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Intel® IXP2400 Network Processor
Introduction

Introduction 1

1.1

1.2

1.3

About this Document

This document serves as the hardware reference manual for the Intel® IXP2400 Network
Processor. This book is intended for use by developers and is organized as follows:

Section 2, “Hardware Overview” contains a hardware overview of the IXP2400 Network
Processor.

Section 3, “Intel® XScale® Core” describes the operation of the embedded Intel XScale core.
Section 4, “Microengines” describes the operation of the Microengines.

Section 5, “DDR SDRAM Controller” describes the operation of the SDRAM Unit.

Section 6, “SRAM Interface” describes the operation of the SRAM Unit.

Section 7, “SHaC Unit” describes the Scratchpad, Hash Unit, and CSRs.

Section 8, “Media and Switch Fabric Interface” describes the Media and Switch Fabric (MSF)
Interface used to connect the network processor to a physical layer device.

Section 9, “PCI Unit” describes the operation of the PCI Unit.

Section 10, “Clocks, Reset, and Initialization” describes the clocks, reset and initialization
sequence.

Related Documentation

Further information on the IXP2400 is available in the following documents:

IXP2400 Network Processor Datasheet — Contains summary information on the JXP2400 Network
Processor including a functional description, signal descriptions, electrical specifications, and
mechanical specifications.

IXP2400/IXP2800 Network Processor Programmer s Reference Manual — Contains detailed
programming information for designers.

IXP2400/IXP2800 Network Processor Development Tools User s Guide — Describes the
Workbench and the development tools you can access through the use of the Workbench.

Conventions

This section describes the conventions used in this manual.
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Data Terminology

Data Terminology

Term Words Bytes Bits
Byte V2 1 8
Word 1 2 16
Longword 4 32
Quadword 4 8 64
Definitions
MPKT

The data read from a MAC device receive FIFO as the result of a single receive request to the
receive state machine. The size of Mpkt is the same as the size of RBUF or TBUF entries. The size
of RBUF and TBUF entries are user configurable and can be 64, 128, or 256 bytes in length.

Packet

The data framed between the assertion of an SOP signal and assertion of its associated EOP signal.
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Hardware Overview

2.1 Overview

This chapter provides an introduction to the IXP2400 internal hardware. Specific details of each of
the hardware functions are included in corresponding chapters in this manual.

Figure 1 shows a block diagram of the chip, including the major internal blocks.

Figure 1. 1XP2400 Chassis Concept Block Diagram

Media Switch Scratchpad SRAM SRAM DRAM
Fabric (MSF) Memory ||Controller 0 ||Controller 1 { Controller
Hash PCI ME ME ME ME Intel XScale® | ||ntel xscale®
Unit | |Controller|[ CAP ox1 1 ox0 ox10 ™1 ox11 core core
Peripherals
# Y (XPI)
ME ME ME ME
>
0x2 0x3 ox13[™ | ox12 Performance
Monitor
ME Cluster 0 ME Cluster 1

The major blocks are:

* Intel XScale® core (Section 2.2)—A general-purpose, 32-bit RISC processor compatible to
ARM Version 5 Architecture. The Intel XScale® core initializes and manages the chip, and can
be used for higher layer network processing tasks.

— A high-performance, low-power, 32-bit embedded RISC processor
— 32-Kbyte Instruction Cache and 32-Kbyte Data Cache

— 2-Kbyte mini-Data Cache that facilitates transient data processing
— Four outstanding-pending read requests before stalling the processor
— New instructions sets

— Performance monitor features

— JTAG/boundary scan debug support

* Microengines (MEs) (Section 2.3)—eight 32-bit programmable engines specialized for
network processing; these MEs handle the main data plane processing per packet

— Eight threads per ME with no overhead for context switching

Hardware Reference Manual 27



Intel® IXP2400 Network Processor u
Hardware Overview I n o

— 4K x 40-bit instruction control store per ME

— Enhanced instructions sets (MEv2)

— 640 32-bit local memory per ME

— 256 GPRs

— Total of 512 transfer registers

— 128 Next Neighbor registers

— Multiplier per ME to support 8 x 24, 16 x 16, 32 x 32 multiplications

¢ SRAM Controller (Section 2.4)—two independent controllers for QDR SRAM. Typically
SRAM is used for control information storage.

— Two independent channels

— Peak bandwidth of 1.6 Gbyte/second per channel
— Supports frequencies of 100, 150, or 200 MHz
— Address up to 64 Mbytes per channel

— Parity protected data

— Enqueue/Dequeue support

— Support atomic swap, bit set, bit clear, increment, decrement, add operations

* DRAM Controller (Section 2.5)—1 DDR SDRAM controller. Typically DRAM is used for
data buffer storage.

— Peak bandwidth 2.4 GByte/sec. per channel at frequency of 150 and 100 MHz
— 1 independent channels provided

— Address up to 2 GB

— ECC protected data

* Media and Switch Fabric Interface (MSF) (Section 2.6)—Interface for network framers and/or
Switch Fabric. Contains receive and transmit buffers.

— Configurable to either of the following:
» UTOPIA 1/2/3, POS-2, SPI-3, CSIX (only in 32-bit mode)
— UTOPIA/POS/CSIX Interface:

* Supports 1 UTOPIA 1/2/3 or POS-2 or SPI-3 interfaces at 104 MHz that can be
overclocked to 133 MHz

* PCI Controller (Section 2.7)—64-bit PCI Rev 2.2 compliant 1O bus. PCI can be used to either
connect to a Host processor, or to attach PCI compliant peripheral devices.

— Compliant with PCI 2.2 spec.
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— Support 64-bit interface at 66 MHz
— Link-list-based DMA transfer to/from DRAM
— Master/slave support

* The SHaC unit contains three main subblocks: the Scratchpad, the Hash units and the CAP
(CSR Access Proxy)

* Scratchpad Memory (Section 2.8)—16-Kbyte storage for general-purpose use with atomic
operations and ring support

* Hash Unit (Section 2.9)—Polynomial hash accelerator; the Intel XScale® core and
Microengines can use it to offload hash calculations

* CAP (Section 2.10)—Chip-wide control and status registers; these provide special inter-
processor communication features to allow flexible and efficient inter-ME and ME-to-Intel
XScale® core communications

* Performance monitor—Counters that can be programmed to count selected internal chip
hardware events; used to analyze and tune performance

* Intel XScale® core peripherals (XPI) (Section 2.11)—Interrupt Controller, Four Timers, one
serial UART port, eight general-purpose IO (GPIO) and interface to low-speed off-chip
peripherals (such as maintenance port of network devices) and Flash ROM.

Intel® XScale® Core

The Intel XScale® core is a 32-bit, general-purpose RISC processor. It incorporates an extensive
list of architecture features that allows it to achieve high performance.

ARM Compatibility

The Intel XScale® core is compatible to ARM Version 5 (V5) Architecture. It implements the
integer instruction set of ARM V5, but does not provide hardware support of the floating point
instructions.

The Intel XScale® core provides the Thumb instruction set (ARM V5T) and the ARM V5E DSP
extensions.

Backward compatibility with the first generation of StrongARM* products is maintained for user-
mode applications. Operating systems may require modifications to match the specific hardware
features of the Intel XScale™ core and to take advantage of the performance enhancements added
to the Intel XScale® core.
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2.2.2.5
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Features

Multiply/Accumulate (MAC)

The MAC unit supports early termination of multiplies/accumulates in two cycles and can sustain a
throughput of a MAC operation every cycle. Several architectural enhancements were made to the
MAC to support audio coding algorithms, which include a 40-bit accumulator and support for 16-
bit packed values.

Memory Management

The Intel XScale® core implements the Memory Management Unit (MMU) Architecture specified
in the ARM Architecture Reference Manual. The MMU provides access protection and virtual to
physical address translation.

The MMU Architecture also specifies the caching policies for the instruction cache and data
memory. These policies are specified as page attributes and include:

* identifying code as cacheable or non-cacheable

* selecting between the mini-data cache or data cache
* write-back or write-through data caching

¢ enabling data write allocation policy

¢ enabling the write buffer to coalesce stores to external memory

Instruction Cache

The Intel XScale® core implements a 32-Kbyte, 32-way set associative instruction cache with a
line size of 32 bytes. All requests that miss the instruction cache generate a 32-byte read request to
external memory. A mechanism to lock critical code within the cache is also provided.

Branch Target Buffer

The Intel XScale® core provides a Branch Target Buffer (BTB) to predict the outcome of branch
type instructions. It provides storage for the target address of branch type instructions and predicts
the next address to present to the instruction cache when the current instruction address is that of a
branch.

The BTB holds 128 entries.

Data Cache

The Intel XScale® core implements a 32-Kbyte, 32-way set associative data cache and a 2-Kbyte,
2-way set associative mini-data cache. Each cache has a line size of 32 bytes, and supports write-
through or write-back caching.

The data/mini-data cache is controlled by page attributes defined in the MMU Architecture and by
coprocessor 15.

The Intel XScale® core allows applications to re-configure a portion of the data cache as data
RAM. Software may place special tables or frequently used variables in this RAM.
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2.2.2.6 Interrupt Controller
The Intel XScale® core provides two levels of interrupt, IRQ and FIQ. They can be masked via
coprocessor 13. Note that there is also a memory mapped interrupt controller described with the

Intel XScale® core Peripherals (Section 2.11), which is used to mask and steer many chip-wide
interrupt sources.

2227 Address Map

Figure 2 shows the partitioning of the Intel XScale® core 4 GB address space.
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Figure 2. Intel® XScale® Core 4GB (32-bit) Address Space
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Microengine

The Microengines (MEs) do most of the programmable per packet processing in IXP2400. There
are 8 Microengines, connected as shown in Figure 1. The Microengines have access to all shared
resources (SRAM, DRAM, MSF, etc) as well as private connections between adjacent
Microengines (referred to as next neighbors).

The block diagram in Figure 3 is used in the overview of the Microengines. Note that this block
diagram is simplified for clarity; some blocks and connectivity have been omitted to make the
diagram more readable. Also, this block diagram does not show any pipeline stages, rather it shows
the logical flow of information.

The Microengine provides support for software controlled multi-threaded operation. Given the
disparity in processor cycle times versus external memory times, a single thread of execution will
often block waiting for external memory operations to complete. Having multiple threads available
allows for threads to interleave operation—there is often at least one thread ready to run while
others are blocked.
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Figure 3. Microengine Block Diagram
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SRAM

The IXP2400 Network Processor has two independent SRAM controllers, which each support
pipelined QDR synchronous static RAM (SRAM) and/or a coprocessor that adheres to QDR
signaling. Any or all controllers can be left unpopulated if the application does not need to use
them. SRAMs are accessible by the Microengines, the Intel XScale® core, and the PCI Unit
(external bus masters and DMA).

The memory is logically four bytes (32-bits) wide; physically the data pins are two bytes wide and
are double-clocked. Byte parity is supported. Each of the four bytes has a parity bit, which is
written when the byte is written and checked when the data is read. There are byte enables that
select which bytes to write for writes of less than 32 bits.

Best efforts have been made to provide impedance controls within the IXP2400 for IXP2400-
initiated signals driving to QDR devices. Providing a clean signaling environment is critical to
achieving 200-MHz QDRI data transfers.

The configuration assumptions for IXP2400 I/O driver/receiver development includes 4 QDR
loads and IXP2400. It should be noted that some future QDRII SRAMSs require a burst of 4 to
achieve higher frequency. The IXP2400 initial release will not support bursts of four QDR SRAM
devices; the initial release supports bursts of two SRAMs.

The SRAM controller can also be configured to interface to an external coprocessor that adheres to
the QDR electricals and protocol.

Each SRAM controller may also interface to an external coprocessor through its standard QDR
interface. This interface will allow for the cohabitation of both SRAM devices and coprocessors to
operate on the same bus. The coprocessor will behave as a memory mapped device on the SRAM
bus.

DRAM

The Memory Controller is responsible for controlling the off-chip DRAM and provides a
mechanism for other functional units in the IXP2400 to access the DRAM. The IXP2400 supports
a single 64-bit channel (72 bit with ECC) of DRAM. DRAM sizes of 64, 128, 256, 512-Mb, and 1
Gb are supported. The DRAM channel can be populated with either a single- or double-sided
DIMM.

An address space of 2 GB is allocated to DRAM. The memory space is guaranteed to be
contiguous from a software perspective. If less than 2 GB of memory is present, the upper part of
the address space is aliased into the lower part of the address space and should not be used by
software.

Reads and writes to DRAM are generated by the Microengines, the Intel XScale® core and PCI bus
masters. They are connected to the controllers via the Command Bus and Push and Pull Buses. The
memory controller takes commands from these sources and enqueues them. The commands are
dequeued, according to the priority defined later in this chapter, and the accesses to the DRAM are
performed. The controller also does refresh cycles to the DRAMs.

ECC (Error Correcting Code) is supported, but can be disabled. Enabling ECC requires that x72
DIMMs be used. If ECC is disabled, x64 DIMMs can be used.
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2.51 Feature List

Supports one DDR SDRAM channel, 64b wide (72b with ECC)
Supports DDR devices up to 300 MTs

Supports 64-, 128-, 256-, 512-Mb, and 1-Gb technologies for x8 and x16 devices (DIMM and
direct-soldered)

Hardware-controlled interleaving to spread contiguous addresses across multiple banks
All supported devices have four banks

Configurable, optional error correction using ECC bits

Supports 1 single- or double-sided DIMM

Supports up to 2 GB memory capacity (using 1-Gb technology)

2.6 Media and Switch Fabric (MSF) Interface

The Media and Switch Fabric (MSF) Interface is used to connect IXP2400 to a physical layer
device (PHY) and/or to a switch fabric. The MSF has the following major features:

Separate and independently configurable 32-bit receive and transmit buses.

A configurable bus interface; the bus may function as a single 32-bit bus, or it can be
channelized into independent buses: two 16-bit buses, four 8-bit, or one 16-bit bus and two 8-
bit buses. Each channel may be configured to operate in either UTOPIA or POS-PHY modes.

The Media bus operates from 25 to 133 MHz.

UTOPIA Level 1/2/3 and POS-PHY Level 2/3 single-PHY (SPHY) master operation; 8-, 16-,
or 32-bit buses are supported.

UTOPIA Level 3 multi-phy (MPHY) master operation with a 32-bit-wide bus; up to 16 slave
ports are supported; polling may be single RxClav/TxClav, or Direct Status Indication
(maximum of four slave ports).

POS-PHY Level 3 multi-phy (MPHY) master operation with a 32-bit-wide bus with in-band
addressing; up to 16 slave ports are supported; polling may be packet level or byte level.

Support for CSIX-L1 protocol with a 32-bit-wide bus. The only deviation from the CSIX-L1
specification is that the IXP2400 is clocked by a globally synchronous clock and is electrically
3.3V LVTTL.

Support for interprocessor CBus for communicating link level and fabric level flow control
information between egress and ingress processors in CSIX mode.

Interface to internal buses: command, SRAM push/pull, and DRAM push/pull.

Figure 4 shows one expected usage model.

36
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Figure 4. An Expected Usage Model
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Receive mode is CSIX.
Transmit mode is UTOPIA/POS-PHY.

Note: In this document, UTOPIA always refers to cell transport; POS-PHY refers to variable length
packet transport; CSIX refers to CFrame transport.

2.6.1 Reference Documents

The reader should be familiar with the following specifications:
1. UTOPIA Specification, Level 1, Version 2.01, March 21, 1994
UTOPIA Level 2 Specification, Version 1.0, June 1995
UTOPIA 3 Physical Layer Interface, November 1999
POS-PHY Level 2 Specification, Issue 5, December 1998
POS-PHY Level 3 Specification, Issue 4, June 2000
SPI-3 Specification, June 2000
Frame Based ATM Interface (Level 3), March 2000
CSIX-L1: Common Switch Interface Specification -L1, Version 1.0, August 5, 2000

® =N kWD

2.7 PCI Controller

The PCI Controller provides 64-bit, 66-MHz-capable PCI Revision 2.2 interface. It is also
compatible to 32-bit and/or 33-MHz PCI devices. The PCI controller provides the following
functions:

* Target Access (external Bus Master access to SRAM, DRAM, and CSRs)
* Master Access (Intel XScale® core access to PCI Target devices)

* Three DMA channels
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2.7.3
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* Mailbox and Doorbell registers for Intel XScale® core-to-host communication

¢ PCI Arbiter

IXP2400 can be configured to act as PCI central function (for use in a stand-alone system), where
it provides the PCI reset signal, or as an add-in device, where it uses the PCI reset signal as the chip
reset input. The choice is made by connecting the cfg_rst_dir input pin low or high.

Target Access

There are three Base Address Registers (BARs) to allow PCI Bus Masters to access SRAM,
DRAM, and CSRs, respectively. Examples of PCI Bus Masters include a Host Processor (for
example a Pentium® processor), or an 10 device such as an Ethernet controller, SCSI controller, or
encryption coprocessor.

Strapping Options (Without PROM Boot)

The SRAM BAR can be strapped to sizes of 32, 64, 128, or 256 MB.
The DRAM BAR can be strapped to sizes of 128, 256, 512 MB, or 1 GB.
The CSR BAR is 1 MB.

Programmable Options (With PROM Boot)

The SRAM BAR can be programmed to sizes of 0 bytes, 256 or 512 KB, 1, 2, 4, 8§, 16, 32, 64, 128,
or 256 MB.

The DRAM BAR can be programmed to sizes of 0 bytes, 1, 2, 4, 8, 16, 32, 64, 128, 256, or 512
MB, or 1 GB.

The CSR BAR is 1 MB.

PCI Boot Mode is supported, in which the Host downloads the Intel XScale® core boot i image into
DRAM, whlle holding the Intel XScale® core in reset. Once the boot i image has been loaded, the
Intel XScale® core reset is deasserted. The alternative is to provide the boot image in a Flash ROM
attached to the SlowPort (Section 2.11.5).

Master Access

The Intel XScale® core processor and Microengines can dlrectly access PCI bus. The Intel
XScale® core can do loads and stores to specific address regions to generate all PCI command
types (see Figure 2). Microengines use PCI instructions, and also use address regions to generate
different PCI commands. Master access can also be generated by DMA.

DMA Channels

There are three DMA Channels, each of which can move blocks of data from DRAM to the PCI or
from the PCI to DRAM. The DMA channels read parameters from a list of descriptors in SRAM,
perform the data movement to or from DRAM, and stop when the list is exhausted. The descriptors
are loaded from predefined SRAM entries or may be set directly by CSR writes to DMA Channel
registers. There is no restriction on byte alignment of the source address or the destination address.
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For PCI to DRAM transfers, the PCI command is Memory Read, Memory Read line, or Memory
Read Multiple. For DRAM to PCI transfers, the PCI command is Memory Write. Memory Write
Invalidate is not supported.

Up to three DMA channels are running at a time with three descriptors outstanding. Effectively, the
active channels interleave bursts to or from the PCI Bus.

Interrupts are generated at the end of DMA operation for the Intel XScale® core; interrupts are also
generated for the PCI bus. Microengines, however, do not provide an interrupt mechanism. The
DMA Channel will instead use an Event Signal to notify the particular Microengine on completion
of DMA.

2.7.31 DMA Descriptor
Each descriptor occupies four 32-bit words in SRAM, aligned on a 16 byte boundary. The DMA
channels read the descriptors from SRAM into working registers once the control register has been
set to initiate the transaction. This control must be set explicitly. This starts the DMA transfer. The
register names for the DMA channels are listed in Figure 5. Table 2 lists the contents of the
descriptor.
Figure 5. DMA Descriptor Reads
Working Register
// DMA Channel Register | Channel Register Name (X can be 1, 2, or 3)
Local SRAM / Byte Count Register CHAN_X_BYTE_COUNT
Last Descriptor , / PCI Address Register CHAN_X_PCI_ADDR
— 4 — Next Descriptor /
= 4 / DRAM Address Register CHAN_X_DRAM_ADDR
=3 E_l Descriptor Pointer Register CHAN_X_DESC_PTR
e
Ve .
e / Y Control Register
B — 2 DMA Channel Register | Channel Register Name (X can be 1, 2, or 3)
Prior Descriptor — o
Current Descriptor Control Register CHAN_X_CONTROL

Table 2.

After a descriptor is processed, the next descriptor is loaded in the working registers. This process
repeats until the chain of descriptors is terminated (that is, until the End of Chain bit is set).

DMA Descriptor Format

Offset from Descriptor Pointer Description
0x0 Byte Count
0x4 PCI Address
0x8 DRAM Address
0xC Next Descriptor Address
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DMA Channel Operation

The DMA channel can be set up to read the first descriptor in SRAM, or with the first descriptor
written directly to the DMA channel registers.

When descriptors and the descriptor list are in SRAM, the procedure is as follows:

1.

6.

The DMA channel owner writes the address of the first descriptor into the DMA Channel
Descriptor Pointer register (DESC_PTR).

. The DMA channel owner writes the DMA Channel Control register (CONTROL) with

miscellaneous control information and also sets the channel enable bit (bit 0). The channel
initial descriptor bit (bit 4) in the CONTROL register must also be cleared to indicate that the
first descriptor is in SRAM.

Depending on the DMA channel number, the DMA channel reads the descriptor block into the
corresponding DMA registers, BYTE _COUNT, PCI_ADDR, DRAM ADDR, and
DESC_PTR.

The DMA channel transfers the data until the byte count is exhausted, and then sets the
channel transfer done bit in the CONTROL register.

If the end of chain bit (bit 31) in the BYTE _COUNT register is clear, the channel checks the
Chain Pointer value. If the Chain Pointer value is not equal to 0, it reads the next descriptor
and transfers the data (step 3 and 4 above). If the Chain Pointer value is equal to 0, it waits for
the Descriptor Added bit of the Channel Control Register to be set before reading the next
descriptor and transfers the data (step 3 and 4 above). If bit 31 is set, the channel sets the
channel chain done bit in the CONTROL register and then stops.

Proceed to the Channel End Operation.

When single descriptors are written directly into the DMA channel registers, the procedure is as
follows:

1.

The DMA channel owner writes the descriptor values directly into the DMA channel registers.
The end of chain bit (bit 31) in the BYTE COUNT register must be set, and the value in the
DESC PTR register is not used. (If the end of chain bit is not set, the DESC_PTR will point to
the next descriptor in SRAM).

. The DMA channel owner writes the base address of the DMA transfer into the PCI_ADDR to

specify the PCI starting address.

. When the first descriptor is in the BYTE _COUNT register, the DRAM_ADDR register must

be written with the address of the data to be moved.

The DMA channel owner writes the CONTROL register with miscellaneous control
information, along with setting the channel enable bit (bit 0). The channel initial descriptor in
register bit (bit 4) in the CONTROL register must also be set to indicate that the first descriptor
is already in the channel descriptor registers.

. The DMA channel transfers the data until the byte count is exhausted, and then sets the

channel transfer done bit (bit 2) in the CONTROL register.

. Since the end of the chain bit (bit 31) in the BYTE CONT register is set, the channel sets the

channel chain done bit (bit 7) in the CONTROL register and then stops.
Proceed to the Channel End Operation.
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DMA Channel End Operation

1. Channel owned by PCI
If not masked via the PCI Outbound Interrupt Mask register, the DMA channel interrupts the
PCT host after the setting of the DMA done bit in the CHAN_ X CONTROL register, which is
readable in the PCI Outbound Interrupt Status register.

2. Channel owned by the Intel XScale core
If enabled via the Intel XScale® core Interrupt Enable registers, the DMA channel interrupts
the Intel XScale® core by setting the DMA channel done bit in the CHAN X CONTROL
register, which is readable in the Intel XScale® core Interrupt Status register.

3. Channel owned by Microengine
If enabled via the Microengine Auto-Push Enable registers, the DMA channel signals the
Microengine after setting the DMA channel done bit in the CHAN X CONTROL register,
which is readable in the Microengine Auto-Push Status register.

Adding Descriptor to Unterminated Chain

It is possible to add a descriptor to a chain while a channel is running. To do so the chain should be
left unterminated, that is the last descriptor should have End of Chain clear, and the Chain Pointer
value equal to 0. A new descriptor (or linked list of descriptors) can be added to the chain by
overwriting the Chain Pointer value of the unterminated descriptor (in SRAM) with the Local
Memory address of the (first) added descriptor (note that the added descriptor must actually be
valid in Local Memory prior to that). After updating the Chain Pointer field, the software must
write a 1 to the Descriptor Added bit of the Channel Control Register. This is necessary for the case
where the channel was paused in order to re-activate the channel. However, software need not
check the state of the channel before writing that bit; there is no side-effect of writing that bit in the
case where the channel had not yet read the unlinked descriptor.

If the channel was paused or had read an unlinked Pointer, it will re-read the last descriptor
processed (that is, the one that originally had the zero value for Chain Pointer) to get the address of
the newly added descriptor.

A descriptor can not be added to a descriptor which has End of Chain set.

Mailbox and Message Registers

Mallbox and Doorbell registers provide hardware support for communication between the Intel
XScale® core and a device on the PCI Bus.

Four 32 bit mailbox registers are provided so that messages can be passed between the Intel
XScale® core and a PCI device. All four registers can be read and written with byte resolution from
both the Intel XScale® core and PCIL. How the registers are used is application dependent and the
messages are not used internally by the PCI Unit in any way. The mailbox registers are often used
with the Doorbell interrupts.

Doorbell interrupts provide an efficient method of generating an 1nterrupt as well as encoding the
purpose of the interrupt. The PCI Unit supports a 32- blt Intel XScale® core DOORBELL register
that is used by a PCI device to generate an Intel XScale core interrupt, and a separate 32-bit PCI
DOORBELL register that is used by the Intel XScale® core to generate a PCI interrupt. A source

generating the Doorbell interrupt can write a software defined bitmap to the register to indicate a

specific purpose. This bitmap is translated into a single interrupt 51gna1 to the destination (either a
PCI interrupt or an Intel XScale® core interrupt). When an interrupt is received, the DOORBELL
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registers can be read and the bit mask can be interpreted. If a larger bit mask is required than that is
provided by the DOORBELL register, the MAILBOX registers can be used to pass up to 16 bytes
of data.

The doorbell interrupts are controlled through the registers shown in Table 3.

Table 3. Doorbell Interrupt Registers

Register Name Description
Intel XScale® core ® )
DOORBELL Used to generate the Intel XScale™ core Doorbell interrupts
Intel XScale® core Used to initialize the Intel XScale® core Doorbell register and for diagnostics
DOORBELL SETUP '
PCI DOORBELL Used to generate the PCI Doorbell interrupts

PCI DOORBELL SETUP Used to initialize the PCI Doorbell register and for diagnostics.

2.7.5 PCI Arbiter

The PCI unit contains a PCI bus arbiter that supports two external masters in addition to the PCI

Unit’s initiator interface. If more than two external masters are used in the system, the arbiter can
be disabled and an external (to IXP2400) arbiter used. In that case, IXP2400 will provide its PCI
request signal to the external arbiter, and use that arbiters grant signal.

The arbiter uses a simple round-robin priority algorithm. It asserts the grant signal corresponding to
the next request in the round-robin during the current executing transaction on the PCI bus (this is
also called hidden arbitration). If the arbiter detects that an initiator has failed to assert frame 1
after 16 cycles of both grant assertion and PCI bus idle condition, the arbiter deasserts the grant.
That master does not receive any more grants until it deasserts its request for at least one PCI clock
cycle. Bus parking is implemented in that the last bus grant will stay asserted if no request is
pending.

To prevent bus contention, if the PCI bus is idle, the arbiter never asserts one grant signal in the
same PCI cycle in which it deasserts another, It deasserts one grant, and then asserts the next grant
after one full PCI clock cycle has elapsed to provide for bus driver turnaround.

2.8 Scratchpad Memory

IXP2400 contains a 16KB Scratchpad Memory, organized as 4K 32-bit words, that is accessible by
Microengines and Intel XScale® core.

The Scratchpad Memory provides the following operations:

¢ Normal reads and writes—from one to 16 32-bit words can be read/written with a single
Microengine instruction

Note: Scratchpad is not byte-writeable (each write must write all 4 bytes)

¢ Atomic read-modify-write operations: bit-set, bit-clear, increment, decrement, add, subtract,
and swap—the RMW operations can also optionally return the pre-modified data

* 16 Hardware Assisted Rings1 for interprocess communication

1. Aring is a FIFO that uses a head and tail pointer to store/read information in Scratchpad memory.
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Scratchpad Memory is provided as a third memory resource (in addition to SRAM and DRAM)
that is shared by the Microengines and Intel XScale® core. The Microengines and Intel XScale®
core can distribute memory accesses between these three types of memory resources to provide a
greater number of memory accesses occurring in parallel.

Hash Unit

IXP2400 contains a Hash Unit that can take 48-bit, 64-bit or 128-bit data and produces a 48-bit, a
64-bit or a 128 bit hash index, respectively. The Hash Unit is accessible by the Microengines and
Intel XScale® core, and is useful in doing table searches with large keys, for example L2 addresses.
Figure 6 is a block diagram of the Hash Unit.

Up to three hash indices can be created using a smgle Microengine instruction. This helps to
minimize command overhead. The Intel XScale® core can only do a single hash at a time.

A Microengine initiates a hash operation by writing the hash operands into a contlguous set of

S TRANSFER OUT Registers and then executing the hash instruction. The Intel XScale® core
initiates a hash operatlon by writing a set of memory-mapped HASH_OP Registers, which are built
in the Intel XScale® core gasket, with the data to be used to generate the hash index. There are
separate registers for 48-bit, 64-bit, and 128-bit hashes. The data is written from MSB to LSB, with
the write to LSB triggering the Hash Operation. In both cases, the Hash Unit reads the operand into
an input buffer, performs the hash operation, and returns the result.

Hash Unit Block Diagram

Data Used to Create Hash
r Index from S Transfer Out

Multiplicand 3
Multiplicand 2

128 i

| Multiplicand 1
4—— shift

2-Stage Input Buffer

HASH_MULTIPLIER 48 |

HASH_MULTIPLIER 64 |

HASH_MULTIPLIER_128 |

Hashed Multiplicand 3

128 i

Hashed Multiplicand 2
Hashed Multiplicand 1

48-bit, 64-bit or 128-bit Hash Select

2-Stage Output Buffer

Hash Indexes to
S Transfer In Registers

The Hash Unit uses a hard-wired polynomial algorithm and a programmable hash multiplier to
create hash indices. Three separate multipliers are supported, one for 48-bit hash operations, one
for 64-bit hash operations and one for 128-bit hash operations. The multiplier is programmed
through Control registers in the Hash Unit.
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The multiplicand is shifted into the hash array sixteen bits at a time. The hash array performs a
ones-complement multiply and polynomial divide, calculated using the multiplier and 16 bits of the
multiplicand. The result is placed into an output buffer register and also feeds back into the array.
This process is repeated 3 times for a 48-bit hash (16 bits x 3 = 48), 4 times for a 64-bit hash (16
bits x 4 = 64) and 8 times for a 128-bit hash (16 x 8 = 128). After an entire multiplicand has been
passed through the hash array, the resulting hash index is placed into a two-stage output buffer.

After each hash index is completed, the Hash Unit returns the hash index to the Microengines S
Transfer In Registers, or Intel XScale® core HASH_OP Registers. For Microengine initiated hash
operations, the Microengine is signaled after all the hashes specified in the instruction have been
completed.

For Intel XScale® core-initiated hash operations, the Intel XScale® core reads the results from the
memory-mapped HASH OP Registers. The addresses of Hash Results are the same as the
HASH_OP Registers. Because of queuing delays at the Hash Unit, the time to complete an
operation is not fixed. The Intel XScale® core can do one of two operations to get the hash results.

¢ Poll the HASH DONE Register. This register is cleared when the HASH OP Registers are
written. Bit [0] of HASH DONE Register is set when the HASH OP Registers get the return
result from the Hash Unit (when the last word of the result is returned) The Intel XScale® core
software can poll on HASH DONE, and read HASH OP when HASH_DONE is equal to
0x00000001.

* Read HASH_OP directly. The interface hardware will acknowledge the read only when the
result is valid. This method will result in the Intel XScale® core stalling if the result is not
valid when the read happens.

The number of clock cycles required to perform a single hash operation is the sum of two or four
cycles through the input buffers, three, four or eight cycles through the hash array, and two or four
cycles through the output buffers. Because of the pipeline characteristics of the Hash Unit,
performance is improved if multiple hash operations are initiated with a single instruction rather
than separate hash instructions for each hash operation.

Control and Status Register Access Proxy

Control and Status Register Access Proxy (CAP) contains a number of chip-wide control and status
registers. Some provide miscellaneous control and status, while others are used for inter-
Microengine or Microengine-to-Intel XScale® core communication (note that rings in Scratchpad
Memory and SRAM can also be used for interprocess communication). These include:

* [nterthread Signal—Each thread (or context) on a Microengine can send a signal to any other
thread by writing to InterThread Signal register. This allows a thread to go to sleep waiting
completion of a task by a different thread.

* Thread Message—Each thread has a message reglster where it can post a software-specific
message. Other Microengine threads or Intel XScale® core can poll for availability of
messages by reading THREAD MESSAGE SUMMARY register. Both the
THREAD_ MESSAGE and corresponding THREAD MESSAGE SUMMARY clear upon a
read of the message; this eliminates a race condition when there are multiple message readers.
Only one reader will get the message.

* Self Destruct—This register provides another type of communication. Microengine software
can atomically set individual bits in the SELF DESTRUCT registers; the registers clear upon
read. The meaning of each bit is software-specific. Clearing the register upon read eliminates a
race condition when there are multiple readers.
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* Thread Interrupt—Each thread can interrupt the Intel XScale® core on two different
interrupts; the usage is software-specific. Having two interrupts allows for flexibility, for
example one can be assigned to normal service requests and one can be assigned to error
conditions. If more information needs to be associated with the interrupt, mailboxes or Rings
in Scratchpad Memory or SRAM could be used.

* Reflector—CAP provides a function (called reflector) where any Microengine thread can
move data between its registers and those of any other thread. In response to a single write or
read instruction (with the address in the specific reflector range) CAP will get data from the
source Microengine and put it into the destination Microengine. Both the sending and
receiving threads can optionally be signalled upon completion of the data movement.

Intel® XScale® Core Peripherals

Interrupt Controller

The Interrupt Controller provides the ability to enable or mask interrupts from a number of chip-
wide sources, for example:

* Timers (normally used by Real-Time Operating System)
e Interrupts generated by Microengine software to request services from the Intel XScale® core
* External agents such as PCI devices

* Error conditions, such as DRAM ECC error, or SPI-4 parity error

Interrupt status is read as memory mapped registers—the state of an interrupt signal can be read
even if it is masked from interrupting. Enabling and masking of interrupts is done as writes to
memory mapped registers.

Timers

IXP2400 contains four programmable 32-bit timers which can be used for software support. Each
timer can be clocked by the internal clock, by a divided version of the clock, or by a signal on an
external GPIO pin (Section 2.11.3). Each timer can be programmed to generate a periodic interrupt
after a programmed number of clocks. The range is from several ns to several minutes depending
on the clock frequency.

In addition, timer 4 can be used as a watchdog timer. In this use, software must periodically reload
the timer value; if it fails to do so and the timer counts to zero, it will reset the chip. This can be
used to detect if software hangs or for some other reason fails to reload the timer.

GPIO

IXP2400 contains eight General Purpose 10 (GPIO) pins. These can be programmed as either input
or output and can be used for slow speed 10 such as LEDs or input switches. They can also be used
as interrupts to the Intel XScale® core or to clock the programmable timers (Section 2.11.2).
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UART

IXP2400 contains a standard RS-232 compatible Universal Asynchronous Receiver/Transmitter
(UART) which can be used for communication with a debugger or maintenance console. Modem
controls are not supported; if they are needed, GPIO pins can be used for that purpose.

The UART performs serial-to-parallel conversion on data characters received from a peripheral
device and parallel-to-serial conversion on data characters received from the processor. The
processor can read the complete status of the UART at any time during operation. Available status
information includes the type and condition of the transfer operations being performed by the
UART and any error conditions (parity, overrun, framing or break interrupt).

The serial ports can operate in either FIFO or non-FIFO mode. In FIFO mode, a 64-byte transmit
FIFO holds data from the processor to be transmitted on the serial link and a 64-byte receive FIFO
buffers data from the serial link until read by the processor.

The UART includes a programmable baud rate generator which is capable of dividing the internal
clock input by divisors of 1 to 2161 and produces a 16X clock to drive the internal transmitter
logic. It also drives the receive logic. The UART can be operated in polled or in interrupt driven
mode as selected by software.

SlowPort

The SlowPort is an external interface to IXP2400, used for Flash ROM access and 8, 16, or 32-bit
asynchronous device access. It allows the Intel XScale® core do read/write data transfers to these
slave devices.

The address bus and data bus are multiplexed to reduce the pincount. In addition, 24 bits of address

are shifted out on three clock cycles. Therefore, an external set of buffers (such as 74F377) is
needed to latch the address. Two chip selects are provided. See Figure 7.
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Figure 7. Generic SlowPort Connection
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The access is asynchronous. Insertion of delay cycles for both data setup and hold time is
programmable via internal Control registers. The transfer can also wait for a handshake
acknowledge signal from the external device.

Figure 8 shows an interface to an 8-bit device.
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Figure 8. 8-bit SlowPort Interface Example (PMC-Sierra PM5351 S/UNI-TETRA)

SP RD L
SP_WR L
SP CS L[]
SP ACK L
SP_AD[7:0]

SP ALE L
SP_CLK

IXP2400

VvCC

N

»
L8

»

»
»

CE
CP

D%:O]

Q0] T4F377

ADDR[10:8]

CE
CP

D[7:0]

QI7:0] 74F377

ADDRJ[7:0]

>

ALE
RDB

WRB

CSB
INTB

DATA[7:0]

ADDR[10:0]

PMC-Sierra

PM5351

48

Hardware Reference Manual



intel.

Intel® IXP2400 Network Processor
Intel® XScale® Core

Intel® XScale® Core 3

3.1

This section contains information describing the Intel XScale® core, XScale core gasket and
XScale core Peripherals (XPI).

For additional information about Intel XScale architecture, refer to the Intel® XScale® Core
Developer s Manual, available on the Intel Developer website
(http://www.intel.com/design/intelxscale/273473.htm).

Introduction

The XScale core is an ARM* V5TE compliant microprocessor. It has been designed for high
performance and low power; leading the industry in mW/MIPs. The XScale core incorporates an
extensive list of architecture features that allows it to achieve high performance. Many of the
architectural features added to the XScale core help hide memory latency which often is a serious
impediment to high-performance processors.

This includes:

* the ability to continue instruction execution even while the data cache is retrieving data from
external memory.

* a write buffer.
* write-back caching.
* various data cache allocation policies which can be configured different for each application.

* and cache locking.
All these features improve the efficiency of the memory bus external to the core.

ARM* Version 5 (V5) Architecture added floating point instructions to ARM* Version 4. The
XScale core implements the integer instruction set architecture of ARM* V5, but does not provide
hardware support of the floating point instructions.

The XScale core provides the Thumb instruction set (ARM* V5T) and the ARM* V5E DSP
extensions.

Backward compatibility with StrongARM products is maintained for user-mode applications.
Operating systems may require modifications to match the specific hardware features of the
XScale core and to take advantage of the performance enhancements added.
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3.2 Features

Figure 9 shows the major functional blocks of the XScale core. The following sections give a brief,
high-level overview of these blocks.

Figure 9. Intel® XScale® Core Architecture Features
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3.2.1 Multiply/Accumulate (MAC)

The MAC unit supports early termination of multiplies/accumulates in two cycles and can sustain a
throughput of a MAC operation every cycle. Several architectural enhancements were made to the
MAC to support audio coding algorithms, which include a 40-bit accumulator and support for 16-

bit packed data.

3.2.2 Memory Management

The XScale core implements the Memory Management Unit (MMU) Architecture specified in the
ARM* Architecture Reference Manual. The MMU provides access protection and virtual to
physical address translation.

The MMU Architecture also specifies the caching policies for the instruction cache and data
memory. These policies are specified as page attributes and include:

* identifying code as cacheable or non-cacheable
* selecting between the mini-data cache or data cache

* write-back or write-through data caching
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* cnabling data write allocation policy

* and enabling the write buffer to coalesce stores to external memory

Instruction Cache

The XScale core implements a 32-Kbyte, 32-way set associative instruction cache with a line size
of 32 bytes. All requests that “miss” the instruction cache generate a 32-byte read request to
external memory. A mechanism to lock critical code within the cache is also provided.

Branch Target Buffer

The XScale core provides a Branch Target Buffer (BTB) to predict the outcome of branch type
instructions. It provides storage for the target address of branch type instructions and predicts the
next address to present to the instruction cache when the current instruction address is that of a
branch.

The BTB holds 128 entries.

Data Cache

The XScale core implements a 32-Kbyte, a 32-way set associative data cache and a 2-Kbyte, 2-way
set associative mini-data cache. Each cache has a line size of 32 bytes, and supports write-through
or write-back caching.

The data/mini-data cache is controlled by page attributes defined in the MMU Architecture and by
coprocessor 15.

The XScale core allows applications to re-configure a portion of the data cache as data RAM.
Software may place special tables or frequently used variables in this RAM.

Performance Monitoring

Two performance monitoring counters have been added to the XScale core that can be configured
to monitor various events. These events allow a software developer to measure cache efficiency,
detect system bottlenecks, and reduce the overall latency of programs.

Power Management

The XScale core incorporates a power and clock management unit that can assist ASSPs
(Application Specific Standard Product) in controlling their clocking and managing their power.

Debug

The XScale core supports software debugging through two instruction address breakpoint registers,
one data-address breakpoint register, one data-address/mask breakpoint register, and a trace buffer.
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JTAG

Testability is supported on the XScale core through the Test Access Port (TAP) Controller
implementation, which is based on IEEE 1149.1 (JTAG) Standard Test Access Port and Boundary-
Scan Architecture. The purpose of the TAP controller is to support test logic internal and external
to the XScale core such as built-in self-test, boundary-scan, and scan.

Memory Management

The XScale core implements the Memory Management Unit (MMU) Architecture specified in the
ARM Architecture Reference Manual. To accelerate virtual to physical address translation, the
XScale core uses both an instruction Translation Look-aside Buffer (TLB) and a data TLB to cache
the latest translations. Each TLB holds 32 entries and is fully-associative. Not only do the TLBs
contain the translated addresses, but also the access rights for memory references.

If an instruction or data TLB miss occurs, a hardware translation-table-walking mechanism is
invoked to translate the virtual address to a physical address. Once translated, the physical address
is placed in the TLB along with the access rights and attributes of the page or section. These
translations can also be locked down in either TLB to guarantee the performance of critical
routines.

The XScale core allows system software to associate various attributes with regions of memory:
¢ cacheable
* bufferable
* line allocate policy
* write policy
* 1/0
* mini Data Cache
¢ Coalescing
* Pbit

The virtual address with which the TLBs are accessed may be remapped by the PID (Process ID)
register.

Architecture Model

Version 4 vs. Version 5
ARM* MMU Version 5 Architecture introduces the support of tiny pages, which are 1 KByte in

size. The reserved field in the first-level descriptor (encoding 0b11) is used as the fine page table
base address.
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Memory Attributes

The attributes associated with a particular region of memory are configured in the memory
management page table and control the behavior of accesses to the instruction cache, data cache,
mini-data cache and the write buffer. These attributes are ignored when the MMU is disabled.

To allow compatibility with older system software, the new Intel XScale core attributes take
advantage of encoding space in the descriptors that was formerly reserved.

Page (P) Attribute Bit

The P bit assigns a page attribute to a memory region. Refer to the Intel® IXP2400/IXP2800
Network Processor Programmer s Reference Manual for details about the P bit.

Instruction Cache

When examining these bits in a descriptor, the Instruction Cache only utilizes the C bit. If the C bit
is clear, the Instruction Cache considers a code fetch from that memory to be non-cacheable, and
will not fill a cache entry. If the C bit is set, then fetches from the associated memory region will be
cached.

Data Cache and Write Buffer
All of these descriptor bits affect the behavior of the Data Cache and the Write Buffer.
If the X bit for a descriptor is zero (see Table 4), the C and B bits operate as mandated by the

ARM* architecture. If the X bit for a descriptor is one, the C and B bits’ meaning is extended, as
detailed in Table 5.

