2si
de1 d2_CLK Single Separate DRAM Read Bank2side1 

68 dram_read_bnk3si
de1 d2_CLK Single Separate DRAM Read Bank3side1 

69 dram_write_bnk0s
ide0 d2_CLK Single Separate DRAM Write Bank0side0 

70 dram_write_bnk1s
ide0 d2_CLK Single Separate DRAM Write Bank1side0

71 dram_write_bnk2s
ide0 d2_CLK Single Separate DRAM Write Bank2side0

72 dram_write_bnk3s
ide0 d2_CLK Single Separate DRAM Write Bank3side0

73 dram_write_bnk0s
ide1 d2_CLK Single Separate DRAM Write Bank0side1 

74 dram_write_bnk1s
ide1 d2_CLK Single Separate DRAM Write Bank1side1

75 dram_write_bnk2s
ide1 d2_CLK Single Separate DRAM Write Bank2side1

76 dram_write_bnk3s
ide1 d2_CLK Single Separate DRAM Write Bank3side1 

77 dram_partialwrite d2_CLK Single Separate DRAM Partial Write

78 dram_rd_data_vld d2_CLK Single Separate DRAM Read Data Valid

79 dram_wr_data_vld d2_CLK Single Separate SeparateDRAM Write Data Valid

Table 187. IXP2400 DRAM PMU Event List (Sheet 3 of 3)
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11.5 Software Support

11.5.1 Introduction
An important part of a performance monitoring architecture is the software that allows the counters to 
be programmed, data to be collected and analyzed. Just as the hardware aspect of the performance 
monitoring architecture is expected to span generations, the software tools must span generations of 
product as well. A tool being designed to handle this is known as PLATUNE. PLATUNE is a stand-
alone utility that is just starting to be tested. PLATUNE is also designed to be a VTUNE plug in and is 
scheduled to be included in VTUNE 6.0 (VTUNE 5.0 was released in early 2001).

PLATUNE runs on an IA32 PC under a Microsoft* Windows* operating system, and is appropriate 
for performance monitoring of PCs. The Intel® IXP2400 network processor is unique in the following 
respects:

• No Windows operating system; there may be no operating system.

• No disk for recording data.

• No console or GUI.

• No IA32 processor.

• Events monitored that are specific to network processors.

11.5.2 Mode of Operation
One possible way to make use of PLATUNE on network processors is to run PLATUNE standalone 
on the XScale core. PLATUNE has a script-driven mode that can be used on network processors. The 
data collected can be kept in the XScale memory or dumped over the PCI interface. Once the data has 
been collected, VTUNE can transfer it to a PC for analysis with the PLATUNE plug-in.
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