Data Cache and Buffer Behavior when X =0

CB Cacheable? Bufferable? Write Policy Allcl;(l:r:teion Notes
Policy

00 N N - - Stall until complete?

01 N Y - -

10 Y Y Write Through Read Allocate

11 Y Y Write Back Read Allocate

Normally, the processor will continue executing after a data access if no dependency on that access is encountered. With
this setting, the processor will stall execution until the data access completes. This guarantees to software that the data ac-
cess has taken effect by the time execution of the data access instruction completes. External data aborts from such access-
es will be imprecise.
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Table 5. Data Cache and Buffer Behavior when X =1

3.3.1.24

3.3.1.2.5

54

Line
cB Cacheable? Bufferable? Write Policy Allocation Notes
Policy
00 - - - - Unpredictable -- do not use
01 N v } } Writes ;Ni“ not coalesce into
buffers
- Cache policy is determined
10 (“QQLE:;:" ; ; ; by MD field of Auxiliary
Control register
11 Y Y Write Back Read/Write
Allocate

a. Normally, bufferable writes can coalesce with previously buffered data in the same address range
Details on Data Cache and Write Buffer Behavior

If the MMU is disabled all data accesses will be non-cacheable and non-bufferable. This is the
same behavior as when the MMU is enabled, and a data access uses a descriptor with X, C, and B
all set to 0.

The X, C, and B bits determine when the processor should place new data into the Data Cache. The
cache places data into the cache in lines (also called blocks). Thus, the basis for making a decision
about placing new data into the cache is a called a “Line Allocation Policy”.

If the Line Allocation Policy is read-allocate, all load operations that miss the cache request a 32-

byte cache line from external memory and allocate it into either the data cache or mini-data cache

(this is assuming the cache is enabled). Store operations that miss the cache will not cause a line to
be allocated.

If read/write-allocate is in effect, load or store operations that miss the cache will request a 32-byte
cache line from external memory if the cache is enabled.

The other policy determined by the X, C, and B bits is the Write Policy. A write-through policy
instructs the Data Cache to keep external memory coherent by performing stores to both external
memory and the cache. A write-back policy only updates external memory when a line in the cache
is cleaned or needs to be replaced with a new line. Generally, write-back provides higher
performance because it generates less data traffic to external memory.

Memory Operation Ordering

A fence memory operation (memop) is one that guarantees all memops issued prior to the fence
will execute before any memop issued after the fence. Thus software may issue a fence to impose a
partial ordering on memory accesses.

Table 6 shows the circumstances in which memops act as fences.

Any swap (SWP or SWPB) to a page that would create a fence on a load or store is a fence.
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Memory Operations that Impose a Fence
operation X C B
load - 0 -
store 1 0 1
load or store 0 0 0
Exceptions

The MMU may generate prefetch aborts for instruction accesses and data aborts for data memory
accesses.

Data address alignment checking is enabled by setting bit 1 of the Control Register (CP15,
register 1). Alignment faults are still reported even if the MMU is disabled. All other MMU
exceptions are disabled when the MMU is disabled.

Interaction of the MMU, Instruction Cache, and Data Cache

The MMU, instruction cache, and data/mini-data cache may be enabled/disabled independently.
The instruction cache can be enabled with the MMU enabled or disabled. However, the data cache
can only be enabled when the MMU is enabled. Therefore only three of the four combinations of
the MMU and data/mini-data cache enables are valid (see Table 7). The invalid combination will
cause undefined results.

Valid MMU and Data/Mini-data Cache Combinations

MMU Data/mini-data Cache
Off Off
On Off
On On

Control

Invalidate (Flush) Operation

The entire instruction and data TLB can be invalidated at the same time with one command or they
can be invalidated separately. An individual entry in the data or instruction TLB can also be
invalidated.

Globally invalidating a TLB will not affect locked TLB entries. However, the invalidate-entry
operations can invalidate individual locked entries. In this case, the locked remains in the TLB, but
will never “hit” on an address translation. Effectively, a hole is in the TLB. This situation may be
rectified by unlocking the TLB.

Enabling/Disabling

The MMU is enabled by setting bit 0 in coprocessor 15, register 1 (Control Register).
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When the MMU is disabled, accesses to the instruction cache default to cacheable and all accesses
to data memory are made non-cacheable.

A recommended code sequence for enabling the MMU is shown in Example 1.

Example 1. Enabling the MMU

3.3.4.3

56

This routine provides software with a predictable way of enabling the MMU.
; After the CPWAIT, the MMU is guaranteed to be enabled. Be aware

that the MMU will be enabled sometime after MCR and before the instruction
that executes after the CPWAIT.

; Programming Note: This code sequence requires a one-to-one virtual to

; physical address mapping on this code since

the MMU may be enabled part way through. This would allow the instructions
after MCR to execute properly regardless the state of the MMU.

MRC P15,0,R0,C1,C0,0; Read CP1l5, register 1
ORR RO, RO, #0x1; Turn on the MMU
MCR P15,0,R0,C1,C0,0; Write to CP1l5, register 1

; The MMU is guaranteed to be enabled at this point; the next instruction or

7

; data address will be translated.

Locking Entries

Individual entries can be locked into the instruction and data TLBs. If a lock operation finds the
virtual address translation already resident in the TLB, the results are unpredictable. An invalidate
by entry command before the lock command will ensure proper operation. Software can also
accomplish this by invalidating all entries, as shown in Example 2.

Locking entries into either the instruction TLB or data TLB reduces the available number of entries
(by the number that was locked down) for hardware to cache other virtual to physical address
translations.

A procedure for locking entries into the instruction TLB is shown in Example 2.

If a MMU abort is generated during an instruction or data TLB lock operation, the Fault Status
Register is updated to indicate a Lock Abort, and the exception is reported as a data abort.
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Example 2. Locking Entries into the Instruction TLB

Note:

; R1, R2 and R3 contain the virtual addresses to translate and lock into
; the instruction TLB.
; The value in RO is ignored in the following instruction.

; Hardware guarantees that accesses to CP1l5 occur in program order
MCR P15,0,R0,C8,C5,0 ; Invalidate the entire instruction TLB

MCR P15,0,R1,C10,C4,0 ; Translate virtual address (R1l) and lock into

; instruction TLB
MCR P15,0,R2,C10,C4,0 ; Translate

; virtual address (R2) and lock into instruction TLB
MCR P15,0,R3,C10,C4,0 ; Translate virtual address (R3) and lock into

; instruction TLB

CPWAIT

The MMU is guaranteed to be updated at this point; the next instruction will

7

; see the locked instruction TLB entries.

If exceptions are allowed to occur in the middle of this routine, the TLB may end up caching a
translation that is about to be locked. For example, if R1 is the virtual address of an interrupt
service routine and that interrupt occurs immediately after the TLB has been invalidated, the lock
operation will be ignored when the interrupt service routine returns back to this code sequence.
Software should disable interrupts (FIQ or IRQ) in this case.

As a general rule, software should avoid locking in all other exception types.

The proper procedure for locking entries into the data TLB is shown in Example 3.

Example 3. Locking Entries into the Data TLB

Note:

; R1, and R2 contain the virtual addresses to translate and lock into the data TLB

MCR P15,0,R1,C8,C6,1 ; Invalidate the data TLB entry specified by the
; virtual address in R1

MCR P15,0,R1,C10,C8,0 ; Translate virtual address (R1) and lock into
; data TLB

; Repeat sequence for virtual address in R2

MCR P15,0,R2,C8,C6,1 ; Invalidate the data TLB entry specified by the
; virtual address in R2

MCR P15,0,R2,C10,C8,0 ; Translate virtual address (R2) and lock into
; data TLB

CPWAIT ; wait for locks to complete

; The MMU is guaranteed to be updated at this point; the next instruction will
; see the locked data TLB entries.

Care must be exercised here when allowing exceptions to occur during this routine whose handlers
may have data that lies in a page that is trying to be locked into the TLB.

Hardware Reference Manual 57



Intel® IXP2400 Network Processor u
Intel® XScale® Core I n o

3.344

Round-Robin Replacement Algorithm

The line replacement algorithm for the TLBs is round-robin; there is a round-robin pointer that
keeps track of the next entry to replace. The next entry to replace is the one sequentially after the
last entry that was written. For example, if the last virtual to physical address translation was
written into entry 5, the next entry to replace is entry 6.

At reset, the round-robin pointer is set to entry 31. Once a translation is written into entry 31, the
round-robin pointer gets set to the next available entry, beginning with entry 0 if no entries have
been locked down. Subsequent translations move the round-robin pointer to the next sequential
entry until entry 31 is reached, where it will wrap back to entry 0 upon the next translation.

A lock pointer is used for locking entries into the TLB and is set to entry 0 at reset. A TLB lock
operation places the specified translation at the entry designated by the lock pointer, moves the
lock pointer to the next sequential entry, and resets the round-robin pointer to entry 31. Locking
entries into either TLB effectively reduces the available entries for updating. For example, if the
first three entries were locked down, the round-robin pointer would be entry 3 after it rolled over
from entry 31.

Only entries 0 through 30 can be locked in either TLB; entry 31can never be locked. If the lock
pointer is at entry 31, a lock operation will update the TLB entry with the translation and ignore the
lock. In this case, the round-robin pointer will stay at entry 31.

Figure 10. Example of Locked Entries in TLB
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entry O
entry 1

Locked

entry 7
entry 8

entry 22
entry 23

entry 30
entry 31

Note: 8 entries locked, 24 entries available for round robin replacement

A9684-01
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3.4 Instruction Cache

The XScale core instruction cache enhances performance by reducing the number of instruction
fetches from external memory. The cache provides fast execution of cached code. Code can also be
locked down when guaranteed or fast access time is required.

Figure 11 shows the cache organization and how the instruction address is used to access the cache.

The instruction cache is a 32-Kbyte, 32-way set associative cache; this means there are 32 sets with
each set containing 32 ways. Each way of a set contains eight 32-bit words and one valid bit, which
is referred to as a line. The replacement policy is a round-robin algorithm and the cache also
supports the ability to lock code in at a line granularity.

Figure 11. Instruction Cache Organization

_______________ Set 31
way 0 8 Words (cache line)
. way 1
Set Index * CAM Data
_____ Set 1
way 0 8 Words (cache line)
_____ Set 0 way 1
way 0 8 Words (cache line)
way 1
This example
shows Set 0 being CAM Data
selected by the
Set Index
way 31
Tag 1 Y YYYVYVYYY
Word Select —————\ /
Instruction Word
(4 bytes)
Instruction Address (Virtual)
31 109 54 210
I Tag |Set Indexl Wordl I
Note: CAM = Content Addressable Memory
A9685-01

The instruction cache is virtually addressed and virtually tagged.

Note: The virtual address presented to the instruction cache may be remapped by the PID register.
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3.4.1.2

3.41.3

60

Instruction Cache Operation

Operation When Instruction Cache is Enabled

When the cache is enabled, it compares every instruction request address against the addresses of
instructions that it is currently holding. If the cache contains the requested instruction, the access
“hits” the cache, and the cache returns the requested instruction. If the cache does not contain the
requested instruction, the access “misses” the cache, and the cache requests a fetch from external
memory of the 8-word line (32 bytes) that contains the requested instruction using the fetch policy.
As the fetch returns instructions to the cache, they are placed in one of two fetch buffers and the
requested instruction is delivered to the instruction decoder.

A fetched line will be written into the cache if it is cacheable. Code is designated as cacheable
when the Memory Management Unit (MMU) is disabled or when the MMU is enable and the
cacheable (C) bit is set to 1 in its corresponding page.

Note that an instruction fetch may “miss” the cache but “hit” one of the fetch buffers. When this
happens, the requested instruction will be delivered to the instruction decoder in the same manner
as a cache “hit.”

Operation When The Instruction Cache Is Disabled

Disabling the cache prevents any lines from being written into the instruction cache. Although the
cache is disabled, it is still accessed and may generate a “hit” if the data is already in the cache.

Disabling the instruction cache does not disable instruction buffering that may occur within the
instruction fetch buffers. Two 8-word instruction fetch buffers will always be enabled in the cache
disabled mode. So long as instruction fetches continue to “hit” within either buffer (even in the
presence of forward and backward branches), no external fetches for instructions are generated. A
miss causes one or the other buffer to be filled from external memory using the fill policy.

Fetch Policy

An instruction-cache “miss” occurs when the requested instruction is not found in the instruction
fetch buffers or instruction cache; a fetch request is then made to external memory. The instruction
cache can handle up to two “misses.” Each external fetch request uses a fetch buffer that holds 32-
bytes and eight valid bits, one for each word. A miss causes the following:

1. A fetch buffer is allocated
2. The instruction cache sends a fetch request to the external bus. This request is for a 32-byte line.

3. Instructions words are returned back from the external bus, at a maximum rate of 1 word per
core cycle. As each word returns, the corresponding valid bit is set for the word in the fetch
buffer.

4. As soon as the fetch buffer receives the requested instruction, it forwards the instruction to the
instruction decoder for execution.

5. When all words have returned, the fetched line will be written into the instruction cache if it’s
cacheable and if the instruction cache is enabled. The line chosen for update in the cache is
controlled by the round-robin replacement algorithm. This update may evict a valid line at that
location.

6. Once the cache is updated, the eight valid bits of the fetch buffer are invalidated.
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Round-Robin Replacement Algorithm

The line replacement algorithm for the instruction cache is round-robin. Each set in the instruction
cache has a round-robin pointer that keeps track of the next line (in that set) to replace. The next
line to replace in a set is the one after the last line that was written. For example, if the line for the
last external instruction fetch was written into way 5-set 2, the next line to replace for that set
would be way 6. None of the other round-robin pointers for the other sets are affected in this case.

After reset, way 31 is pointed to by the round-robin pointer for all the sets. Once a line is written
into way 31, the round-robin pointer points to the first available way of a set, beginning with way0
if no lines have been locked into that particular set. Locking lines into the instruction cache
effectively reduces the available lines for cache updating. For example, if the first three lines of a
set were locked down, the round-robin pointer would point to the line at way 3 after it rolled over
from way 31.

Parity Protection

The instruction cache is protected by parity to ensure data integrity. Each instruction cache word
has 1 parity bit. (The instruction cache tag is NOT parity protected.) When a parity error is detected
on an instruction cache access, a prefetch abort exception occurs if the XScale core attempts to
execute the instruction. Before servicing the exception, hardware place a notification of the error in
the Fault Status Register (Coprocessor 15, register 5).

A software exception handler can recover from an instruction cache parity error. This can be
accomplished by invalidating the instruction cache and the branch target buffer and then returning
to the instruction that caused the prefetch abort exception. A simplified code example is shown in
Example 4. A more complex handler might choose to invalidate the specific line that caused the
exception and then invalidate the BTB.

Example 4. Recovering from an Instruction Cache Parity Error

3.4.1.6

; Prefetch abort handler

MCR P15,0,R0,C7,C5,0 ; Invalidate the instruction cache and branch target
; buffer
CPWAIT ; wait for effect

SUBS PC,R14,#4 Returns to the instruction that generated the

parity error

; The Instruction Cache is guaranteed to be invalidated at this point

If a parity error occurs on an instruction that is locked in the cache, the software exception handler
needs to unlock the instruction cache, invalidate the cache and then re-lock the code in before it
returns to the faulting instruction.

Instruction Fetch Latency

The instruction fetch latency is dependent on the core to memory frequency ratio, system bus
bandwidth, system memory, etc.
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3.41.7

3.4.2

3.4.21

3.4.2.2

Instruction Cache Coherency

The instruction cache does not detect modification to program memory by loads, stores or actions
of other bus masters. Several situations may require program memory modification, such as
uploading code from disk.

The application program is responsible for synchronizing code modification and invalidating the
cache. In general, software must ensure that modified code space is not accessed until modification
and invalidating are completed.

To achieve cache coherence, instruction cache contents can be invalidated after code modification
in external memory is complete.

If the instruction cache is not enabled, or code is being written to a non-cacheable region, software
must still invalidate the instruction cache before using the newly-written code. This precaution
ensures that state associated with the new code is not buffered elsewhere in the processor, such as
the fetch buffers or the BTB.

Naturally, when writing code as data, care must be taken to force it completely out of the processor
into external memory before attempting to execute it. If writing into a non-cacheable region,

flushing the write buffers is sufficient precaution. If writing to a cacheable region, then the data
cache should be submitted to a Clean/Invalidate operation to ensure coherency.

Instruction Cache Control

Instruction Cache State at Reset

After reset, the instruction cache is always disabled, unlocked, and invalidated (flushed).

Enabling/Disabling

The instruction cache is enabled by setting bit 12 in coprocessor 15, register 1 (Control Register).
This process is illustrated in Example 5.

Example 5. Enabling the Instruction Cache

62

; Enable the ICache

MRC P15, 0, RO, C1, CO, O ; Get the control register
ORR RO, RO, #0x1000 ; set bit 12 -- the I bit
MCR P15, 0, RO, C1, cCO, O ; Set the control register
CPWAIT
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Invalidating the Instruction Cache

The entire instruction cache along with the fetch buffers are invalidated by writing to

coprocessor 15, register 7. This command does not unlock any lines that were locked in the
instruction cache nor does it invalidate those locked lines. To invalidate the entire cache including
locked lines, the unlock instruction cache command needs to be executed before the invalidate
command.

There is an inherent delay from the execution of the instruction cache invalidate command to
where the next instruction will see the result of the invalidate. The routine in Example 6can be used
to guarantee proper synchronization.

Example 6. Invalidating the Instruction Cache

3.4.24

MCR P15,0,R1,C7,C5,0 ; Invalidate the instruction cache and branch
; target buffer

CPWAIT

; The instruction cache is guaranteed to be invalidated at this point; the next
; instruction sees the result of the invalidate command.

The XScale core also supports invalidating an individual line from the instruction cache.

Locking Instructions in the Instruction Cache

Software has the ability to lock performance critical routines into the instruction cache. Up to

28 lines in each set can be locked; hardware will ignore the lock command if software is trying to
lock all the lines in a particular set (i.e., ways 28-31can never be locked). When this happens, the

line will still be allocated into the cache but the lock will be ignored. The round-robin pointer will
stay at way 31 for that set.

Lines can be locked into the instruction cache by initiating a write to coprocessor 15. Register Rd
contains the virtual address of the line to be locked into the cache.

There are several requirements for locking down code:

1. the routine used to lock lines down in the cache must be placed in non-cacheable memory,
which means the MMU is enabled. As a corollary: no fetches of cacheable code should occur
while locking instructions into the cache.

2. the code being locked into the cache must be cacheable
3. the instruction cache must be enabled and invalidated prior to locking down lines

Failure to follow these requirements will produce unpredictable results when accessing the
instruction cache.

System programmers should ensure that the code to lock instructions into the cache does not reside
closer than 128 bytes to a non-cacheable/cacheable page boundary. If the processor fetches ahead
into a cacheable page, then the first requirement noted above could be violated.

Lines are locked into a set starting at way 0 and may progress up to way 27; which set a line gets
locked into depends on the set index of the virtual address. Figure 12 is an example of where lines
of code may be locked into the cache along with how the round-robin pointer is affected.
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Figure 12. Locked Line Effect on Round Robin Replacement

set0 set 1 set 2 set 31
Way? B A A A
way %
: o o
-y e
way 7 3} 2
way 8 o ~ oo
y = >
: o
. -
way 22 Y
way 23
. Y
way 30
way 31
Notes:
set 0: 8 ways locked, 24 ways available for round robin replacement
set 1: 23 ways locked, 9 ways available for round robin replacement
set 2: 28 ways locked, only way 28-31 available for replacement
set 31: all 32 ways available for round robin replacement
A9686-01

Software can lock down several different routines located at different memory locations. This may
cause some sets to have more locked lines than others as shown in Figure 12.

Example 7 shows how a routine, called “lockMe” in this example, might be locked into the
instruction cache. Note that it is possible to receive an exception while locking code.

Example 7. Locking Code into the Cache

lockMe: ; This is the code that will be locked into the cache
mov r0, #5
add r5, rl, r2

lockMeEnd:

codeLock:

; here is the code to lock the “lockMe”
ldr r0, =(lockMe AND NOT 31);
should lock

routine
r0 gets a pointer to the first line we

1dr rl, =(lockMeEnd AND NOT 31);

rl contains a pointer to the last line we
should lock

lockLoop:
mcr pl5, 0, r0, <9, cl, 0;
cmp rO, rl

add r0, r0, #32
bne lockLoop

lock next line of code into ICache
; are we done yet?

; advance pointer to next line
; if not done, do the next line
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Unlocking Instructions in the Instruction Cache

The XScale core provides a global unlock command for the instruction cache. Writing to
coprocessor 15, register 9 unlocks all the locked lines in the instruction cache and leaves them
valid. These lines then become available for the round-robin replacement algorithm.

Branch Target Buffer

The XScale core uses dynamic branch prediction to reduce the penalties associated with changing
the flow of program execution. The XScale core features a branch target buffer that provides the
instruction cache with the target address of branch type instructions. The branch target buffer is
implemented as a 128-entry, direct mapped cache.

Branch Target Buffer (BTB) Operation

The BTB stores the history of branches that have executed along with their targets. Figure 13
shows an entry in the BTB, where the tag is the instruction address of a previously executed branch
and the data contains the target address of the previously executed branch along with two bits of
history information.

Figure 13. BTB Entry

TAG DATA

History
Branch Address[31:9,1] Target Address[31:1] Bits[1:0]

A9687-01

The BTB takes the current instruction address and checks to see if this address is a branch that was
previously seen. It uses bits [8:2] of the current address to read out the tag and then compares this
tag to bits [31:9,1] of the current instruction address. If the current instruction address matches the
tag in the cache and the history bits indicate that this branch is usually taken in the past, the BTB
uses the data (target address) as the next instruction address to send to the instruction cache.

Bit[1] of the instruction address is included in the tag comparison in order to support Thumb
execution. This organization means that two consecutive Thumb branch (B) instructions, with
instruction address bits[8:2] the same, will contend for the same BTB entry. Thumb also requires
31 bits for the branch target address. In ARM* mode, bit[1] is zero.

The history bits represent four possible prediction states for a branch entry in the BTB. Figure 14
shows these states along with the possible transitions. The initial state for branches stored in the
BTB is Weakly-Taken (WT). Every time a branch that exists in the BTB is executed, the history
bits are updated to reflect the latest outcome of the branch, either taken or not-taken.

The BTB does not have to be managed explicitly by software; it is disabled by default after reset
and is invalidated when the instruction cache is invalidated.
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Figure 14. Branch History

3.5.11

3.5.2

3.5.3

3.5.31
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Taken

Notes:
SN: Strongly Not Take ST: Strongly Taken
WN: Weakly Not Taken WT: Weakly Taken

A9688-01

Reset

After Processor Reset, the BTB is disabled and all entries are invalidated.

Update Policy

A new entry is stored into the BTB when the following conditions are met:
* the branch instruction has executed,
* the branch was taken

¢ the branch is not currently in the BTB

The entry is then marked valid and the history bits are set to WT. If another valid branch exists at
the same entry in the BTB, it will be evicted by the new branch.

Once a branch is stored in the BTB, the history bits are updated upon every execution of the branch
as shown in Figure 14.

BTB Control

Disabling/Enabling

The BTB is always disabled with Reset. Software can enable the BTB through a bitin a
coprocessor register.

Before enabling or disabling the BTB, software must invalidate it (described in the following
section). This action will ensure correct operation in case stale data is in the BTB. Software should
not place any branch instruction between the code that invalidates the BTB and the code that
enables/disables it.
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Invalidation

There are four ways the contents of the BTB can be invalidated.

1. Reset

2. Software can directly invalidate the BTB via a CP15, register 7 function.
3. The BTB is invalidated when the Process ID Register is written.
4

. The BTB is invalidated when the instruction cache is invalidated via CP15, register 7
functions.

Data Cache

The XScale core data cache enhances performance by reducing the number of data accesses to and
from external memory. There are two data cache structures in the XScale core, a 32 Kbyte data
cache and a 2 Kbyte mini-data cache. An eight entry write buffer and a four entry fill buffer are
also implemented to decouple the XScale core instruction execution from external memory
accesses, which increases overall system performance.

Overviews

Data Cache Overview

The data cache is a 32-Kbyte, 32-way set associative cache; this means there are 32 sets with each
set containing 32 ways. Each way of a set contains 32 bytes (one cache line) and one valid bit.
There also exist two dirty bits for every line, one for the lower 16 bytes and the other one for the
upper 16 bytes. When a store hits the cache the dirty bit associated with it is set. The replacement
policy is a round-robin algorithm and the cache also supports the ability to reconfigure each line as
data RAM.

Figure 15 shows the cache organization and how the data address is used to access the cache.

Cache policies may be adjusted for particular regions of memory by altering page attribute bits in
the MMU descriptor that controls that memory.

The data cache is virtually addressed and virtually tagged. It supports write-back and write-through
caching policies. The data cache always allocates a line in the cache when a cacheable read miss
occurs and will allocate a line into the cache on a cacheable write miss when write allocate is
specified by its page attribute. Page attribute bits determine whether a line gets allocated into the
data cache or mini-data cache.
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Figure 15. Data Cache Organization

_______________ Set 31
way 0 32 bytes (cache line)
. way 1
Set Index * CAM Data
_____ Set 1
way 0 32 bytes (cache line)
_____ Set 0 way 1
way 0 32 bytes (cache line)
way 1
This example
shows Set 0 being CAM Data
selected by the
Set Index
way 31
Tag 4T Y YYYVYVYVYY
Word Select —9\ /
Byte Alignment
Byte Select Sign Extension
Data Word
(4 bytes to Destination Register)
Data Address (Virtual)
31 10 9 54 210
I Tag |Set Indexl Word |By1e|
Note: CAM = Content Addressable Memory
A9689-01

3.6.1.2 Mini-Data Cache Overview

The mini-data cache is a 2-Kbyte, 2-way set associative cache; this means there are 32 sets with
each set containing 2 ways. Each way of a set contains 32 bytes (one cache line) and one valid bit.
There also exist 2 dirty bits for every line, one for the lower 16 bytes and the other one for the
upper 16 bytes. When a store hits the cache the dirty bit associated with it is set. The replacement

policy is a round-robin algorithm.

Figure 16 shows the cache organization and how the data address is used to access the cache.

The mini-data cache is virtually addressed and virtually tagged and supports the same caching
policies as the data cache. However, lines can’t be locked into the mini-data cache.
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Mini-Data Cache Organization
_______________ Set 31
way 0 32 bytes (cache line)
This example . way 1
shows Set 0 being :
selected by the
Setindex |  _____ Set 1
| way0 [ 32 bytes (cache line)
_____ Set 0 | wav 1 |
way 0 32 bytes (cache line)
way 1
Tag 4T Y YYVYVYVYVYVYY
Word Select ————— 3\ /
Byte Alignment
Byte Select Sign Extension
Data Word
(4 bytes to Destination Register)
Data Address (Virtual)
31 10 9 54 210
I Tag |Set Indexl Word |By1e|
Note: CAM = Content Addressable Memory
A9692-01

3.6.1.3

Write Buffer and Fill Buffer Overview

The XScale core employs an eight entry write buffer, each entry containing 16 bytes. Stores to
external memory are first placed in the write buffer and subsequently taken out when the bus is
available.

The write buffer supports the coalescing of multiple store requests to external memory. An
incoming store may coalesce with any of the eight entries.

The fill buffer holds the external memory request information for a data cache or mini-data cache
fill or non-cacheable read request. Up to four 32-byte read request operations can be outstanding in
the fill buffer before the XScale core needs to stall.

The fill buffer has been augmented with a four entry pend buffer that captures data memory
requests to outstanding fill operations. Each entry in the pend buffer contains enough data storage
to hold one 32-bit word, specifically for store operations. Cacheable load or store operations that
hit an entry in the fill buffer get placed in the pend buffer and are completed when the associated
fill completes. Any entry in the pend buffer can be pended against any of the entries in the fill
buffer; multiple entries in the pend buffer can be pended against a single entry in the fill buffer.

Pended operations complete in program order.
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3.6.2 Data Cache and Mini-Data Cache Operation

The following discussions refer to the data cache and mini-data cache as one cache (data/mini-
data) since their behavior is the same when accessed.

3.6.2.1 Operation When Caching is Enabled

When the data/mini-data cache is enabled for an access, the data/mini-data cache compares the
address of the request against the addresses of data that it is currently holding. If the line containing
the address of the request is resident in the cache, the access “hits’ the cache. For a load operation
the cache returns the requested data to the destination register and for a store operation the data is
stored into the cache. The data associated with the store may also be written to external memory if
write-through caching is specified for that area of memory. If the cache does not contain the
requested data, the access ‘misses’ the cache, and the sequence of events that follows depends on
the configuration of the cache, the configuration of the MMU and the page attributes.

3.6.2.2 Operation When Data Caching is Disabled

The data/mini-data cache is still accessed even though it is disabled. If a load hits the cache it will
return the requested data to the destination register. If a store hits the cache, the data is written into
the cache. Any access that misses the cache will not allocate a line in the cache when it’s disabled,
even if the MMU is enabled and the memory region’s cacheability attribute is set.

3.6.2.3 Cache Policies

3.6.2.3.1 Cacheability

Data at a specified address is cacheable given the following:
¢ the MMU is enabled
¢ the cacheable attribute is set in the descriptor for the accessed address

* and the data/mini-data cache is enabled

3.6.2.3.2 Read Miss Policy

The following sequence of events occurs when a cacheable load operation misses the cache:

1. The fill buffer is checked to see if an outstanding fill request already exists for that line.

If so, the current request is placed in the pending buffer and waits until the previously
requested fill completes, after which it accesses the cache again, to obtain the request data and
returns it to the destination register.

If there is no outstanding fill request for that line, the current load request is placed in the fill
buffer and a 32-byte external memory read request is made. If the pending buffer or fill buffer
is full, the XScale core will stall until an entry is available.

2. A line is allocated in the cache to receive the 32-bytes of fill data. The line selected is
determined by the round-robin pointer (see Section 3.6.2.4). The line chosen may contain a
valid line previously allocated in the cache. In this case both dirty bits are examined and if set,
the four words associated with a dirty bit that’s asserted will be written back to external
memory as a four word burst operation.

3. As data returns from external memory it is written into the cache in the previously allocated
line.
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A load operation that misses the cache and is NOT cacheable makes a request from external
memory for the exact data size of the original load request. For example, LDRH requests exactly
two bytes from external memory, LDR requests 4 bytes from external memory, etc. This request is
placed in the fill buffer until, the data is returned from external memory, which is then forwarded
back to the destination register(s).

Write Miss Policy

A write operation that misses the cache will request a 32-byte cache line from external memory if
the access is cacheable and write allocation is specified in the page. In this case the following
sequence of events occur:

1. The fill buffer is checked to see if an outstanding fill request already exists for that line.

If so, the current request is placed in the pending buffer and waits until the previously
requested fill completes, after which it writes its data into the recently allocated cache line.

If there is no outstanding fill request for that line, the current store request is placed in the fill
buffer and a 32-byte external memory read request is made. If the pending buffer or fill buffer
is full, the XScale core will stall until an entry is available.

2. The 32-bytes of data can be returned back to the XScale core in any word order, i.e, the eight
words in the line can be returned in any order. Note that it does not matter, for performance
reasons, which order the data is returned to the XScale core since the store operation has to
wait until the entire line is written into the cache before it can complete.

3. When the entire 32-byte line has returned from external memory, a line is allocated in the
cache, selected by the round-robin pointer (see Section 3.6.2.4). The line to be written into the
cache may replace a valid line previously allocated in the cache. In this case both dirty bits are
examined and if any are set, the four words associated with a dirty bit that’s asserted will be
written back to external memory as a 4 word burst operation. This write operation will be
placed in the write buffer.

4. The line is written into the cache along with the data associated with the store operation.

If the above condition for requesting a 32-byte cache line is not met, a write miss will cause a write
request to external memory for the exact data size specified by the store operation, assuming the
write request doesn’t coalesce with another write operation in the write buffer.

Write-Back Versus Write-Through

The XScale core supports write-back caching or write-through caching, controlled through the
MMU page attributes. When write-through caching is specified, all store operations are written to
external memory even if the access hits the cache. This feature keeps the external memory coherent
with the cache, i.e., no dirty bits are set for this region of memory in the data/mini-data cache. This
however does not guarantee that the data/mini-data cache is coherent with external memory, which
is dependent on the system level configuration, specifically if the external memory is shared by
another master.

When write-back caching is specified, a store operation that hits the cache will not generate a write
to external memory, thus reducing external memory traffic.
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Round-Robin Replacement Algorithm

The line replacement algorithm for the data cache is round-robin. Each set in the data cache has a

round-robin pointer that keeps track of the next line (in that set) to replace. The next line to replace
in a set is the next sequential line after the last one that was just filled. For example, if the line for

the last fill was written into way 5-set 2, the next line to replace for that set would be way 6. None
of the other round-robin pointers for the other sets are affected in this case.

After reset, way 31 is pointed to by the round-robin pointer for all the sets. Once a line is written
into way 31, the round-robin pointer points to the first available way of a set, beginning with way 0
if no lines have been re-configured as data RAM in that particular set. Re-configuring lines as data
RAM effectively reduces the available lines for cache updating. For example, if the first three lines
of a set were re-configured, the round-robin pointer would point to the line at way 3 after it rolled
over from way 31. Refer to Section 3.6.4 for more details on data RAM.

The mini-data cache follows the same round-robin replacement algorithm as the data cache except
that there are only two lines the round-robin pointer can point to such that the round-robin pointer
always points to the least recently filled line. A least recently used replacement algorithm is not
supported because the purpose of the mini-data cache is to cache data that exhibits low temporal
locality, i.e.,data that is placed into the mini-data cache is typically modified once and then written
back out to external memory.

Parity Protection

The data cache and mini-data cache are protected by parity to ensure data integrity; there is one
parity bit per byte of data. (The tags are NOT parity protected.) When a parity error is detected on a
data/mini-data cache access, a data abort exception occurs. Before servicing the exception,
hardware will set bit 10 of the Fault Status Register register.

A data/mini-data cache parity error is an imprecise data abort, meaning R14 ABORT (+8) may not
point to the instruction that caused the parity error. If the parity error occurred during a load, the
targeted register may be updated with incorrect data.

A data abort due to a data/mini-data cache parity error may not be recoverable if the data address
that caused the abort occurred on a line in the cache that has a write-back caching policy. Prior
updates to this line may be lost; in this case the software exception handler should perform a “clean
and clear” operation on the data cache, ignoring subsequent parity errors, and restart the offending
process. This operation is shown in Section 3.6.3.3.1.

Atomic Accesses

The SWP and SWPB instructions generate an atomic load and store operation allowing a memory
semaphore to be loaded and altered without interruption. These accesses may hit or miss the data/
mini-data cache depending on configuration of the cache, configuration of the MMU, and the page
attributes. Refer to Section 3.11.4 for more information.
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Data Cache and Mini-Data Cache Control

Data Memory State After Reset

After processor reset, both the data cache and mini-data cache are disabled, all valid bits are set to
zero (invalid), and the round-robin bit points to way 31. Any lines in the data cache that were
configured as data RAM before reset are changed back to cacheable lines after reset, i.e., there are
32 KBytes of data cache and zero bytes of data RAM.

Enabling/Disabling

The data cache and mini-data cache are enabled by setting bit 2 in coprocessor 15, register 1
(Control Register).

Example 8 shows code that enables the data and mini-data caches. Note that the MMU must be
enabled to use the data cache.

Example 8. Enabling the Data Cache

3.6.3.3

3.6.3.3.1

enableDCache:
MCR pl5, 0, r0, c7, cl0, 4; Drain pending data operations...
MRC pl5, 0, r0, cl, c0, 0; Get current control register

ORR r0, r0, #4 ; Enable DCache by setting ‘C’ (bit 2)
MCR pl5, 0, r0, cl, c0O, 0; And update the Control register

Invalidate and Clean Operations

Individual entries can be invalidated and cleaned in the data cache and mini-data cache via
coprocessor 15, register 7. Note that a line locked into the data cache remains locked even after it
has been subjected to an invalidate-entry operation. This will leave an unusable line in the cache
until a global unlock has occurred. For this reason, do not use these commands on locked lines.

This same register also provides the command to invalidate the entire data cache and mini-data
cache. These global invalidate commands have no effect on lines locked in the data cache. Locked
lines must be unlocked before they can be invalidated. This is accomplished by the Unlock Data
Cache command.

Global Clean and Invalidate Operation

A simple software routine is used to globally clean the data cache. It takes advantage of the line-
allocate data cache operation, which allocates a line into the data cache. This allocation evicts any
cache dirty data back to external memory. Example 9 shows how data cache can be cleaned.
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Example 9. Global Clean Operation

; Global Clean/Invalidate THE DATA CACHE

; R1 contains the virtual address of a region of cacheable memory reserved for
; this clean operation

; RO is the loop count; Iterate 1024 times which is the number of lines in the
; data cache

;; Macro ALLOCATE performs the line-allocation cache operation on the
;; address specified in register Rx.
MACRO ALLOCATE Rx
MCR P15, 0, Rx, C7, C2, 5
ENDM

MOV RO, #1024

LOOP1:
ALLOCATE R1 ; Allocate a line at the virtual address
; specified by R1.
ADD R1, R1, #32 ; Increment the address in R1 to the next cache line
SUBS RO, RO, #1 ; Decrement loop count
BNE LOOP1

;Clean the Mini-data Cache
; Can’t use line-allocate command, so cycle 2KB of unused data through.

; R2 contains the virtual address of a region of cacheable memory reserved for
; cleaning the Mini-data Cache

; RO is the loop count; Iterate 64 times which is the number of lines in the
; Mini-data Cache.

MOV RO, #64

LOOP2:

LDR R3, [R2],#32 ; Load and increment to next cache line
SUBS RO, RO, #1 ; Decrement loop count

BNE LOOP2

/

; Invalidate the data cache and mini-data cache
MCR P15, 0, RO, C7, C6, O

7

The line-allocate operation does not require physical memory to exist at the virtual address
specified by the instruction, since it does not generate a load/fill request to external memory. Also,
the line-allocate operation does not set the 32 bytes of data associated with the line to any known
value. Reading this data will produce unpredictable results.

The line-allocate command will not operate on the mini Data Cache, so system software must clean
this cache by reading 2KByte of contiguous unused data into it. This data must be unused and
reserved for this purpose so that it will not already be in the cache. It must reside in a page that is
marked as mini Data Cache cacheable.

The time it takes to execute a global clean operation depends on the number of dirty lines in cache.
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Re-configuring the Data Cache as Data RAM

Software has the ability to lock tags associated with 32-byte lines in the data cache, thus creating
the appearance of data RAM. Any subsequent access to this line will always hit the cache unless it
is invalidated. Once a line is locked into the data cache it is no longer available for cache allocation
on a line fill. Up to 28 lines in each set can be reconfigured as data RAM, such that the maximum
data RAM size is 28 Kbytes.

Hardware does not support locking lines into the mini-data cache; any attempt to do this will
produce unpredictable results.

There are two methods for locking tags into the data cache; the method of choice depends on the
application. One method is used to lock data that resides in external memory into the data cache
and the other method is used to re-configure lines in the data cache as data RAM. Locking data
from external memory into the data cache is useful for lookup tables, constants, and any other data
that is frequently accessed. Re-configuring a portion of the data cache as data RAM is useful when
an application needs scratch memory (bigger than the register file can provide) for frequently used
variables. These variables may be strewn across memory, making it advantageous for software to
pack them into data RAM memory.

Refer to the Intel® XScale® Core Developers Manual for code examples.

Tags can be locked into the data cache by enabling the data cache lock mode bit located in
coprocessor 15, register 9. Once enabled, any new lines allocated into the data cache will be locked
down.

Note that the PLD instruction will not affect the cache contents if it encounters an error while
executing. For this reason, system software should ensure the memory address used in the PLD is
correct. If this cannot be ascertained, replace the PLD with a LDR instruction that targets a scratch
register.

Lines are locked into a set starting at way(Q and may progress up to way 27; which set a line gets
locked into depends on the set index of the virtual address of the request. Figure 17 is an example
of where lines of code may be locked into the cache along with how the round-robin pointer is
affected.

Figure 17. Locked Line Effect on Round Robin Replacement

set 0: 8 ways locked, 24 ways available for round robin replacement
set 1: 23 ways locked, 9 ways available for round robin replacement
set 2: 28 ways locked, only ways 28-31 available for replacement
set 31: all 32 ways available for round robin replacement
set0 set 1 set 2 T set 31

way 0 3
way 1 =

8 3 3
way 7 = - ¥ <
way 8 <] e]

. | |
way 22
way 23 VAN
way 30
way 31
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Software can lock down data located at different memory locations. This may cause some sets to
have more locked lines than others as shown in Figure 17.

Lines are unlocked in the data cache by performing an unlock operation.

Before locking, the programmer must ensure that no part of the target data range is already resident
in the cache. The XScale core will not refetch such data, which will result in it not being locked
into the cache. If there is any doubt as to the location of the targeted memory data, the cache should
be cleaned and invalidated to prevent this scenario. If the cache contains a locked region which the
programmer wishes to lock again, then the cache must be unlocked before being cleaned and
invalidated.

Write Buffer/Fill Buffer Operation and Control

The write buffer is always enabled which means stores to external memory will be buffered. The K
bit in the Auxiliary Control Register (CP15, register 1) is a global enable/disable for allowing
coalescing in the write buffer. When this bit disables coalescing, no coalescing will occur
regardless the value of the page attributes. If this bit enables coalescing, the page attributes X, C,
and B are examined to see if coalescing is enabled for each region of memory.

All reads and writes to external memory occur in program order when coalescing is disabled in the
write buffer. If coalescing is enabled in the write buffer, writes may occur out of program order to
external memory. Program correctness is maintained in this case by comparing all store requests
with all the valid entries in the fill buffer.

The write buffer and fill buffer support a drain operation, such that before the next instruction
executes, all the XScale core data requests to external memory have completed.

Writes to a region marked non-cacheable/non-bufferable (page attributes C, B, and X all 0) will
cause execution to stall until the write completes.

If software is running in a privileged mode, it can explicitly drain all buffered writes.

Configuration

The System Control Coprocessor (CP15) configures the MMU, caches, buffers and other system
attributes. Where possible, the definition of CP15 follows the definition of the StrongARM*
products. Coprocessor 14 (CP14) contains the performance monitor registers and the trace buffer
registers.

CP15 is accessed through MRC and MCR coprocessor instructions and allowed only in privileged
mode. Any access to CP15 in user mode or with LDC or STC coprocessor instructions will cause
an undefined instruction exception.

CP14 registers can be accessed through MRC, MCR, LDC, and STC coprocessor instructions and
allowed only in privileged mode. Any access to CP14 in user mode will cause an undefined
instruction exception.

The XScale core Coprocessors, CP15 and CP14, do not support access via CDP, MRRC, or MCRR
instructions. An attempt to access these coprocessors with these instructions will result in an
Undefined Instruction exception.
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Many of the MCR commands available in CP15 modify hardware state sometime after execution.
A software sequence is available for those wishing to determine when this update occurs.

Like certain other ARM* architecture products, the XScale core includes an extra level of virtual
address translation in the form of a PID (Process ID) register and associated logic. Privileged code
needs to be aware of this facility because, when interacting with CP15, some addresses are
modified by the PID and others are not.

An address that has yet to be modified by the PID (“PIDified”) is known as a virtual address (VA).
An address that has been through the PID logic, but not translated into a physical address, is a
modified virtual address (MVA). Non-privileged code always deals with VAs, while privileged
code that programs CP15 occasionally needs to use MVAs.

For details refer to the Intel® XScale® Core Developer s Manual.

Performance Monitoring

The XScale core hardware provides two 32-bit performance counters that allow two unique events
to be monitored simultaneously. In addition, the XScale core implements a 32-bit clock counter
that can be used in conjunction with the performance counters; its sole purpose is to count the
number of core clock cycles which is useful in measuring total execution time.

The XScale core can monitor either occurrence events or duration events. When counting
occurrence events, a counter is incremented each time a specified event takes place and when
measuring duration, a counter counts the number of processor clocks that occur while a specified
condition is true. If any of the 3 counters overflow, an IRQ or FIQ will be generated if it’s enabled.
(Refer to the Intel® IXP2400/IXP2800 Network Processor Programmer s Reference Manual) Each
counter has its own interrupt enable. The counters continue to monitor events even after an
overflow occurs, until disabled by software.

Each of these counters can be programmed to monitor any one of various events.

To further augment performance monitoring, the XScale core clock counter can be used to measure
the executing time of an application. This information combined with a duration event can
feedback a percentage of time the event occurred with respect to overall execution time.

Each of the three counters and the performance monitoring control register are accessible through
Coprocessor 14 (CP14), registers 0-3. Access is allowed in privileged mode only.

The following are a few notes about controlling the performance monitoring mechanism:

* An interrupt will be reported when a counter’s overflow flag is set and its associated interrupt
enable bit is set in the PMNC register. The interrupt will remain asserted until software clears
the overflow flag by writing a one to the flag that is set. Note that the product specific interrupt
unit and the CPSR must have enabled the interrupt in order for software to receive it.

* The counters continue to record events even after they overflow.
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Performance Monitoring Events

Table 8 lists events that may be monitored by the PMU. Each of the Performance Monitor Count
Registers (PMNO and PMN1) can count any listed event. Software selects which event is counted
by each PMNXx register by programming the evtCountx fields of the PMNC register.

Table 8. Performance Monitoring Events

Event Number
(evtCount0 or
evtCount1)

Event Definition

0x0

Instruction cache miss requires fetch from external memory.

0x1

Instruction cache cannot deliver an instruction. This could indicate an ICache miss or an
ITLB miss. This event will occur every cycle in which the condition is present.

0x2

Stall due to a data dependency. This event will occur every cycle in which the condition is
present.

0x3

Instruction TLB miss.

0x4

Data TLB miss.

0x5

Branch instruction executed, branch may or may not have changed program flow.

0x6

Branch mispredicted. (B and BL instructions only.)

0x7

Instruction executed.

0x8

Stall because the data cache buffers are full. This event will occur every cycle in which the
condition is present.

0x9

Stall because the data cache buffers are full. This event will occur once for each contiguous
sequence of this type of stall.

O0xA

Data cache access, not including Cache Operations

0xB

Data cache miss, not including Cache Operations

0xC

Data cache write-back. This event occurs once for each 1/2 line (four words) that are
written back from the cache.

0xD

Software changed the PC. This event occurs any time the PC is changed by software and
there is not a mode change. For example, a mov instruction with PC as the destination will
trigger this event. Executing a swi from User mode will not trigger this event, because it will
incur a mode change.

0x10 through
0x17

Refer to the Intef® IXP2400/1XP2800 Network Processor Programmer’s Reference Manual
for more details.

all others

Reserved, unpredictable results

Some typical combination of counted events are listed in this section and summarized in Table 9.
In this section, we call such an event combination a mode.

Table 9.

Some Common Uses of the PMU

PMNC.evtCount1

78

Mode

PMNC.evtCount0

Instruction Cache Efficiency

0x7 (instruction count)

0x0 (ICache miss)

Data Cache Efficiency

0xA (Dcache access)

0xB (DCache miss)

Instruction Fetch Latency

0x1 (ICache cannot deliver)

0x0 (ICache miss)

Data/Bus Request Buffer Full

0x8 (DBuffer stall duration)

0x9 (DBuffer stall)

Stall/Writeback Statistics

0x2 (data stall)

0xC (DCache writeback)

Instruction TLB Efficiency

0x7 (instruction count)

0x3 (ITLB miss)

Data TLB Efficiency

0xA (Dcache access)

0x4 (DTLB miss)
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Instruction Cache Efficiency Mode

PMNO totals the number of instructions that were executed, which does not include instructions
fetched from the instruction cache that were never executed. This can happen if a branch
instruction changes the program flow; the instruction cache may retrieve the next sequential
instructions after the branch, before it receives the target address of the branch.

PMNI1 counts the number of instruction fetch requests to external memory. Each of these requests
loads 32 bytes at a time.

Statistics derived from these two events:
* Instruction cache miss-rate. This is derived by dividing PMN1 by PMNO.

* The average number of cycles it took to execute an instruction or commonly referred to as
cycles-per-instruction (CPI). CPI can be derived by dividing CCNT by PMNO, where CCNT
was used to measure total execution time.

Data Cache Efficiency Mode

PMNO totals the number of data cache accesses, which includes cacheable and non-cacheable
accesses, mini-data cache access and accesses made to locations configured as data RAM.

Note that STM and LDM will each count as several accesses to the data cache depending on the
number of registers specified in the register list. LDRD will register two accesses.

PMNI1 counts the number of data cache and mini-data cache misses. Cache operations do not
contribute to this count.

Statistics derived from these two events are:
- Data cache miss-rate. This is derived by dividing PMN1 by PMNO

Instruction Fetch Latency Mode

PMNO accumulates the number of cycles when the instruction-cache is not able to deliver an
instruction to the XScale core due to an instruction-cache miss or instruction-TLB miss. This event
means that the processor core is stalled.

PMNI1 counts the number of instruction fetch requests to external memory. Each of these requests
loads 32 bytes at a time. This is the same event as measured in instruction cache efficiency mode
and is included in this mode for convenience so that only one performance monitoring run is need.

Statistics derived from these two events:

* The average number of cycles the processor stalled waiting for an instruction fetch from
external memory to return. This is calculated by dividing PMNO by PMNI1. If the average is
high then the XScale core may be starved of the bus external to the XScale core.

* The percentage of total execution cycles the processor stalled waiting on an instruction fetch
from external memory to return. This is calculated by dividing PMNO by CCNT, which was
used to measure total execution time.
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Data/Bus Request Buffer Full Mode

The Data Cache has buffers available to service cache misses or uncacheable accesses. For every
memory request that the Data Cache receives from the processor core a buffer is speculatively
allocated in case an external memory request is required or temporary storage is needed for an
unaligned access. If no buffers are available, the Data Cache will stall the processor core. How
often the Data Cache stalls depends on the performance of the bus external to the XScale core and
what the memory access latency is for Data Cache miss requests to external memory. If the XScale
core memory access latency is high, possibly due to starvation, these Data Cache buffers will
become full. This performance monitoring mode is provided to see if the XScale core is being
starved of the bus external to the XScale core, which will effect the performance of the application
running on the XScale core.

PMNO accumulates the number of clock cycles the processor is being stalled due to this condition
and PMNI1 monitors the number of times this condition occurs.

Statistics derived from these two events:

* The average number of cycles the processor stalled on a data-cache access that may overflow
the data-cache buffers. This is calculated by dividing PMNO by PMNI. This statistic lets you
know if the duration event cycles are due to many requests or are attributed to just a few
requests. If the average is high then the XScale core may be starved of the bus external to the
XScale core.

* The percentage of total execution cycles the processor stalled because a Data Cache request
buffer was not available. This is calculated by dividing PMNO by CCNT, which was used to
measure total execution time.

Stall/Writeback Statistics

When an instruction requires the result of a previous instruction and that result is not yet available,
the XScale core stalls in order to preserve the correct data dependencies. PMNO counts the number
of stall cycles due to data-dependencies. Not all data-dependencies cause a stall; only the following
dependencies cause such a stall penalty:

* Load-use penalty: attempting to use the result of a load before the load completes. To avoid the
penalty, software should delay using the result of a load until it’s available. This penalty shows
the latency effect of data-cache access.

* Multiply/Accumulate-use penalty: attempting to use the result of a multiply or multiply-
accumulate operation before the operation completes. Again, to avoid the penalty, software
should delay using the result until it’s available.

* ALU use penalty: there are a few isolated cases where back to back ALU operations may
result in one cycle delay in the execution.

PMNI1 counts the number of writeback operations emitted by the data cache. These writebacks
occur when the data cache evicts a dirty line of data to make room for a newly requested line or as
the result of clean operation (CP15, register 7).

Statistics derived from these two events:

* The percentage of total execution cycles the processor stalled because of a data dependency.
This is calculated by dividing PMNO by CCNT, which was used to measure total execution
time. Often a compiler can reschedule code to avoid these penalties when given the right
optimization switches.

¢ Total number of data writeback requests to external memory can be derived solely with PMNI1.
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Instruction TLB Efficiency Mode

PMNO totals the number of instructions that were executed, which does not include instructions
that were translated by the instruction TLB and never executed. This can happen if a branch
instruction changes the program flow; the instruction TLB may translate the next sequential
instructions after the branch, before it receives the target address of the branch.

PMNI1 counts the number of instruction TLB table-walks, which occurs when there is a TLB miss.
If the instruction TLB is disabled PMN1 will not increment.

Statistics derived from these two events:
* Instruction TLB miss-rate. This is derived by dividing PMN1 by PMNO.

* The average number of cycles it took to execute an instruction or commonly referred to as
cycles-per-instruction (CPI). CPI can be derived by dividing CCNT by PMNO, where CCNT
was used to measure total execution time.

Data TLB Efficiency Mode

PMNO totals the number of data cache accesses, which includes cacheable and non-cacheable
accesses, mini-data cache access and accesses made to locations configured as data RAM.

Note that STM and LDM will each count as several accesses to the data TLB depending on the
number of registers specified in the register list. LDRD will register two accesses.

PMNI1 counts the number of data TLB table-walks, which occurs when there is a TLB miss. If the
data TLB is disabled PMN1 will not increment.

The statistic derived from these two events is:

¢ Data TLB miss-rate. This is derived by dividing PMN1 by PMNO.

Multiple Performance Monitoring Run Statistics

Even though only two events can be monitored at any given time, multiple performance monitoring
runs can be done, capturing different events from different modes. For example, the first run could
monitor the number of writeback operations (PMN1 of mode, Stall/Writeback) and the second run
could monitor the total number of data cache accesses (PMNO of mode, Data Cache Efficiency).
From the results, a percentage of writeback operations to the total number of data accesses can be
derived.

Performance Considerations

This section describes relevant performance considerations that compiler writers, application
programmers and system designers need to be aware of to efficiently use the XScale core.
Performance numbers discussed here include interrupt latency, branch prediction, and instruction
latencies.
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Interrupt Latency

Minimum Interrupt Latency is defined as the minimum number of cycles from the assertion of any
interrupt signal (IRQ or FIQ) to the execution of the instruction at the vector for that interrupt. This
number assumes best case conditions exist when the interrupt is asserted, e.g., the system isn’t
waiting on the completion of some other operation.

A sometimes more useful number to work with is the Maximum Interrupt Latency. This is typically
a complex calculation that depends on what else is going on in the system at the time the interrupt
is asserted. Some examples that can adversely affect interrupt latency are:

¢ the instruction currently executing could be a 16-register LDM,
¢ the processor could fault just when the interrupt arrives,
¢ the processor could be waiting for data from a load, doing a page table walk, etc., and

* high core to system (bus) clock ratios.

Maximum Interrupt Latency can be reduced by:

¢ ensuring that the interrupt vector and interrupt service routine are resident in the instruction
cache. This can be accomplished by locking them down into the cache.

¢ removing or reducing the occurrences of hardware page table walks. This also can be
accomplished by locking down the application’s page table entries into the TLBs, along with
the page table entry for the interrupt service routine.

Branch Prediction

The XScale core implements dynamic branch prediction for the ARM* instructions B and BL and
for the Thumb instruction B. Any instruction that specifies the PC as the destination is predicted as
not taken. For example, an LDR or a MOV that loads or moves directly to the PC will be predicted
not taken and incur a branch latency penalty.

These instructions -- ARM B, ARM BL and Thumb B -- enter into the branch target buffer when
they are “taken” for the first time. (A “taken” branch refers to when they are evaluated to be true.)
Once in the branch target buffer, the XScale core dynamically predicts the outcome of these
instructions based on previous outcomes. Table 10 shows the branch latency penalty when these
instructions are correctly predicted and when they are not. A penalty of zero for correct prediction
means that the XScale core can execute the next instruction in the program flow in the cycle
following the branch.

Table 10. Branch Latency Penalty

82

Core Clock Cycles
Description

ARM* Thumb

Predicted Correctly. The instruction is in the branch target cache and is

+0 *+0 correctly predicted.

Mispredicted. There are three occurrences of branch misprediction, all of
which incur a 4-cycle branch delay penalty.
1. The instruction is in the branch target buffer and is predicted not-taken, but
+4 +5 is actually taken.
2. The instruction is not in the branch target buffer and is a taken branch.
3. The instruction is in the branch target buffer and is predicted taken, but is
actually not-taken
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Addressing Modes

All load and store addressing modes implemented in the XScale core do not add to the instruction
latencies numbers.

Instruction Latencies

The latencies for all the instructions are shown in the following sections with respect to their
functional groups: branch, data processing, multiply, status register access, load/store, semaphore,
and coprocessor.

The following section explains how to read these tables.

Performance Terms

Issue Clock (cycle 0)

The first cycle when an instruction is decoded and allowed to proceed to further stages in the
execution pipeline (i.e., when the instruction is actually issued).

Cycle Distance from A to B

The cycle distance from cycle A4 to cycle B is (B-A) -- that is, the number of cycles from the
start of cycle A4 to the start of cycle B. Example: the cycle distance from cycle 3 to cycle 4 is
one cycle.

Issue Latency

The cycle distance from the first issue clock of the current instruction zo the issue clock of the
next instruction. The actual number of cycles can be influenced by cache-misses, resource-
dependency stalls, and resource availability conflicts.

Result Latency

The cycle distance firom the first issue clock of the current instruction zo the issue clock of the
first instruction that can use the result without incurring a resource dependency stall. The
actual number of cycles can be influenced by cache-misses, resource-dependency stalls, and
resource availability conflicts

Minimum Issue Latency (without Branch Misprediction)

The minimum cycle distance firom the issue clock of the current instruction zo the first possible
issue clock of the next instruction assuming best case conditions (i.c., that the issuing of the
next instruction is not stalled due to a resource dependency stall; the next instruction is
immediately available from the cache or memory interface; the current instruction does not
incur resource dependency stalls during execution that can not be detected at issue time; and if
the instruction uses dynamic branch prediction, correct prediction is assumed).

Minimum Result Latency

The required minimum cycle distance from the issue clock of the current instruction zo the
issue clock of the first instruction that can use the result without incurring a resource
dependency stall assuming best case conditions (i.e., that the issuing of the next instruction is
not stalled due to a resource dependency stall; the next instruction is immediately available
from the cache or memory interface; and the current instruction does not incur resource
dependency stalls during execution that can not be detected at issue time).

Minimum Issue Latency (with Branch Misprediction)

The minimum cycle distance from the issue clock of the current branching instruction #o the
first possible issue clock of the next instruction. This definition is identical to Minimum Issue
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Latency except that the branching instruction has been mispredicted. It is calculated by adding
Minimum Issue Latency (without Branch Misprediction) to the minimum branch latency
penalty number from Table 10, which is four cycles.

Minimum Resource Latency

The minimum cycle distance from the issue clock of the current multiply instruction to the
issue clock of the next multiply instruction assuming the second multiply does not incur a data
dependency and is immediately available from the instruction cache or memory interface.

Example 10contains a code fragment and an example of computing latencies.

Example 10. Computing Latencies

UMLALr6,r8,r0,rl
ADD r9,rl10,rll
SUB r2,r8,r9

MOV r0,rl

Table 11 shows how to calculate Issue Latency and Result Latency for each instruction. Looking at
the issue column, the UMLAL instruction starts to issue on cycle 0 and the next instruction, ADD,
issues on cycle 2, so the Issue Latency for UMLAL is two. From the code fragment, there is a
result dependency between the UMLAL instruction and the SUB instruction. In Table 11,
UMLAL starts to issue at cycle 0 and the SUB issues at cycle 5. thus the Result Latency is five.

Table 11. Latency Example

Cycle Issue Executing
0 umlal (1st cycle) --
1 umlal (2nd cycle) umlal
2 add umlal
3 sub (stalled) umlal & add
4 sub (stalled) umlal
5 sub umlal
6 mov sub
7 - mov
3.94.2 Branch Instruction Timings

Table 12. Branch Instruction Timings (Those predicted by the BTB)

Mnemonic Minimum Issue Latency when Correctly Minimum Issue Latency with Branch
Predicted by the BTB Misprediction
B 1 5
BL 1 5
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Table 13. Branch Instruction Timings (Those not predicted by the BTB)

Minimum Issue Latency when

Minimum Issue Latency when

Mnemonic the branch is not taken the branch is taken
BLX(1) N/A 5
BLX(2) 1 5
BX 1 5

Data Processing Instruction with
PC as the destination

Same as Table 14

4 + numbers in Table 14

LDR PC,<>

2

8

LDM with PC in register list

3 + numreg?

10 + max (0, numreg-3)

a.

3.94.3

numreg is the number of registers in the register list including the PC.

Data Processing Instruction Timings

Table 14. Data Processing Instruction Timings

<shifter operand> is NOT a Shift/Rotate

<shifter operand> is a Shift/Rotate by

Mnemonic

by Register

Register OR
<shifter operand> is RRX

Minimum Issue
Latency

Minimum Result
Latency?

Minimum Issue
Latency

Minimum Result
Latency?

ADC

N

ADD

AND

BIC

CMN

CMP

EOR

MOV

MVN

ORR

RSB

RSC

SBC

SuB

TEQ

NINININNIN|DNNINDNNINDNN

NIN[INIDNNINIDNNINDNNN]DNNN

Al alalalalalalalalalalalalalafa

TST

Al alalalalalalalalalalalalaflafa

N

N

a.

If the next instruction needs to use the result of the data processing for a shift by immediate or as Rn in a QDADD or QDSUB,
one extra cycle of result latency is added to the number listed.

Hardware Reference Manual

85



Intel® IXP2400 Network Processor u

Intel® XScale® Core I n o
3.94.4 Multiply Instruction Timings
Table 15. Multiply Instruction Timings (Sheet 1 of 2)
Mnemonic Rs Value S-Bit Minimum Minimum Result Minimum Resource
(Early Termination) | Value | Issue Latency Latency? Latency (Throughput)
Rs[31:15] = 0x00000 | O 1 2 1
or
Rs[31:15] = Ox1FFFF | 1 2 2 2
Rs[31:27] = 0x00 0 1 3 2
MLA o
Rs[31:27] = Ox1F 1 3 3 3
0 1 4 3
all others
1 4 4 4
Rs[31:15] = 0x00000 | O 1 2 1
or
Rs[31:15] = Ox1FFFF | 1 2 2 2
Rs[31:27] = 0x00 0 1 3 2
MUL o
Rs[31:27] = Ox1F 1 3 3 3
0 1 4 3
all others
1 4 4 4
Rs[31:15] = 0x00000 | O 2 RdLo = 2; RdHi = 3 2
or
Rs[31:15] = Ox1FFFF | 1 3 3 3
Rs[31:27] = 0x00 0 2 RdLo = 3; RdHi = 4 3
SMLAL or
Rs[31:27] = Ox1F 1 4 4 4
0 2 RdLo = 4; RdHi = 5 4
all others
1 5 5 5
SMLALXxy N/A N/A 2 RdLo = 2; RdHi = 3 2
SMLAWY N/A N/A 1 3 2
SMLAxy N/A N/A 1 2 1
Rs[31:15] = 0x00000 | O 1 RdLo = 2; RdHi = 3 2
or
Rs[31:15] = Ox1FFFF | 1 3 3 3
Rs[31:27] = 0x00 0 1 RdLo = 3; RdHi = 4 3
SMULL or
Rs[31:27] = Ox1F 1 4 4 4
0 1 RdLo = 4; RdHi = 5 4
all others
1 5 5 5
SMULWYy N/A N/A 1 3 2
SMULxy N/A N/A 1 2 1
0 2 RdLo = 2; RdHi = 3 2
Rs[31:15] = 0x00000
1 3 3 3
0 2 RdLo = 3; RdHi = 4 3
UMLAL Rs[31:27] = 0x00
1 4 4 4
0 2 RdLo = 4; RdHi = 5 4
all others
1 5 5 5
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Mnemonic Rs Value S-Bit Minimum Minimum Result Minimum Resource

(Early Termination) | Value | Issue Latency Latency? Latency (Throughput)
0 1 RdLo = 2; RdHi =3 2

Rs[31:15] = 0x00000
1 3 3 3
0 1 RdLo = 3; RdHi = 4 3

UMULL Rs[31:27] = 0x00
1 4 4 4
0 1 RdLo = 4; RdHi =5 4
all others

1 5 5 5

a.  If the next instruction needs to use the result of the multiply for a shift by immediate or as Rn in a QDADD or QDSUB, one
extra cycle of result latency is added to the number listed.

Table 16. Multiply Implicit Accumulate Instruction Timings

. Rs Value (Early Minimum Issue Minimum Result Minimum Resource
Mnemonic Termination) Latency Latency Latency
(Throughput)
Rs[31:16] = 0x0000
or 1 1 1
Rs[31:16] = OXFFFF
MIA Rs[31:28] = 0x0
or 1 2 2
Rs[31:28] = OxF
all others 1 3 3
MIAxy N/A 1 1 1
MIAPH N/A 1 2 2

Table 17. Implicit Accumulator Access Instruction Timings
Mnemonic Minimum Issue Latency Minimum Result Latency Minimum Resource Latency
(Throughput)
MAR 2 2 2
MRA 1 (RdLo = 2; RdHi = 3)3 2
a. If the next instruction needs to use the result of the MRA for a shift by immediate or as Rn in a QDADD or QDSUB, one extra
cycle of result latency is added to the number listed.
3.94.5 Saturated Arithmetic Instructions

Table 18. Saturated Data Processing Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency
QADD 1 2
QSuUB 1 2
QDADD 1 2
QDSUB 1 2
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3.94.6 Status Register Access Instructions

Table 19. Status Register Access Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency
MRS 1 2
MSR 2 (6 if updating mode bits) 1

3.9.4.7

Load/Store Instructions

Table 20. Load and Store Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency
LDR 1 3 for load data; 1 for writeback of base
LDRB 1 3 for load data; 1 for writeback of base
LDRBT 1 3 for load data; 1 for writeback of base
LDRD 1 (+1if Rdis R12) 3 for Rd; 4 for Rd+1; 2 for writeback of base
LDRH 1 3 for load data; 1 for writeback of base
LDRSB 1 3 for load data; 1 for writeback of base
LDRSH 1 3 for load data; 1 for writeback of base
LDRT 1 3 for load data; 1 for writeback of base
PLD 1 N/A
STR 1 1 for writeback of base
STRB 1 1 for writeback of base
STRBT 1 1 for writeback of base
STRD 2 1 for writeback of base
STRH 1 1 for writeback of base
STRT 1 1 for writeback of base

Table 21. Load and Store Multiple Instruction Timings

Mnemonic Minimum Issue Latency? Minimum Result Latency
LDM 3-23 1-3 for load data; 1 for writeback of base
STM 3-18 1 for writeback of base

a. LDM issue latency is 7 + N if R15 is in the register list and 2 + N if it is not. STM issue latency is calculated as 2 + N. N is
the number of registers to load or store.

3.94.8 Semaphore Instructions

Table 22. Semaphore Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency
SWP 5 5
SWPB 5 5

88 Hardware Reference Manual



intel.
3.94.9

Table 23.

Table 24.

3.9.4.10

Table 25.

Table 26.

3.9.4.11

3.10

Intel® IXP2400 Network Processor

Intel® XScale® Core
Coprocessor Instructions
CP15 Register Access Instruction Timings
Mnemonic Minimum Issue Latency Minimum Result Latency
MRC 4 4
MCR 2 N/A
CP14 Register Access Instruction Timings
Mnemonic Minimum Issue Latency Minimum Result Latency
MRC 7 7
MCR 7 N/A
LDC 10 N/A
STC 7 N/A
Miscellaneous Instruction Timing
SWI Instruction Timings
Mnemonic Minimum latency to first instruction of SWI exception handler
SWI 6
Count Leading Zeros Instruction Timings
Mnemonic Minimum Issue Latency Minimum Result Latency
CLz 1 1

Thumb Instructions

The timing of Thumb instructions are the same as their equivalent ARM* instructions. This
mapping can be found in the ARM* Architecture Reference Manual. The only exception is the
Thumb BL instruction when H = 0; the timing in this case would be the same as an ARM* data
processing instruction.

IXP2400 Network Processor Endianness

Endianness defines the way bytes are addressed within a word. A little endian system is one in
which byte zero is the least significant byte (LSB) in the word and byte three is the most significant
byte. A big endian system is one in which byte zero is the most significant byte (MSB) and byte 3
is the LSB. For example the value of 0x12345678 at address 0x0 in a 32-bit little endian system
looks like this:
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Table 27. Little Endian Encoding

Add'f::éByte 0x0/ByteLane 3 0x0/ByteLane 2 0x0/ByteLane 1 0x0/ByteLane 0
Byte Value 0x12 0x34 0x56 0x78

The same value is stored in Big Endian system looks like this:

Table 28. Big Endian Encoding

Addl&s:éByte 0x0/ByteLane 3 0x0/ByteLane 2 0x0/ByteLane 1 0x0/ByteLane 0
Byte Value 0x78 0x56 0x34 0x12

Bits within a byte are always in Little Endian order. The least significant bit resides at bit location 0
and the most significant bit resides at bit location 7 (7:0).

The following conventions are used in this document:
1 Byte: 8-bit data
1 Word: 16-bit data
1 Long-word: 32-bit data

Long Word Little Endian  32-bit data (0x12345678) arranged as {12 34 56 78}
Format (LWLE) 64-bit data 0x12345678 9ABCDES56 arranged as {12 34 56 78 9A BC DE 56}

Long Word-Big Endian format 32-bit data (0x12345678) arranged as {78 56 34 12}
(LWBE): 64-bit data 0x12345678 9ABCDES56 arranged as {78 56 34 12, 56 DE BC 9A}

Endianness for the IXP2400 processor can be divided into three major categories:
* Read and write transactions initiated by the XScale core:
— Reads initiated by XScale core
— Writes initiated by XScale core
* SRAM and DRAM access:
— 64-bit Data transfer between DRAM and the XScale core
— Byte, word or long-word transfer between SRAM/DRAM and XScale core
— Data transfer between SRAM/DRAM and PCI
— Microengine initiated access to SRAM and DRAM
¢ PCI Accesses
— the XScale core generated reads/writes to PCI in memory space

— the XScale core generated read/write of external/internal PCI config registers
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Table 29.

Intel® IXP2400 Network Processor
Intel® XScale® Core

Read and Write Transactions
Initiated by the Intel® XScale® Core

The XScale core may be used in either a little endian or big endian configuration. The
configuration affects the entire system in which the XScale microarchitecture resides. Software and
hardware must agree on the byte ordering to be used. In software, a system’s byte order is
configured with CP15 register 1, the control register. Bit 7 of this register, the B bit, informs the
processor of the byte order in use by the system. Note that this bit takes effect even if the MMU is
not otherwise in use or enabled.

Though it is the responsibility of system hardware to assign correct byte lanes to each byte field in
the data bus, in the IXP2400 it is left to the software to interpret byte lanes in accordance with the
endianness of the system. As shown in Figure 18, system byte lanes 0—3 are connected directly to
the XScale core byte lanes 0-3. What this means is that byte lane 0 (M[7:0]) of the system is
connected to byte lane 0 (X[7:0]) of the XScale core, byte lane 1 (M[15:8]) of the system is
connected to byte lane 1 (X[15:8]) of the XScale core and so on.

Interface operation of the XScale core and the rest of the IXP2400 can be divided into two parts:
* XScale core reading from the IXP2400
* XScale core writing to the IXP2400

Reads Initiated by Intel® XScale® Core

XScale core reads can be one of the following three types:
* Byte read
* 16-bits (word) read
* 32-bits (Long Word) read

Byte Read

When reading a byte, the XScale core generates the byte enable that corresponds to the proper byte
lane as defined by the endianness setting. Table 29 summarizes byte enable generation for this
mode.

Byte Enable Generation by the Intel® XScale® Core for Byte
Transfers in Little and Big Endian System

Byte# to Byte Enables When System is Little Endian Byte Enables When System is Big Endian

beread | y prro; | X BEM] | X_BE[2] | X_BE[3] | X_BE[0] | X_BE[] | X_BE[2] | X_BE[3]
Byte0 1 0 0 0 0 0 0 1
Byte1 0 1 0 0 0 0 1 0
Byte2 0 0 1 0 0 1 0 0
Byte3 0 0 0 1 1 0 0 0

The 4-to-1 mux steers the byte read into byte lane 0 location of the read register inside the XScale
core. Select signals for the mux are generated based on endian setting and ByteEnable generated by
the XScale core as defined in Figure 18.
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16-bit (Word) Read

When reading a word, the XScale core generates the byte enable that corresponds to the proper
byte lane as defined by the endianness setting. Figure 19 summarizes byte enable generation for
this mode.

The 4-to-1 mux steers Byte lane 0 or Byte lane 2 into Byte0 location of the read register inside the
XScale core. The 2-to-1 mux steers Byte lane 1 or Byte lane 3 into Bytel location of the read
register inside the XScale core. The XScale core does not allow word access to an odd byte
address. Select signals for the mux are generated based on endian setting and ByteEnable generated
by the XScale core as defined in Figure 18. Table 30 summarizes byte enable generation for this
mode.

Figure 18. Byte Steering for Read and Byte Enable
Generation by the Intel® XScale® Core

Intel XScale® Core
%l< X[7:0] Byte 0
) S0| 1] Intel® IXP2400
D{7:0] 2| M[7:0] Gasket
3|
A X[15:8] Byte 1 )
D[15:8] S1 13 < M[15:8]
D[23:16] |- X[23:16] Byte 2 M[23:16]
X[31:24] Byt
D[31:24] |- [31:241 Byte 3 M[31:24]
BEO N X_BE[0] _
1 , >
BE1 JoN X_BE[] _
1 , >
1 7 )
BE2 |_3% X_BE[2]
1 , >
BE3 4oy X BE[3] _
1 , >
Big Endian =0
Little Endian = 1
Notes:
For 32-bit Operation S0[3:0] = 0001; S1[1:0] = 01
Otherwise: S0[3:0] = X_BE[3:0]; S1[1:0] = X_BE[1:2]
B2857-01
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Table 30.

3.10.1.2

Table 31.

Intel® IXP2400 Network Processor
Intel® XScale® Core

Byte Enable Generation by the Intel® XScale® Core for 16-bit Data
Transfer in Little and Big Endian Systems

Word to Byte Enables When System is Little Endian Byte Enables When System is Big Endian
beread |y BE[0] | X_BE[T] | X_BE[2] | X_BE[3] | X_BE[0] | X_BE[1] | X_BE[2] | X_BE[3]
Byte0 &

Byte1 1 1 0 0 0 0 1 1
Byte2 &

Byte3 0 0 1 1 1 1 0 0

32-bits (Long Word) Read

32-bits (long Word) reads are independent of endianness setting and byte lane 0 from the XScale
core’s data bus gets into Byte 0 location of the read register inside XScale core, byte lane 1 from
XScale core’s data bus gets into Bytel location of the read register inside XScale core and so on. It
is up to the software to deal with byte location properly based on the endian setting.

The Intel® XScale® Core Writing to the IXP2400

Similar to reads, writes by XScale core can also be divided in following three categories:
* Byte Write
* Word Write (16-bits)
* Long Word write (32-bits)

Byte Write

When XScale core writes single byte to external memory, it puts the byte in the byte lane where it
intends to write it along with the byte enable for that byte turned ON based on endian setting of the
system. XScale core register bits [7:0] always contain the byte to be written regardless of the B-bit
setting. For example if the XScale core wants to write to byte 0 in little endian system, it puts the
byte in byte lane0 and turns X_BE[0] ON. If the system is big endian, in that case the XScale core
puts byte0 in byte lane 3 and turns X_BE[3] ON. Other possible combinations of byte lanes and
byte enables are shown in the Table 31. Other byte lanes besides the one currently driven by the
XScale core contain undefined data.

Byte Enable Generation by the Intel® XScale® Core for Byte
Write In Little and Big Endian System

Byte# Byte Enables when system is Little Endian Byte Enables when system is Big Endian
to be

written | X_BE[0] | X_BE[1] | X_BE[2] | X_BE[3] | X_BE[0] | X_BE[1] | X_BE[2] | X_BE[3]
Byte0 1 0 0 0 0 0 0 1
Byte1 0 1 0 0 0 0 1 0
Byte2 0 0 1 0 0 1 0 0
Byte3 0 0 0 1 1 0 0 0

Word Write (16-bits Write)
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Table 32.

When the XScale core writes a 16-bit word to external memory, it puts the bytes in the byte lanes
where it intends to write them along with the byte enables for those bytes turned ON based on the
endian setting of the system. The XScale core does not allow a word write on an odd byte address.
The XScale core register bits [15:0] always contain the word to be written regardless of the B-bit
setting. For example if the XScale core wants to write one word to a little endian system at address
0x0002, it will copy byte0 to byte lane 2 and bytel to byte lane 3 along with X BE[2] and

X _BE[3] turned ON. If the XScale core wants to write one word to a big endian system at address
0x0002, it will copy byte0 to byte lane 0 and bytel to byte lane 1 along with X BE[0] and

X _BE[1] turned ON. Other possible combinations of byte lanes and byte enables are shown in
Table 32. Other byte lanes besides the ones currently driven by the XScale core contain undefined
data.

Byte Enable Generation by the Intel® XScale® Core for Word
Writes in Little-Endian and Big-Endian Systems

Word Byte Enables When System is Little Endian Byte Enables When System is Big Endian
to be
written X_BE[0] | X_BE[1] | X_BE[2] | X_BE[3] | X_BE[0] | X_BE[1] | X_BE[2] | X_BE[3]

Byte0 &

Bytet 1 1 0 0 0 0 1 1
Byte2 &
Byte3 0 0 1 1 1 1 0 0

Long Word (32-bits) Write

The long word to be written is put on the XScale core’s data bus with byte0 on X[7:0], bytel on
X[15:8], byte2 on X[23:16] and byte4 on X[31:24] (see Figure 19). All the byte enables are turned
ON. A 32-bit long word write (0x12345678) by the XScale core to address 0x0000 irrespective of
the endianness of the system causes byte0 (0x78) to be written to address 0x0000, bytel (0x56) to
address 0x0001, byte2 (0x34) to address 0x0002 and byte3 (0x12) to address 0x0003.

Figure 19. Intel® XScale® Core Initiated Write to the IXP2400 Network Processor

Byte Write by Intel XScale® Core

Intel® IXP2400
Byte .
W);ite _) X7 M[7:0] Gasket
) X [15:8]
M[15:8]
) X [23:16]
M[23:16]
) X [31:24]
M[31:24]

B2858-01
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Intel® IXP2400 Network Processor
Intel® XScale® Core

Figure 19. Intel® XScale® Core Initiated Write to the IXP2400 Network Processor (Continued)

3.1

3.11.1

Word Write by Intel XScale® Core
Intel® IXP2400
Byt )
W):iteé ) X170 M[7:0] Processor
Byte 1 ) X [15:8]
Write M[15:8]
) X [23:16]
M[23:16]
) X [31:24]
M[31:24]
Long Word (32 bits) Write by Intel XScale® Core
Intel® IXP2400
X [7:0] Processor
%z‘r'i“’t;) ' > M[7:0]
X [15:8
?/m; [15:8] > M[15:8]
?,ﬁ 62 X [23:16] S M[23:46]
?,ﬁes X [31:24] > M(31:24]
B2859-01

Intel® XScale® Gasket Unit

Overview

The XScale core uses the Core Memory Bus (CMB) to communicate with the functional blocks.
The rest of the IXP2400 Network Processor functional blocks use the Command Push Pull (CPP)
as the global bus to pass data. Therefore the gasket is needed to translate Core Memory Bus
commands to Command Push Pull commands.

This gasket has a set of local CSRs, including interrupt registers. These registers can be accessed
by the XScale core via the gasket internal bus. The CSR Access Proxy (CAP) is allowed to only do
a set on these interrupt registers.

The XScale core includes Design for Test logic (DFT). The XScale core coprocessor bus is not
used in the IXP2400 Network Processors, all accesses are only through the CMB.
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Figure 20 shows the block diagram of the global bus connections to the gasket.

The gasket unit has the following features:

Interrupts are sent to the XScale core via the gasket, with the interrupt controller registers used
for masking the interrupts.

The gasket converts CMB reads and writes to CPP format.
All the atomic operations are applied on SRAM and SCRATCH only, not DRAM.

There is a stepping-stone sitting between the XScale core and the gasket. The XScale core runs
at 600MHz to 700MHz. The gasket currently supports a 1:1 (IXP2800 Network Processor and
2:1 (IXP2400 Network Processor) clock ratio. For a 2:1 ratio, the Command Push Pull bus will
be running at half of the frequency of the XScale core.

In IXP2400 memory controllers, read after write ordering is enforced. There is no write after
read enforcement for the XScale core. The gasket will perform enforcement by employing
Content Addressable Memory (CAM) to detect a write to an address with read pending. This
only applies for writes to SRAM.

The gasket CPP interface contains one command bus, one D_Push bus, one D_Pull bus, one
S Push bus, one S_Pull bus, each with a 32-bit data width.

A maximum four outstanding reads and four outstanding writes from the XScale core are allowed.

Figure 20. Global Buses Connection to the XScale® Gasket

Intel XScale® Core

A

Gasket Iboscsl
1 1 lﬂeq TCAPCSR
CMD_BUS Y
SRAM_PULL_BUS Y
SRAM_PUSH_BUS
DRAM_PULL_BUS Y
DRAM_PUSH_BUS

B2851-01
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Intel® XScale® Gasket Functional Description

Core Memory Bus to Command Push/Pull Conversion

The primary function of the XScale gasket unit is to translate commands initiated from the XScale
core in the XScale command bus format, into the IXP2400 internal command format (Command
Push/Pull format)

Table 33 shows how many CPP commands are generated by the gasket from each CMB command.
Write data is guaranteed to be 32 bit (long word) aligned. Table 33 shows only the Store command.
In the Load case, the gasket simply converts it to the CPP format. No command splitting is
required. A Load can only be a byte (8 bits), a word (16 bits), long word (32 bits), or eight long
words (8x32).

Table 33. CMB Write Command to CPP Command Conversion

3.11.3

CPPSRAM | CPPDRAM

Store Length Cmd Count | Cmd Count Remark
Byte, word, long 1 1 SRAM uses 4-bit mask, DRAM uses an 8-bit mask.
SRAM: If there is any mask bit detected as ‘0’,two
commands will be generated.
2 long word 1or2 1or2

DRAM: [f it starts with odd word address, two commands
will be generated.

SRAM: If there is a mask bit of ‘0’ detected, 3 SRAM
3 long word 1o0r3 2 commands will be generated.
DRAM: always 2 DRAM commands.

SRAM: If there is a mask bit of ‘0’ detected, four
commands will be generated.

41 d 1or4 1or2
ong wor or or DRAM: If there is a mask bit of ‘0’ detected, two
commands will be generated.
8 long word Not allowed in a write.

CAM Operation

In the SRAM controller, access ordering is guaranteed only for a read coming after a write. The
gasket enforces order rules in the following two cases.

1. Write coming after a read.
2. Read-Modify-Write coming after read.

The address CAMing is on 8 word boundaries. The SRAM effective address is 28-bits. Deduct
5 bits (2 bits for the word address and 3 bits for 8§ words), and the tag width for the CAM is 23-bits
wide. The CAM only operates on SRAM accesses.
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Atomic Operations

The XScale core has Swap (SWP) and Swap Byte (SWPB) instructions that generate an atomic
read-write pair to a single address. These instructions are supported for the SRAM and Scratch
space, and also to any other address space if it is done by a Read command followed by Write
command.

cbilO is asserted when a data cache request is initiated to a memory region with cacheable and
bufferable bits in the translation table first-level descriptor set to zero. Also, if cbilO is asserted
during the CMB read portion of the SWP, then it also does a Read Command followed by Write
Command, regardless of address. In those cases the SWP/SWPB is atomic with respect to
processes running on the XScale core, but not with respect to the Microengines.

The following summarizes the Atomic operation.

Address Space cbilO Operation

SRAM/Scratch 0 RMW Command

Not SRAM/Scratch X Read Command followed by Write Command
Any 1 Read Command followed by Write Command

When the XScale core presents the read command portion of the SWP it will assert the cbiLock
signal. The gasket will ack the read and save the BufID in the push_ff. It will not arbitrate for the
command bus at that time; rather it will wait for the corresponding write of the SWP (which will
also have cbilock asserted). At that time the gasket will arbitrate for the command bus to send a
command with the atomic operation in the command field [the command is based on the address
space chosen for the SRAM/Scratch, which has multiple aliased address ranges].

The SRAM or Scratch controller will pull the data, do the atomic read-modify-write, and then push
the read data back. The gasket will use the saved BufID when returning the data to CMB. [Note -
unrelated reads, such as instruction and Page Table fetches, can come in the interval between the
read-lock and write-unlock, and will be handled by the gasket. No other data reads or writes will
come in that interval. Also XScale will not wait for the SWP read data before presenting the write
data.]

The gasket uses address aliases to generate the following atomic operations.
* Bit Set
¢ Bit Clear
* Add
¢ Subtract

* Swap
For the alias address type of atomic operation, the XScale core will issue a SWP command with an
alias address if it needs data return. The XScale core will use the write command with an alias

address if it doesn’t need data return.

Xscale IF will not check the second address, as long as it detects one write after one read, both
with cbiLock enabled. It will take the write address and put it in the command.

The summary of the rules for Atomic command in I/O space are.
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Table 34.
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* SWP to SRAM/Scratch and Not cbilO, Xscale IF generates an Atomic operation command.

* SWP to all other Addresses that are not SRAM/Scratch, will be treated as separate read and
write commands. No Atomic command is generated.

* SWP to SRAM/Scratch and cbilO, will be treated as separate read and write commands. No
Atomic command is generated.

Intel® XScale® Access to SRAM Q-Array

The XScale core can access the SRAM controllers queue function to do buffer allocation and
freeing. Allocation does a SRAM dequeue (deq) operation, and freeing does a SRAM enqueue
(enq) operation. Alias addresses are used as shown in Table 34 to access the freelist. Each SRAM
channel supports up to 64 lists, so there are 64 addresses per channel.

IXP2400 Network Processor SRAM Q-Array Access Alias Addresses

Channel® Address Range
0 0xCCO00 0100 — 0xCCO00 01FC
1 0xCC40 0100 — 0xCC40 01FC
2 0xCC80 0100 — 0xCC80 01FC
3 0xCCCO0 0100 — 0xCCCO0 01FC

a.  The IXP2400 has two SRAM Q-Array address ranges; channels 2 and 3 are re-
served.

Address 7:2 selects which Queue_ Array entry within the SRAM channel is used.

Doing a load to an address in the table will do a deq, the SRAM controller returns the dequeued
information (i.e. the buffer pointer) as the load data.

Doing a store to an address in the table will do an enq. The data to be enqueued is taken from the
XScale core store data.

The gasket will generate command fields as follows, based on address and cbild:

Target_ID = SRAM (00 0010)

Command = deq (1011) if cbild, eng (1100) if ~cbilLd

Token[1:0] = 0x0

Byte_Mask = OxXFF

Length = 0x1

Address = {XScale_Address[23:22], XScale_Address[7:2], XScale_Write_Datal[25:2]}

(Note: On command bus -- address[31:30] selects the SRAM channel, address[29:24] is Q_Array
number; and address[23:0] is the SRAM longword address. For Dequeue, SRAM controller
ignores address[23:0].)

/0 Transaction

XScale core can request an I/O transaction by asserting xsoCBI_IO concurrently with
xsoCBI_Req. The value of xsoCBI_IO is undefined when xsoCBI_Req is not asserted. When the
gasket sees an I/O request with xsoCBI 10O asserted, it will raise xsiCBR_Ack but will not
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Note:

acknowledge future requests until the 1O transaction is complete. The gasket will check if all the
command FIFOs and write data FIFOs are empty or not. It will also check if the command counters
(SRAM and DRAM) are equal to zero. All these checks are to guarantee that:

¢ Writes are issued to the target, and targets have pulled the data.

* Pending reads have their data all back to the gasket.

When the gasket sees that all the conditions are satisfied, it will assert xsiCBR_SynchDone to the
XScale core. XsiCBR_SynchDone is one cycle long and does not need to coincide with
xsiCBR_DataValid.

Hash Access

Hash accesses are accomplished by the gasket Local CSR accesses from the XScale core. There
are two sets of registers in the gasket that are involved in Hash accesses.

* Four 32 bit XG_GCSR_Hash[3:0] registers for holding the data to be hashed and index
returned as well.

* A XG_GCSR_CTRO(valid) register to hold the status of the Hash Access.
The procedure for the XScale core to setup a Hash access is as follows.
1. The XScale core writes data to XG_GCSR_Hash by Local CSR access using address [X:yy:zz].
X selects Hash register set. yy selects hash 48, hash 64 or hash 128 mode. zz selects one of four
Hash_Data registers.
2. Data write order is 3-2-1-0(for hash_128), 1-0(for hash_48 or hash_64). When the data write to
Hash Data[0] is performed, it triggers the Hash request to go out on the CPP bus. At the same time,
XG_GCSR_Hash(valid) will be cleared by hardware.
3. The XScale core starts to poll Hash Result Valid periodically by Local CSR read.

4. After some period of time, the Hash Result is returned to XG_GCSR_Hash, and
XG_GCSR_CTRO(valid) is set to indicate that Hash Result is ready to be retrieved.

5. The XScale core issues a Local CSR read to read back the Hash Result.
Note, each Hash command requests only one index returned.

The Hash CSR is in the gasket local CSR space.

Gasket Local CSR

There are two sets of Control and Status registers residing in the gasket Local CSR space. ICSR
refers to the Interrupt CSR. The ICSR address range is 0xd600 0000 - Oxd6ff ffff. The Gasket
CSR (GCSR) refers to the Hash CSRs and debug CSR. It has a range of 0xd700 0000 -
Oxd7ff_ffff. GCSR is shown in Table 35.

The Gasket registers are defined in the IXP2400 Network Processor Programmers Reference
Manual.
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Table 35. GCSR Address Map (0xd700 0000)

Bits

Name

R/IW

Description

Address Offset

[31:0]

XG_GCSR_HASH0

R/IW

Hash word 0
Write from XScale.
Rd/Wr from CPP.

0x00 :
0x10 :
0x20 :

for 48bit Hash
for 64bit Hash
for 128bit Hash

[31:0]

XG_GCSR_HASH1

R/IW

Hash word 1
Write from XScale.
Rd/Wr from CPP.

0x04 :
0x14 :
0x24 :

for 48bit Hash
for 64bit Hash
for 128bit Hash

[31:0]

XG_GCSR_HASH?2

RIW

Hash word 2
Write from XScale.
Rd/Wr from CPP.

0x28 :

for 128bit Hash

[31:0]

XG_GCSR_HASH3

RW

Hash word 3
Write from XScale.
Rd/Wr from CPP.

0x2c :

for 128bit Hash

[31:0]

XG_GCSR_CTRO

[31:1] reserved.

[0] hash valid flag.
Read from XScale.
Set by LCSR control.

0x30

[31:0]

XG_GCSR_CTR1

R/IW

[31:1] reserved.

[0] Break_Function
When set to 1, the debug
break signal is used to
stop the clocks.

When set to 0, the debug
break signal is used to
cause an XScale debug
breakpoint

0x3c

3.11.8

Interrupt

The XScale core CSR controller contains local CSR(s) and interrupts inputs from multiple sources.
The diagram in Figure 21 shows the flow through the controller.

Within the Interrupt/CSR Register block there are raw status registers, enable registers, and local

CSR(s). The raw status registers are the un-masked interrupt status. These interrupt status are

masked or steered to the XScale core’s IRQ or FIQ inputs by multiple levels of enable registers.

Refer to Figure 22.
* {IRQ,FIQ}Status = (RawStatus & {IRQ,FIQ}Enable)
¢ {IRQ,FIQ}ErrorStatus = (ErrorRawStatus & {IRQ,FIQ}ErrorEnable)

* {IRQ,FIQ}ThreadStatus $ # = ({IRQ,FIQ}ThreadRawStatus $ # &
{IRQ,FIQ} ThreadEnable_$ #)

Each interrupt input is visible in the RawStatusRegister and is masked or steered by two level of
interrupt enable registers. The error and thread status are masked by one level of enable registers.

Their combination along with other interrupt sources contributes to the RawStatusReg. The

RawStatus is masked via IRQEnable/FIQEnable to trigger the IRQ and FIQ interrupt to the XScale

core.
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The enable register’s bits are set and cleared through EnableSet and EnabeClear registers. The
Status, RawStatus, and Enable Registers are read-only, and EnableSet and EnableClear are write-
only. Also, Enable and EnableSet share the same address for reads and writes respectively.

Note that software needs to take into account the delay between the clearing of an interrupt
condition and having its status updated in the RawStatus registers. Also in the case of simultaneous

writes to the same registers, the value of the last write is recorded.

Figure 21. Flow Through the Intel® XScale® Core Interrupt Controller
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Figure 22. Interrupt Masking Block Diagram
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3.12 Intel® XScale® Core Peripheral Interface

This section describes the XScale core Peripheral Interface unit (XPI). The XPI is the block that
connects to all the slow and serial interfaces that communicate with the XScale core through the
APB bus. These can also be accessed by the Microengines and PCI unit.

This section does not describe the XScale core interface protocol, only how to interface with the
peripheral devices connected to the core. The I/O units described are:

* UART
* Watchdog timers
* GPIO
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¢ SlowPort

All the peripheral units are memory mapped from the XScale point of view.

XPI Overview

Figure 23 shows the XPI location in the IXP2400 Network Processor. The XPI receives read and
write commands from the Command Push Pull bus to addresses the memory has mapped to I/O
devices.

The SHaC (Scratchpad, Hash Unit, and CSRs) acts like a bridge to control the access from the
XScale core or other host (like the PCI Unit). The extended APB bus is used to communicate

between the XPI and the SHaC. The extended APB has only one signal,

XPSH_APB_RDY RAPBH, added. This signal is used to tell the SHaC when the transaction
should be terminated.

The XPI is responsible for passing the data between the extended APB bus and the internal fubs,
like the UART, GPIO, Timer, and SlowPort, which will in turn pass these data to an external
peripheral device with a corresponding bus format.

The XPI is always a master on the SlowPort bus and all the SlowPort devices act like slaves. On the
other side, the SHaC is always the master and the XPI is the slave with respect to the APB.

Figure 23. XPI Interfaces (IXP2400 A0/A1)
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Figure 24. XPI Interfaces (I1XP2400 B0)
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31211

Data Transfers

The current rate for data transfers is four bytes, except for the SlowPort. The 8-bit and 16-bit
accesses are only available in the SlowPort bus. The devices connected to the SlowPort dictate this
data width. The user has to configure the data width register resident in the SlowPort in order to run
a different type of data transaction. There is no burst to SlowPort.

Figure 25 and Figure 26 displays one possible data flow issued by the external host on the PCI side.
The external agent basically can request the access to the IXP2400 timer through the PCI bus.

Figure 27 displays the second possible data flow. This time the XScale issues a command to fetch
the data from the boot PROM during the boot sequence. First XScale launches a fetch command to
the SHaC. SHaC will launch a read transaction in the extended APB bus to XPI. XPI then access
the external PROM device through the SlowPort bus. Data will be packed into 32-bit data and
passed back the SHaC. SHaC will deliver these data back to the XScale core.
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Figure 25. PCI/XPI Data Flows Example (IXP2400 A0/A1)
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Figure 26. PCI/XPI Data Flows Example (IXP2400 B0)
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Figure 27. Second Example of Data Flows
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3.12.1.2

Data Alignment

For all the CSR accesses, a 32-bit data bus is assumed. Therefore, the lower two bits of the address

bus are ignored.

However, for the SlowPort accesses, 8-bit, 16-bit, or 32-bit data access is dictated by the external
device connected to the SlowPort. The APB Bus should be able to match the data width according
to which devices it is talking to.

SeeTable 36 for additional details on data alignment.

Table 36. Data Transaction Alignment

3.121.3

Interface Units APB Bus Read Write
GRegs 32 bits 32 bits 32 bits
UART 32 bits 32 bits 32 bits
GPIO 32 bits 32 bits 32 bits
Timer 32 bits 32 bits 32 bits
8 bits 8 bits 8 bits
SlowPort
. 16 bits 16 bits 16 bits
Microprocessor Access
32 bits 32 bits 32 bits
SlowPort 32 bits for 32-bit read mode, 8 Assemble 8 bits into 32-bit data for
o | Dits for register read mode; 32-bit read mode; 8 bits for register 8 bits
Flash Memory Access® | g uic tor write: read mode (8-bit read mode).
CSR Access 32 bits 32 bits 32 bits

a.  The flash memory interface only supports 8-bit wide flash devices. APB write transactions are assumed to be 8-bits wide,
and correspond to one write cycle at the flash interface. APB read transactions are assumed to be 32-bits wide, and corre-
spond to four flash read cycles for the 32-bit read mode set in the SP_FRM register. However, for the flash register read
mode (8-bit read mode), it only needs one flash read cycle of 8-bit data and passes it back to APB directly. By default, the
32-bit read mode is set. It is advisable to stay in this mode most of the time and not change them dynamically during ac-

cesses.

Address Spaces for XPI Internal Devices

Table 37 shows the address space assignment for XPI devices.
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Address Spaces for XPI Internal Devices

Units Starting Address Range Ending Address
GPIO 0xC0010000 0xC0010040
Timer 0xC0020000 0xC0020040
UART 0xC0030000 0xC003001C
PMU 0xC0050000 0xCO050E00
SlowPort CSR 0xC0080000 0xC0080028
SowPort 0xC4000000 OXCTFFFFFF

UART Overview

The Universal Asynchronous Receiver/Transmitter (UART) performs serial-to-parallel conversion
on data characters received from a peripheral device and parallel-to-serial conversion on data
characters received from the network processor. The processor can read the complete status of
UART at any time during the functional operation. Available status information includes the type
and condition of the transfer operations being performed by the UART and any error conditions
(parity, overrun, framing or break interrupt).

The serial ports can operate in either FIFO or non-FIFO mode. In FIFO mode, a 64-byte transmit
FIFO holds data from the processor to be transmitted on the serial link and a 64-byte receive FIFO
buffers data from the serial link until read by the processor.

The UART includes a programmable baud rate generator which is capable of dividing the clock
input by divisors of 1 to 2 6_1and produces a 16X clock to drive the internal transmitter logic. It
also drives the receive logic. UART has a processor interrupt system. The UART can be operated
in polled or in interrupt driven mode as selected by software.

The UART has two clocks: clock from baud rate generator for transmit operation and receive
operation and clock from the XPI unit for register reads and writes.

Figure 28 shows the top level overview of UART. PLPL_APB_CLK is used in the Baud rate
generator to produce the transmit CLK that is used in the transmit registers. The transmitters and
receivers have shift registers, holding registers and the FIFO’s as the main components.
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a. For IXP2400 AO/A1, the UART FIFO control register can be programmed to cause an interrupt to XScale based on 1, 8, 16
or 32 entries.

b. For IXP2400 B0, UART FIFO control register can be programmed to cause an interrupt to XScale or PCl based on 1, 8, 16
or 32 entries.

To prevent FIFO overflow, UART FIFO control register can be programmed to cause an interrupt
and signal to the XScale core or PCI host.

The UART has the following features

* Functionally compatible with National Semiconductor’s PC16550D for basic receive and
transmit.

* Adds or deletes standard asynchronous communications bits (start, stop, and parity) to or from
the serial data

* Independently controlled transmit, receive, line status

* Programmable baud rate generator allows division of clock by 1 to (2'- 1) and generates an
internal 16X clock

* 5,6, 7 or 8-bit characters
* Even, odd, or no parity detection

* 1, 1-1/2, or 2 stop bit generation
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* Baud rate generation

* False start bit detection

* 64-byte Transmit FIFO

* 64-byte Receive FIFO

¢ Complete status reporting capability

* Internal diagnostic capabilities include:

— Break, parity, overrun, and framing error simulation

Fully prioritized interrupt system controls

Baud Rate Generator

The baud rate generator is a programmable block and generates a clock used in the transmit block.
The output frequency of the baud rate generator is 16X the baud rate. The baud rate is calculated as
follows:

Baud Rate = System Clock / (16 X Divisor)

The Divisor ranges from 2 to (216 - 1). For example, for a system clock of 50 MHz and baud rate of
115200 bps the divisor is 27. The divisor is not allowed to set to 0 and 1; otherwise, no internal
clock is generated for operation of the UART unit.

Table 38. UART Register Map

110

Abbreviation Ac[|<7:|.r0e]ss Name Description
0x00, UART Receive Buffer It is used to buffer the received
UART_RBR | bLAB=0 | Register data.
0x00, i i i
UART THR X UAR_T Transmit Holding Itis usc_ad_ to hold the
DLAB=0 | Register transmitting data.
- It is associated with
UART DLRL | 00, | UART Divisor Latch UART_DLHR and used to
B 9 control the baud rate together.
. It is associated with
UART DLRH | 0% | RART Divisor Lateh UART_DLRL and used to
- 9 9 control the baud rate together.
0x04, UART Interrupt Enable It is the interrupt enable register
UART_IER h ;
DLAB=0 | Register for all interrupt control.

This is a read only register and
shares the same space as
UART_FCR

This is a write only register. It is

UART Interrupt

UART_IIR 0x08 Identification Register

UART_FCR 0x08 UART Fifo control register used to control the FIFO.
UART Line Control This is used to control the

UART_LCR 0x0C Register transmission line data format.

UART_LSR | 0x14 | UART Line Status Register | IS Stores the status of the

previous transaction.

This allows the program to
UART_SPR 0x1C UART scratch pad register | access for programming

purpose.
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UART FIFO Operation

The UART has one transmit FIFO and one receive FIFO. The transmit FIFO is 64-bytes deep and
8-bits wide. The receive FIFO is 64-bytes deep and 11-bits wide.

UART FIFO Interrupt Mode Operation - Receiver Interrupt

When the Receive FIFO and receiver interrupts are enabled (UART FCR[0]=1 and
UART IER[0]=1), receiver interrupts occur as follows:

* The receive data available interrupt is invoked when the FIFO has reached its programmed
trigger level. The interrupt is cleared when the FIFO drops below the programmed trigger
level.

* The UART IIR receive data available indication also occurs when the FIFO trigger level is
reached, and like the interrupt, the bits are cleared when the FIFO drops below the trigger
level.

* The receiver line status interrupt (UART IIR = C6H), as before, has the highest priority. The
receiver data available interrupt (UART IIR=C4H) is lower. The line status interrupt occurs
only when the character at the top of the FIFO has errors.

* The data ready bit (DR in UART LSR register) is set to 1 as soon as a character is transferred
from the shift register to the Receive FIFO. This bit is reset to 0 when the FIFO is empty.

Character Time-out Interrupt

When the receiver FIFO and receiver timeout interrupt are enabled, a character timeout interrupt
occurs when all of the following conditions exist:

* At least one character is in the FIFO.

* The last received character was longer than four continuous character times ago (if two stop
bits are programmed the second one is included in this time delay).

* The most recent processor read of the FIFO was longer than four continuous character times
ago.

The maximum time between a received character and a timeout interrupt is 160 ms at 300 baud
with a 12-bit receive character (i.e., 1 start, 8 data, 1 parity, and 2 stop bits).

When a timeout interrupt occurs, it is cleared and the timer is reset when the processor reads one
character from the receiver FIFO. If a timeout interrupt has not occurred, the timeout timer is reset
after a new character is received or after the processor reads the receiver FIFO.

Timeout interrupt is coupled with the FIFO interrupt trigger level/threshold level. If the data reach
the threshold value, the timeout interrupt is prohibited. Therefore, no timeout interrupt occurs when
the threshold value is set to 1 byte trigger. For 8-, 16-, and 32-byte trigger level, the timeout
interrupt will occur if the data is left stranded in the FIFO.

Transmit Interrupt

When the transmitter FIFO and transmitter interrupt are enabled (UART FCR[0]=1,
UART IER[1]=1), transmit interrupts occur as follows:

* The Transmit Data Request interrupt occurs when the transmit FIFO is half empty or more
than half empty. The interrupt is cleared as soon as the Transmit Holding Register is written
(1 to 64 characters may be written to the transmit FIFO while servicing the interrupt) or the IIR
is read.

Hardware Reference Manual 111



Intel® IXP2400 Network Processor u
Intel® XScale® Core I n o

3.12.2.2.2
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FIFO Polled Mode Operation

With the FIFOs enabled (TRFIFOE bit of UART FCR set to 1), setting UART IER[4:0] to all
zeros puts the serial port in the FIFO polled mode of operation. Since the receiver and the
transmitter are controlled separately, either one or both can be in the polled mode of operation. In
this mode, software checks receiver and transmitter status via the UART LSR. As stated in the
register description:

¢ UART LSRJ[0] is set as long as there is one byte in the receiver FIFO.

¢ UART LSR[1] through UART LSR[4] specify which error(s) has occurred for the character
at the top of the FIFO. Character error status is handled the same way as interrupt mode. The
UART IIR is not affected since UART IER[2] = 0.

* UART LSR][5] indicates when the transmitter FIFO needs data.
¢ UART LSR][6] indicates that both the transmitter FIFO and shift register are empty.
¢ UART LSR[7] indicates whether there are any errors in the receiver FIFO.

General Purpose 1/0 (GPIO)

The IXP2400 Network Processor has eight General Purpose Input/Output (GPIO) port pins for use
in generating and capturing application-specific input and output signals. Each pin is
programmable as an input or output or as an interrupt signal sourcing from an external device. The
GPIO can be used with appropriate software in 12C application.

Each GPIO pin can be configured as a input or an output by programming the corresponding GPIO
pin direction register. When programmed as an input, the current state of the GPIO can be read
through the corresponding GPIO pin level register. The register can be read at any time and can be
used to confirm the state of the pin when it is configured as an output. In addition, each GPIO pin
can be programmed to detect a rising or a falling edge by setting the corresponding GPIO rising/
falling edge detect registers.

When configured as an output, the pin can be controlled by writing to the GPIO set register to write
a 1 and by writing to the GPIO clear register to write a 0. These registers can be written regardless
of whether the pin is configured as an input or a output.

Each of the GPIO pins is designed the same and instantiated to the number of GPIO port pins.

Figure 29 shows a GPIO functional diagram. The GPIO pin as seen can be programmed based on
the configuration registers.
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Figure 29. GPIO Functional Diagram
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Table 39. GPIO Register Map

Abbreviation | Address Name Description
GPIO_PLR [ 0x00 | GPIO Pin level register | 11> & 560 10 C@ormine e
R el e
GPIO_PDSR | 0x08 gg:g;in direction set This is to set a pin as an output
GPIO_PDCR | 0x0C gepé?r:é?s?gfdion This is to reset a pin as an input
GPIO_POSR | 0x14 gZilgteCr)Utpm data set -rrehg;issiserto set an output data
GPIO_POCR | 0x18 gz;?rg);;r:g: data -rrehg;issise I‘to clear an output data
GPIO_REDR | 0x1C g‘ePtLCc)t lzir?g:)?ee%%?ster 'el'gigseis to enable detects on rising
GPIO_FEDR | 0x20 g‘ept:ecc)t':e?llgg?ei:giester 'el'gigseis to enable detects on falling
apo cosn | ver | TSR Tk e o s
GPIO_LoHR [os | CFIOJevlsenitve [ Thi e foenale dofeton v
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Table 39. GPIO Register Map (Continued)

In

Abbreviation | Address Name Description
GPio LsLR |00 | BMIOjei sensihe | T o gl dtecton v
GPIO_LDSR | 0x30 St;’tll?s Ire;/geilsij;tect ;I;\T)Ijtlss to log the logic level of
GPIO_INER | 0x34 S;ilgelrterrupt Enable -gl;-gir?eirsatti?)r?.nable the interrupt
GPIO_INSR | 0x38 gzilgelpterrupt Set :;ahg;issitz rt-o set the interrupt enable
GPIO_INCR | 0x3C gzilgelpterrupt Reset ;I;ahg;issitsert_o reset the interrupt enable
GPIO_INST | 0x40 gepégt'é‘rte”“p‘ S Igclzilr?etg g rgotr'?zs,igct)er\rc;li]npéspin
by the external devices.

Timers

The IXP2400 Network Processor supports four timers. These timers are clocked by the Advanced

Peripheral/Bus Clock (APB-CLK), which runs at 50 MHz. to produce the PLPL__ APB CLK,
PLPL _APB CLK/16 or PLPL_APB CLK/256 signals. The counters are loaded with an initial
value, count down to zero, and raise an interrupt (if interrupts are not masked).

In addition, timer 4 can be used as a watchdog timer when the watchdog enable bits are configured
to one. When used as a watchdog timer, and when a count of zero is encountered, it will initiate the

reset sequence.

Figure 30 shows the timer control unit interfacing with other functional blocks.
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Figure 30. Timer Control Unit Interfacing Diagram
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Timer Operation
Each timer consists of a 32-bit counter.

By default, the timer counter load register (TCLD) is set to OXFFFFFFFF. The timer will count
down from OXFFFFFFFF to zero, then wrap back to OXFFFFFFFF and continue to decrement if the
TCLD is not programmed to any value. If a different value is programmed in the TCLD, then the
counter will load this value every time it counts down to zero.

An interrupt is issued to the XScale core whenever the counter reaches zero. The interrupt signals
can be enabled or disabled by the IRQEnable/FIQEnable registers. The interrupt remains asserted
until it is cleared by writing a 1 to the corresponding timer clear register (TCLR).

The counter can be advanced by the clock, clock divided by 16, clock divided by 256, and the
GPIO signals. The clock rate is controlled by the TCTL value programmed into the TCTL
registers. There are four GPIO signals, GPIO[3:0] which correspond to Timer 1, 2, 3, and 4,
respectively. These signal are synchronized within the timer-clock domain before driving the
counter.

Figure 31 shows the Timer Internal logic.
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Figure 31. Timer Internal Logic Diagram
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Table 40. Timer Register Map
Name Abbreviation | Address Description
T1_CTL 0x00
Cgm%%L T2_CTL 0x04 | This is used to determine the timer
registers T3 CTL 0x08 functions, mode, activation
T4_CTL 0x0C
TIMER T1_CLD 0x10 These registers store the initial values
COUNTER T2_CLD 0x14 | for the timer counters. Writing to a
LOADING T3_CLD 0x18 register causes the timer to reload with
registers T4 CLD 0x1C its initial value.
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Table 40. Timer Register Map (Continued)
Name Abbreviation | Address Description
T1_CSR 0x20
TIMER T2_CSR 0x24 is i
COUNTER - This is to store the current counter
STATUS register | 13-CSR 0x28 | values.
T4_CSR 0x2C
TIMER T1CLR | oxap,
COUNTER T2_CLR 0x34, | Any write to these registers clear the
CLEAR T3_CLR 0x38, associated timer interrupts.
registers T4 CLR 0x3C
TIMER
WATCHDOG This is to enable the timer 4 to be a
ENABLE TWDE 0x40 | \watchdog timer.
register
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3.12.5

3.12.51

SlowPort Unit

The IXP2400 Network Processor SlowPort Unit supports basic PROM access and 8-, 16-, and 32-
bit microprocessor device access. It allows a master, (XScale core or Microengine), to do a read/
write data transfer to these slave devices.

The address bus and data bus are multiplexed to reduce the pin count. In addition, the address bus
is also compressed from A[24:0] down to A[7:0] and shifted out with three clock cycles. Therefore,
an external set of buffers is needed for address storage and latch.

The access can be asynchronous. Insertion of delay cycles is possible for both setup and hold data.
A programmable timing control mechanism is provided for this purpose.

There are two types of interfaces supported in the SlowPort Unit:
¢ Flash memory interface

¢ P interface.

The Flash memory interface is used for the PROM device. The pP interface can be used for
SONET/SDH Framer pP access.

There are two ports in the SlowPort unit. The first is dedicated to the flash memory device while
the second to the uP device.

PROM Device Support

For all the Flash Memory access, only 8-bit devices are supported. APB write transactions are
assumed to be eight bits wide, and correspond to one write cycle at the flash interface. The
extended APB read transactions are assumed to be 32 bits wide, and correspond to four read cycles
at the flash memory interface for all the flash memory data read. However, for the flash register
read inside the flash memory, like the flash status register, the returned data are one byte and placed
in the lower order byte location. In this case, only one external transaction cycle is involved.

To accomplish this, a register (SP_FRM) is installed to allow to configure between 8-bit read mode
and 32-bit read mode. By default, it goes to 32-bit read mode. For the 8-bit read mode, one read
cycle is involved. No packing process is needed. The data will be directly placed onto the lower
order byte, [7:0] and passed to APB bus. For the 32-bit read mode, it needs four read cycles. All 4
bytes are packed into a 32-bit data and passed to the APB bus. 16-bit mode is not supported for
read.

Write always accesses the flash with one 8-bit cycle. Therefore, no unpacking process is needed.

The PROM device supported are listed in Figure 41:

Table 41. 8-bit Flash Memory Device Density
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Vendor Part Number Size
Intel 28F128J3A 16MB
Intel 28F640J3A 8MB
Intel 28F320J3A 4MB
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3.12.5.2 uP interface support for the Framer

The SlowPort Unit also supports a microprocessor interface with Framer components. Some
supported devices are listed in Table 42.

Table 42. SONET/SDH Devices

Vendor Part Number uP Interface SP—P;Tﬁ':giSter Slgxggtt::g!;]isi?er
PMC-Sierra PM3386 16 bits 0x3 0x1
PMC-Sierra PM5345 8 bits 0x2 0x0
PMC-Sierra PM5346 8 bits 0x2 0x0
PMC-Sierra PM5347 8 bits 0x2 0x0
PMC-Sierra PM5348 8 bits 0x2 0x0
PMC-Sierra PM5349 8 bits 0x2 0x0
PMC-Sierra PM5350 8 bits 0x2 0x0
PMC-Sierra PM5351 8 bits 0x2 0x0
PMC-Sierra PM5352 8 bits 0x2 0x0
PMC-Sierra PM5355 8 bits 0x2 0x0
PMC-Sierra PM5356 8 bits 0x2 0x0
PMC-Sierra PM5357 8 bits 0x2 0x0
PMC-Sierra PM5358 16 bits 0x2 0x1
PMC-Sierra PM5381 16 bits 0x2 0x1
PMC-Sierra PM5382 8 bits 0x2 0x0
PMC-Sierra PM5386 16 bits 0x2 0x1

AMCC S4801 (AMAZON) 8 bits 0x0 0x0

AMCC S4803 (YUKON) 8 bits 0x0 0x0

AMCC S4804 (RHINE) 8/16 bits 0x0/0x3 0x0/0x1

Intel IXF6012 (Volga) 16 bits 0x3/0x42 0x1
Intel IXF6048 (Amazon-A) 16 bits 0x3/0x42 0x1
Intel Centaur 0x3/0x42
Intel IXF6501 0x3/0x42
Intel Ben Nevis 32 bits 0x3/0x42 0x2

Lucent TDAT042G5 16 bits 0x1/ 0x1

Lucent TDAT04622 16 bits 0x1 0x1

Lucent TDAT021G2 16 bits 0x1 0x1

a. Usually there are two different protocols, Intel or Motorola, of uP interface in the Intel framer; the setting in the PCR should
match with protocols activated in the framer.
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3.12.5.3

SlowPort Unit Interfaces

Figure 32 shows the SlowPort Unit interface diagram.

Figure 32. SlowPort Unit Interface Diagram
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3.12.5.3.1 Endianness
Little-endianness is supported in the SlowPort. Therefore, the lowest address byte should be placed
in the byte lane 0, D[7:0].
Table 43. Byte Address
Byte Lane Address Data bus
0 00 [7:0]
1 01 [15:8]
2 10 [23:16]
3 11 [31:24]
3.12.5.3.2 Byte Ordering
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During byte write, the data should be placed according the Table 43 above. APB controller should
place first byte in d[7:0], second byte in d[15:8] and so on. During half-word write, APB should
place the first half word in d[15:0] and the second, in d[31:16]. However, during the byte read, the
SlowPort should duplicate the byte into four byte lanes. Similar for the half word read, it duplicates
twice and places it on both upper, d[31:16], and lower half word lanes, d[15:0]. For the word read,
it is similar to the write case with the lowest byte placed in the lowest byte lane, second in the
second byte lane, and so on.
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Address Space

The total address space is defined as 64 MB, which is further divided into two segments of 32 MB
each. Two devices can be connect to this bus. If these peripheral devices have a density of 256 Mbit
(32 MB) each, all the address space is going to be filled like a contiguous address space. However,
if a small capacity device is used (like a 4 MB, 8 MB, 16 MB), there will be a memory hole left in
between these two devices. Figure 33 is a 4 MB memory example. Trying to read the space in
between, you will get the repeating value for each 4 MB location

Figure 33. An Example of Address Space Hole Diagram

3FFFFFFh
23FFFFFh
2000000h ol
03FFFFFh
0000000h ool

A9705-01

3.12.5.5

SlowPort Interfacing Topology

Figure 34 demonstrates one of the topologies used to connect to an 8-bit device. From the diagram,
we can observe that address is shifted out 8 bits at a time and buffered into three 74F377 or
equivalent tri-state buffer devices in three consecutive clock cycles. These buffers also output
separately to form a 25-bit wide address bus to address the 8-bit devices. The data are expected to
be driven out after the address has been placed into the buffers.

There are two devices shown in Figure 34. The top one is the fix-timed device, while the lower
one, self-timing device. For the self-timing device, the access latency depends on the SP. ACK L
responded back from this device.

Three extra signals, SP_CP, SP_OE_L and SP_DIR, are added to pack and unpack the data when a
16-bit or 32-bit device is hooked up to SlowPort. They are used for special application only as
described below.

Hardware Reference Manual 121



Intel® IXP2400 Network Processor u
Intel® XScale® Core I n

Figure 34. SlowPort Example Application Topology
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SlowPort 8-bit Device Bus Protocols

The write/read transfer protocols are discussed in the following sections. The burst transfers are
going to be broken down into single mode transfer. For each single write/read transaction, it can be
either fixed-timed transaction or self-timing transaction. The fixed-timed transaction has the
response fixed in a certain period, which can be controlled by the timing control registers.

For the self-timing transaction, the response timing is dictated by the peripheral device. Hence,
wait states can be inserted during the transaction. All the back-to-back transactions are intervened
with one clock cycle. The SlowPort clock, SP_ CLK, shown in the following waveform diagrams,
is generated by dividing the PLPL_APB_CLK. The divisor used is specified in the clock control
register, SP_ CCR.

Mode 0 Single Write Transfer for Fixed-Timed Device

Figure 35, shows the single write transfer for a fixed-timed device with the CSR programmed to a
value of setup=4, pulse width=4, and hold=2, followed by another read transfer.

Figure 35. Mode 0 Single Write Transfer for a Fixed-Timed Device (IXP2400 A0/A1)
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Figure 36. Mode 0 Single Write Transfer for a Fixed-Timed
Device (IXP2400 B0)
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The transaction is initiated with SP_ ALE L asserted. It latches the address from the SP_ AD[7:0]
bus into the external buffer, using three clock cycles. After that, it should deassert the SP. ALE L
to disable latching the address into the buffers.

The SP_A[1:0] signals span the whole transaction cycle.

For the write, it drives the data onto the SP_ AD[7:0]. Meanwhile, it asserts the SP_CS L[1:0]
signals. Depending on the timing control setup parameter, for this case, the SP. WR L is not
asserted until four clock cycles have elapsed. The SP_CS_L[1:0] signals are deasserted two clocks
after the SP. WR L is deasserted.

3.12.5.6.2 Mode 0 Single Write Transfer for a Self-timing Device

Figure 37 depicts the single write transfer for a self-timing device with the CSR programmed to
setup=4, pulse width=0, and hold=3. Similarly, a read transaction is attached behind.

Figure 37. Mode 0 Single Write Transfer for a Self-Timing
Device (IXP2400 A0/A1)
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Mode 0 Single Write Transfer for a Self-Timing
Device (IXP2400 B0)
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3.12.5.6.3

Figure 39.

Similar to the single write for fixed-timed device, the ALE L, CS_L[1:0], AD[7:0], and A[1:0]
follow the same pattern, and the timing is controlled by the timing control register. Except for the
WR_L which is terminated depending on the SP. ACK L returned from the self-timing device.

The time-out counter will be set to 255. If no SP_ ACK_L responds back when the time-out counter
reaches zero, the transaction is terminated with a time-out. An interrupt signal is issued to the bus
master simultaneously with the time-out register update.

Mode 0 Single Read Transfer for Fixed-timed Device

Figure 39 demonstrates the single read transfer issued to a fixed-timed PROM device followed by
another write transaction. The CSR is assumed to be configured to the value setup=2, pulse
width=10, and hold=1.

Mode 0 Single Read Transfer for a Fixed-Timed
Device (IXP2400 A0/A1)
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Figure 40. Mode 0 Single Read Transfer for a Fixed-Timed
Device (IXP2400 B0)
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The address is loaded onto the external buffer in three clock cycles with the ALE L asserted. Then,
a clock cycle is inserted to tri-state all the AD[7:0] signals. The CS_L[1:0] signals come asserted
on the fourth clock cycle. Now, the values stored in the timing control registers take effect. The
RD_L becomes asserted after two clock cycles. It keeps asserted for ten clock cycles. The
CS_L[1:0] should be de-asserted one clock cycle after RD_L is de-asserted. The data will be valid
at clock cycle 16 as shown in the diagram. Since the hold delay has 2 cycles, transaction is
terminated at clock cycle 16.

3.12.5.6.4 Single Read Transfer for a Self-timing Device

Figure 41 demonstrates the single read transfer issued to a self-timing PROM device followed by

another write transaction. The CSR assumed to be programmed to the value of setup=4, pulse
width=0, and hold=1.
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Figure 41. Mode 0 Single Read Transfer for a Self-Timing
Device (IXP2400 A0/A1)
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Figure 42. Mode 0 Single Read Transfer for a Self-Timing
Device (IXP2400 BO)
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The only difference for self-timed mode is in the SP_ ACK L signal. It has a dominant effect on the
length of the transaction cycle or it overrides the value in the timing control register. A time-out
counter is set to 255. The SP_ ACK L should arrive before the time-out counter counts down to
zero. Similarly to the single write for self-timing device, an interrupt is launched for the time-out
event and the time-out register is updated. In this case, the data will be sampled at clock cycle 12.

3.12.5.7 SONET/SDH Microprocessor Access Support

In order to support the SONET/SDH Microprocessor Interface, extra logic is added into this unit.
Here we consider three SONET/SDH available components, including the Lucent TDAT042GS5,
PMC-Sierra PM5351, Intel, and AMCC SONET/SDH devices.
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However, because these microprocessor interfaces are not standardized, we treat them separately
and a configuration register is installed to activate the bus to work with different interface protocol
at a time. Extra pins are also added to accomplish this task.

A microprocessor interface type register is used to provide these kinds of solutions. The user is
allowed to configure the interface to the following four different modes. The pin functionality and
the interface protocol will be changed accordingly. By default, it activates the mode 0 with 8-bit
generic PROM device support as mentioned above.

Mode 1: 16-bit Microprocessor Interface Support with 16-bit Address Lines

The address size control register is programmed to 16-bit address space for this case. This mode is
designated for the devices with the similar protocol with the Lucent TDAT042G5 SONET/SDH
device.

16-bit Microprocessor Interfacing Topology with 16-bit address lines

Figure 43 shows a solution for the 16-bit microprocessor interface. This solution bridges the
Lucent TDAT042G5 SONET/SDH 16-bit interface. From Figure 43, we observe that the control
pins SP_ RD L and SP. WR L are converted to R/W and ADS. The CS and DT are still
compactible with SP_CS L[1] and SP_ ACK L protocol.

Extra pins are added to accomplish the task of multiplexing and demultiplexing the data bus. The
total pin count is 18.

During the write cycle, 8-bit data are stacked into 16-bit data. They are first shifted into two tri-
state buffers, 74F646 or equivalent by SP_CP, using two consecutive clock cycle. Then the
SP_CS_L is used for output the 16-bit data, which is shared with the CS.

During the read cycle, the 16-bit data are unpacked into 8-bit data by SP_CP. Two 74F646 or

equivalent tri-state buffers are used. First, the 16-bit data are stored into these buffers. Then they
are shifted out by SP_DIR, using two consecutive clock cycle.
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Figure 43. An Interface Topology with Lucent TDAT042G5 SONET/SDH
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16-bit Microprocessor Write Interface Protocol
Figure 44 uses the Lucent TDAT042G5 device. In this case, the user should program the P PCR
register to mode 1 and also program the write timing control register to setup=7, pulse width=5,
and hold=1, which represent 7 clock cycles for CS, 5clock cycle for DT delay, and 1 clock cycle for

ADS. They are intervened with two idle cycles.

From Figure 44, we observe that there are a total of twelve clock cycles used for write access, (i.e.,
240 ns), not including an intervened turnaround cycle after the write transaction. The throughput is
8.3 MB per second
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Figure 44. Mode 1 Single Write Transfer for Lucent TDAT042G5
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Figure 45. Mode 1 Single Write Transfer for Lucent TDAT042G5
Device (IXP2400 B0)
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16-bit Microprocessor Read Interface Protocol

Figure 46, likewise depicts a single read transaction launched from the IXP2400 Network
Processor to the Lucent TDAT042G5 device followed by a single read transaction. However, in
this case the read timing control register has to be programmed to setup=0, pulse width=7, and
hold=1.

In Figure 46, we can count twelve clock cycles used for the read transaction in total, (i.e., 240 ns)
for a clock cycle of 20 ns, excluding a turnaround cycle after that.
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Figure 46. Mode 1 Single Read Transfer for Lucent TDAT042G5
Device (IXP2400 A0/A1)
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Figure 47. Mode 1 Single Read Transfer for Lucent TDAT042G5
Device (IXP2400 B0)
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3.12.5.7.2

Mode 2: Interface With 8 Data Bits and 11 Address Bits

This application is designed for the PMC-Sierra PM5351 S/UNI-TETRA Device. For the PMC-
Sierra PM5351, the address space is programmed to 11-bits; otherwise, other address space should

be specified.
8-bit PMC-Sierra PM5351 S/UNI-TETRA Interfacing Topology

Figure 48 displays one of the topologies used to connect to the SlowPort with the PMC-Sierra

PM5351 S/UNI-TETRA device.

From Figure 48, because the protocols are very close to the generic SlowPort protocol, the pin
counts and the functionality is quite compatible. We don’t need to use any more pins in this case.
The only difference is in the INTB signal, which will be connected to the SP. ACK L. Therefore

the SP_ACK L needs to be converted to an interrupt signal.

Also because the address contains only 11bits, two 74F377 or equivalent buffers are needed.

The AS field in the SP_ADC register should be programmed to a 16-bit addressing space with the

upper 5 address bits unconnected.

The timing controls are similar to the generic case.
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Figure 48. An Interface Topology with PMC-Sierra PM5351 S/UNI-TETRA
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PMC-Sierra PM5351 S/UNI-TETRA Write Interface Protocol

Figure 49 depicts a single write transaction launched from the IXP2400 to the PMC-Sierra
PM5351 device followed by single read transaction.

The write transaction for the PMC-Sierra component has 6 clock cycle or 120ns access time for a
50MHz SlowPort clock. In this case, no intervening cycle is added after the transaction. The
SP_PCR should be programmed to mode 2 and the fields of SU, PW, and HD in the SP. WTC2
should be set to 1, 2, 1 respectively. Here SU, PW, and HD represent the SP_CS_L[1] pulse width,
SP_WR L pulse width, and SP_CP pulse width respectively.
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Figure 49. Mode 2 Single Write Transfer for PMC-Sierra PM5351
Device (IXP2400 A0/A1)
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Figure 50. Mode 2 Single Write Transfer for PMC-Sierra PM5351

Device (IXP2400 B0)

: 10 0+ 12 114

SP_CLK

1 | | ' l | ' ' ! ' ' ' ' ' ' '
————— — T 7 —,— — T 7 — — T 5 1 —,— = = =t —— = = = — =

f ' ' | ' ' | ' ' ' ' ' ! ' ! ' ! ' ! f

T 7 | ' T T T T T . [ T T L T T
SP_ALE_L o ST N Y R

' ' ' ' ' ' ' ' ' ' ' ! ' ' ' ! ' ! '

' ' | : ' ' ' : | ' ' ' ' ! ' ' ' ! ' ! '

h T T T T 1 ' b T ' ' ' ' y—‘—v—‘—v—
SP CS L[1](CSB) . . . . . / . . . L ' . . ' | o

' i ' ' ' ' | il | 1 ' ' ' ' ' ' 1 ' ' ! '

1 1 1 1 L] 1 1 ! ! 1

SP_WR L(WRB) P . . T R o

' 1 ' ' ' il 1 ' il ' f 1 ' ! '
SP_RD_L(RDB) o o A . .

SP_AD[7:0]

SP_ACK_L(NTB) ' . . '\ ! ' !

' . o
sp_cp o L

SP OE L . . N

SP_DIR Co

ADDR[15:0] S N N NG TSI

DATA[7:0]

136

PMC-Sierra PM5351 S/UNI-TETRA Read Interface Protocol

Figure 51, depicts a single read transaction launched from the IXP2400 Network Processor to the

PMC-Sierra PM5351 device followed by a single write transaction.

In this case, there are eight clock cycles of access time, or 160 ns of a 50 MHz clock in total with a
turnaround cycle attached at the back. The SP_PCR is programmed to mode two and the fields of
SU, PW, and HD in the SP_RTC are programmed to one, four, one, which represent

theSP_CS L[1], SP_ RD L, and SP_CP pulse width respectively.
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Figure 51. Mode 2 Single Read Transfer for PMC-Sierra PM5351
Device (IXP2400 A0/A1)
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Figure 52. Mode 2 Single Read Transfer for PMC-Sierra PM5351

Device (IXP2400 B0)
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Mode 3: Support the Intel and AMCC 2488 Mbps SONET/SDH Microprocessor
Interface

The user can configure the address bus up to 24 bits.
Mode 3 Interfacing Topology

Figure 53 demonstrates one of the topologies used to connect the SlowPort to the Intel and AMCC
2488Mbps SONET/SDH device. Similar to the Lucent TDAT042GS interface, the address and the
data need demultiplexing. Totally, it requires four buffers to accomplish this task.

The SP_ RD L, SP. WR L, and SP_CS_L[1] entirely match the RDB, WRB, and CSB pins in the
Intel and AMCC component. However, the INT has to be connected to the SP. ACK L as the
PMC-Sierra Interface does. The ALE pin shares the SP_CP signal. If the timing doesn’t meet
specification, ALE can be tied high as shown in Figure 54. It employs the same method as Lucent’s
TDAT042G5’s topology to pack and unpack the data between the IXP2400 SlowPort interface and
the Intel and AMCC microprocessor interface.

For a write, SP_CP loads the data onto the 74F646 or equivalent tri-state buffers, using two clock
cycles. In order to reduce the pin count, the 16-bit data are latched with the same pin
(SP_CS_L[1]), assuming that a turnaround cycle is inserted between the transaction cycles.

For a read, data are shifted out of two 74F646 or equivalent tri-state buffers by SP_CP, using two
consecutive clock cycles.
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Figure 53. An Interface Topology with Intel / AMCC SONET/SDH Device
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Figure 54. Mode 3 Second Interface Topology with Intel / AMCC SONET/SDH Device
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Mode 3 Write Interface Protocol

Figure 55 depicts a single write transaction launched from the IXP2400 Network Processor to the
Intel and AMCC SONET/SDH device followed by two consecutive reads.

Compared with the Lucent TDAT042GS5, this device has a shorter access time, about 8 clock cycles
(i.e., 160 ns). In this case, an intervening cycle may not be needed for the write transactions.
Therefore, the throughput is about 12.5 MB per second.
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Figure 55. Mode 3 Single Write Transfer Followed
by Read (IXP2400 A0/A1)
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Figure 56. Mode 3 Single Write Transfer Followed
by Read (IXP2400 B0)
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Mode 3 Read Interface Protocol

Figure 57 depicts a single read transaction launched from the IXP2400 to the Intel and AMCC
SONET/SDH device followed by two consecutive writes.

Similarly, the access time is much better than the Lucent TDAT042GS5. The access time is 8 clock

cycles or 160ns for a 50 MHz SlowPort clock. Here, there are three intervening cycles between
transactions.
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Figure 57. Mode 3 Single Read Transfer Followed
by Write (IXP2400 A0/A1)
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Figure 58. Mode 3 Single Read Transfer Followed
by Write (IXP2400 B0)
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Mode 4 Interfacing Topology

Figure 59 demonstrates one of the topologies used to connect SlowPort to the Intel and AMCC
SONET/SDH device.

Similar to the Lucent TDAT042G5 interface, the address and the data need demultiplexing. It
requires a total of six buffers.

The RD L, WR L, and CS_L[1] entirely match the E, RWB, and CSB pins respectively in the
Intel framer configured to Motorola mode. However, the INT has to be connected to the
SP_ACK L as the PMC-Sierra Interface does. The ALE pin can share the SP_CP. However, if it
doesn’t meet the timing, ALE pin can be tied high as shown in Figure 60.

It employs the same way to pack and unpack the data between the IXP2400 Network Processor
SlowPort interface and the Intel and AMCC microprocessor interface.

For a write, W2B loads the data onto the 74F646 or equivalent tri-state buffers, using two clock
cycles. In order to reduce the pin count, the 16-bit data are latched with the same pin (CS_L[1]),

assuming that a turnaround cycle is inserted between the transaction cycles.

For a read, data are pipelined out of two 74F646 or equivalent tri-state buffers by B2S, using two
consecutive clock cycles.
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Figure 59. An Interface Topology with Intel / AMCC SONET/SDH
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Figure 60. Second Interface Topology with Intel / AMCC SONET/SDH Device
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Mode 4 Write Interface Protocol

Figure 61 depicts a single write transaction launched from the IXP2400 Network Processor to the
Intel and AMCC SONET/SDH device, followed by two consecutive reads.

Comparing with the Lucent TDAT(042G5 device, this device has a shorter access time, about 8
clock cycles, i.e., 160 ns. In this case, an intervened cycle may not be needed about the write

transaction.
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Figure 61. Mode 4 Single Write Transfer (IXP2400 A0/A1)
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Figure 62. Mode 4 Single Write Transfer (IXP2400 B0)
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Mode 4 Read Interface Protocol

Figure 63, depicts a single read transaction launched from the IXP2400 to the Intel and AMCC
SONET/SDH device, followed by two consecutive writes.

Similarly, the access time is much better the Lucent TDAT042G5, the access time is about 8 clock
cycles or 160ns. Here, we need an intervened cycle at the back.
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Figure 63. Mode 4 Single Read Transfer (IXP2400 A0/A1)
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Figure 64. Mode 4 Single Read Transfer (IXP2400 B0)
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3.12.6
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PROM Device Timing Information for IXP2400 A0/A1

The following provides timing information of the SlowPort in mode 0.
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Device (IXP2400 A0/A1)

Figure 65. Single Write Transfer for Fixed-Timed

APB_CLK
SP_ACK_L
SP A[1:0]

151

unit
ps
ps
ps
ps
ps
ps
ps
ps
ps
ps

tpw

tsu
10216

th
0

tco rise

max/min
10125/10122
10034/9948
10093/9991
10123/9930
10030/9946

tco fall
max/min
805/51
10073/9966
10076/9967
10069/9964
10073/9966
11493/9969
10123/9930
10069/9964

External
Signals
SP_CLK
SP_ALE
SP_CS|0]
SP_CS[1]
SP_WR
SP_RD
SP_ACK
SP_AD[1:0]
SP_AD[7:0]
output to
external
device
SP_AD[7:0]
output to
external
device

Timing Parameters (IXP2400 A0/A1)

Table 44. Single Write Transfer for Fixed-Timed Device
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and the clock divisor as well. The minimum is 20 ns for one clock cycle at 50 MHz.

Figure 66. Framer Interrupt Enable Register Timing

Diagram (IXP2400 A0/A1)

In

The pulse width depends on the pulse-width parameter set in the SP_WTC1 and SP_WTC2 registers

SP_WR L
SP_RD_L
SP_A[1:0]
SP_AD[7:0]

SP_ACK_L

tCOfrise tCO fall
0 » 2
APB_CLK
SP_CLK
SP_ALE_L

t
co t o tau tsu e
Ch tdzo
Table 45. Framer Interrupt Enable Register Timing
Parameters (IXP2400 A0/A1)
External tco fall tcorise toz/zo? .
. - . th tsu tpw . unit
Signals max/min max/min max/min
SP_ALE 10073/9966 10034/9948 ps
SP_CSI0] 10076/9967 b ps
SP_CS[1] 10069/9964 a ps
SP_WR 10073/9966 10034/9948 e ps
SP_RD 10073/9966 ps
SP_ACK 0 10216 ps
11493/9969
SP_ADI[1:0] 10093/9991 ps
SP_ADI[7:0]
11493/9969 13113/11179
output to 10123/9930 | 9946 ps
external 13717/11365
device
SP_ADI7:0]
input from 30000 | 10233 ps
external
device
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a.  The values are only obtained without loading. We need to add the delay caused by loading according to the typical PN and
slew bit table below.

b.  Atleast two clock cycles.

C. The pulse width depends on the pulse-width parameter set in the SP_WTC1 and SP_WTC2 registers and the clock divisor
as well. The minimum is 20 ns for one clock cycle at 50 MHz.

3.12.7 PROM Device Timing Information (IXP2400 B0)

The following provides timing information for the SlowPort in mode 0.

Figure 67. Single Write Transfer for Fixed-Timed
Device (IXP2400 B0)

teo rise teo_fa11

P_CLK

SP_CLK

SP_ALE L

SP_CS_L
[1:0]

SP_WR_L

SP_RD L

SP_ACK_L

SP_A[1:0]

SP_AD[7:0]

Table 46. Single Write Transfer for Fixed-Timed Device
Timing Parameters (IXP2400 BO0)

External Signals tco rise tco Eall th tsu tpw

(default®) (ns) (default®) (ns) (ns) (ns) (ns)
Max Min Max Min Max Min Max Min Max Min

SP_CLK 3.0 1.4 3.7 3.3

SP_ALE 8.5 5.3 9.0 5.4

SP_CSJ0] 8.4 53 9.0 54

SP_CS[1] 8.4 5.3 9.0 5.4

SP_WR 9.1 55 9.2 5.6 ¢
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Table 46. Single Write Transfer for Fixed-Timed Device
Timing Parameters (IXP2400 B0)

External Signals tco rise tco fall th tsu tpw
g (default?) (ns) (defaultb) (ns) (ns) (ns) (ns)
Max Min Max Min Max Min Max Min Max Min
SP_RD
SP_ACK 0 0 6.8 4.5
SP_A[1:0] 8.4 5.3 9.0 5.4
SP_AD[7:0]
output to external 9.0 5.5 9.2 5.6 9.2 5.5
device
a. Default out timing delay is controlled by the TXE register. By default this register is set to 1, i.e, two P clock cycles delay or 6666.66 ps. minimum
delay can be set to 0.
b. Default out timing delay is controlled by the TXE register. By default, this register is set to 1, i.e, two P clock cycles delay or 6666.66 ps. Minimum
delay can be set to 0.
c. The pulse width depends on the pulse-width parameter set in the SP_WTC1 and SP_WTC2 registers and the clock divisor as well. The minimum

is 20 ns for one clock cycle at 50 MHz.

Figure 68. Framer Interrupt Enable Register Timing (IXP2400 B0)
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4.1

This section defines the Network Processor Microengine (ME). This is the second version of the
Microengine, and is often referred to as the MEv2 (Microengine Version 2).

Overview

The following sections describe the programmer’s view of the Microengine. The block diagram in
Figure 69 is used in the description. Note that this block diagram is simplified for clarity, not all
interface signals are shown, and some blocks and connectivity have been omitted to make the
diagram more readable. This block diagram does not show any pipeline stages, rather it shows the
logical flow of information.

The Microengine provides support for software controlled multi-threaded operation. Given the
disparity in processor cycle times versus external memory times, a single thread of execution will
often block waiting for external memory operations to complete. Having multiple threads available
allows for threads to interleave operation—there is often at least one thread ready to run while
others are blocked.
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Figure 69. Microengine Block Diagram
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411 Control Store

The Control Store is a static RAM, which holds the program that the Microengine executes. It
holds 4096 instructions, each of which is 40-bits wide. It is initialized by an external device
(XScale), which writes to Ustore Addr and Ustore Data Local CSRs.
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The Control Store can optionally be protected by parity against soft errors. The parity protection is
optional, so that it can be disabled for implementations that don’t need or want to pay the cost for
it. Parity checking is enabled by CTX Enable[Control Store Parity Enable]. A parity error on an
instruction read will halt the Microengine and assert an output signal that can be used as an
interrupt (e.g., to XScale).

Contexts

There are eight hardware Contexts available in the Microengine. To allow for efficient context
swapping, each Context has its own register set, Program Counter, and Context specific Local
Registers. Having a separate copy per Context eliminates the need to move Context specific
information to/from shared memory and Microengine registers for each Context swap. Fast context
swapping allows a Context to do computation while other Contexts wait for 1O (typically external
memory accesses) to complete or for a signal from another Context or hardware unit. [Note that a
context swap is similar to a taken branch in timing.]

Each of the eight Contexts is always in one of four states.

1. Inactive—Some applications may not require all eight contexts. A Context is in the Inactive
state when its CTX_Enable CSR enable bit is a ‘0’.

2. Executing—A Context is in Executing state when its context number is in Active CTX_Status
CSR. The executing Context’s PC is used to fetch instructions from the Control Store. A
Context will stay in this state until it executes an instruction that causes it to go to Sleep state
(there is no hardware interrupt or preemption; Context swapping is completely under software
control). At most one Context can be in Executing state at any time.

3. Ready—In this state, a Context is ready to execute, but is not because a different Context is
executing. When the Executing Context goes to Sleep state, the Microengine’s context arbiter
selects the next Context to go to the Executing state from among all the Contexts in the Ready
state. The arbitration is round robin.

4. Sleep—Context is waiting for external event(s) specified in the CTX # Wakeup Events CSR
to occur (typically, but not limited to, an IO access). In this state the Context does not arbitrate
to enter the Executing state.

The state diagram in Figure 70 illustrates the Context state transitions. Each of the eight Contexts
will be in one of these states. At most one Context can be in Executing state at a time; any number
of Contexts can be in any of the other states.
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Figure 70. Context State Transition Diagram
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Note:

After reset, the Intel XScale processor must load the starting address of the CTX_PC, load the
CTX_WAKEUP_EVENTS to 0x1 (voluntary), and then set the appropriate CTX_ENABLE bits to begin
executing Context(s),

A9352-01

The Microengine is in Idle state whenever no Context is running (all Contexts are in either Inactive
or Sleep states). This state is entered:

1.
2.
3.

After reset (because CTX_Enable Local CSR is clear, putting all Contexts into Inactive states).
When a context swap is executed, but no context is ready to wakeup.

When a ctx_arblbpt] instruction is executed by the Microengine (this is a special case of #2
above, since the ctx_arb[bpt] clears CTX Enable, putting all Contexts into Inactive states).

The Microengine provides the following functionality during Idle state:

1.

The Microengine continuously checks if a Context is in Ready state. If so, a new Context
begins to execute. If no Context is Ready, the Microengine remains in the Idle state.

Only the ALU instructions are supported. They are used for debug via special hardware
defined in number 3 below.

A write to the Ustore_ Addr Local CSR with the Ustore Addr[ECS] bit set, causing the
Microengine to repeatedly execute the instruction pointed by the address specified in the
Ustore_Addr CSR. Only the ALU instructions are supported in this mode. Also, the result of
the execution is written to the ALU_Out Local CSR rather than a destination register.

. A write to the Ustore_ Addr Local CSR with the Ustore Addr[ECS] bit set, followed by a

write to the Ustore_Data Local CSR loads an instruction into the Control Store. After the
Control Store is loaded, execution proceeds as described in number 3 above. Note that the
write to Ustore_Data causes Ustore Addr to increment, so it must be written back to the
address of the desired instruction.
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Datapath Registers

As shown in the block diagram in Figure 69, each Microengine contains four types of 32-bit
datapath registers:

1. 256 General Purpose Registers

2. 512 Transfer Registers

3. 128 Next Neighbor Registers

4. 640 32-bit words of Local Memory1

General-Purpose Registers (GPRs)

GPRs are used for general programming purposes. They are read and written exclusively under
program control. GPRs, when used as a source in an instruction, supply operands to the execution
datapath. When used as a destination in an instruction, they are written with the result of the
execution datapath. The specific GPRs selected are encoded in the instruction.

The GPRs are physically and logically contained in two banks, GPR A, and GPR B, defined in
Table 48.

The Microengine registers are defined in the ZXP2400 Network Processor Programmers Reference
Manual.

Transfer Registers

Transfer Registers (abbreviated Xfer Registers) are used for transferring data to and from the
Microengine and locations external to the Microengine, (for example DRAMs, SRAMs etc.).
There are four types of transfer registers.

1. S Transfer In
2. S Transfer Out
3. D Transfer In
4. D Transfer Out

Transfer In Registers, when used as a source in an instruction, supply operands to the execution
datapath. The specific register selected is either encoded in the instruction, or selected indirectly
via T Index. Transfer In Registers are written by external units based on the Push_ID input to the
Microengine.

As shown in Figure 69, the mux between the S and D push buses allow data arriving on the buses to
be written to either the S or D transfer registers. No mux exists for the pull buses so it is not
possible to write data from the S transfer registers onto the D push bus or to write data from the D
Transfer registers onto the S push bus.

Transfer Out Registers, when used as a destination in an instruction, are written with the result
from the execution datapath. The specific register selected is encoded in the instruction, or selected
indirectly via T Index. Transfer Out Registers supply data to external units based on the Pull ID
input to the Microengine.

1. Some implementations may choose to include a different amount of Local Memory. The minimum allowed is 512 32-bit words. The
maximum is 1024 32-bit words (limited by the size of LM_Addr).
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The S Transfer Inand S Transfer Out Registers connect to the S Push and S_Pull buses,
respectively.

The D_Transfer In and D Transfer Out Transfer Registers connect to the D_Push and D_Pull
buses, respectively.

Typically, the external units access the Transfer Registers in response to commands sent by the
MEs; the commands are sent in response to instructions executed by the Microengine (for example,
the command instructs a SRAM controller to read from external SRAM, and place the data into a
S Transfer Inregister). However, it is possible for an external unit to access a given Microengine’s
Transfer Registers either autonomously, or under control of a different Microengine, or the XScale
core, etc. The Microengine interface signals controlling writing/reading of the Transfer In/
Transfer Out registers are independent of the operation of the rest of the Microengine.

The number and types of external units connected to the Push and Pull buses is chip
implementation specific.

Next Neighbor Registers

A new feature added for the Microengine Version 2 are 128 Next Neighbor registers that provide a
dedicated datapath for transferring data from the previous/next neighbor Microengine.

Next Neighbor Registers, when used as a source in an instruction, supply operands to the execution
datapath. They are written in two different ways 1) by an external entity, typically, but not limited
to, another, adjacent Microengine, or 2) by the same Microengine they are in, as controlled by
CTX_ Enable[NN_Mode].

The specific register is selected in one of two ways: 1) Context-relative, the register number is
encoded in the instruction, or 2) as a Ring, selected via NN_Get and NN_Put CSR Registers.

When CTX_ Enable[NN_Mode] is ‘0’ -- When Next Neighbor is used as a destination in an
instruction, the instruction result data is sent out of the Microengine, typically to another, adjacent
Microengine.

When CTX _Enable[NN_Mode] is ‘1’ -- When Next Neighbor is used as a destination in an
instruction, the instruction result data is written to the selected Next Neighbor Register in the
Microengine. Note that there is a 6-instruction latency until the newly written data may be read.
The data is not sent out of the Microengine as it would be when CTX Enable[NN_Mode] is ‘0’.

In this mode the datapath bypass is not used and the code must ensure it uses the newly written data
correctly. The following example shows the earliest use of the new data. Any earlier use of the
destination register would get the old contents of the register.

alu [nS_reg, ...]
inst_2
inst_3
inst_4
inst_5
inst_6
alu [..., nS_reg]
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Table 47. Next Neighbor Write as a Function of CTX_Enable[NN_Mode

4134

Where Does Write Go?
NN_Mode External NN Register in
This ME
0 Yes No
1 No Yes

Local Memory (LM)

Local Memory is addressable storage located in the Microengine. LM is read and written
exclusively under program control. LM supplies operands to the execution datapath as a source,
and receives results as a destination. The specific LM location selected is based on the value in one
of the LM_ADDR Registers, which are written by local_csr_wr instructions. There are two
LM_ADDR Registers per Context and a working copy of each. When a Context goes to Sleep
state, the value of the working copies is put into the Context’s copy of LM_ ADDR. When the
Context goes to Executing state, the value in its copy of LM_ADDR are put into the working
copies. The choice of LM_ADDR 0 or LM_ADDR 1 is selected in the instruction.

It is also possible to make use of both or one LM_ADDRs as global by setting

CTX ENABLE[LM_ADDR 0 GLOBAL]and/or CTX ENABLE[LM_ADDR 1 GLOBAL].
When used globally, all Contexts use the working copy of LM_ADDR in place of their own
Context specific one; the Context specific ones are unused.

There is a three-instruction latency when writing a new value to the LM_ADDR, as shown in
Example 11.

Example 11. Three-Cycle Latency when Writing a New Value to LM_ADDR

;some instruction to compute the address into gpr_m
local_csr_wr [INDIRECT_LM ADDR_0, gpr_m]; put gpr_m into 1lm_addr
;unrelated instruction 1

;unrelated instruction 2

;unrelated instruction 3

alu[dest_reg, *1sindex0, op, src_reg]

;dest_reg can be used as a source in next instruction

LM_ADDR can also be incremented or decremented in parallel with use as a source and/or
destination (using the notation *I$index#++ and *1$index#--), as shown in Example 12, where
three consecutive LM locations are used in three consecutive instructions.

Example 12. Using LM_ADDR in Consecutive Instructions

alul[dest_regl, src_regl, op, *1$index0++]
alu[dest_reg2, src_reg2, op, *1$index0++]
alu[dest_reg3, src_reg3, op, *1$index0++]

LM is written by selecting it as a destination. Example 13 shows copying a section of LM to
another section. Each instruction accesses the next sequential LM location from the previous

instruction.
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Example 13. Copying One Section of LM to Another Section

alu[*1$indexl++, --, B, *1$index0++]
alu[*1$indexl++, --, B, *1$index0++]
alu[*1$indexl++, --, B, *1$index0++]

Example 14 shows loading and using both LM addresses.
Example 14. Loading and Using both LM Addresses

local_csr_wr [INDIRECT LM_ADDR_O0, gpr_m]
local_csr_wr [INDIRECT LM_ADDR_1, gpr_n]
;unrelated instruction 1
;unrelated instruction 2
alul[dest_regl, *1$index0, op, src_regll]
alul[dest_reg2, *1$indexl, op, src_reg2]

As shown in Example 11 there is a latency in loading LM_ADDR. Until the new value is loaded
the old value is still usable. Example 15 shows the maximum pipelined usage of LM_ADDR.

Example 15. Maximum Pipelined Usage of LM_ADDR

local_csr_wr [INDIRECT LM_ADDR_0, gpr_m]
local_csr_wr [INDIRECT LM_ADDR_0, gpr_nl]
local_csr_wr [INDIRECT LM_ADDR_0, gpr_ol
local_csr_wr [INDIRECT_LM_ADDR_O0, gpr_pl

alul[dest_regl, *1$index0, op, src_regl] ; uses address from gpr_m
alul[dest_reg2, *1$index0, op, src_reg2] ; uses address from gpr_n
alul[dest_reg3, *1sindex0, op, src_reg3] ; uses address from gpr_o
alul[dest_reg4, *1$index0, op, src_reg4] ; uses address from gpr_p

LM_ADDR can also be used as the base of a 16 32-bit word region of memory, with the instruction
specifying the offset from that base, as shown in Example 16. The source and destination can use

different offsets.
Example 16. LM_ADDR Used as Base of a 16 32-bit word Region of Local Memory

alu[*1sindex0[3], *1$index0[4], +, 1]

Note: LM has 640 32-bit words. LM_ADDR can hold values from 0 to 1023. Using LM_ADDR to
address LM when its value is not in the range of 0..639 will cause unpredictable results.

To the programmer, all instructions using LM act as follows, including read/modify/write
instructions like immed_wo0, 1d_field, €tc.
1. Read LM_ADDR location (if LM_ADDR is specified as source)
Execute logic function
Write LM_ADDR location (if LM_ADDR is specified as destination)
If specified, increment or decrement LM_ADDR

DR W

. Proceed to next instruction
Example 17 shows using post-modify when the same LM_ADDR is both source and destination.

Example 17. LM_ADDR Use as Source and Destination

alu[*1$index0++, --, ~B, *1$index0]
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To the programmer, all instructions using LM act as follows, including read/modify/write
instructions like immed w0, Id field, etc.

1. Read 1 addr location (if Im_addr is specified as source)

2. Execute logic function

3. Write Im_addr location (if Im_addr is specified as destination)
4. If specified, increment or decrement LM_addr
5

. Proceed to next instruction

The rule that the assembler uses is that when the same index register is used as both a source and
destination, any increment/decrement operator must be applied to the destination usage.

Example 19 is not legal; LM offset cannot be used at the same time as post-modify.

Example 18. LM_ADDR Use as Source and Destination

alu[*1$index0++, --, ~B, *$index0] ; ***Illegal

In Example 19, the second instruction will access the LM location, one past the source/destination
of the first.

Example 19. LM_ADDR Post-increment

alu[*1$index0++, --, ~B, gpr_n]
alulgpr_m, --, ~B, *1$index0]

41.4 Addressing Modes

GPRs can be accessed in two different addressing modes: Context-Relative and Absolute. Some
instructions can specify either mode, other instructions can specify only Context-Relative mode.

Transfer and Next Neighbor registers can be accessed in Context-Relative and Indexed modes.
Local Memory is accessed in Indexed mode.

The addressing mode in use is encoded directly into each instruction, for each source and
destination specifier.

41.41 Context-Relative Addressing Mode

The GPRs are logically subdivided into equal regions such that each Context has exclusive access
to one of the regions. The number of regions is configured in the CTX Enable CSR, and can be
either 4 or 8. Thus a Context-Relative register name is actually associated with multiple different
physical registers. The actual register to be accessed is determined by the Context making the
access request (the Context number is concatenated with the register number specified in the
instruction—see Table 48). Context-Relative addressing is a powerful feature that enables eight
different contexts to share the same microcode, yet maintain separate data.

Table 48 shows how the Context number is used in selecting the register number in relative mode.
The register number in Table 48 is the Absolute GPR address, or Transfer or Next Neighbor Index
number to use to access the specific Context-Relative register. For example, with 8 active Contexts,
Context-Relative Register 0 for Context 2 is Absolute Register Number 32.
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Table 48. Registers Used By Contexts in Context-Relative Addressing Mode

41.4.2

41.4.3

Numb.er of Active Absolute ReGgTslter Numbers S Tra!nsfer or D Transfer
Active Context Neighbor Index Number
Contexts Number Index Number
A Port B Port
0 0-15 0-15 0-15 0-15
1 16-31 16-31 16-31 16-31
2 32-47 32-47 32-47 32-47
3 48-63 48-63 48-63 48-63
8 4 64-79 64-79 64-79 64-79
5 80-95 80-95 80-95 80-95
6 96-111 96-111 96-111 96-111
7 112-127 112-127 112-127 112-127
0 0-31 0-31 0-31 0-31
2 32-63 32-63 32-63 32-63
‘ 4 64-95 64-95 64-95 64-95
6 96-127 96-127 96-127 96-127

Absolute Addressing Mode

With Absolute addressing, any GPR can be read or written by any one of the eight Contexts in an
Microengine. Absolute addressing enables register data to be shared among all of the Contexts, for
example for global variables, or for parameter passing. All 256 GPRs can be read by Absolute

address.

Indexed Addressing Mode

With Indexed addressing, any Transfer or Next Neighbor register can be read or written by any one
of the eight Contexts in a Microengine. Indexed addressing enables register data to be shared

among all of the Contexts. For indexed addressing the register number comes from the T INDEX
register for Transfer Registers or NN_PUT and NN_GET registers (for Next Neighbor Registers).

Example 20 shows an example of using the Index Mode. Assume that the numbered bytes have
been moved into the S_Transfer In registers as shown.

Example 20. Use of Indexed Addressing Mode

164

Transfer Data
Register # 31:24 23:16 15:8 7:0
0 0x00 0x01 0x02 0x03
1 0x04 0x05 0x06 0x07
2 0x08 0x09 0x0a 0x0b
3 0x0c 0x0d 0x0e 0x0f
4 0x10 0x11 0x12 0x013
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Example 20. Use of Indexed Addressing Mode

4.2

Transfer Data

Register # 31:24 23:16 15:8 7:0
5 0x14 0x15 0x16 0x17
6 0x18 0x19 Ox1a 0x1b
7 Ox1c 0x1d Ox1e Ox1f

If the software wants to access a specific byte that is known at compile-time, it will normally use
context-relative addressing. For example to access the word in transfer register 3:

alu[dest, --, B, S$xfer3] ; move the data from s_transfer 3 to gpr dest

If the location of the data is found at run-time, indexed mode can be used. For example, the case
where the start of an encapsulated header is dependent on a value in an outer header (the outer
header byte is in a fixed location).

; Check byte 2 of transfer 0

; If value==5 header starts on byte 0x9, else byte 0x14
br=byte[$0, 2, 0x5, L1#], defer_[1]
local_csr_wr[t_index_byte_index, 0x09]
local_csr_wr[t_index_byte_index, 0x14]

nop ; wait for index registers to be loaded

Ll#:
; Move bytes right justified into destination registers
nop ; wait for index registers to be loaded

nop ;

byte_align_be[destl, *t_index++]

byte_align_be[dest2, *t_index++]

; etc

Note that the t_index and byte index registers are loaded by the same instruction.

Local CSRs

Local Control and Status Registers (CSRs) are external to the Execution Datapath, and hold
specific purpose information. They can be read and written by special instructions (local csr_rd
and local_csr_wr) and are typically accessed less frequently than datapath registers. Because Local
CSRs are not built in the datapath, there is a write to use delay of either three or four cycles, and a
read to consume penalty of one cycle.
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Table 49.

Figure 71.

Execution Datapath

The Execution Datapath can take one or two operands, perform an operation, and optionally write
back a result. The sources and destinations can be GPRs, Transfer Registers, Next Neighbor
Registers, and Local Memory. The operations are shifts, add/subtract, logicals, multiply, byte align,
and find first bit set. There is also a CAM in the Execution Datapath.

Byte Align

The datapath provides a mechanism to move data from source register(s) to any destination
register(s) with byte aligning. Byte aligning takes four consecutive bytes from two concatenated
values (8 bytes), starting at any of four byte boundaries (0, 1, 2, 3), and based on the endian-type
(which is defined in the instruction opcode), as shown in Table 49. The four bytes are taken from
two concatenated values. Four bytes are always supplied from a temporary register that always
holds the A or B operand from the previous cycle, and the other four bytes from the B or A operand
of the Byte Align instruction. The operation is described below using the block diagram Figure 71.
The alignment is controlled by the 2 LSBs of the Byte Index Local CSR.

Align Value and Shift Amount

Right Shift Amount (# of Bits)
Align Value (Decimal)
(in Byte_Index[1:0])

Little Endian Big Endian
0 0 32
1 8 24
2 16 16
3 24 8

Byte Align Block Diagram

o
7

B_Operand

A_Operand

Shift Byte_Index

Result

A9353-01

Hardware Reference Manual



u Intel® IXP2400 Network Processor
I n Microengines

Example 21 shows an align sequence of instructions and the value of the various operands.
Table 50 shows the data in the registers for this example. The value in Byte Index[1:0] CSR
(which controls the shift amount) for this example is 2.

Table 50. Register Contents for Example 21

Rosisor | B3 | BreZ | et | ey
0 0 1 2 3
1 4 5 6 7
2 8 9 A B
3 C D E F

Example 21. Big Endian Align

Instruction Prev B A Operand | B Operand Result
Byte align be[--, r0] - - 0123 -
Byte align be[destl, rl] 0123 0123 4567 2345
Byte align be[dest2, r2] 4567 4567 89AB 6789
Byte align be[dest3, r3] 89AB 89AB CDEF ABCD
NOTE: A Operand comes from Prev_B register during byte_align_be instructions.

Example 22 shows another sequence of instructions and the value of the various operands.
Table 51, shows the data in the registers for this example.

The value in Byte Index[1:0] CSR (which controls the shift amount) for this example is 2.

Table 51. Register Contents for Example 22

oo | Spe2 [ pyea [ oo | o
0 3 2 1 0
1 7 6 5 4
2 B A 9 8
3 F E D C

Example 22. Little Endian Align

Instruction A Operand | B Operand Prev A Result
Byte align le[--, r0] 3210 - - -
Byte align le[destl, rl] 7654 3210 3210 5432
Byte align le[dest2, r2] BA98 7654 7654 9876
Byte align le[dest3, r3] FEDC BA98 BA98 DCBA
NOTE: B Operand comes from Prev_A register during byte_align_le instructions.

As the examples show, byte aligning “n” words takes “n+1” cycles due to the first instruction
needed to start the operation.
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Another mode of operation is to use the T Index register with post-increment, to select the source
registers. T Index operation is described later in this chapter.

CAM

The block diagram in Figure 72 is used to explain the CAM operation.

The CAM has 16 entries. Each entry stores a 32 bit value, which can be compared against a source
operand by instruction:

CAM_Lookup[dest_reg, source_reg]

All entries are compared in parallel, and the result of the lookup is a 9 bit value which is written
into the specified destination register in bits 11:3, with all other bits of the register zero (the choice
of bits 11:3 is explained below). The result can also optionally be written into either of the
LM_Addr registers (see below in this section for details).

The 9-bit result consists of 4 State bits (dest_reg[11:8]), concatenated with a 1-bit Hit/Miss
indication (dest_reg[7]), concatenated with 4-bit entry number (dest_reg[6:3]). All other bits of
dest reg are written with 0. Possible results of the lookup are:

¢ miss (0)—lookup value is not in CAM, entry number is Least Recently Used entry (which can
be used as a suggested entry to replace), and State bits are 0000.

¢ hit (1)—lookup value is in CAM, entry number is entry which has matched, State bits are the
value from the entry which has matched.
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Figure 72. CAM Block Diagram

Note:

Lookup Value

(from A port) 1

Tag State Match >
Tag State |—Match o
Match
Tag State > Status
and
LRU
Logic

Tag | State I%

Lookup Status
_(to Dest Req)

‘w
N
“ Y a
. .
- *a
.* ~

I‘ State | Status |Entry Numbe;l

| o000 | Misso | LRUEnty |

| stte | Hit1 | Hitenry |

A9354-01

The State bits are data associated with the entry. State bits are only used by software. There is no
implication of ownership of the entry by any Context. The State bits hardware function is:

* the value is set by software (at the time the entry is loaded, or changed in an already loaded
entry).

* its value is read out on a lookup that hits, and used as part of the status written into the
destination register.

* its value can be read out separately (normally only used for diagnostic or debug).

The LRU (Least Recently Used) Logic maintains a time-ordered list of CAM entry usage. When an
entry is loaded, or matches on a lookup, it is marked as MRU (Most Recently Used). Note that a
lookup that misses does not modify the LRU list.

The CAM is loaded by instruction:

CAM_Writel[entry reg, source_reg, state_value]

The value in the register specified by source_reg is put into the Tag field of the entry specified by
entry reg. The value for the State bits of the entry is specified in the instruction as state value.
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Note:

Note:

The value in the State bits for an entry can be written, without modifying the Tag, by instruction:
CAM _Write_Statel[entry_reg, state_value]

CcAM_wWrite_state does not modify the LRU list.

One possible way to use the result of a lookup is to dispatch to the proper code using instruction:
jump [register, label#],defer [3]

where the register holds the result of the lookup. The State bits can be used to differentiate cases
where the data associated with the CAM entry is in flight, or is pending a change, etc. Because the
lookup result was loaded into bits[11:3] of the destination register, the jump destinations are spaced
eight instructions apart. This is a balance between giving enough space for many applications to
complete their task without having to jump to another region vs. consuming too much Control
Store. Another way to use the lookup result is to branch on just the hit miss bit, and use the entry
number as a base pointer into a block of Local Memory.

When enabled, the CAM lookup result is loaded into Local Addr as follows:
LM_Addr[5:0] =0 ([1:0] are read-only bits)
LM_Addr[9:6] = lookup result [6:3] (entry number)
LM _Addr[11:10] = constant specified in instruction

This function is useful when the CAM is used as a cache, and each entry is associated with a block
of data in Local Memory. Note that the latency from when CAM_Lookup executes until the
LM_Addr is loaded is the same as when LM_ Addr is written by a Local CSR_Wr instruction.

The Tag and State bits for a given entry can be read by instructions:
CAM_Read_Tag[dest_reg, entry_ reg]

CAM_Read_State[dest_reg, entry_ reg]

The Tag value and State bits value for the specified entry is written into the destination register,
respectively for the two instructions (the State bits are placed into bits [11:8] of dest_reg, with all
other bits 0). Reading the tag is useful in the case where an entry needs to be evicted to make room
for a new value—the lookup of the new value results in a miss, with the LRU entry number
returned as a result of the miss. The caM_RrRead_Tag instruction can then be used to find the value
that was stored in that entry. An alternative would be to keep the tag value in a GPR. These two
instructions can also be used by debug and diagnostic software. Neither of these modify the state of
the LRU pointer.

The following rules must be adhered to when using the CAM.

1) CAM is not reset by Microengine reset. Software must either do a cam_clear prior to using the
CAM to initialize the LRU and clear the tags to zero, or explicitly write all entries with camM_write.

2) No two tags can be written to have same value. If this rule is violated, the result of a lookup that
matches that value will be unpredictable, and LRU state is unpredictable.

The value 0x00000000 can be used as a valid lookup value. However, note that cam_clear
instruction puts 0x00000000 into all tags. So in order to not violate rule 2 after doing cam_clear, it

is necessary to write all entries to unique values prior to doing a lookup of 0x00000000.

An algorithm for debug software to find out the contents of the CAM is shown in Table 52.
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Table 52. Algorithm for Debug Software to Find out the Contents of the CAM

4.4

; First read each of the tag entries. Note that these reads
; don’t modify the LRU list or any other CAM state.

tag[0] = CAM_Read_Tag(entry_ 0);

tag[l5] = CAM_Read_Tag(entry_15);

; Now read each of the state bits

state[0] = CAM_Read_State(entry_0);

state[1l5] = CAM_Read_State(entry_15);

; Knowing what tags are in the CAM makes it possible to

; create a value that is not in any tag, and will therefore
; miss on a lookup.

; Next loop through a sequence of 16 lookups, each of which will
; miss, to obtain the LRU values of the CAM.
for (i = 0; i < 16; 1i++)
BEGIN_LOOP

; Do a lookup with a tag not present in the CAM. On a

; miss, the LRU entry will be returned. Since this lookup

; missed the LRU state is not modified.

LRU[i] = CAM_Lookup (some_tag_not_in_cam) ;

; Now do a lookup using the tag of the LRU entry. This

; lookup will hit, which makes that entry MRU.

; This is necessary to allow the next lookup miss to

; see the next LRU entry.

junk = CAM_Lookup (tag[LRU[1]]);
END_LOOP
; Because all entries were hit in the same order as they were
; LRU, the LRU list is now back to where it started before the
; loop executed.
; LRU[O] through LRU[15] holds the LRU list.

The CAM can be cleared with CAM_ Clear instruction. This instruction writes 0x00000000
simultaneously to all entries tag, clears all the state bits, and puts the LRU into an initial state
(where entry 0 is LRU, ..., entry 15 is MRU).

CRC Unit

The CRC Unit operates in parallel with the Execution Datapath. It takes two operands, performs a
CRC operation, and writes back a result. CRC-CCITT and CRC-32 are supported. One of the
operands is the CRC_Remainder Local CSR, and the other is a GPR, Transfer In Register, Next
Neighbor, or Local Memory, specified in the instruction and passed through the Execution
Datapath to the CRC Unit. The instruction specifies the CRC operation type, whether to swap bytes
and or bits, and which bytes of the operand to include in the operation. The result of the CRC
operation is written back into CRC_Remainder. The source operand can also be written into a
destination register (however the byte/bit swapping and masking do not affect the destination
register; they only affect the CRC computation). This allows moving data, for example, from S
Transfer In registers to S Transfer Out registers at the same time as computing the CRC.

Hardware Reference Manual 171



Intel® IXP2400 Network Processor u
Mi s
icroengines I n o

4.5

4.5.1

172

Event Signals

Event Signals are used to coordinate a program with completion of external events. For example,
when a Microengine issues a command to an external unit to read data (which will be written into a
Transfer In register), the program must insure that it does not try to use the data until the external
unit has written it. There is no hardware mechanism to flag that a register write is pending, and then
prevent the program from using it. Instead the coordination is under software control, with
hardware support.

When the program issues the command to the external event, it can request that the external unit
supply an indication (called an Event Signal) that the command has been completed. There are 15
Event Signals per Context that can be used, and Local CSRs per Context to track which Event
Signals are pending and which have been returned. The Event Signals can be used to move a
Context from Sleep state to Ready state, or alternatively, the program can test and branch on the
status of Event Signals.

Event Signals can be set in nine different ways.

1. When data is written into S_Transfer In Registers (part of S Push_ID input)
When data is written into D_Transfer In Registers (part of D_Push_ID input)
When data is taken from S_Transfer Out Registers (part of S Pull ID input)
When data is taken from D_Transfer Out Registers (part of D_Pull ID input)
On InterThread_Sig In input
On NN_Sig In input
On Prev_Sig In input
On write to Same_ME _Signal Local CSR

e A o

By Internal Timer
Any or all Event Signals can be set by any of the above sources.

When a Context goes to Sleep state (executes a ctx_arb instruction, or a Command instruction with
ctx_swap token), it specifies which Event Signal(s) it requires to be put in Ready state. Ctx_arb
instruction also specifies if the logical AND or logical OR of the Event Signal(s) is needed to put
the Context into Ready state.

When a Context Event Signals arrive, it goes to Ready state, and then to Executing state. In the
case where the Event Signal is linked to moving data into or out of Transfer registers (numbers 1
through 4 in the list above), the code can safely use the Transfer register as the first instruction (for
example, using a Transfer In register as a source operand will get the new read data). The same is
true when the Event Signal is tested for branches (br =signal or br_!signal instructions).

The ctx_arb instruction, CTX Sig Events, and CTX Wakeup # Events Local CSR descriptions
provide details.

Microengine Endianness

Microengine operation from endianness point of view can be divided in following categories:

* Read from RBUF (64-bits)
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* Write to TBUF (64-bits)

* Read/write from/to SRAM

* Read/write from/to DRAM

¢ Read/write from/to SHAC and other CSRs
* Write to Hash

Read from RBUF (64-bits)

Data in RBUF is arranged in LWBE (long word big endian) order. Whenever Microengine reads
from RBUF, the low order long word (LDWO) is transferred into Microengine transfer register 0
(treg0), the high order long word (LDW1) is transferred into tregl, and so on. This is explained in
Figure 73.

Figure 73. Read from RBUF (64-bits)

4.51.2

0123 treg0
Microengine 4567 treg1
8910 11 treg2
121314 15 treg3
LDW1 ﬂ LDWO
4567 0123
121314 15 8910 11
RBUF
A894-01

Write to TBUF

Data in TBUF is arranged in LWBE order. When writing from Microengine transfer registers to
TBUF, treg0 goes into LDWO, tregl goes into LDW1, and so on. See Figure 74.

Figure 74. Write to TBUF (64-bits)
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Read/Write from/to SRAM

Data inside SRAM is in big-endian order. While transferring data from SRAM to a Microengine,
no endianness is involved and first-read data goes into the first transfer register specified, the next
read data into the second and so on.

Read/Write from/to DRAM

Data inside DRAM is in LWBE order. When a Microengine reads from DRAM, LDWO goes into
the first transfer register specified in the instruction, LDW1 goes into the next, and so on. While
writing to DRAM, treg0 goes first followed by tregl and both are combined in the DRAM
controller as {LDW1, LDWO0} and written as a 64-bit quantity into DRAM.

Read/Write from/to SHAC and Other CSRs

Read and write from SHAC and other CSRs happen as 32-bits operation only and are endian
independent. Low byte goes into the low byte of transfer register and high byte goes into high byte
of transfer register.

Write to Hash Unit

Figure 75 explains 48-bits, 64-bits and 128-bits hash operation. When Microengine transfers 48 bit
hash operand to hash unit, operand resides in two transfer registers and is transferred as shown in
Figure 75. In the second long word transfer, only lower half is valid. Hash unit concatenates the
two long words as shown in Figure 75. Similarly 64-bits and 128-bits hash operand transfer from
Microengine to hash unit happen as shown in the Figure 75.
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Figure 75. 48-bit, 64-bit and 128-bits Hash Operand Transfer

48-bit Hash 64-bit Hash
63 32 31 0 63 32 31 0
111098 76543210 15141312111098 76543210
S-Push / S-Pull BusT S-Push / S-Pull BusT

76543210 |treg0 76543210 treg0

MicroEngine
Transfer Registers

MicroEngine
Transfer Registers

111098 |tregl 1514131211109 8 |tregl

128-bit Hash
127 96 95 64 63 32 31 0
3130292827262524(2322212019181716| 15141312111098 76543210
S-Push / S-Pull BusT
76543210 treg0
MicroEngine 1514131211109 8 | tregl

Transfer Registers |3 55 2120 19 18 17 16 | treg2

313029 28 27 26 25 24 | treg3

A8943-01

4.6 Summary of the Differences Between MEv2 and
MEv1

This section documents the changes between MEv2 and MEv1. The purpose of this section is to
provide those familiar with MEv1 with a quick review of removed, added, or modified features.
Full descriptions of added features are in other sections.

4.6.1 General Purpose Registers and Transfer Registers

MEv2 has more GPRs and Transfer Registers than MEv1. There are
* 256 General Purpose Registers (vs. 128)
* 128 S Read Transfer Registers (vs. 32)
* 128 S Write Transfer Registers (vs. 32)
* 128 D Read Transfer Registers (vs. 32)
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* 128 D Write Transfer Registers (vs. 32)

Next Neighbor Registers

MEV2 has 128 Next Neighbor Registers, vs. none for MEv1.

Local Memory

MEvV2 has 640 32-bit words of Local Memory, vs. none for MEv1.

Contexts

MEV2 has eight available contexts versus four in MEv1. As in the MEv1, the registers can be
accessed relative to the active context, or absolutely, so that a given context can access all registers.
There is also a 4-context mode which partitions the registers four ways (doubling the number of
Context-Relative registers from 8-context mode.

Larger Microstore

MEV2 provides 4K instructions, vs. 2K instructions for MEv1. The branch offset is expanded so
that branch instructions can branch to any location in the Microstore.

CAM

MEV2 includes a 16 entry CAM with associated control logic. MEv1 does not contain a CAM.

Event Signals

MEV2 has 15 Event Signals per Context, that can be dynamically used in a flexible way. MEv1 has
fixed binding between Event Signals and specific hardware or software events.

Larger Immediate Field

MEvV2 provides for an 8-bit immediate field versus 5-bit for MEv1. Note that this refers to
immediates used in ALU operations, not IMMEDxx instructions.

Fast Write—Wider Data Field, Access to More Registers

[Note that Command instruction is not required to be used to create Fast Write instruction. This
description assumes that the implementation may contain CSRs and may use the Command
instruction to access them.]

In MEv2 Fast write instruction can generate 14-bits of data in the instruction versus 10 for MEv1.

In addition, there is a new variant of fast write (fast_write_alu) that can generate 32-bits of data, by
using the ALU result of the previous instruction as the data.
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Local CSR Instruction Uses Absolute/Relative Register
Addressing

MEv2 Local CSR accesses use Absolute/Relative Register Addressing, vs. only Context-Relative
Register Addressing in MEv1.

Timestamp

MEV2 has a Timestamp Local CSR. MEv1 does not have a Timestamp built, however there is a
globally accessible Timestamp in the IXP1200 chip.

Future_Count Event

In MEv2 each Context has a Future_Count Local CSR which can be programmed to generate an
event signal to the Context.

Multiply Hardware Support

MEV2 has multiply hardware support, which can retire 8-bits per cycle. MEv1 has +IFsign ALU
instruction, which has been deleted from MEv2.

No +IFsign ALU Opcode

MEV2’s 8-bit per cycle multiply hardware makes the +IFsign not useful, so it has been eliminated.

New Find First Bit Instruction

MEV2 adds new Find First Bit instructions in place of one already existing in MEv1. The reasons
this is done relative to the existing instruction are:

1. Ability to test 32 bits at a time (vs. 16).

2. Better latency to use result (because existing datapath bypass infrastructure is used).

ctx_arb[bpt]

A new type of ctx_arb instruction has been added for use by debugger software. The operation is
described in ctx_arb instruction section.

Pseudo-Random Number CSR

MEvV2 has a Pseudo_Random_Number Local CSR. MEv1 has no special hardware support for
random number generation.

Hardware Reference Manual 177



Intel® IXP2400 Network Processor u
Mi s
icroengines I n o

4.6.18

4.6.19

4.6.20

4.6.21

4.6.22

4.6.23

4.6.24

178

Local CSR Access for External Agents

MEv1 allows Local CSR access from external agents or by code running on the Microengine.
External accesses are typically done for debug, such as adding and removing breakpoints, and code
profiling, for example histogramming of active context and PC by periodically reading those Local
CSRs. However, there is only one port to the Local CSRs. If there is a simultaneous access (to any
registers, not necessarily the exact same register) the external agent will take priority and the
Microengine access will be lost. In MEv1 this is not normally a problem, since there is little reason
for Microengine code to access registers.

In MEv2, there are several new Local CSRs that will be frequently accessed during some
applications (for example the Pseudo-Random Number, and the Future Count). There is a new
mechanism to allow for both external agents and MEv2 code to access Local CSRs reliably. It is
described in the Local CSR_Status CSR description.

New Branch Types to Support Signed and Unsigned
Numbers

MEV2 adds more Branch on Condition Codes types relative to MEv1.

Branch Guess Taken Has No Effect in Hardware
The implementation cost vs. frequency of usage does not justify continued implementation of
branch guess taken. Decision tree branches (such as header parsing) normally go forward, and thus

do not benefit from guess taken. Loop ending branches can be replaced by unconditional branches
at the top of the loop followed by a conditional branch taken prior to re-entering the loop.

No Shift with Add or XOR

In order to allow for faster cycle times on the MEv2, the operation of shifting and adding or
subtracting in one cycle is disallowed. Shift with logicals is allowed, with the exception of XOR. A
shift and add/subtract can be replaced by two instructions; first to shift and second to add/subtract.

No A + 4 B ALU Opcode

The A + 4 B opcode has been eliminated from MEv2. It had limited (or non-existents) utility, and
required a special nibble select in the datapath. Note that A + 8 B and A + 16 B both still exist.

Local CSR_Rd Returns 32 Bits

In MEv1 1ocal_csr_rd returns only 16 bits (during the following immed instruction). MEv2
returns 32 bits.

Profile Count Local CSR

MEV2 has a counter that can be used for profiling code. MEv1 does not have one.

Hardware Reference Manual



u Intel® IXP2400 Network Processor

I n o Microengines

4.6.25 CSR_CTX_Pointer

MEv1 provided a separate Local CSR address for all of the per-Context Local CSRs. MEv2 does
not provide separate addresses. Instead, each of the per-Context Local CSRs can be accessed in two
ways; one address accesses the active Context’s copy of the register; another address accesses the
register for the Context number in CSR_CTX_Pointer Local CSR.
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DDR SDRAM Controller 5

5.1

Overview

The DDR SDRAM Controller is responsible for controlling the off-chip DRAM and provides a
mechanism for other functional units in IXP2400 to access the DRAM. IXP2400 supports a single
64-bit channel (72-bit with ECC) of DRAM. DRAM sizes of 64, 128, 256, 512 Mb, and 1 Gb are
supported, The DRAM channel can be populated with either a single or double sided DIMM.

An address space of 2 GB is allocated to DRAM. The memory space is guaranteed to be
contiguous from a software perspective. If less than 2 GB of memory is present, the upper part of
the address space is aliased into the lower part of the address space and should not be used by
software.

Reads and writes to DRAM are generated by Microengines, Intel XScale® core, and PCI bus
masters. They are connected to the controllers via the Command Bus and Push and Pull Buses. The
memory controller takes commands from these sources and enqueues them. The commands are
dequeued—according to the priority defined later in this chapter—and the accesses to the DRAM
are performed. The controller also does refresh cycles to the DRAMs.

ECC (Error Correcting Code) is supported, but can be disabled. Enabling ECC requires that x72
DIMMs be used. If ECC is disabled, x64 DIMMs can be used.

Figure 76 illustrates how the memory controllers communicate with other units and with the DDR
DRAM.

Figure 76. Memory Controller’s Communications

Intel —\ Cmd Bus
XScale" —) ~| Memory DDR
M|CroEng/ Controller Channel 0
Other Unit |- < >{ DIMM
S Push Bus
Intel N
XScalef Pull Bus
MicroEng/ _ -
Other Unit |- 4

B2860-01
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5.2

Feature List

* Supports One DDR SDRAM channels, 64 bits wide (72 bits with ECC)
* Supports DDR devices up to 300 MTs

¢ Supports 64-, 128-, 256-, 512-Mb, and 1-Gb, technologies for x8 and x16 devices (DIMM and

direct soldered)

* Hardware controlled interleaving is done to spread contiguous addresses across multiple banks

¢ All supported devices have four banks

* Configurable optional Error Correction using ECC bits

* Supports one single- or double-sided DIMM

¢ Supports up to 2-Gb memory capacity (using 1-Gb technology)

Table 53. DDR Memory Auto Precharge Options

5.3

Stepping Description

IXP2400 AO/A1 Supports only DDR memories with Concurrent Auto
Precharge.
Supports DDR memories with or without Concurrent

IXP2400 BO Auto Precharge. Set bit 30 (DIS_CAP) of the
DU_CONTROL register to 1 to support DRAMs that do
not feature optional Concurrent Auto Precharge.
Configurations

Table 54 shows the memory that can be supported by the DDR channel in IXP2400. The first
column shows the total memory capacity that can be supported. Each row represents different
configuration options that are available to support a desired memory capacity.

Notes for Table 54:
* x16 parts can be used but the resulting datapath width is 80 bits

¢ 8 bits of the 80 bit x16 part widths must be discarded to accommodate the 72 bit wide data and

ECC bus

Table 54. Supported Configurations

182

Mem DRAM Part | Total Num Num of Num of | Comments (sample DIMM vendors
Capacity | Density | Width | of SDRAMs DIMMs Sides shown if information available)
) No ECC and No Parity
16 MB | 64 Mbit | x32 2 1 1
IXP2400 BO
No E No Pari
32MB | 128 Mbit | x32 2 1 1 0 ECC and No Parity
IXP2400 BO
64 Mbit x8 9 1 1
64 MB
128 Mbit | x16 5 1 1
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Mem DRAM Part | Total Num Num of Num of | Comments (sample DIMM vendors
Capacity | Density | Width | of SDRAMs DIMMs Sides shown if information available)
64 Mbit x8 18 1 2
128 Mbit | x8 9 1 1 Samsung, Micron
128 MB
128 Mbit | x16 10 1 2
256 Mbit | x16 5 1 1
128 Mbit x8 18 1 2 Samsung, Micron
256 Mbit | x8 9 1 1 Samsung
256 MB
256 Mbit | x16 10 1 2
512 Mbit | x16 5 1 1
256 Mbit x8 18 1 2 Samsung, Micron (3Q2001)
512 Mbit | x8 9 1 1
512 MB
512 Mbit | x16 10 1 2
1 Gbit x16 5 1 1
512 Mbit | x8 18 1 2
1GB 1 Gbit x8 9 1 1
1 Gbit x16 10 1 2
2GB 1 Gbit x8 18 1 2
54 Initialization

The DDR DRAM DIMMs contain a serial PROM which contains information about DIMM size,
density, speed etc. This serial PROM is read by software running on the Intel XScale® core
processor in order to configure the memory controller. GPIO pins will be used to read the PROM.

5.5 Supported Frequencies

The DRAM controller implements a few clock ratios in order to support different DRAM speeds
and internal clock frequencies. The clock ratios supported are 1:1 and 3:2. Table 55 lists the
frequency targets for IXP2400 and the corresponding DRAM frequency (data transfer rate).

Table 55. Clock Frequencies

DRAM Freq (Data

Internal Bus Frequency Clock Ratio transfer rate)
1:1 300 MTS
IXP2400 300
3:2 200 MTS
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5.6

5.6.1

5.7
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Interleaving

In IXP2400, all accesses are directed to the single available channel. The maximum DIMM size
supported is 2 GB, which is the maximum address space.

The DRAM memory banks are interleaved to improve concurrency and bandwidth utilization.
Contiguous addresses are directed to different DRAM banks by remapping the physical address
bits such that the new addresses are spread across the 4 DRAM banks. Note that the mapping of
addresses to memory banks is completely transparent to software. Software deals with physical
addresses in DRAM space; the mapping is done completely by hardware.

Interleaving across Banks

The addresses are interleaved across internal banks and DIMM sides. This improves memory
utilization since certain operations to different banks can be performed concurrently.

Bits 8:7 of the command address are used as the bank select bits.

Bit 9 of the command address is used to select the side of the DIMM if a double sided DIMM is
used.

Error Correction

Each 64-bit bank of DRAM is protected with an 8-bit SEC/DED ECC (Single Error Correct,
Double Error Detect Error Correction Code.) Every store to the DRAM will cause the ECC to be
calculated and stored with the data. Stores of less than 64 bits will incur a Read-Modify-Write
penalty to generate the correct ECC. If ECC checking is enabled, then any data read with incorrect
ECC will be corrected if the data had a single bit in error and a correctable error interrupt is
generated. If two bits were in error, an uncorrectable error interrupt is generated. In both cases
status is captured. The hardware does not guarantee error detection if more than 2 bits in a 64 bit
data chunk are corrupted.If ECC checking is disabled the integrity of the data is unknown.

There is an address register, a status register and some control bits in the DRAM control register
associated with memory integrity reporting. Control bits enable ECC checking, and allow
diagnostic software to force error conditions to test the detection and reporting logic. An error
address register and an error status register capture the address and syndrome of the first error to
occur. That information is frozen in place until software has re-armed capture. The status register
also has bits indicating UE (Uncorrectable Error) and CE (Correctable Error) to assist the program
in determining the type of error seen as well as the ID of the initiator of the transaction and a bit
indicating if this was a RMW cycle.

If the registers hold status and address for a CE, the first UE to occur will overwrite that
information. The CE bit remains set to indicate that this occurred. If a UE happens first, but a CE is
detected before the UE status is released then the CE bit sets but the UE status and address are
unaffected, again to indicate that both had occurred. The DRAM Controller will assert the
Correctable Error Interrupt if a correctable error occurs and the Uncorrectable Error Interrupt if an
uncorrectable error occurs. See Table 56.
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Table 56. DRAM Error Status

5.8

5.8.1

5.8.2

. . Address, Error Syndrome,
Sequence of Events CE Bit UE Bit Other Status
No error has occurred 0 0 X
Correctable Error has occurred 1 0 From first CE
Uncorrectable Error has 0 1 Erom first UE
occurred

Correctable Error followed by a 1 1 Erom first UE
Uncorrectable Error

Uncorrectable Error followed by 1 1 Erom first UE
a Correctable Error

DRAM scrub is not supported in hardware. The mechanism to correct errors is to have an ME do a
write to the error address with all bytes masked. This will have the effect of causing an RMW and
writing the corrected data back to DRAM.

Supported Requests

Reads and Writes

The DRAM controller supports read and write burst accesses of 16-128 bytes in multiples of 8
bytes starting on any 8-byte boundary, and single accesses of 8 bytes on an §-byte boundary. Read
accesses smaller than 8 bytes always return 8 bytes on the 8-byte-wide bus; the requesting unit is
responsible for extracting the data it requested. Write accesses smaller than 8 bytes cause a read-
modify-write cycle to merge new data and to check for and to generate correct ECC. If the read
data had a correctable error, the data is corrected prior to the merge. These partial write accesses
can come from Microengines using a write mask, from PCI, or from the Intel XScale® core issuing
non-cached accesses. Write accesses smaller than 8 bytes will cause a read-modify-write cycle
even if ECC is disabled. Cache writebacks from Intel XScale® core are aligned in units of 16 bytes,
and cache fills are aligned reads of 32 bytes.

The Microengines access DRAM using the dram instruction with various options. Intel XScale®
core uses the DRAM address space in the memory map to access DRAM. PCI accesses DRAM as
a target and via DMA channels.

Register Access

There are a number of DRAM related Status and Control Registers which are located in the DRAM
controller. Read and write operations to these Registers are supported. All the registers and the
read/write operations are 4 bytes. However, due to the 64 bit data bus used by the DDR controller,
all the register addresses are aligned on an § byte boundary.

To summarize, the DRAM controller can accept the request types listed in Table 57.
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Start Max Increment Internal Buses used
Request Min Length . Byte by transaction
Address Length Size
Type Alignment (bytes) (bytes) (bytes) Selectable
Cmd | Push | Pull
Read 8B Boundary 8B 128B 8B No Yes | Yes No
Write 8B Boundary 16B 128B 8B No Yes No Yes
Write 8B Boundary 8B 8B N/A Yes Yes No Yes
Register | 4 Boundary 4B 4B N/A No Yes | Yes | No
Read
R\‘j\?'?ter 4B Boundary 4B 4B N/A No Yes | No | Yes
rite

Microengine Signals

The Microengine tags each memory request with two signal numbers. The memory controller
sends these signals back to the Microengine to indicate completion of the associated request. The
Microengine waits for both the signals to be delivered in order to determine whether the request
has been completed.

For memory reads, the signals are delivered when the data has been written into the transfer
registers. This is implemented by including a Signal Done field in the Push Command.

For memory writes, the signals are delivered when the data is pulled out of the Microengine
transfer registers. The Pull Command includes a Signal Done field in order to implement this
functionality.

It is possible that a request could get split across two banks. In this case, the different components
of the request could complete in any order. The signal protocol guarantees that a signal is delivered
to the Microengine only when all the component parts of a request have completed. This is
achieved by having each component of the request return one signal when it is done. The
Microengine waits for 2 signals to arrive and thus will consider the request complete only after
both components of the request have completed.

If the request is contained within one bank, the memory controller will return only 1 signal to the
Microengine, and will assert a signal indicating No Split, when the request is complete. The arbiter
uses the No Split signal to indicate to the ME that two signals should be set. From a microcode
viewpoint there is no difference in behavior between requests that get split across banks and those
that are contained within a single bank.
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5.10 Read/Write Ordering Requirements

Reads/writes are not guaranteed to finish in order with respect to other reads/writes unless they are
to the same address. If ordering is needed, it must be guaranteed by the command initiator. Refer to
Table 58.

Table 58. Ordering Requirements

First Second . . .
Access Access Ordering Requirement Implementation Note
None. Reads to DRAM have no side Reads which access the same location in
Read Read effects, both readers will get the same memory are not re-ordered by the DRAM
data. controller.

The read must return the pre-modified
data. However, this does not have to be | Reads and writes to the same address are
Read Write enforced by Hardware. For ME, issued in order. Therefore the write after
software is responsible for issuing the read hazard is not present.

Write only after the read is complete.

Read must return modified data. The
read can be issued by the requestor
when it receives the done signal for the | Reads and writes to the same address are
Write Read write. The done signal for the write is issued in order. Therefore the read after
sent when the write data is pulled out of | write hazard is not present.

the requestor (and not when the write
data is actually written into DRAM).

The DRAM controller will issue writes to a
Write Write No ordering is guaranteed. particular address in the order that they
were received.

5.11 Design Overview

This section provides a brief overview of the implementation.

Figure 77 is a block diagram of the DRAM controller.

Hardware Reference Manual 187



Intel® IXP2400 Network Processor
DDR SDRAM Controller

Figure 77. DRAM Controller
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The following sections briefly describe the flow of a typical read and write request through the
DRAM controller. The DRAM controller also supports CSR accesses and partial writes.
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5111 Read Requests

Incoming Command: A requestor initiates a DRAM access by sending a command on the Cmd
bus. IXP2400 has one command bus interfacing with the DRAM controller. The DRAM
controller can receive only one command in any given clock cycle. Flow control is
implemented as follows: the DRAM controller sends an A/most Full signal to the Cmd bus
arbiter which, if asserted, prevents further requests from being generated.

Enqueue Command: The incoming command is received by the DRAM controller. The
controller inspects the Target ID of the request to check if it targets the DRAM. The command
is enqueued only if there is a match.

Op Generation: When the request reaches the head of the Cmd FIFO, it is inspected to
determine if it needs to be split into multiple DRAM ops. Splitting of requests is needed if the
data requested by the read cmd spans multiple banks, rows or DRAM burst boundaries. If
needed, the request is split and multiple DRAM ops are generated and latched. The address
generation block uses the start address and length fields of the original request to generate new
addresses for the DRAM ops.

Op Scheduling Queues: The DRAM Ops are then enqueued onto a queue based on the DRAM
bank that they target. There are four such queues, one for each internal DRAM bank. The
purpose of these queues is to help minimize bank conflicts between successive ops so that
better utilization can be achieved on the DRAM data bus. Separating Ops on the basis of bank
(as opposed to read or write type) simplifies the design as a CAM is not needed to detect reads
and writes with conflicting addresses. The Request Scheduling FSM picks ops from these
queues and schedules them on to the Pin FSM. Also, these ops are enqueued onto the Push
Cmd Queue to keep track of the returning data.

Pin FSM: The pin FSM checks that all constraints specified by the DDR DRAM pin protocol
(such as RAS to RAS delay etc.) are satisfied before it issues an Activate command for this
read op. The pin FSM keeps track of this op and issues a read command when appropriate.

Data Return: When the DRAM returns data, it is put into the Push Data Queue. The Push Cmd
Queue then arbitrates for access to the Push Bus in order to return the data. On being granted
the Push bus, the data is returned to the requesting agent. Each 64 bit data transfer is sent as a
separate push with the push_id incremented for each 64 bit transfer. Also note that data is not
necessarily returned in the same order that the read requests were made since the Op
scheduling queues can reorder the reads.

5.11.2 Write Requests

Write requests go through essentially the same steps, with some differences:

Incoming Command: A requestor initiates a DRAM access by sending a command on the Cmd
bus. IXP2400 has one command bus interfacing with the DRAM controller. The DRAM
controller can receive only one command in any given clock cycle. Flow control is
implemented as follows: the DRAM controller sends an al/most full signal to the Cmd bus
arbiter which, if asserted, prevents further requests from being generated.

Enqueue Command: The incoming command is received by the DRAM controller. The
controller inspects the Target ID of the request to check if it targets the DRAM. The command
is enqueued only if there is a match.

Pull Request: When the write command reaches the head of the Inlet queue and if there is
room in the pull data fifo, a request is made to the Pull arbiter to transfer the write data from
the Data source to the DRAM controller. If the pull data fifo does not have enough space, the
request is stalled until space becomes available. The Pull arbiter will forward the request to the
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190

data source and data will be written into the DRAM controller’s pull data fifo when available.
Completion signals are sent as part of the pull command.

* Op Generation: Concurent with making the Pull request, the write command is inspected to
determine if it needs to be split into multiple DRAM ops. Splitting of requests is needed if the
data requested by the write cmd spans multiple banks, rows or DRAM burst boundaries. If
needed, the request is split and multiple DRAM ops are generated and latched. The address
generation block uses the start address and length fields of the original request to generate new
addresses for the DRAM ops.

¢ Op Scheduling Queues: The DRAM Ops are then enqueued onto a queue based on the DRAM
bank that they target. The Request Scheduling FSM picks ops from these queues and schedules
them on to the Pin FSM. Note that the DRAM Ops are enqueued into the bank queues even if
the corresponding write data is not yet available. The DRAM ops will not be dequeued out of
the bank queues until the write data is available. Blocking the DRAM Ops in the bank queues
as opposed to the Inlet command queue has the advantage of letting reads to other banks
advance.

* Pin FSM: The pin FSM checks that all constraints specified by the DDR DRAM pin protocol
(such as RAS to RAS delay etc.) are satisfied before it issues an Activate command for this
write op. The pin FSM keeps track of this op and issues a write command when appropriate.

Request Scheduling Algorithm

This block selects a request from the four bank queues and schedules it to the DDR pin protocol
FSM. The intent here is to schedule the requests such that the DRAM data bus utilization is
improved. Specifically, the Request Scheduling FSM tries to perform the following optimizations:

* Minimize bank conflicts. The Request Scheduling FSM attempts to pick requests from the
bank queues in a round robin manner. Since the requests in the bank queues have already been
sorted on the basis of the bank they target, this results in successive requests accessing
different banks.

* Minimize read-write turnarounds. There is a performance penalty associated with switching
between read and write requests. The Request Scheduling FSM attempts to schedule requests
of the same type in succession so that switching between reads and writes is minimized. For
example if there were a number of read and write requests which were waiting to be
scheduled, the FSM would schedule 4 read requests followed by 4 write requests and so on.

The round robin pointer is initialized to point to a particular bank queue (say bank 0). Also, the
logic is initialized to favor a particular type of request (say read). The algorithm selects requests in
round robin order as long as all requests are reads. When a write is encountered, the
Request_Skipped Count counter is incremented and the pointer skips to the next (in round robin
order) bank queue. If that request is a read it is selected, if it is a write the Request Skipped Count
is incremented once again and the pointer is incremented.

The algorithm keeps selecting and issuing reads till the Request Skipped Count reaches a
programmable threshold value (see the description of bits 7:0 of the DU_CONTROL2 CSR).
When this happens, the favored type is changed to Write and the Request_Skipped Count is reset
to 0. The algorithm now selects writes until reads are skipped enough times to flip the favored type
again.
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The DDR pin FSM is responsible for issuing commands on the DRAM bus. Key features are listed

here.

* The pin FSM attempts to keep the pins busy by overlapping Activate and Read/Write

commands of different requests.

* Writes smaller than 8 bytes result in a Read-Modify-Write (RMW) sequence. Selectively
writing fewer than 8 bytes by masking the write of specific bytes is not possible since the ECC
needs to be computed over the entire 8 byte quantity. Commands targeting other banks can be
issued in between the read and the write of the RMW since they do not conflict with the RMW.

* The FSM has a closed page policy—a page which is activated for a read or write request is
precharged at the end of the operation. Reads and writes are issued with the Auto-Precharge bit

set on the last burst of a request.

Register Map

Register Descriptions

The DDR registers are addressed at 8 byte offsets. Each register is 32 bits and data is transferred on
the low 32 bits of the DRAM Push/Pull Data Buses.

Table 59. DDR Register Map

Abbreviation Offset Name Description
Contains programmable delay/
DU_CONTROL 0x000 DRAM Contr_oller Control latency parameters to support
Register f . ;
various configurations
. Logs the Address of transaction
DU_ERROR_STATUS_1 0x008 | DRAM Error Status Register 1 which had an ECC error
DU_ERROR_STATUS_2 |  0x010 | DRAM Error Status Register 2 | -098 defails abouttype of ECC
Has control settings which can be
DU_ECC_TEST 0x018 DRAM ECC Test Register used to inject false ECC errors for
testing purposes
Contains controls for the DDR
DU_INIT 0x020 DRAM Initialization Register Mode register set, refresh,
precharge commands
DRAM Controller Control Contains additional DRAM
DU_CONTROL2 %028 Register 2 Controller control fields
0x030
- — Ox0F8 - Reserved
DU_IO_CONFIG[1:224] . 0x100 DRAM 10 C_onflguratlon Contal_ns D_rlve streng_th controls
0x7F8 Registers for various interface pins
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SRAM Interface 6

6.1

Overview

The Intel® IXP2400 and IXP2800 network processors contain two and four independent SRAM
controllers, respectively. SRAM controllers support pipelined QDR and QDR II synchronous static
RAM (SRAM) technologies and a coprocessor which adheres to QDR signaling. Any or all
controllers can be left unpopulated if the application does not need to use them.

Reads and writes to SRAM are generated by Microengines (ME), Intel XScale® core, and PCI Bus
masters. They are connected to the controllers via Command Buses and Push and Pull Buses. Each
SRAM controller enqueues commands from the command bus. The commands are dequeued and
successive access to the SRAMs is performed. Each SRAM controller receives commands using
two Command Buses, one of which may be tied off inactive, depending on the chip
implementation. The SRAM Controller can enqueue a command from each Command Bus in each
cycle. Data movement between the SRAM controllers and the MEs is via the S-Push bus and S-
Pull bus.

The overall structure of the SRAM controllers is shown in Figure 78.
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Figure 78. SRAM Controller/Chassis Block Diagram
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Note:
The IXP2400 has two SRAM controllers while the IXP2800 has four SRAM controllers.

SRAM Interface Configurations

Memory is logically four bytes (one longword) wide while physically the data pins are two bytes
wide and double clocked. Byte parity is supported. Each of the four bytes has a parity bit, which is
written when the byte is written and checked when the longword is read. There are byte enables
that select which bytes to write for lengths of less than a longword.

Examples of supported SRAM:s are:
¢ Micron MT54V512H18A 9Mb QDR SRAM (512K x 18)
¢ IDT IDT71T6280H 9Mb Pipelined QDR SRAM Burst of 2 (512K x 18)
* Cypress CY7C1302V25 9-Mb Pipelined SRAM with QDR Architecture (512K x 18)

The SRAM controller can also be configured to interface to an external coprocessor that adheres to
the QDR or QDR II electrical and functional specification.\

In general, QDR and QDR II burst of 2 SRAM will be supported at speeds up to 200 MHz. As
other (larger) QDR SRAMs are introduced, they will also be supported.
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Each of the 2 QDR ports are QDR and QDRII compatible. Each port implements the Kand C
output clocks and _CQ as an input and their inversions.

The Cand CQ clocks are optional.

Extensive work has been performed providing impedance controls within IXP2400 for IXP2400-
initiated signals driving to QDR parts. Providing a clean signaling environment is critical to
achieving 200 MHz QDRII data transfers.

The configuration assumptions for IXP2400 IO driver/receiver development includes 4 QDR loads
and IXP2400. It should be noted that some future QDRII SRAMs require a burst of 4 to achieve
higher frequency. IXP2400 initial release will not support burst of 4 QDR SRAM parts. The
IXP2400 Network Processor initial release supports bursts of 2 SRAMs.

The echo clocks are C1n/Cn# and C2n/C2n# (see Figure 79). IXP2400 uses one pair of the Cn/Cn#
clocks for read data, the other pair is terminated on the die.

The SRAM controller can also be configured to interface to an external coprocessor that adheres to
the QDR electricals and protocol.
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Figure 79. Echo Clock Configuration
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SRAM Interface Configurations

This section describes SRAM interface build configurations for communicating to 1 or 2 ME
clusters and either 1, 2, 3, or 4 SRAM/co-processor channels to accommodate use of either
IXP2400 or IXP2800 chips.

Internal Interface

Each SRAM channel receives commands via the command bus mechanism and transfers data to
and from MEs, Intel XScale® core, and PCI via push and pull buses.

Number of Channels

The SRAM/coprocessor channels are supported via the instantiation of multiple SRAM controller
FUBs. The IXP2800 supports 4 channels and the IXP2400 supports 2 SRAM/coprocessor
channels.

Coprocessor and/or SRAMs Attached to a Channel

Each channel will support the attachment of QDR SRAMs, a co-processor, or both depending upon
the module level signal integrity and loading.
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SRAM Controller Configurations

There are enough address pins (24) to support up to 64 MB of SRAM. The SRAM controllers can
directly generate multiple port enables (up to 5 pairs) to allow for depth expansion. Two pairs of
pins are dedicated for port enables. Smaller RAMs use fewer address signals than the number
provided to accommodate the largest RAMs, so some address pins (23:18) are configurable as
either address or port enable based on CSR SRAM Control[Port_Control] as shown in Table 60.

All of the SRAMs on a given channel must be the same size.

Table 60 shows the capability of the logic—up to 4 loads will be supported, and the table reflects
that information.

SRAM Controller Configurations

S_RAM ) SRAM Size Addresses Needed | Addresses Used | Total Nurpber of_Port

Configuration to Index SRAM as Port Enables | Select Pairs Available
512K x 18 1MB 17:0 23:22,21:20 4
1M x 18 2 MB 18:0 23:22,21:20 4
2M x 18 4 MB 19:0 23:22,21:20 4
4M x 18 8 MB 20:0 23:22 3
8Mx 18 16 MB 21:0 23:22 3
16M x 18 32 MB 22:0 None 2
32M x 18 64 MB 23:0 None 1

Each channel can be expanded in depth according to the number of port enables available. If
external decoding is used, then the number of SRAMs is not limited by the number of port enables
generated by the SRAM controller.

External decoding may require external pipeline registers to account for the decode time,
depending on the desired frequency.

Maximum SRAM system sizes are shown in Table 61. Shaded entries require external decoding,
because they use more port enables than the SRAM controller can directly supply.

Total Memory Per Channel

Number of SRAMs on Channel
SRAM Size
1 2 3 4 5 6 7 8
512K x 18 1MB 2 MB 3 MB 4 MB 5 MB 6 MB 7 MB 8 MB
1M x 18 2 MB 4 MB 6 MB 8 MB 10 MB 12 MB 14 MB 16 MB
2M x 18 4 MB 8 MB 12 MB 16MB | 20MB | 24MB | 28 MB 32 MB
4M x 18 8 MB 16 MB 24 MB 32 MB 64 MB NA NA NA
8Mx 18 16 MB 32MB | 48 MB 64 MB NA NA NA NA
16M x 18 32 MB 64 MB NA NA NA NA NA NA
32M x 18 64 MB NA NA NA NA NA NA NA
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Figure 80 shows how the SRAM clocks on a channel are connected. For receiving data from the
SRAMs, clock path and data path are matched to meet hold time requirements.

Figure 80. SRAM Clock Connection on a Channel

SRAM SRAM
Intel® IXP2400
or A A A A
Intel® IXP2800
Network C,C.n =
Processor
K, K_n >

A9734-01

It is also possible to pipeline the SRAM signals with external registers. This is useful for the case
when there is considerable loading on the address and data signals, which would slow down the
cycle time. The pipeline stages make it possible to keep the cycle time fast by fanning out the
address, byte write, and data signals. The RAM read data may also be put through a pipeline
register, depending on configuration. External decoding of port selects can also be done to expand
the number of SRAMs supported. Figure 81 is a simple block diagram showing the concept of
external pipelining.

A side effect of the pipeline registers is to add latency to reads, and the SRAM controller must
account for that delay by waiting extra cycles (relative to no external pipeline registers) before it
registers the read data. The number of extra pipeline delays is programmed in
SRAM_Control[Pipeline].

Figure 81. External Pipeline Registers Block Diagram

SRAM SRAM
Intel® IXP2400
Network A A
Processor :
Q [« Register ) A
Addr, BWE, etc. Register >

A9735-02

Figure 81 depicts use of external pipeline registers, which add two cycles of latency to reads.
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Note:

6.5.1

6.5.2

Table 62.
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Command Overview

This section will give an overview of the SRAM commands and their operation. The details will be
given later in the document. Memory reference ordering will be specified along with the detailed
command operation.

A longword is a 32 bit (4 byte) data entity.

Basic Read/Write Commands

The basic read and write commands will transfer from 1 to 16 longwords of data to/from the QDR
SRAM external to the IXP2400 Network processor.

For a read command, the SRAM is read and the data placed on the Push bus one longword at a
time. The command source (for example, the ME) is signaled that the command is complete during
the last data phase of the push bus transfer.

For a write command, the data is first pulled from the source, then written to the SRAM in
consecutive SRAM cycles. The command source is signaled that the command is complete during
the last data phase of the pull bus transfer.

Atomic Operations

The SRAM Controller does read-modify-writes for the atomic operations, the pre-modified data
can also be returned if desired. Other (non-atomic) readers and writers can access the addressed
location in between the read and write portion of the read-modify-write. Table 62 describes the
atomic operations supported by the SRAM Controller.

Atomic Operations

Instruction | Pull Operand Value Written to SRAM
Set_bits Yes SRAM_Read_Data OR Pull_Data
Clear_bits Yes SRAM_Read_Data AND NOT Pull_Data
Increment No SRAM_Read_Data + 0x00000001
Decrement? No SRAM_Read_Data - 0x00000001
AddPc Yes SRAM_Read_Data + Pull_Data
Swapd Yes Pull_Data

Unsigned value that saturates at 0x0000000.

Pull_Data is twos complement and saturates at 0xo0o00000 if Pull_Data is < 0.

c. Return result (when enabled) can be tested to determine amount actually added or
subtracted in order to detect the case where the operation saturated at zero. For ex-
ample, assume the data in the addressed SRAM location is 0x10. Subtracting 0x3 (add-
ing 0xFFFFFFFD) would return 0x10 and write 0xp into the SRAM. However, Subtracting
0x15 (adding oxrFrrFFFFB) would return 0x10 and write 0xo into the SRAM, because the
subtraction saturates at 0x0. The reader can test the return data to determine if the
amount actually available is the minimum of the amount requested and the returned
data.

d.  Swap will normally be used with return of read data enabled. Doing a Swap without re-

turn of read data will write the Pull data into memory without returning the original read

data—that operation is better done by normal (non-atomic) write.

oo
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Up to two ME signals will be assigned to each read-modify-write reference. Microcode should

always tag the read-modify-write reference with an even numbered signal. If the operation requires
a pull (see Table 62), then the requested signal will be sent on the pull. If the pre-modified data is to
be returned to the ME, then the ME will be sent (requested signal OR 1) when that data is pushed.

In Example 23, there is both a pull and a push for an SRAM read-modify-write:

Example 23. SRAM Read-Modify-Write with Pull Data

IMMED [$xfer0, O0x1]

IMMED [test_address, 0x0]

SRAM [TEST_AND_SET, $xfer0, test_address, 0], SIG_DONE[SIGNAL_2]
CTX_ARB [SIGNAL_2]

; SIGNAL_2 is set when S$xfer0 is pulled from this ME. SIGNAL_2+1 is
; set when S$xfer(0 is written with the test value. Sleep until both
;SIGNALS have arrived.

In Example 24, there is no pull:

Example 24. SRAM Read-Modify-Write without Pull Data

6.5.3
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SRAM [SET, $xfer0, test_address, 0], SIG_DONE[SIGNAL_2]

CTX_ARB [SIGNAL_2]

; SIGNAL_2 is set when S$xfer0 is pulled from this ME. Sleep until that signal
arrives.

Queue Data Structure Commands

The ability to enqueue and dequeue data buffers at a fast rate is key to meeting chip performance
goals. This is a difficult problem as it involves dependent memory references that must be turned
around very quickly. The SRAM controller includes a data structure called the O array and
associated control logic in order to perform efficient enqueue and dequeue operations. Optionally,
this hardware or a portion of this hardware can be used to implement rings and journals.

A queue is an ordered list of data buffers stored at discontiguous addresses. The first buffer added
to the queue will be the first buffer removed from the queue. Queue entries are joined together by
creating links from one data buffer to the next. This hardware implementation supports only a
forward link. A queue is described by a pointer to its first entry, called the head, and a pointer to its
last entry, the tail. In addition, there is a count of the number of items currently on the queue. This
triplet of head, tail, and count is referred to as the queue descriptor. In the IXP2400 and IXP2800
chips, the queue descriptor is stored in that order—head first, then tail, then count. The longword
alignment of the head addresses for all queue descriptors must be a power of two. For example,
when there are no extra parameters on the queue descriptor, there will be one unused longword per
queue descriptor.

Figure 82 shows a queue descriptor and queue links for a queue containing four entries.

Hardware Reference Manual



u Intel® IXP2400 Network Processor
I n SRAM Interface

Figure 82. Queue Descriptor with Four Links

A: B: C: D:
Head: A > B > Cc > D >1 No Link
Tail: D T
Q_Count: 4

A9736-01

There are two different versions of the enqueue command, ENQUEUE and ENQUEUE_TATL.

ENQUEUE is used to enqueue one buffer at a time. ENQUEUE followed by ENQUEUE_TAIL are
used to enqueue a previously linked string of buffers. The string of buffers is used in the case where
one packet is too large to fit in one buffer. Instead, it is divided among multiple buffers. These two
versions are shown in Figure 83 and Figure 84 respectively.

Figure 83. Enqueueing One Buffer at a Time

BEFORE:
Queue Array Entry A: B: C: D:
|E|S|segfcnt head_ptr (A) —>| B |—>| C |—>| D |—>| No Link |
tail_ptr (D) / A
| user defined | g_count (4)

g_links are shown as boxes
Q-link format to simplify the drawing Z:

|E|S|seg_cnt| next_ptr |

AFTER
Queue Array Entry A: B: C:
|E|s|seg_cnt head_ptr (A) —>| B |—>| c |—>| D

tail_ptr (2)

| user defined | g_count (5)

B0488-01
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Figure 84. Enqueue a String of Buffers to a Queue

Initial State of the Queue

Queue Array Entry A: B: C: D:

[E]s]seg_cnt] head ptr (4) =] B > c >[o |—>
tail_ptr (D) *

| user defined |q_count (4) T

U: V: W:
| u > v > w F>| NoLink |

Note: The buffer string T, U, V, W was linked by an ME using software (rather than the Queue Array)

First Step to Enqueue a String of Buffers to a Queue (sram[enqueue])

Queue Array Entry A: B: C: D:

| E | S | seg_cnt| head_ptr (A) —>| B |—>| C |—>| D l—)
tail_ptr (T)

| user defined | g_count (5) T u: \Y,

: W:
U > v > w F>| NoLink |

Second Step to Enqueue a String of Buffers to a Queue (sram[enqueue_tail])

Queue Array Entry A: B: C: D:

| E | S | seg_cnt| head_ptr (A) —>| B |—>| C |—>| D l—)
tail_ptr (W)

| user defined | g_count (5) T: U:

S T |—»|W:No:nk|

B0489-01

There are three different modes for dequeue command. The
SRAM_CONTROL[QC_IGN_EOP:QC_IGN_SEG_CNT] register bits support the following three
modes that determine the behavior of the dequeue command (Mode 2 is not supported).

Mode 0: Dequeue Segments and Count Packets

The seg_cnt is decremented for each SRAM[dequeue] command. Only when seg_cnt equals 0
is the g_link removed from the linked list. The EOP is used by hardware to determine if it
should decrement the q_count, therefore it must be set on the last buffer of a packet for
software designs that support multiple buffers per packet or on all buffers for software designs
that support a single buffer per packet. The state of the EOP bit is returned with the data for
each dequeue command. The state of the SOP bit is returned only with the data for the first
dequeue command to a buffer. The SOP bit is clear for subsequent dequeue commands to the
buffer.

Mode 1: Dequeue Buffers and Count Packets
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The seg_cnt is ignored in this mode so a q_link is removed from the linked list for each
sram[dequeue] command. The EOP and SOP bits are treated the same as mode 1. The seg_cnt
is returned unchanged on each dequeue.

Mode 3: Dequeue Buffers and Count Buffers

The seg_cnt is ignored in this mode so a q_link is removed from the linked list for each
sram[dequeue] command. The EOP bit is also ignored by hardware so the q_count is always
decremented for each dequeue command. Note: In this mode the seg_cnt is added to the
g_count on every enqueue.

Figure 85. Dequeue Buffer

BEFORE: This picture assumes seg_cnt =0

Queue Array Entry A: B: C: D:

|E|S|seg_cnt head_ptr (A) —>| B |—>| C |—>| D |—>| No Link |
tail_ptr (D) A *

| user defined |q_count 4)

q_links are shown as boxes
Q-link format to simplify the drawing Z:

|E|S|segfcnt| next_ptr |

Queue Array Entry B B: C: D:
|E|S|seg_cm head_ptr (A) :I C |—>| D |—>| 4 * |

tail_ptr (C)
| user defined |q_count (3)

B0490-01

A ring is an ordered list of data words stored in a fixed block of contiguous addresses. A ring is
described by a head pointer and a tail pointer. Data is written, using the put command, to a ring at
the address contained in the tail pointer and the tail pointer is incremented. Data is read, using the
get command, from a ring at the address contained in the head pointer and the head pointer is
incremented. Whenever either pointer reaches the end of the ring, the pointer is wrapped back to
the address of the start of the ring.

A journal is similar to a ring. It is generally used for debugging. Journal commands only write to
the data structure. New data overwrites the oldest data. Microcode can choose to tag the journal
data with the ME number and CTX number of the journal writer.

The Q_array to support queuing, rings and journals contains 64 registers per SRAM channel. For a

design with a large number of queues, the queue descriptors cannot all be stored on chip, and thus a
subset of the queue descriptors (16) is cached in the Q_array. To implement the cache, 16
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contiguous Q_array registers must be allocated. The cache tag (the mapping of queue number to
Q_array registers) for the Q_array is maintained by microcode in the CAM of an ME. The
writeback and load of the cached registers in the o_array is under the control of that microcode.

Note:

The size of the Q_array does not set a limit on the number of queues supported.

For other queues (free buffer pools, for example), rings, and journals, the information does not
need to be subsetted and thus can be loaded into the Q array at initialization time and left there to
be updated solely by the SRAM controller.

The sum total of the cached queue descriptors plus the number of rings, journals and static queues
must be less than or equal to 64 for a given SRAM channel.

The fields and sizes of the o_array registers are shown in Table 63 and Table 64. All addresses are
of type longword, and are 32 bits in length.

Table 63. Queue Format

Name Longword # | Bit #2 Definition
EOP 0 31 End of Packet—decrement Q_count on dequeue
SOP 0 30 Start of Packet
Segment Count 0 29:24 | Number of segments in the buffer
Head 0 23:0 | Head pointer
Tail 1 23:0 | Tail pointer
Q_count 9 23:0 mirgtl)gugf packets on the queue or number of buffers on
SW_Private 2 31:24 | Ignored by hardware, returned to ME
Head Valid N/A Cached head pointer valid—maintained by hardware
Tail Valid N/A Cached tail pointer valid—maintained by hardware

a.

Bits 31:24 of longword number 2 are available for use by ucode.

Table 64. Ring/Journal Format

Name Longword # | Bit# Definition
Ring Size 0 31:29 | See Table 129 for size encoding.
Head 0 23:0 | Get pointer
Tail 1 23:0 | Put pointer
Ring Count 2 23:0 | Number of longwords on the ring

Note:

For a Ring or Journal, Head and Tail must be initialized to the same address.

Journals/Rings can be configured to be one of eight sizes, as shown in Table 65.
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Table 65. Ring Size Encoding

Intel® IXP2400 Network Processor
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Ring Size Encoding | Size of Journal/Ring Area | Head/Tail Field Base | Head and Tail Field Increment
000 512 Longwords 23:9 8:0
001 1K 23:10 9:0
010 2K 23:11 10:0
011 4K 23:12 11:0
100 8K 23:13 12:0
101 16K 23:14 13:0
110 32K 23:15 14:0
111 64K 23:16 15:0

The following sections contain pseudo-code to describe the operation of the various queue and ring

instructions.

Note: For these examples, NIL is the value 0.

6.5.3.1 Read_Q_Descriptor Commands

These commands are used to bring the queue descriptor data from QDR SRAM memory into the
Q_array. Only portions of the Q_descriptor are read with each variant of the command in order
minimize QDR SRAM bandwidth utilization. It is assumed that microcode has previously evicted
the Q_descriptor data for the entry prior to overwriting the entry data with the new Q_descriptor
data. Example 25 details the operations performed.
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Example 25. Read_Q_Descriptor Commands

Rd_gdesc_head (xfer_addr, address,entry, length)

// for entry into the Q_array cache
head[entry] <-- SRAM[address]<23:0>

segment_count [entry]<-- SRAM[address]<29:24>
SOP[entry] <-- SRAM[address]<30>

EOP[entry] <-- SRAM[address]<31>
head_valid[entryl<-- 1
ME [xfer_addr], Q_count[entry]l<-- SRAM[address+2]
; optional parameter(s) sent to SRAM xfer
; registers if length >2
xfer_addr += 1
addr = address + 3
for (temp = 3, temp<=length, temp++)
ME[xfer_addr]<-- SRAM[address]
addr += 1
xfer_addr += 1

Rd_gdesc_tail (xfer_addr, address,entry, length)
// Loads the tail and queue_count for entry into
// the Q_array cache

tail[entry] <-- SRAM[address+1]
tail_valid[entry]l<-- 1
ME [xfer_addr], Q_count[entry]l<-- SRAM[address+2]
; optional parameter(s) sent to SRAM xfer
; registers i1f length > 2
xfer_addr += 1
addr = address + 3
for (temp = 3, temp<=length, temp++)

ME [xfer_addr]<-- SRAM[addr]

addr += 1

xfer_addr += 1

Rd_gdesc_other (address, entry)
// Loads any missing information for line entry into

// the Q_array cache

if head_valid[entry] == 0
begin
head[entry] <-- SRAM[address]<23:0>

segment_count [entry]<-- SRAM[address]<29:24>
SOP[entry]l<-- SRAM[address]<30>

EOP[entry] <-- SRAM[address]<31>
head_valid[entryl<-- 1
end

if tail_valid[entry] == 0
begin
tail[entry] <-- SRAM[address+1]
tail_valid[entry]l<-- 1

end

// Loads the head, EOP, SOP, segment_count, and gqueue_count
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6.5.3.2 Write_Q_Descriptor Commands

The write Q_descriptor commands are used to evict an entry in the Q array and return its contents
to QDR SRAM memory. Only the valid fields of the Q_descriptor are written in order minimize
QDR SRAM bandwidth utilization. Example 26 describes the details of the operations performed.

Example 26. Write_Q_Descriptor Commands

Wr_gdesc (address, entry)
if (head_valid[entry] == 1)

begin

SRAM[address] <23:0>¢« headl[entryl

SRAM [address] <29:24>« segment_count[entry]
SRAM [address] <30><-SOP[entry]

SRAM [address] <31>« EOP[entry]

end
if (tail_valid[entry] == 1)

SRAM[address+1] <« tail[entry]
SRAM [address+2]« Q_count[entry]
head_valid[entryl« 0
tail_valid[entry]<« 0

Write_Q Descriptor_Count (address, entry)

// This version is used to refresh just the Q_count in SRAM. The entry is not
evicted.

SRAM [address+2]<« Q_count[entry]

6.5.3.3 ENQ and DEQ Commands

These commands add or remove elements from the queue structure while updating the Q array
registers. Example 27 describes the details of the operations performed.
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Example 27. ENQ and DEQ Commands

ENQ_tail_and_link( buff_desc_adr, cell_count, EOP, entry)
// Adds a buffer to the queue contained in Q_Array entry, and
// sets the tail to point to the buffer. If necessary, a link
// is established from the old tail buffer to the new buffer.
// This command is used to add an entire frame to the queue
// or to add the Start-of-Packet buffer of a multi-buffer frame
// to the queue.
If Q countl[entry]l==0

begin

head[entry] < buff_desc_adr
cell_count[entryl] < cell_count
EOP[entry] <« EOP
SOP[entry] <« SOP
head_valid[entryl « 1

end

If Q count[entry] > 0
SRAM[tail[entry]1<29:24> <« buff_desc_adr
SRAM[tail[entry]]1<30> <« SOoP
SRAM[tail [entry]]<31> <« EOP
SRAM[tail[entry]]1<23:0> <« cell_count

tail[entry] <« buff_desc_adr
Q_count[entry]++

ENQ_tail( buff_desc_adr, entry)

// Updates the tail pointer only. This command must be

// proceeded by a ENQ_ tail_and_link to the same entry.

// This adds the End-of-Packet buffer of a multi-buffer frame
// to the queue.

tail[entry] < buff_desc_adr

DEQ (entry, xfer_ addr)
// Removes a cell or a frame from the queue cached in line entry.
If Q_count[entry] > 0

begin
ME [xfer_addr] <« {EOP[entry], SOP[entry], cell_count[entryl],
head[entryl}
if cell_count[entry] == 0
begin

// update queue count only when an entire frame has been removed
if EOP[entry]

Q_count[entry]--
// load the buffer descriptor for the next buffer

cell_count[entry] < SRAM|[head[entry]]1<29:24>
SOP[entry] < SRAM[head[entry]1<30>
EOP[entry] < SRAM[head[entry]]<31>
head[entry] < SRAM[head[entry]]1<23:0>
end

else
cell_count[entry]l--

end

else
// count was 0, so nil value indicates nothing was available to DEQ
ME [xfer_addr] < nil
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6.5.4 Ring Data Structure Commands

The ring structure commands use the Q_array registers to hold the head tail and count data for a
ring data structure, which is a fixed size array of data with insert and remove pointers. Example 28

describes the details of the operations performed.

Example 28. Ring Data Structure Commands

6.5.5

Get (entry, length, xfer_addr)

If count[entry] >= length //enough data in the ring?
// Return length number of longwords
For (temp=length, temp>0, temp--)

ME [xfer_addr] < SRAM|[head[entry]]
head[entry] = (head[entry] + 1) % ringSize
count [entry] -=1
xfer_addr +=1
else
ME [xfer_addr] <« nil // 1 data phase of 0 signals read off empty
list

Put (entry, length, xfer_addr)
If (ring_size - count[entry] < 16) // 16 is max value for length
initial_xfer_addr = xfer_addr
For (temp=length, temp>0, temp--)
// Write length number of longwords
SRAM[tail[entry]] <« ME[xfer_addr]
taill[entryl= (taillentry] + 1) % ringSize
Count [entry] += 1
xfer_addr += 1

ME[initial_xfer_addr] < { 1,count[entry] } // 1 for success
Else
ME[initial_xfer_addr] < { 0,count[entry] } // 0 for failure

Journaling Commands

Journaling commands use the 9_array registers to index into an array of memory in the QDR
SRAM that will be periodically written with information to help debug applications running on the
IXP2400 and IXP2800 processors. Once the array has been completely written once, subsequent
journal writes will overwrite the previously written data—only the most recent data will be present
in the data structure. Example 29 describes the details of the operations performed.
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Example 29. Journaling Commands

6.5.6

6.6
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Note:

Journal (entry, length, xfer_addr)
For (temp=length, temp>0, temp--)
// Write length number of longwords
SRAM[tail[entry] ]« ME [xfer_addr]
tail[entry] = (taill[entry] + 1) % ringSize
Count[entry] += 1
xfer_addr += 1

fastJournal (entry)// either constant or ALU output
SRAM[tail[entry] ]« {ME#, ctx#, ME command bus<address field<23:0>}
tail[entryl= (taill[entry] + 1) % ringSize
Count [entry] ++

CSR Accesses

CSR accesses will write or read CSRs within each controller. The upper address bits will determine
which channel will respond, while the CSR address within a channel are given in the lower address
bits.

Parity

SRAM can be optionally protected by byte parity. Even parity is used—the combination of eight
data bits and the corresponding parity bit will have an even number of 1s. The SRAM controller
generates parity on all SRAM writes. When parity is enabled (SRAM_Control[Par_Enable]) the
SRAM controller checks for correct parity on all reads. Upon detection of a parity error on a read
or the read portion of an atomic read-modify-write, the SRAM controller will record the address of
the location with bad parity in SRAM_Parity[Address] and set the appropriate
SRAM_Parity[Error] bit(s). Those bit(s) will interrupt the Intel XScale® core when enabled in
IRQ _Enable[SRAM _Parity] or FIQ_Enable[SRAM_Parity]. The Data Error signal in the
push_cMp will be asserted when the data to be read is delivered (unless the token Ignore Data Error
was asserted in the command; in that case the SRAM controller will not assert Data Error). When
Data Error is asserted, the Push Arbiter will suppress the ME Signal if the read was originated by
an ME (it will use 0x0, which is a null signal, in place of the requested signal number).

If incorrect parity is detected on the read portion of an atomic read-modify-write, the incorrect
parity will be preserved after the write (that is, the byte(s) with bad parity during the read will have
incorrect parity written during the write).

When parity is used, Intel XScale® core software must initialize the SRAMs by:
1. Enable parity (write a 1 to SRAM_Control [Par_Enable]).

2. Writing to every SRAM address.

SRAM should not be read prior to doing the above initialization, otherwise parity errors are likely
to be recorded.
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Note:

Note:
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Address Map

Each SRAM channel occupies a 1GB region of addresses. Channel 0 starts at 0, Channel 1 at 1GB,
and so on. Each SRAM controller receives commands from the command buses. It compares the
target ID to the SRAM target ID, and address bits 31:30 to the channel number. If they both match,
then the controller processes the command. See Table 66.

Address Map

Start Address End Address Responder
0x0000 0000 0x3fff ffff Channel 0
0x4000 0000 O0x7f£ff ffff Channel 1
0x8000 0000 Oxbfff ff£ff reserved
0xc000 0000 Oxffff ffff reserved

If an access addresses a non-existent address within an SRAM controller’s address space the results
are unpredictable. For example the result of accessing address 0x0100 0000 when there is only
IMB of SRAM populated on the channel will produce unpredictable results.

For SRAM (memory or CSR) references from the Intel XScale® core, the channel select is in
address bits 29:28. The Gasket shifts those bits to 31:30 to match addresses generated by the MEs.
Thus, the SRAM channel select logic is the same whether the command source is an ME or the
Intel XScale® core.

The same channel start and end addresses are used both for SRAM memory and CSR references.
CSR references are distinguished from memory references via the CSR encoding in the command
field.

Reads and writes to undefined CSR addresses will yield unpredictable results.

The IXP2400 and IXP2800 addresses are byte addresses. As the fundamental unit of operation of
the SRAM controller is a longword access, the SRAM controller will ignore the 2 low order
address bits in all cases and utilize the byte mask field on memory address space writes to
determine the bytes to write into the SRAM. Any combination of the four bytes can be masked.
The operation of byte writes with a length other than 1 are unpredictable. That is, microcode should
not use a ref _count greater than 1 longword when a byte mask is active. CSRs are not byte
writeable.

Reference Ordering

This section discusses the ordering between accesses to any one SRAM controller. Various
mechanisms are used to guarantee order—for example, references that always go to the same
FIFOs remain in order. There is a CAM associated with write addresses that is used to order reads
behind writes. Lastly, several counter pairs are used to implement fences. The input counter is
tagged to a command and the command is not permitted to execute until the output counter
matches the fence tag. All of this will be discussed in more detail in this section.
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Reference Order Tables

Table 67 shows the architectural guarantees of order of accesses to the same SRAM address
between a reference of any given type (shown in the column labels) and a subsequent reference of
any given type (shown in the row labels). The definition of first and second is defined by the time
the command is valid on the command bus. Verification requires testing only the order rules shown
in Table 67 and Table 68). Note that a blank entry means no order is enforced.

Table 67. Address Reference Order

;::’rre(:f_’ Memo M QRu_eue/I
¢ Rea dry CSR Read ;vr:-li;)ery CSR Write Atomics Q_IIZ;‘egscr

Commands

Memory Read Order Order

CSR Read Order

Memory Write Order Order

CSR Write Order

Atomics Order Order

Queue / Ring / See

O_Descr Table 68.

Table 68 shows the architectural guarantees of order to access to the same SRAM g_array entry
between a reference of any given type (shown in the column labels) and a subsequent reference of
any given type (shown in the row labels). The terms first and second are defined with reference to
the time the command is valid on the command bus. The same caveats that apply to Table 67 apply
to Table 68.

Table 68. Q_array Entry Reference Order
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Read_Q | Read
15 ref —Pp - — .
2nd ref _Descr | Q _Des | Write_Q Enqueue | Dequeue Put Get Journal
head, cr _Descr
tail other
Read_Q_Descr a
head,tail Order
Read_Q_
Descr other Order
Write_Q_
Descr
Enqueue Order Order Order Order®
Dequeue Order Order Orderc Order
Put Order
Get Order
Journal Order
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a.  The order of Read_Q_Descr_head/tail after Write_Q_Descr to the same element will be guaranteed only if it is to a different

descriptor SRAM address. The order of Read_Q_Descr_head/tail after Write_Q_Descr to the same element with the same
descriptor SRAM address is not guaranteed and should be handled by the Microengine code.

b.  Write_Q_Descr reference order is not guaranteed after any of the other references. The Queue array hardware assumes

that the Microengine managing the cached entries will flush an element ONLY when it becomes the LRU in the Microengine
CAM. Using this scheme, the time between the last use of this element and the write reference is sufficient to guarantee the
order.

c. Order between Enqueue references and Dequeue references are guaranteed only when the Queue is empty or near empty.

Microcode Restrictions to Maintain Ordering

It is the microcode programmer’s job to insure order where the program flow requires order and
where the architecture does not guarantee that order.

One mechanism that can be used to do this is signaling. For example, say that ucode needs to
update several locations in a table. A location in SRAM is used to lock access to the table.
Example 30 is the microcode for this table update.

Example 30. Table Update Microcode

6.9
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IMMED [$Sxfer0, 1]
SRAM [write, $xfer0O, flag_address, 0, 1, ctx_swap [SIG_DONE_2]

; At this point, the write to flag_address has passed the point of coherency. Do
the table updates.

SRAM [write, $xferl, table_base, offsetl, 2] , sig _done [SIG_DONE_3]
SRAM [write, $xfer3, table_base, offset2, 2] , sig _done [SIG_DONE_4]
CTX_ARB [SIG_DONE_3, SIG_DONE_4]

; At this point, the table writes have passed the point of coherency. Clear the
flag to allow access by other threads.

IMMED [$Sxfer0, 0]
SRAM [write, $xfer0O, flag_address, 0, 1, ctx_swap [SIG_DONE_2]

Other microcode rules:
* All accesses to atomic variables should be through read-modify-write instructions.

* Ifthe flow must know that a write is completed (actually in the SRAM itself), follow the write
with a read to the same address. The write is guaranteed to be complete when the read data has
been returned to the ME.

* With the exception of initialization, never do wrife commands to the first 3 longwords of a
queue_descriptor data structure (these are the longwords that hold head, tail, and count). All
accesses to this data must be via the Q commands.

* To initialize the Q_array registers, perform a memory write of at least 3 longwords, followed
by a memory read to the same address (to guarantee that the write completed). Then, for each
entry in the Q_array, perform ard_qdesc_head followed by ard_qdesc_other using the address
of the same 3 longwords.

Coprocessor Mode

Each SRAM controller may interface to an external coprocessor through it's standard QDR
interface. This interface will allow for the cohabitation of both SRAM devices and coprocessors
operating on the same bus. The coprocessor will behave as a memory mapped device on the SRAM
bus. Figure 78 is a simplified block diagram of the SRAM controller. Figure 86 shows the
connection to a coprocessor through a standard QDR interface.
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Note: Most coprocessors will not need a large number of address bits—connect as many bits of An as
required by the coprocessor.

Figure 86. Connection to a Coprocessor Though Standard QDR Interface

SRAM_Control Coproessor 1 Coprocessor
SRAM Push B Aead
TP Y Internal |- Pu'séTFEc))ata <22 Pin < Qn[17:0]
Bus Control
Control State > RPE_Ln[1:0]
State Read Mechanics
Mechanics | Read Cmd | Address
- FIFO -
SRAM Cmd Bus > Anjx:0]
Write
i Address
> Wrng%md > > BWEN[1:0]
Write [4:0]
SRAM Pull B I Pull Data Data _ > WPE_Ln[1:0
e > FIFO >
> Dn[17:0]
A9746-01

The external coprocessor interface is based on FIFO communication.

A thread can send parameters to the coprocessor by doing a normal SRAM write instruction:

sram[write, S$sram xfer_reg, srcl, src2, ref_count], optional_token

The number of parameters (longwords) passed is specified by ref count. The address can be used
to support multiple coprocessor FIFO ports. The coprocessor will perform some operation using
the parameters, and then, sometime later it will pass back some number of results values (the
number of parameters and results will be known by the coprocessor designers). The time between
the input parameter and return values is not fixed; it is determined by the amount of time the
coprocessor requires to do its processing and can be variable. When the coprocessor is ready to
return the results it signals back to the SRAM controller through a mailbox valid bit that the data in
the read FIFO is valid. A thread can get the return values by doing a normal SRAM read
instruction:

sram[read, $sram_xfer_reg, srcl, src2, ref_count], optional_token

Figure 87 shows the coprocessor with memory-mapped FIFO ports.

214 Hardware Reference Manual



Intel® IXP2400 Network Processor
SRAM Interface

Figure 87. Coprocessor with Memory Mapped FIFO Ports
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If the read instruction executes before the return values are ready, the coprocessor will signal data
invalid through the mailbox register on the read data bus (Qn[17:0]). Signaling a thread upon
pushing its read data works exactly as in a normal SRAM read.

There can be multiple operations in-progress in the coprocessor. The SRAM controller will send
parameters to the coprocessor in response to each SRAM write instruction without waiting for
return results of previous writes. If the coprocessor is capable of re-ordering operations—that is,
returning the results for a given operation before returning the results of an earlier arriving
operation—ME code must manage matching results to operations. Tagging the operation by
putting a sequence value into the parameters, and having the coprocessor copy that value into the
results is one way to accomplish this requirement.

Flow control will be under the Network Processor's ME control. An ME thread accessing a
coprocessor port will maintain a count of the number of entries in that coprocessor 's write FIFO
port. Each time an entry is written to that coprocessor port the count will be incremented. When a
valid entry is read from that coprocessor read port the count will be decrement by the thread.
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SHaC Unit 7

71

7.2

7.3

Prerequisite Reading

1. Section 2, “Hardware Overview”

Introduction

This chapter will cover the operation of the SHaC unit. The SHaC unit contains three main
subblocks: the Scratchpad, the Hash units and the CAP (CSR Access Proxy). Each subblock will
be described separately and in greater detail in the sections that follow.

The CSR and ARM Advanced Peripheral Bus (APB) bus interfaces are controlled by the
Scratchpad state machine and will be addressed in the Scratchpad design detail section. (See
“Scratchpad” on page 7-219.)

Unit Overview

The SHaC unit is a multifunction block containing Scratchpad memory and logic blocks to perform
hashing operations and interface with Intel XScale® core peripherals and chip CSRs through the
APB and CSR buses, respectively. The SHaC also houses the global registers, as well as chip Reset
logic.

The SHaC unit provides the following features:

 Communication to Intel XScale® core peripherals, such as GPIOs and timers, through the APB
bus

* Creation of hash indices of 48, 64, or 128-bit widths

* A communication ring used by Microengines (MEs) for interprocess communication
* A Scratchpad memory storage option usable by Intel XScale® core and MEs

* A CSR bus interface to permit fast writes to CSRs, as well as standard read and writes

¢ A Push/Pull Reflector to transfer data from the Pull bus to the Push bus
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7.41

Full Chip Diagram

High Level Block Diagrams

Figure 88. IXP2400 Chassis (APB and CSR Buses Not Shown) Block Diagram
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7.4.2

SHaC Unit Block Diagram

Figure 89. SHaC Top Level Diagram
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7.5

7.51

7.5.1.1

Unit Design Details

Scratchpad

Scratchpad Description

The SHaC Unit contains a 16KB Scratchpad memory, organized as 4 K 32-bit words, that is
accessible by the Intel XScale® core and Microengines (MEs). The Scratchpad connects to the
internal Command, S_Push/S_Pull, CSR, and APB buses.

The Scratchpad memory provides the following operations:

* Normal reads and writes. From one to 16 longwords (32 bits) can be read/written with a single
command. Note that Scratchpad is not byte-writable. Each write must write all four bytes.
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7.5.1.2.2

¢ Atomic read-modify-write operations: bit-set, bit-clear, increment, decrement, add, subtract,
and swap. The Read-Modify-Write (RMW) operations can also optionally return the
premodified data.

¢ Sixteen Hardware Assisted Rings for interprocess communication.

¢ Standard support of APB peripherals such as UART, Timers, and GPIOs through the ARM
Advanced Peripheral Bus (APB).

¢ Fast write and standard read and write operations to CSRs through the CSR Bus. A fast write
is where the write data is supplied with the command, rather than pulling the data from the
source.

¢ Push/Pull Reflector Mode that supports reading from a device on the pull bus and writing the
data to a device on the push bus (reflecting the data from one bus to the other). A typical
implementation of this mode is to allow an ME to read or write the transfer registers or CSRs
in another ME.

The Push/Pull Reflector Mode only connects to a single Push/Pull bus. If a chassis implements
more than one Push/Pull bus, it can only connect one specific bus to the CAP.

Collectively, operations to the CSRs and APB peripherals—as well as the Push/Pull Reflector
Mode — form what is known as the CSR Access Proxy (CAP). The CAP is treated as a separate
target to the MEs and the Intel XScale® core.

Scratchpad memory is provided as a third memory resource (in addition to SRAM and DRAM)
that is shared by the MEs and Intel XScale® core. The MEs and Intel XScale® core can distribute
memory accesses between these three types of memory resources to provide a greater number of
memory accesses occurring in parallel.

Scratchpad Interface
The Scratchpad interfaces to the internal Command, S_Push, S_Pull, CSR, and APB buses.

The Scratchpad command and S_Push and S_Pull bus interfaces are shared with the Hash Unit.
Only one command, to either of those units, can be accepted per cycle.

The CSR and APB buses will be described in detail in the following sections.

Command Interface

The Scratchpad accepts commands from the Command Bus and can accept one command every
cycle.

For Push/Pull reflector write and read commands, the command bus is rearranged before being sent
to the Scratchpad state machine in order to allow a single state (REFLECT PP) to be used to
handle both commands.

Push/Pull Interface

The Scratchpad has the capability to interface to either one or two push/pull (PP) bus pairs. The
interface from the Scratchpad to the PP bus pair is through the Push/Pull Arbiters. Each PP bus has
a separate Push arbiter and Pull arbiter through which access to the Push bus and Pull bus,
respectively, is regulated. Refer to Section 6, “SRAM Interface” for more information. When the
Scratchpad is used in a chip that only utilizes one pair of PP buses, the other interface is unused.

1. Aring is a FIFO that uses a head and tail pointer to store/read information in Scratchpad memory.
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CSR Bus Interface

The CSR Bus provides fast write and standard read and write operations from the Scratchpad to the
CSRs in the CSR block.

Advanced Peripherals Bus Interface (APB)

The Advanced Peripheral Bus (APB) is part of the Advanced Microcontroller Bus Architecture
(AMBA) hierarchy of buses that is optimized for minimal power consumption and reduced design
complexity.

ThelXP2400 SHaC Unit uses a modified APB interface in which the APB peripheral is required to
generate an acknowledge signal (APB_RDY _H) during read operations. This is done to indicate
that valid data is on the bus. The addition of the acknowledge signal is an enhancement added
specifically for the IXP Chassis. For more details refer to the ARM AMBA Specification 1.6.1.3.

Scratchpad Command Overview

This section will detail the operations performed for each Scratchpad command. Command order is
preserved because all commands go through a single command inlet FIFO.

When a valid command is placed on the command bus, the control logic checks the instruction
field for the Scratchpad or CAP ID. The command, address, length, etc. are enqueued into the
Command Inlet FIFO. If the command requires pull data, signals are generated and immediately
sent to the Pull Arbiter. The command is pushed from the Inlet FIFO to the command pipe where it
will be serviced according to the command type.

If the Command Inlet FIFO becomes full, the Scratchpad controller will send a full signal to the
command arbiter which will prevent it from sending further Scratchpad commands.

Scratchpad Commands

The basic read and write commands will transfer from 1 to 16 longwords of data to and from the
Scratchpad.

Reads

When a read command is at the head of the Command queue, the Push Arbiter is checked to see if
it has enough room for the data. If so, the Scratchpad RAM is read, and the data is sent to the Push
Arbiter one 32-bit word at a time (the Push_ID is updated for each word pushed). The Push Data is
sent to the specified destination.

The read data is placed on the S_Push bus one 32-bit word at a time. If the master is an ME, it is
signaled that the command is complete during the last phase of the push bus transfer. Other masters
(Intel XScale® core and PCI) must count the number of data pushes to know when the transfer is
complete.

Writes

When a write command is at the head of the Command Inlet FIFO, signals are sent to the Pull
Arbiter. If there is room in the queue, the command is sent to the Command pipe.
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Note:

When a write command is at the head of the Command pipe, the command waits for a signal from
the Pull Data FIFO, indicating the data to be written is valid. Once the first longword is received,
the data is written on consecutive cycles to the Scratchpad RAM until the burst (up to 16
longwords) is completed.

If the master is an ME, it is 51gnaled that the command is complete during the last pull bus transfer.
Other masters (Intel XScale core and PCI) must count the number of data pulls to know when the
transfer is complete.

Atomic Operations

The Scratchpad supports the following atomic operations.
* bit set
* bit clear
* increment
¢ decrement
* add
* subtract

* swap

The Scratchpad does read-modify-writes for the atomic operations, the pre-modified data also can
be returned, if desired. The atomic operations operate on a single longword. There is one cycle
between the read and write while the modification is done. In that cycle no operation is done, so an
access cycle is lost.

When a read-modify-write command requiring pull data from a source is at the head of the
Command Inlet FIFO, a signal is generated and sent to the Pull Arbiter—if there is room.

When the RMW command reaches the head of the Command pipe, the Scratchpad reads the
memory location in the RAM. If the source requests the pre-modified data (Token[0] set), it is sent
to the Push Arbiter at the time of the read. If the RMW requires pull data, the command waits for
the data to be placed into the Pull Data FIFO before performing the operation; otherwise the
operation is performed immediately. Once the operation has been performed, the modified data is
written back to the Scratchpad RAM.

Up to two ME signals will be assigned to each read-modify-write reference. Microcode should
always tag the read-modify-write reference with an even numbered signal. If the operation requires
a pull, then the requested signal will be sent on the pull. If the read data is to be returned to the ME,
then the ME will be sent (requested signal OR 1) when that data is pushed.

For all atomic operations, whether or not the read data is returned is determined by Command bus
Token[0].

Intel XScale® core can do atomic commands usmg aliased addresses in Scratchpad. (See the
address map in the chapter.) An Intel XScale® core Store instruction to an atomic command
address will do the RMW without returning the read data, an Intel XScale® core Swap instruction
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(SWP) to an atomic command address will do the RMW and return the read data to Intel XScale®
core.

Ring Commands

The Scratchpad provides 16 Rings used for interprocess communication. The rings provide two
operations.

* Get(ring, length)
* Put(ring, length)

Ring is the number of the ring (0 through 15) to get from or put to, and length specifies the number
of longwords to transfer. A logical view of one of the rings is shown in Figure 90.

Figure 90. Ring Communication Logic Diagram
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Head, Tail, Base and Size are registers in the Scratchpad Unit. Head and Tail point to the actual
ring data, which is stored in the Scratchpad RAM. For each ring in use, a region of Scratchpad
RAM must be reserved for the ring data. Head points to the next address to be read on a get, and
Tail points to the next address to be written on a put. The size of each Ring is selectable from the
following choices: 128, 256, 512, or 1,024 32-bit words. The size is specified in the Ring_Base
register.

The reservation is by software convention. The hardware does not prevent other accesses to the
region of Scratchpad used by the Ring. Also, the regions of Scratchpad memory allocated to
different Rings must not overlap. This no-overlap rule implies that many configurations are not
legal. For example, programming 5 Rings to size of 1024 words would exceed the total size of
Scratchpad memory, and therefore is not legal.

The region of Scratchpad used for a Ring is naturally aligned to it size.

When the Ring is near full (see Table 69 for the exact number of entries) it asserts an output signal
which is used as a state input to the MEs. They must use that signal to test, by doing a Branch on
Input Signal, for room on the Ring before putting data onto it. There is a lag in time from a put
instruction executing to the Full signal being updated to reflect that put. To be guaranteed that a put
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will no overfill the ring there is a bound on the number of Contexts and the number of 32-bit words
per write based on the size of the ring, as shown in Table 69. Each Context should test the Full
signal, then do the put if not Full, and then wait until the Context has been signaled that the data has
been pulled before testing the Full signal again.

Table 69. Ring Full Signal Use — Number of Contexts and Length vs. Ring Size

128 256 512 1024
1 16 16 16 16
2 16 16 16 16
4 8 16 16 16
8 4 12 16 16
16 2 6 14 16
24 1 4 9 16
32 1 3 7 15
40 lllegal® 2 5 12
48 lllegal® 2 4 10
64 lllegal® 1 3 7
128 lllegal® lllegal® 1 3

a. Number in each entry is the largest length that should be put. 16 is the largest length that a single put instruction
can generate.
b.  lllegal with that number of Contexts, even a length of 1 could cause the Ring to overfill.

For IXP2400 BO, the Full Flag can be configured as an Empty Flag instead of Full Flag, by the
RING_STATUS FLAG bit in the SCRATCH_RING_BASE # register. Note that each Ring has its
own RING STATUS FLAG bit.

The ring commands operate as outlined in the pseudo code in Example 31. The operations are
atomic meaning that multi-word gets and puts do all the reads and writes with no other intervening
Scratchpad accesses.

Example 31. Ring Command Pseudo Code

GET Command

Get (ring, length)

If count[ring] >= length //enough data in the ring?

ME <-- Scratchpadl[head[ring]] // each data phase

head[ring]+= length % ringSize

count [ring] -= length

else ME <--nil // 1 data phase signals read off empty list

NOTE: The ME signal is delivered with last data. In the case of nil, the signal is delivered with the 1 data
phase.

PUT Command

Before issuing a PUT command, it is the responsibility of the ME thread issuing the command to check the

SHTC_RING_FULL_RPH signal to make sure the Ring has enough room.

Put (ring, length)

SRAM[tail[ring]] <-- ME pull data // each data phase

o

tail[ring]l+= length % ringSize

Count [ring] += length
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. . Full Threshold
Size (# of 32-bit Base Address? Head/Tail Offset (number of empty
words) .
entries)
128 13:9 8:2 32
256 13:10 9:2 64
512 13:11 10:2 128
1024 13:12 11:2 256

a.  Note that bits [1:0] of the address are assumed to be 00.

Prior to using the Scratchpad rings, software must initialize the Ring Registers through CSR writes.
The Base address of the ring must be written, and also the size field which determines the number
of 32-bit words for the Ring.

Table 71. Ring CSR Summary and Addresses

Address CSR name Description
0x0#00 Ring[#] Base Base address of the Ring
0x0#00 Ring[#] Head Offset of head entry from Base
0x0#00 Ring[#] Tail Offset of tail entry from Base

#=0-F)
CAP Commands
Writes

For an APB or CAP CSR write, the Scratchpad arbitrates for the S Pull Bus, pulls the wrlte data
from the source identified in the instruction (either a ME transfer register or Intel XScale® core
write buffer), and puts it into one of the Pull Data FIFOs. It then drives the address and writes data
on to the appropriate bus. CAP CSRs locally decode the address to match their own. The
Scratchpad generates a separate APB device select signal for each peripheral device (up to 15
devices). If the write is to an APB CSR, the control logic maintains valid signaling until the

APB RDY H! signal is returned. Upon receiving the APB_ RDY H signal, the APB select signal
will be deasserted and the state machine returns to the idle state between commands. The CAP
CSR bus does not support a similar acknowledge signal on writes since the Fast Write functionality
requires that a write operation be retired each cycle.

For writes using the Reflector mode, Scratchpad arbitrates for the S Pull Bus, pulls the wrlte data
from the source identified in the instruction (either a ME transfer register or Intel XScale® core
write buffer), and puts it into one of the Pull Data FIFOs (same as for APB and CAP CSR writes).
The data is then removed from the Pull Data FIFO and sent to the Push Arbiter.

For CSR Fast Writes, the command bypasses the Inlet Command FIFO and is acted on at first
opportunity. The CSR control logic has an arbiter that gives highest priority to fast writes. If an
APB write is in progress when a fast write arrives, both write operations will complete

1. The APB RDY signal is an extension to the APB bus specification specifically added for the IXP Chassis.
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simultaneously. For a CSR fast write, the Scratchpad extracts the write data from the command
rather than pulling the data from a source over the Pull bus. It then drives the address and writes
data to all CSRs on the CAP CSR bus, using the same method used for the CAP CSR write.

The Scratchpad unit supports CAP write operations with burst counts greater than 1, except for fast
writes which only support a burst count of one. Burst support is required primarily for Reflector
mode and software must ensure that burst is performed to a noncontiguous set of registers. CAP
looks at the length field on the command bus and breaks each count into a separate APB write
cycle, incrementing the CSR number for each bus access.

Reads

For an APB read, the Scratchpad drives the address, write, select, and enable signals, and then
waits for the acknowledge signal (APB_RDY_ H) from APB device. For a CAP CSR read, the
address is driven, which controls a tree of multiplexors to select the appropriate CSR. CAP then
waits for the acknowledge signal (CAP_CSR RD RDY). In both cases, when the data is returned,
the data is sent to the Push Arbiter and the Push Arbiter pushes the data to the destination.

The CSR bus can support an acknowledge signal since the read operations occur on a separate read
bus and will not interfere with Fast Write operations.

For reads using the Reflector mode, the write data is pulled from the source identified in
ADDRESS (either an ME transfer register or Intel XScale® core write buffer), and put into one of
the Scratchpad Pull Data FIFOs. The data is then sent to the Push Arbiter. The arbiter then moves
the data to the destination specified in the command. Note that this is the same as a Reflector mode
write, except the source and destination are identified using opposite fields.

The Scratchpad performs one read operation at a time. In other words, CAP will not begin a APB
read until a CSR read has completed or vice versa. This simplifies the design by ensuring that when
lengths are greater than 1, the data is sent to the Push Arbiter in a contiguous order and not
interleaved with data from a read on the other bus.

Signal Done

CAP can provide a signal to an ME upon completion of a command. For APB and CAP CSR
operations, CAP signals the ME using the same method as any other target. For Reflector mode
reads and writes, CAP uses the TOKEN field of the Command to determine whether to signal the
command initiator, the ME that is the target of the reflection, both, or neither.

XScale® Core and ME Instructions

Table 72 shows the Intel XScale® core and ME instructions used to access devices on these buses
and it shows which buses are used during the operation. For example, to read an APB peripheral
such as a UART CSR, an ME would execute a csr[read] instruction and Intel XScale™ core would
execute a Load (1d) instruction. Data is then moved between the CSR and the Intel XScale® core/
ME by first reading the CSR via the APB bus and then writing the result to the Intel XScale® core/
ME via the Push Bus.
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Table 72. Intel® XScale® Core and ME Instructions

Intel® IXP2400 Network

Processor
SHaC Unit

Accessing

Read Operation

Write Operation

APB Peripheral

Access Method:
ME: csr[read]
Intel XScale® core: Id

Access Method:
ME: csr[write]
Intel XScale® core: st

Bus Usages:
Read source: APB bus
Write dest: Push bus

Bus Usages:
Read source: Pull Bus
Write dest: APB bus

CAP CSR

Access Method:
ME: csr[read]
Intel XScale® core: Id

Access Method:
ME: csr[write], fast_wr
Intel XScale® core: st

Bus Usages:
Read source: CSR bus
Write dest: Push bus

Bus Usages:
csr{write] and st
Read source: Pull Bus
Write dest: CSR bus
fast_wr
Write dest: CSR bus

ME CSR or Xfer Register
(Reflector Mode)

Access Method:
ME: csr[read]
Intel XScale® core: Id

Access Method:
ME: csr[write]
Intel XScale® core: st

Bus Usages:
Read source: Pull bus (Address)
Write dest: Push bus(PP_ID)

Bus Usages:
Reads: Pull Bus (PP_ID)

Write dest: Push bus (Address)

The following ME registers are normally used by MEs in network processing and are included in
the CSR block. They are connected to the CAP CSR bus, implying that they can be written at the
rate of one per cycle. They may also be accessed by other command bus masters (for example,

XScale), typically for test and debug use.
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Table 73. Inter-Process Communication Register Summary

CSR Name Address Description
Address for Microengine
threads to write a message to
THD_MSG 0x000 wri 9

(Generic address)

their specific register.
Refer to Note 1.

THD_MSG_CLR_#_$_&
# = ME cluster number 0 to 1

$ = ME number in cluster. 0 to7 for
IXP2800. 0 to 3 for IXP2400

& = thread number 0 to7

0x100-0x2FC

Address to read and clear each
individual THD_MSG.

Refer to Note 1.

THD_MSG_#_$_&
# = ME cluster number 0 to 1

$ = ME number in cluster. 0 to 7 for
IXP2800. 0 to 3 for IXP2400

& = thread number 0 to7

0x500-0x6FC

Address to read each individual
THD_MSG_#_$_&.

Refer to Note 1.

For IXP2800, the offset for the
128 registers are 0x500 +
(cluster# * 64 + ME# * 8 +
Thread#) * 4

For IXP2400, the offset for the
64 registers are 0x500 +
(cluster# * 64 + ME# * 8 +
Thread#) * 4

THD_MSG_SUMMARY_0_0 0x004 - Bit vector registers that
THD_MSG._SUMMARY 0_1 indicates which threads have
0x008 new messages
(IXP2800 only) THD_MSG_SUMMARY_#_$
THD_MSG_SUMMARY_1_0 0x00C # = ME cluster number 0 to 1
THD_MSG_SUMMARY_1_1 $ = register number 0 to1
(IXP2800 only) 0x010 Refer to Note 1.
SELF_DESTRUCT_O 0x014 Write bit number to set a bit in
these registers and a read
SELF_DESTRUCT_1 0x018 clears all the bits in the register
Writing a thread and signal
INTERTHREAD_SIG 0x01C number to this register

generates a signal event to the
thread
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Table 73. Inter-Process Communication Register Summary (Continued)

7.5.2

7.5.21

7.5.2.11

CSR Name Address Description
XSCALE_INT_A 0xb20 Address for Microengine
threads to set an interrupt to
XSCALE_INT_B 0xb24 the XScale core

Note 1.

Each Microengine thread can be programmed to write an 8-bit message to its own
THD_MSG_#_$_& register. The intent of these registers is to provide a mechanism to have
the Microengine threads report their current processing status. The interpretation of the
message is a software semantic between the sender and receiver.

The numbering scheme of the Microengine threads involves the ME cluster, the ME
number within the cluster and the thread number within each ME. There are two ME
clusters for both IXP2800/2400. The IXP2800 offers eight MEs per cluster, with numbers 0
through 7. IXP2400 offers four MEs per cluster, with numbers 0 through 3.

A Microengine thread writes this register using the fast_wr or csr[write] instruction with the
generic THD_MSG register address. The data supplied with the instruction is written to the
actual register associated with the Microengine thread number. CAP takes the generic
address concatenates it with the ME and context number of the sender to create the
specific address. The write will also set the bit corresponding to the sender in the
THD_MSG_SUMMARY_#_$ Register.

The csr[read] instruction or the Intel XScale® core processor read uses the actual
THD_MSG register addresses to read these registers. There are two addresses to read
THD_MSG. One will return the read data and clear the THD_MSG (and its corresponding
THD_MSG_SUMMARY_#_$ bit), the other will return the read data and leave the contents
of the register intact.

The csr{read] instruction can use either the generic THD_MSG address or the actual
thread specific THD_MSG_#_$_& register addresses to read these registers. When the
generic THD_MSG address is used for a read, CAP will determine the actual register in the
same way as described above in the write description. There are two thread specific
addresses for each THD_MSG; one will only read the data, the other will read the data and
clear the THD_MSG register, and also clear the corresponding bit in the
THD_MSG_SUMMARY_#_$ Register. Reading at the generic address does not do the
clear function.

Hash Unit

Hash Unit Description

SHaC Unit

The SHaC unit contains a Hash Unit that can take 48-bit, 64-bit or 128-bit data and produces a 48-
bit, a 64-bit or a 128-bit hash index, respectively. The Hash Unit is accessible by the MEs and the

Intel XScale® core.

Hashing Operation

Up to three hash indices can be created using a single ME instruction. The ME hash instructions are

shown in Example 32.
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Example 32. ME Hash Instructions

hashl_48[$xfer], optional_token
hash2_48[$xfer], optional_token
hash3_48[$xfer], optional_token

hashl_64[$xfer], optional_token
hash2_64[$xfer], optional_token
hash3_64[$xfer], optional_token

hashl_128[$xfer], optional_token
hash2_128[$xfer], optional_token
hash3_128[$xfer], optional_token

Where:

$xfer The beginning of a contiguous set of registers that supply the data used
to create the hash input and receive the hash index upon completion of
the hash operation.

optional_ token sig_done, ctx_swap, defer [1]

7.5.2.2 Hash Unit Block Diagram

Figure 91 shows a block diagram of the Hash Unit. Refer to Figure 91 when reading the following
subsections.

230 Hardware Reference Manual



u Intel® IXP2400 Network Processor
N SHaC Unit
®
Figure 91. Hash Unit Block Diagram
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7.5.2.3 Hash Operation

An ME initiates a hash operation by writing a contiguous set of SRAM Transfer Registers and then
executing the hash instruction. The SRAM Transfer Registers can be specified as either Context-
Relative, or Indirect; Indirect will allow any of the SRAM Transfer Registers to be used. Two
SRAM Transfer Registers are required to create hash indices for 48-bit and 64-bit and four SRAM
Transfer Registers to create 128-bit hash indices, as shown in Table 74. In the case of the 48-bit
hash, the Hash Unit ignores the upper two bytes of the second Transfer Register.

Table 74. S Transfer Registers Hash Operands

Register Address
48-Bit Hash Operations
Don't care ‘ hash 3[47:32] $xfer n+5
hash 3 [31:0] $xfer n+4
Don't care ‘ hash 2[47:32] $xfer n+3
hash 2 [31:0] $xfer n+2
Don't care ‘ hash 1[47:32] $xfer n+1
hash 1 [31:0] $xfer n
64-Bit Hash Operations
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Table 74. S Transfer Registers Hash Operands (Continued)

Register Address
hash 3 [63:32] $xfer n+5
hash 3 [31:0] $xfer n+4
hash 2 [63:32] $xfer n+3
hash 2 [31:0] $xfer n+2
hash 1 [63:32] $xfer n+1
hash 1 [31:0] $xfer n

128-Bit Hash Operations

hash 3 [127:96] $xfer n+11
hash 3 [95:64] $xfer n+10
hash 3 [63:32] $xfer n+9
hash 3 [31:0] $xfer n+8
hash 2 [127:96] $xfer n+7
hash 2 [95:64] $xfer n+6
hash 2 [63:32] $xfer n+5
hash 2 [31:0] $xfer n+4
hash 1 [127:96] $xfer n+3
hash 1 [64:95] $xfer n+2
hash 1 [63:32] $xfer n+1
hash 1 [31:0] $xfer n

Intel XScale® core initiates a hash operation by writing a set of memory-mapped Hash Operand
Registers, which are built in the Intel XScale® core gasket, with the data to be used to generate the
hash index. There are separate registers for 48-bit, 64-bit, and 128-bit hashes, as shown in Table 75.
Only one hash operation of each type can be done at a time. Writing to the last register in each
group informs the gasket logic that it has all the operands for that operation, and it will then
arbitrate for Command bus to send the command to the Hash Unit.

Table 75. Intel XScale® core Hash Operand Registers

Register Address

48-Bit Hash Operation

Don't care hash [47:32] tbd
hash [31:0] tbd

64-Bit Hash Operation

hash [63:32] tbd
hash [31:0] tbd

128-Bit Hash Operation

hash [127:96] tbd
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Table 75. Intel XScale® core Hash Operand Registers (Continued)

Register Address
hash [64:95] tbd
hash [63:32] tbd
hash [31:0] tbd

For both ME generated commands and Intel XScale® core generated commands, the command
enters the Command Inlet FIFO. As with the Scratchpad write and RMW operations, signals are
generated and sent to the Pull Arbiter. The Hash unit Pull Data FIFO allows the data for up to three
hash operations to be read into the Hash Unit in a single burst. When the command is serviced, the
first data to be hashed enters the hash array while the next two wait in the FIFO.

The Hash Unit uses a hard-wired polynomial algorithm and a programmable hash multiplier to
create hash indices. Three separate multipliers are supported, one for 48-bit hash operations, one
for 64-bit hash operations and one for 128-bit hash operations. The multiplier is programmed
through registers (HASH _MULTIPLIER 64 1, HASH MULTIPLIER 64 2,

HASH _MULTIPLIER 48 1, HASH MULTIPLIER 48 2, HASH MULTIPLIER 128 1,
HASH _MULTIPLIER 128 2, HASH MULTIPLIER 128 3, HASH MULTIPLIER 128 4).

The multiplicand is shifted into the hash array sixteen bits at a time. The hash array performs a ones
complement multiply and polynomial divide, calculated using the multiplier and 16 bits of the
multiplicand. The result is placed into an output register and also feeds back into the array. This
process is repeated 3 times for a 48-bit hash (16 bits x 3 = 48), 4 times for a 64-bit hash (16 bits x 4
= 64) and 8 times for a 128-bit hash (16 x 8 = 128). After an entire multiplicand has been passed
through the hash array, the resulting hash index is placed into a two-stage output pipeline and the
next hash is immediately started.

The Hash Unit shares the Scratchpad’s Push Data FIFO. After each hash index is completed, the
index is placed into a three-stage output pipe and the Hash Unit sends a PUSH_DATA_REQ to the
Scratchpad to indicate that it has a valid hash index to put into the Push Data FIFO for transfer. The
Scratchpad will issue a SEND HASH DATA signal, transfers the hash index to the Push Data
FIFO, and sends the data to the Arbiter.

For Intel XScale® core initiated hash operations, Intel XScale® core reads the results from its
memory-mapped Hash Result Registers. The addresses of Hash Results are the same as the Hash
Operand Registers. Because of queuing delays at the Hash Unit, the time to complete an operation
is not fixed. Intel XScale® core can do one of two operations to get the hash results.

* Poll the Hash Done Register. This register is cleared when the Hash Operand Registers are
written. Bit [0] of Hash Done Register is set when the Hash Result Registers get the return
result from the Hash Unit (when the last word of the result is returned). Intel XScale® core
software can poll on Hash Done, and read Hash Result when Hash Done is equal to
0x00000001.

* Read Hash Result directly. The gasket logic will acknowledge the read only when the result is
valid. This method will result in Intel XScale® core stalling if the result is not valid when the
read happens.

The number of clock cycles required to perform a single hash operation is the sum of two or four
cycles through the input buffers, three, four or eight cycles through the hash array, and two or four
cycles through the output buffers. Because of the pipeline characteristics of the Hash Unit,
performance is improved if multiple hash operations are initiated with a single instruction rather
than separate hash instructions for each hash operation.
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Equation

Hash Algorithm

The hashing algorithm used by IXP2400 allows flexibility and uniqueness since it can be
programmed to provide different results for a given input. The algorithm uses binary polynomial
multiplication and division under modulo-2 addition. The input to the algorithm is a 48-bit, 64-bit
or 128-bit value.

The data used to generate the hash index is considered to represent the coefficients of an order-47,
order-63 or order-127 polynomial in x. The input polynomial (designated as A(x)) has the form:

1. Ayg(x) = ag+ax+ a2x2 +...+ a46x46 + a47x47 (48-bit hash operation)

Equation 2. A (x) = ag+ax+ayx + ...+ agx" +agx (64-bit hash operation)

Equation

3. Apg(X) = ap+ax+ax + ...+ apex +a,x - (128-bit hash operation)

This polynomial is multiplied by a programmable hash multiplier using a modulo-2 addition. The
hash multiplier, M(x) is stored in Hash Unit CSRs and represents the polynomial.

Equation 4. M ;(x) = my+mx + m2x2 o+ m46x46 + m47x47 (48-bit hash operation)

Equation

Equation

5. Myy(x) = my+mx+ m2x2 +.o+ m62x62 + m63x63 (64-bit hash operation)
6. M,pq(x) = my+mx+myx +...+myex 0 +mx' > (128-bit hash operation)
Since multiplication is performed using modulo-2 addition, the result is an order-94 polynomial, an

order-126 polynomial or an order-254 polynomial with coefficients that are also 1 or 0. This
product is divided by a fixed generator polynomial given by:

Equation 7. G (x) = 1 a0 0 (48-bit hash operation)

54 64

Equation 8. G,(x) = 1+x" +x +x +x* (64-bit hash operation)

Equation 9. G, (x) = 1+x° +x” +x”+x'* (128-bit hash operation)

Equation

The division results in a quotient Q(x), a polynomial of order-46, order-62 or order-126, and a
remainder R(x), a polynomial of order-47, order-63 or order-127. The operands are related by the
equation:

10. A(X)M(x) = Q(x)G(x) + R(x)

The generator polynomial has the property of irreducibility. As a result, for a fixed multiplier M(x),
there is a unique remainder R(x) for every input A(x). The quotient Q(x), can then be then
discarded, since input A(x) can be derived from its corresponding remainder R(x). A given
bounded set of input values A(x) (say 8 K or 16 K table entries), with bit weights of an arbitrary
density function can be mapped one-to-one into a set of remainders R(x) such that the bit weights
of the resulting Hashed Arguments (a subset of all values of R(x) polynomials) are all about equal.

In other words, there is a high likelihood that the low order set of bits from the Hash Arguments are
unique, so they can be used to build an index into the table. If the hash algorithm does not provide
a uniform hash distribution for a given set of data, the programmable hash multiplier (M(x)) may
be modified to provide better results.
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Table 76. Scratchpad Memory Register Summary

CSR name Address Description
SCRATCH_RING_BASE_# 0x0#0 Base address of the Ring.
SCRATCH_RING_HEAD_# 0x0#4 Offset of head entry from Base.
SCRATCH_RING_TAIL_# 0x0#8 Offset of tail entry from Base.
RESERVED 0xFC

Table 77. Hash Multiplier Register Summary

CSR name Address Description

HASH_MULTIPLIER_48_0 0x00 Leas.t §ignificant 32 bits of 48-bit Hash
Multiplier.

HASH_MULTIPLIER_48_1 0x04 Mos? sjgnificant 16 bits of 48-bit Hash
Multiplier.

HASH_MULTIPLIER_64_0 0x08 Leas.t §ignificant 32 bits of 64-bit Hash
Multiplier.

HASH_MULTIPLIER_64_1 0x0C Mos? s_ignificant 32 bits of 64-bit Hash
Multiplier.

HASH_MULTIPLIER_128_0 0x10 Leas_t §ignificant 32 bits of 128-bit Hash
Multiplier.

HASH_MULTIPLIER_128_1 ox14 | Bits 32063 of the 128-bit hash
multiplier.

HASH_MULTIPLIER_128_2 oxig | Bits 64 to 95 of the 128-bit hash
multiplier.

HASH_MULTIPLIER_128_3 ox1C Mos? s_ignificant 32 bits of 128-bit Hash
Multiplier.

Table 78. Global Chassis Registers
Register Name Address Description

PRODUCT_ID 0x00

MISC_CONTROL 0x04

STRAP_OPTIONS 0x18

RESET_0 0x0C

RESET _1 0x10

CLOCK_CONTROL 0x14

MCCR (IXP2400 Only) 0x08
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Media and Switch Fabric Interface

Media and Switch Fabric Interface 8

8.1 Overview

The Media and Switch Fabric (MSF) Interface is used to connect IXP2400 to a physical layer
device (PHY) and/or to a switch fabric. The MSF has the following major features:

Separate and independent 32-bit receive and transmit buses. Each bus may be configured
independently.

A configurable bus interface; the bus may function as a single 32-bit bus, or it can be
channelized into independent buses: two 16-bit or four 8-bit buses, or one 16-bit bus and two
8-bit buses. Each channel may be configured to operate in either UTOPIA or POS-PHY
modes.

The Media bus operates from 25 to 133 MHz.

UTOPIA Level 1/2/3 and POS-PHY Level 2/3 single-PHY (SPHY) master operation; 8-, 16-,
or 32-bit buses are supported.

UTOPIA Level 3 multi-PHY (MPHY) master operation with a 32-bit-wide bus; up to 32 slave
ports are supported (16 ports in IXP2400 A0/A1); polling may be single RxClav/TxClav, or
Direct Status Indication (maximum of four slave ports).

POS-PHY Level 3 multi-PHY (MPHY) master operation with a 32-bit-wide bus with in-band
addressing; up to 32 slave ports (16 ports in A0/A1 silicon) are supported, with packet-level
polling.

POS-PHY Level 2 and UTOPIA Level 2 master mode operation on one 16-bit-wide bus; up to
31 slave ports are supported; polled status mode is supported, and direct status indication is not
supported. (This feature is only available in IXP2400 BO0)

POS-PHY Level 3 (SPI3) slave mode operation in SPHY mode on 32-bit bus, 2 x 16-bit bus, 4
x 8-bit bus, 1 x 16-bit + 2 x 8-bit bus. Note that this slave mode is not fully SPI3-specification-
compliant and is intended primarily for daisy-chaining IXP2400s in certain applications. (This
feature is only available in IXP2400 B0)

Support for CSIX-L1 protocol with a 32-bit-wide bus. The only deviation from the CSIX-L1
specification is that the IXP2400 is clocked by a globally synchronous clock and is electrically
3.3V LVTTL.

Support for interprocessor CBus for communicating link level and fabric level flow control
information between egress and ingress processors in CSIX mode.

Interface to internal buses: command, SRAM push/pull, and DRAM push/pull.

Figure 92 shows one expected usage model.
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Figure 92. An Expected Usage Model
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Note: In this document, UTOPIA always refers to cell transport; POS-PHY refers to variable length
packet transport; CSLX refers to CFrame transport.

8.2 Reference Documents

The reader should be familiar with the following specifications:
¢ UTOPIA Specification, Level 1, Version 2.01, March 21, 1994
* UTOPIA Level 2 Specification, Version 1.0, June 1995
¢ UTOPIA 3 Physical Layer Interface, November 1999
* POS-PHY Level 2 Specification, Issue 5, December 1998
* POS-PHY Level 3 Specification, Issue 4, June 2000
¢ SPI-3 Specification, June 2000
* Frame Based ATM Interface (Level 3), March 2000
¢ CSIX-L1: Common Switch Interface Specification -L1, Version 1.0, August 5, 2000

8.3 Media Bus Interface

The MSF consists of separate receive and transmit interfaces. Each of the receive and transmit
interfaces can be separately configured for either UTOPIA (Level 1, 2, and 3), POS-PHY (Level 2
and 3) or CSIX protocols.
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Note:
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Note that any device that connects to the MSF interface must not exhibit any protocol violation
with respect to the specifications of the protocols. Otherwise, the MSF hardware behavior is
undefined. As an example, a device that operates in the POS-PHY Level 2 configuration must
deassert RXVAL after the RXEOF of the frame has been observed, in order to comply with the
POS-PHY Level 2 specification.

The receive and transmit ports are unidirectional and completely independent of each other. Each
port has 32 data signals, two clocks, a set of control signals, and a set of parity signals, all of which
use 3.3V LVTTL signalling.

In UTOPIA and POS-PHY modes, each port can function as a single 32 bit interface, or can be
subdivided into a combination of 16 bit or 8 bit channels. When running in channelized mode each
channel operates independently. Each channel is a point-to-point connection to a single PHY. This
is also known as single-PHY (SPHY) mode.

In addition to single-PHY mode, the IXP2400 also supports multi-PHY (MPHY) mode. In MPHY
mode, the 32-bit bus is shared by up to 32 ports; per the UTOPIA Level 3 and POS-PHY Level 3
specifications, all ports must reside within one physical device. Also, one 16-bit bus is shared by up
to 31 ports per the UTOPIA Level 2 and POS-PHY Level 2 protocol. On the 16-bit bus, the ports
can be resident in up to four physical devices.

Only master mode is supported in UTOPIA, POS PHY Level 2 and POS-PHY Level 3 MPHY
mode; POS-PHY Level 3 (SPI3) SPHY slave mode is supported; however, this is not fully
compliant with the SPI3 specification.

Each interface has two clocks; RXCLKO1/TXCLKO1 is used by the ports associated with bits
[15:0]; RXCLK23/TXCLK23 is used by the ports associated with bits [31:16]. This applies only to
the 4x8, 2x16, and 1x16+2x8 SPHY modes, and allows each half of the bus to be clocked
independently. In 1x32 SPHY, MPHY, or CSIX modes, only RXCLKO01/TXCLKO1 is used and is
internally routed to all the logic; RXCLK23/TXCLK23 are tied to ground.

All signals are sampled only on the rising edge of the clock.

In addition to the UTOPIA, POS-PHY, and CSIX interfaces, there is also an interface called CBus
which is used in CSIX mode to forward link level and fabric level flow control information from
the egress (receive) processor to the ingress (transmit) processor.

The use of the pins is based on whether or not the port is in UTOPIA, POS-PHY, or CSIX mode.
Tables in Section 8.4 show how the external pin names map to the signal names referenced in the
UTOPIA, POS-PHY, and CSIX specifications. The tables show all the possible signals that could
be used for a particular standard. However, a particular mode within a standard, such as MPHY or
SPHY, will not necessarily use all the signals shown in a column.

The Media bus is 3.3V LVTTL using globally synchronous (common) clocking. Thus the bus does
not have electrical or clocking compatibility with the CSIX-L1 specification, which is 2.5V
LVCMOS with source synchronous clocking.

UTOPIA

UTOPIA is a protocol for cell transfer between a physical layer (PHY) device and a link layer
device (IXP2400). UTOPIA is optimized for the transfer of fixed sized ATM cells.

UTOPIA Levels 1, 2, and 3 are supported so that IXP2400 can talk to a wide variety of devices
running at different speeds, as shown in Table 79.
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Table 79. UTOPIA Levels 1-, 2-, and 3-Supported Specifications

8.3.1.1

8.3.1.1.1

Note:

Specification Speed Bus Width Frequency
UTOPIA Level 1 OC-3 8 bits 25 MHz
UTOPIA Level 2 0C-12 16 bits 50 MHz
UTOPIA Level 3 0C-48 32 bits 104 MHz

IXP2400’s implementation is more flexible in that all bus widths can be run from the frequency
range of 25 to 133 MHz.

IXP2400 supports both single-PHY (SPHY) mode, described in Section 8.3.1.1 and multi-PHY
(MPHY) mode, described in Section 8.3.1.2.

Single-PHY (SPHY) Mode

Bus Partitioning and Signal Grouping
In SPHY mode, the 32 bit interface may be subdivided into a combination of 8 or 16 bit channels
(channelization); each channel has its own set of control signals (since there are only two clocks on

each interface, adjacent 8 bit channels must share a common clock) and can operate independently
of the other channels. Each channel is a point-to-point connection to a single PHY.

The terms port and channel are used interchangeably throughout this document.

Table 80 shows the supported bus modes.

Table 80. Supported Bus Modes

240

Bus Partitioning Port Number

1x32

2x16

4x8

N/A

1x16_2x8
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The bus partitioning is controlled by the MSF Rx_Control[Rx Width] and
MSF Tx_Control[Tx_ Width] bits.

Each channel may be configured to operate in one of three modes: CSIX, UTOPIA, or POS-PHY.
This is controlled using the MSF_Rx_Control[Rx Mode], Rx_UP_Control_{0...3}[CP_Mode],
MSF_Tx_Control[Tx_Mode], and Tx _UP_Control {0...3}[CP_Mode] bits.

For example, if IXP2400 is configured for 4x8 mode, channels 0 and 3 can be configured for POS-
PHY mode, and channels 1 and 2 can be configured for UTOPIA mode. (CSIX only runs in 1x32

mode.)

Table 81 shows which control and data signals are associated with a given port in SPHY UTOPIA

mode.

Table 81. Signal Usage in SPHY UTOPIA Mode

Bus Port . .
Partitioning Number Signal Groupings
0 RX: RXCLKO1, RXENB[0], RXSOF[0], RXPRTY[0], RXFA[0], RXDATA[31:0]
TX: TXCLKO1, TXENB[0], TXSOF[0], TXPRTY[0], TXFA[0], TXDATA[31:0]
1x32 1 N/A
2 N/A
3 N/A
0 RX: RXCLKO1, RXENB[0], RXSOF[0], RXPRTY[0], RXFA[0], RXDATA[15:0]
TX: TXCLKO1, TXENB[0], TXSOF[0], TXPRTY[0], TXFA[0], TXDATA[15:0]
1 N/A
2x16
) RX: RXCLK23, RXENB[2], RXSOF[2], RXPRTY[2], RXFA[2], RXDATA[31:16]
TX: TXCLK23, TXENB[2], TXSOF[2], TXPRTY[2], TXFA[2], TXDATA[31:16]
3 N/A
0 RX: RXCLKO1, RXENB[0], RXSOF[0], RXPRTY[0], RXFA[0], RXDATA[7:0]
TX: TXCLKO1, TXENB[0], TXSOF[0], TXPRTY[0], TXFA[0], TXDATA[7:0]
] RX: RXCLKO1, RXENB[1], RXSOF[1], RXPRTY[1], RXFA[1], RXDATA[15:8]
8 TX: TXCLKO1, TXENB[1], TXSOF[1], TXPRTY[1], TXFA[1], TXDATA[15:8]
X
) RX: RXCLK23, RXENB[2], RXSOF[2], RXPRTY[2], RXFA[2], RXDATA[23:16]
TX: TXCLK23, TXENB[2], TXSOF[2], TXPRTY[2], TXFA[2], TXDATA[23:16]
3 RX: RXCLK23, RXENB[3], RXSOF[3], RXPRTY[3], RXFA[3], RXDATA[31:24]
TX: TXCLK23, TXENB[3], TXSOF[3], TXPRTYI[3], TXFA[3], TXDATA[31:24]
0 RX: RXCLKO1, RXENB[0], RXSOF[0], RXPRTY[0], RXFA[0], RXDATA[15:0]
TX: TXCLKO1, TXENB[0], TXSOF[0], TXPRTY[0], TXFA[0], TXDATA[15:0]
1 N/A
1x16_2x8 ) RX: RXCLK23, RXENB[2], RXSOF[2], RXPRTY[2], RXFA[2], RXDATA[23:16]
TX: TXCLK23, TXENB[2], TXSOF[2], TXPRTY[2], TXFA[2], TXDATA[23:16]
3 RX: RXCLK23, RXENB[3], RXSOF[3], RXPRTY[3], RXFA[3], RXDATA[31:24]
TX: TXCLK23, TXENB[3], TXSOF[3], TXPRTYI[3], TXFA[3], TXDATA[31:24]
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8.3.1.1.3

Table 82.

Note:

8.3.1.1.4

8.3.1.1.5
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Mode Selection

In order for a channel to operate in UTOPIA mode, the Rx_ UP_Control {0...3}[CP_Mode] or
Tx_UP_Control {0...3}[CP_Mode] bit must be 0.

In SPHY mode, each channel may be configured independently for either UTOPIA or POS-PHY
operation.

Cell Size

The IXP2400 supports the following cell sizes, based on the port’s bus width, as shown in

Table 82. This is controlled by the Rx_ UP_Control {0...3}[Cell_Size]/

Tx_UP_Control {0...3}[Cell_Size] bits. The difference is that when Cell Size = 0 it is expected
that the PHY strips out the HEC/UDF byte, but when Cell_Size = 1, the HEC/UDF byte is left in
the cell and replicated so that the cell size becomes an integral number of transfers on the bus.

Supported Cell Sizes

Bus Width Cell_Size=0 | Cell_Size =1
8 52 bytes 53 bytes
16 52 bytes 54 bytes
32 52 bytes 56 bytes

Cell size is configurable on a per-port basis in SPHY mode.

Cell_Size = 1 may cause the cell payload to fall on a non-longword (4 byte) boundary, making
processing more difficult.

Decode Response Time

The decode response time is the number of clocks which are allowed to elapse between RXENB
and receive control and data (RXDATA, RXSOF, and RXPRTY).

The UTOPIA Level 1 and Level 2 specifications specify one clock cycle; the UTOPIA Level 3
specification specifies two clock cycles. The Rx UP_Control {0...3}[DR_Time]/
Tx_UP_Control {0...3}[DR_Time] bit is used to tell the logic what the decode response time is.

Decode response time is configurable on a per-port basis in SPHY mode.

UTOPIA Level 3 Compatibility Mode

In IXP2400 A0/A1 chips, in UTOPIA SPHY mode, MSF keeps RXENB asserted as long as it has
room in its receive FIFO. MSF essentially ignores RXFA. It monitors RXSOF for incoming cells.
RXENB is deasserted only if there is no more room in the receive FIFO to hold any more cells.
This is called “aggressive RXENB” and it is specifically allowed in the UTOPIA Level 2
specification, and is useful to avoid bubbles between cells.

The UTOPIA Level 3 is less clear on whether this mode of operation is allowed. In order to
accommodate slaves which cannot handle “aggressive RXENB” a mode bit has been added to
provide a “conservative RXENB”.

This mode only works for devices which provide the UTOPIA Level 3 “early” RxClav (RXFA)
timing; it will not work for UTOPIA Level 1/2 devices in which the RxClav signal for the next cell
isn’t valid until after the end of the current cell.
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In “conservative RXENB” mode, MSF will monitor RXFA and will not assert RXENB until RXFA
is asserted. When the end of the cell is reached, the FSM will check RXFA again. If it is deasserted,
it means no more cells are available and the FSM will deassert RXENB. If it is asserted, then the
FSM will keep RXENB asserted.

“Conservative RXENB” works for x8, x16, and x32 SPHY modes.

Parity

UTOPIA uses single bit odd parity, independent of the bus width (x8, x16, or x32). Single bit odd
parity mode is chosen using the Rx UP_Control {0...3}[Parity Mode]/
Tx_UP_Control {0...3}[Parity Mode] bit.

Parity mode is configurable on a per-port basis in SPHY mode.

Handshaking

Only cell level handshaking is supported; octet level handshaking is not supported.

Multi-PHY (MPHY) Mode

In MPHY mode, the UTOPIA bus is shared between multiple ports: UTOPIA Level 3 MPHY on
32-bit bus with up to 32 ports, and UTOPIA Level 2 operation on one 16-bit bus with up to 31 ports
are supported. Both the above modes are referred to as MPHY-32 (the limitation of 31 ports on the
16-bit bus is due to the protocol). The 32-bit-wide bus must be a point-to-point connection between
IXP2400 and the PHY. This implies that all the ports must be implemented inside one physical
device. The 16-bit-wide bus can support up to four loads, i.e., the total ports can be split across up
to four physical devices. An 8-bit-wide bus is not supported in MPHY mode.

In MPHY mode, all ports must have the same characteristics; for example, it is not possible to have
some ports operate in cell mode and others in packet mode, nor is it possible to have some channels
use odd parity and others use even parity. The port characteristics are chosen using the
Rx_UP_Control 0 and Tx_UP_Control 0 registers in MPHY-32 mode; in MPHY-4 mode,

Rx UP_Control {0..3} and Tx UP_Control {0..3} are used to select the operating mode, and
must all be programmed to identical values.

Bus Partitioning and Signal Grouping

Table 83 shows signal usage when running in MPHY mode.

Signal Usage in MPHY Mode

Bus Port

Partitioning | Number Signal Groupings

0-3 with | RX: RXCLKO01, RXENB[0], RXSOF[0], RXPRTY[0], RXFA[3:0], RXADDR[4:0],
direct | RXDATA[31:0]

~status | TX: TXCLKO1, TXENB[0], TXSOF[0], TXPRTY[0], TXFA[3:0], TXADDR[4:0],
indication | TXDATA[31:0]

0-31with | RX: RXCLKO1, RXENB[0], RXSOF[0], RXPRTY[0], RXPFA, RXADDR[4:0],
single | RXDATA[31:0]

RxClav/ | TX: TXCLKO01, TXENB[0], TXSOF[0], TXPRTY[0], TXPFA, TXADDR[4:0],
TxClav | TXDATA[31:0]

1x32
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Mode Selection

UTOPIA MPHY mode is selected using MSF_Rx_Control[Rx MPHY Mode] and
MSF_Tx_Control[Tx MPHY Mode]. MSF Rx_Control[Rx MPHY Level2] and

MSF Tx_ Control[Tx MPHY Level2] are used to select between UTOPIA Level 2 and Level 3
operation.

Cell Size

Cell size support is the same as in SPHY mode. It is selected using Rx_ UP_Control 0[Cell_Size]/
Tx UP Control 0[Cell Size].

Decode Response Time

Decode response time is required to be two clock cycles, per the UTOPIA Level 3 specification.
This is the time between the following event pairs:

* RXADDR[4:0] -> RXPFA

* RXENB -> RXSOF, RXDATA, RXPRTY

Rx_UP_Control 0[DR Time] and Tx_UP_Control O[DR_Time] must be programmed for two
clock cycle decode response time.

The POS-PHY Level 2 specification specifies one clock cycle. However, the IXP2400 supports
both 1- and 2-clock-cycle decode response times in POS-PHY Level 2 mode. The 2-clock-cycle
option allows the bus to be overclocked beyond 50 MHz. Thus, the Rx_UP_Control O[DR_Time]
or Tx_UP_Control 0[DR Time] bit may be programmed for 1- or 2-clock-cycle decode response
time.

Parity

Parity is the same as SPHY mode. Parity mode is selected using Rx UP_Control O[Parity Mode]
or Tx_UP_Control O[Parity Mode].

Handshaking

There are two types of handshaking supported in MPHY mode. This is selected using
MSF _Rx_ Control[Rx MPHY Poll Mode] and MSF_Tx_Control[Tx_MPHY_Poll Mode].

The first type of handshaking is direct status. Each port has its own status signal, and no polling is
required.The PHY cannot have more than four ports, and each port has its own status signal:
RXFA[x] and TXFA[x].

The second is polled status. The PHY may have up to 32 ports, and provides only one shared status

signal for all 32 ports: RXPFA and TXPFA. Status is obtained by polling using RxAddr[4:0] and
TxAddr[4:0].

POS-PHY

IXP2400 supports POS-PHY (Packet Over SONET) mode. POS-PHY supports variable length
packets rather than fixed size cells.

POS-PHY Levels 2 and 3 are supported so that IXP2400 can talk to a wide variety of devices
running at different speeds, as shown in Table 84.
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POS-PHY Levels 2 and 3-Supported Specifications

Specification Speed Bus Width Frequency
POS-PHY Level 2 0C-12 16 bits 50 MHz
POS-PHY Level 3 0C-12 8 bits 104 MHz
POS-PHY Level 3 0C-48 32 bits 104 MHz

IXP2400’s implementation is more flexible in that all bus widths can be run from the frequency
range of 25 to 133 MHz.

POS-PHY Level 3 has also been standardized through the Optical Internetworking Forum and is
called SPI-3, and through the ATM Forum, where it is called “Frame Based ATM Interface (Level
3)”.

Bus mode is programmable on a per-port basis. Bus mode is selected using the
MSF_Rx_Control[Receive_Mode] and UP_Receive Control{0..3}[CP_Mode] or
MSF_Tx_Control[Transmit Mode] and UP_Transmit Control{0..3}[CP_Mode] bits.

The IXP2400 supports both single-PHY (SPHY) and multi-PHY (MPHY) modes. They are
described separately in Section 8.3.2.1 and Section 8.3.2.2.

Single PHY (SPHY) Mode

Bus Partitioning and Signal Grouping

The bus partitioning is the same as for UTOPIA mode, but with additional signals and protocol
added to support variable length packet transfer.

IXP2400 will support the POS-PHY protocol for 8-, 16-, 32-bit modes, with operating frequencies
ranging from 25 to 133 MHz.

Table 85 shows which control and data signals are associated with a given port in POS-PHY mode.

Signal Usage in POS-PHY Mode

Bus Port Signal Groupings
Partitioning Number
RX: RXCLKO01, RXENB[0], RXSOF[0], RXEOF[0], RXVAL[0], RXERR[O],
0 RXPRTY[0], RXFA[0], RXPADL[1:0], RXDATA[31:0]
TX: TXCLKO1, TXENB[0], TXSOF[0], TXEOF[0], TXERR[0], TXPRTY[0],
TXFA[O], TXPADL[1:0], TXDATA[31:0]
1x32
1 N/A
2 N/A
3 N/A

Hardware Reference Manual 245



Intel® IXP2400 Network Processor
Media and Switch Fabric Interface

intel.

Table 85. Signal Usage in POS-PHY Mode
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246

Bus Port Signal Groupings
Partitioning Number
RX: RXCLKO1, RXENBJ[0], RXSOF[0], RXEOF[0], RXVAL[0], RXERRIO],
0 RXPRTY[0], RXFA[0], RXPADL[0], RXDATA[15:0]
TX: TXCLKO1, TXENB[0], TXSOF[0], TXEOF[0], TXERR[0], TXPRTY]|O],
TXFA[O0], TXPADL[0], TXDATA[15:0]
1 N/A
2x16
RX: RXCLK23, RXENBJ[2], RXSOF[2], RXEOF[2], RXVAL[2], RXERR[2],
9 RXPRTY[2], RXFA[2], RXPADL[1], RXDATA[31:16]
TX: TXCLK23, TXENB[2], TXSOF[2], TXEOF[2], TXERR[2], TXPRTY[2],
TXFA[2], TXPADL[1], TXDATA[31:16]
3 N/A
RX: RXCLKO1, RXENBJ[0], RXSOF[0], RXEOF[0], RXVAL[0], RXERRIO],
0 RXPRTY[0], RXFA[0], RXDATA[7:0]
TX: TXCLKO1, TXENB[0], TXSOF[0], TXEOF[0], TXERRI[0], TXPRTY]|O],
TXFA[0], TXDATAJ[7:0]
RX: RXCLKO01, RXENB[1], RXSOF[1], RXEOF[1], RXVAL[1], RXERR[1],
1 RXPRTY[1], RXFA[1], RXDATA[15:8]
TX: TXCLKO1, TXENBJ[1], TXSOF[1], TXEOF[1], TXERR[1], TXPRTY[1],
8 TXFA[1], TXDATA[15:8]
X
RX: RXCLK23, RXENBJ[2], RXSOF[2], RXEOF[2], RXVAL[2], RXERR[2],
9 RXPRTY[2], RXFA[2], RXDATA[23:16]
TX: TXCLK23, TXENB[2], TXSOF[2], TXEOF[2], TXERR[2], TXPRTY[2],
TXFA[2], TXDATA[23:16]
RX: RXCLK23, RXENBJ[3], RXSOF[3], RXEOF[3], RXVAL[3], RXERR[3],
3 RXPRTY[3], RXFA[3], RXDATA[31:24]
TX: TXCLK23, TXENBJ[3], TXSOF[3], TXEOF[3], TXERR[3], TXPRTY[3],
TXFA[3], TXDATA[31:24]
RX: RXCLKO1, RXENBJ[0], RXSOF[0], RXEOF[0], RXVAL[0], RXERRIO],
0 RXPRTY[0], RXFA[0], RXPADL[0], RXDATA[15:0]
TX: TXCLKO1, TXENB[0], TXSOF[0], TXEOF[0], TXERR[0], TXPRTY]|O],
TXFA[0], TXDATA[15:0]
1 N/A
RX: RXCLK23, RXENBJ[2], RXSOF[2], RXEOF[2], RXVAL[2], RXERR[2],
1x16_2x8 9 RXPRTY[2], RXFA[2], RXDATA[23:16]
TX: TXCLK23, TXENB[2], TXSOF[2], TXEOF[2], TXERR[2], TXPRTY[2],
TXFA[2], TXDATA[23:16]
RX: RXCLK23, RXENBJ[3], RXSOF[3], RXEOF[3], RXVAL[3], RXERR[3],
3 RXPRTY[3], RXFA[3], RXDATA[31:24]
TX: TXCLK23, TXENBJ[3], TXSOF[3], TXEOF[3], TXERR[3], TXPRTY[3],
TXFA[3], TXDATA[31:24]

Mode Selection

In order for a channel to operate in POS-PHY mode, the Rx UP_Control {0...3}[CP_Mode] or
Tx_UP_Control {0...3}[CP_Mode] bit must be 1.

Decode Response Time

The decode response time is the number of clocks which are allowed to elapse between RXENB
and receive control and data (RXDATA, RXSOF, RXEOF, RXVAL, and RXPRTY).
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The POS-PHY Level 2 specification specifies one clock cycle. The POS-PHY Level 3
specification specifies two clock cycles. The Rx_UP_Control {0...3}[DR _Time] or
Tx_UP_Control {0...3}[DR_Time] bit is used to tell the logic what the decode response time is.

Decode response time is configurable on a per-port basis in SPHY mode.

Parity

POS-PHY allows both single bit even or odd parity, independent of the bus width (x8, x16, or x32).
The parity mode is chosen using the Rx_UP_Control_{0...3}[Parity Mode] or
Tx UP Control {0...3}[Parity Mode] bit.

Parity mode is configurable on a per-port basis.

Multi-PHY (MPHY) Mode

Multi-PHY, or MPHY mode, is supported for POS-PHY mode. Both POS-PHY Level 2 and Level
3 MPHY modes are supported.

POS-PHY Level 3 Mode

One of the major functional changes in POS-PHY Level 3 is the addition of in-band addressing. In-
band addressing allows up to 256 ports to be addressed. Addresses are transferred not using
sideband address signals but using by multiplexing addresses on the data path (hence the name “in-
band”). The IXP2400 supports a maximum of 32 ports.

On receive, the PHY or framer device will be programmed to deliver data in 64, 128, or 256 byte
bursts. The PHY will provide an eight bit address on the data bus and assert RSX, followed by a
burst of data. In this model, the PHY is responsible for picking which port goes next; IXP2400
cannot select the port to transfer receive data from.

On transmit, IXP2400 will also be limited to support 32 ports on the 32-bit bus.

In MPHY-4 mode, both direct status and polled modes will be supported. In direct status mode,
status for each of the four ports carried on the TXFA[3:0] signals. In polled mode, TXADDR[4:0]
is used to poll the TXPFA signal to determine which FIFOs in the PHY have room to hold transmit
data.

In MPHY-32 mode, only polled mode will be supported. IXP2400 will use TXADDR[4:0] to poll
the TXPFA signal to determine which FIFOs in the PHY have room to hold transmit data.

In-band addressing is supported only for 1x32 operation. The POS-PHY Level 3 spec also defines
in-band addressing for 8 bit, but x8 (and x16) MPHY modes are not supported in IXP2400.

POS-PHY Level 2 Mode

POS-PHY Level 2 mode is supported only for a 16-bit bus. Only MPHY-32 mode is supported; in
this mode a maximum of 31 ports is allowed. Per the specification, only out-of-band addressing is
supported.

On receive, arbitration is performed by MSF rather than the PHY; this is the major functional
difference between the Level 2 and Level 3 protocols.
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Bus Partitioning and Signal Grouping

Table 86 shows which control and data signals are associated with a given port in POS-PHY mode.

Table 86. Signal Usage in POS-PHY Mode

8.3.2.24

8.3.2.2.5

8.3.2.2.6

8.3.2.3
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Bus Port

Partitioning | Number Signal Groupings

RX: RXCLKO1, RSX, RXENB[0], RXSOF[0], RXEOF[0], RXVAL[0], RXERR[O],
0-3byte | RXPRTY[0], RXFA[3:0], RXPADL[1:0], RXDATA[31:0]

level | TX: TXCLKO1, TSX, TXADDR[4:0], TXENB[0], TXSOF[0], TXEOF[0], TXERR[0],
TXPRTY([0], TXFA[3:0], TXPADL[1:0], TXDATA[31:0]

RX: RXCLKO1, RSX, RXADDRI4:0],RXENB[0], RXSOF[0], RXEOF[0], RXVALIO],
0-31 | RXERR[0], RXPRTY[0], RXPADL[1:0], RXDATA[31:0]

ket
Pyl | TX: TXCLKO1, TSX, TXADDR(4:0], TXPFA, TXSFA, TXENB[O], TXSOFI0],
TXEOF[0], TXERRIO], TXPRTY[0], TXPADL[1:0], TXDATA[31:0]

1x32

Mode Selection

POS-PHY MPHY mode is selected using MSF_Rx_Control[Rx MPHY En] or
MSF Tx_Control[Tx MPHY En] along with the Rx UP Control O[CP_Mode] or
Tx UP Control O[CP_Mode].

Decode Response Time

The decode response time is the number of clocks which are allowed to elapse between the
following event pairs:
¢ RXENB and receive control and data (RXDATA, RXSOF, RXEOF, RXVAL, and RXPRTY)
¢ TXADDR[4:0] and TXPFA
The POS-PHY Level 3 specification specifies two clock cycles. The Rx UP_Control O[DR_Time]

or Tx_UP_Control O[DR_Time] bit must be programmed for two clock cycle decode response
time.

The POS-PHY Level 2 specification specifies one clock cycle. However, IXP2400 supports both 1-
and 2-clock cycle decode response times in POS-PHY Level 2 mode. The 2-clock cycle option
allows the bus to be overclocked beyond 50 MHz. Thus, the Rx UP_Control 0O[DR_Time] or
Tx_UP_Control O[DR_Time] bit may be programmed for 1- or 2-clock cycle decode response
time.

Parity

Same as POS-PHY SPHY mode. It is selected using Rx_UP_Control O[Parity Mode] or
Tx_UP_Control O[Parity Mode]

SPI3 Slave Mode

In SPI3 (POS-PHY Level 3) SPHY mode, any given port may be configured to act as a slave as
well. The tables below show how pins are used in slave mode for each channel in all the SPHY
modes:

1. 1x32
2. 2x16
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3. 4x8
4. 1x16_2x8

It is possible to mix and match master and slave modes; that is, when configured in 2x16, 4x8, or
1x16+2x8 modes, some channels may act as master and other channels may act as slaves.

The slave mode implementation is not fully SPI3-compliant. In particular, on the receive slave
interface, when the master deasserts RXENB, MSF will send up to four more clock cycles of data
before stopping. The SPI3 specification only allows a maximum of two more clock cycles of data.
This means the receive slave interface will not work with any receive master which cannot deal
with this situation. However, the MSF’s receive master interface can handle this (as long as the
receive FIFO high watermarks are correctly configured), so that loopback or daisy chaining of
multiple IXP2400s are possible. In addition, the MSF will not hold the previous value on the
outputs as required by the SPI3 specification when the master deasserts RXENB.

SPI3 is not defined for a 16-bit bus; however, the non-compliant slave mode can be used even for a
16-bit bus.

In MPHY mode, only master mode is supported.
The pin names assume master mode operation. If a port is configured for slave mode operation,
then the functions of the pin changes. A receive master port becomes a transmit slave port;

likewise, a transmit master port becomes a receive slave port.

Figure 93 and Figure 94 show generic examples of master/slave connections.

Figure 93. IXP2400 Tx Master to Tx Slave Connection

Note:

CLK
IXP2400 (Master) IXP2400 (Slave)

TXCLK |a > RXCLK

o TXENB » RXVAL
B TXSOF > RXSOF 3
3 TXEOF > RXEOF A
- TXERR » RXERR -
= TXDATA > RXDATA >
z TXPRTY > RXPRTY %
o TXPADL > RXPADL o

TXFA | RXENB

——»| RXFA

One major implication of the spec non-compliance described in the previous note is that when
daisy chaining IXP2400s, the sending IXP2400 must be configured as a Tx master and the
receiving IXP2400 must be configured as a Tx slave. Configuring it the other way, i.e., Rx master
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to Rx slave, will not work. That is because the Rx master expects no more than two more additional
clock cycles of data after it deasserts RXENB. However, a IXP2400 Rx slave can send up to four
more clock cycles of data.

Note: While it is possible to configure IXP2400 as an Rx slave, the Rx master must be able to handle the
non-standard RXENB deassertion to RXDATA latency.

Figure 94. IXP2400 Rx Master to Rx Slave Connection (WILL NOT WORK!)

RXVAL |-= TXENB
laﬁ__, RXENB > TXFA "
0 RXSOF |= TXSOF Z
= RXEOF | TXEOF ®
'-g RXERR [« TXERR |.§
w RXDATA |- TXDATA w
ﬁ RXPRTY | TXPRTY §

RXPADL |- TXPADL

RXFA |<€—

RXCLK - il | P TXCLK

CLK

8.3.24 Transmit Slave Operation
A master receive port becomes a slave transmit port. All signals connect one-to-one (the master’s
TXSOF pin connects to the slave’s RXSOF pin, etc.) with the following three exceptions:

1. The master’s TXENB pin is connected to the slave’s RXVAL pin. The slave transmit port will
invert the TXENB signal internally so that internally it behaves the same as the RXVAL
signal.

2. The slave’s RXENB pin is connected to the master’s TXFA pin. The slave transmit port will
invert the RXENB signal internally so that internally it behaves the same as the TXFA signal.
RXENB assertion/deassertion is controlled by the high watermarks in Rx_FIFO_Control CSR.

3. The RXFA pin on the transmit slave should be tied low.

8.3.2.5 Receive Slave Operation

A master transmit port becomes a slave receive port. All signals connect one-to-one (the master’s
RXSOF pin connects to the slave’s TXSOF pin, etc.) with the following exceptions:

1. The master’s RXVAL pin is connected to the slave’s TXENB pin. The slave receive port will
invert the RXVAL signal internally so that internally it behaves the same as the RXVAL
signal.
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CSIX

CSIX (Common Switch Interface) defines an interface between a Traffic Manager (TM) and a
switch fabric (SF) for ATM, IP, MPLS, Ethernet, and similar data communications applications.
The CSIX specification is controlled by CSIX, an international consortium organized to create and
promote a Common Switch Interface—www.csix.org.

CSIX mode is selected using MSF_Rx_Control[Receive Mode] and
MSF_Tx_Control[Transmit Mode].

The basic unit of information transferred between TMs and SFs is called a CFrame. There are a
number of CFrame types defined as shown in Table 87.

CFrames Assignment

Type Encoding CFrame Type

0 Idle

1 Unicast

Multicast Mask
Multicast ID

Broadcast

Flow Control

2
3
4 Multicast Binary Copy
5
6
7

Command and Status

8-F CSIX Reserved

For transmission from IXP2400, CFrames are constructed for transmit under ME software control,
and written into the transmit buffer. Vertical and horizontal parity generation is done by hardware.
Also, hardware will automatically handle transmission of idle CFrames with link level RDY bits
constantly updated when there are no data or control CFrames to transmit.

On receive to IXP2400, Idle CFrames are recognized by hardware and discarded; Flow Control
CFrames, as well as link level flow control information (DRDY and CRDY bits) are handled by
hardware (using CBus); all other types are buffered and passed to a ME to be parsed by software.
However, Link Level Flow Control information in the Base Header of all CFrames (including
Idle), is handled by hardware.

CSIX mode will only work for 1x32 bus mode. CSIX mode is illegal for 4x8 or 2x16 or 1x16_2x8

bus modes. Table 88 shows which control and data signals are associated with a given port in CSIX
mode.

Signal Usage in CSIX Mode

Bus Port Signal Groupings
Partitioning Number
0 RX: RXCLKO01, RXSOF[0], RXPRTY[0], RXDATA[31:0]
TX: TXCLKO1, TXSOF[0], TXPRTY[0], TXDATA[31:0]
1x32 1 N/A
2 N/A
3 N/A
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8.4 MSF Mode Signal Usage

For tables specify the signal usage for each mode supported by the MSF and the mapping of these
signals to the MSF pinout, see the Intel IXP2400 Network Processor Datasheet.

8.5 Receive

The Section 8.5 discusses the following topics:
* Receive Pins in Section 8.5.1.
¢ Receive Buffer (RBUF) in Section 8.5.2.
¢ Receive Status Word in Section 8.5.3.
¢ Full Element List in Section 8.5.4.
* Rx Thread Freelists in Section 8.5.5 and Section 8.5.6.
* Receive Operation Summary in Section 8.5.7

¢ Flow Control Status in Section 8.5.8

Figure 95 is a simplified Block Diagram of the Receive functionality.

Figure 95. Receive Functionality Simplified Block Diagram

| Checksum

A

...... 32 S_Push_Data (to MEs)

Rx Pins Pr 111 p------ 12
> ngﬁo g BERREE S+ Buffers 64 D_Pull_Data (to DRAM)

YY

Receive
Thread
Freelist 0

Receive
From CSR Thread
Write Full Freelist 1
>1 Element > Control |«
Listx 4 Receive
Y Thread
Freelist 2

__ CSR Write

Receive
Thread
Freelist 3

FCEFIFO

To CBus

B0492-01
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Receive Pins and Protocol Logic

The receive pins are shared between the three protocols supported by the IXP2400 media block.
The pins have been covered in detail in Section 8.3, “Media Bus Interface” on page 8-238, so this
section will concentrate on the protocol logic.

There are three distinct sets of protocol logic:
* UTOPIA
* POS-PHY
* CSIX

UTOPIA SPHY

When running in UTOPIA/POS SPHY mode, the 32 receive data pins can be divided into one, two,
three, or four independent channels. The total width of all the channels must be no more than 32
bits. Each receive channel has its own set of control signals; however, when running in any x8
mode, adjacent channels must share a clock. It is also possible to program different characteristics
(cell vs. packet mode, decode response time, cell size, parity mode) for each individual channel.

There is a separate set of protocol logic for each channel. In UTOPIA SPHY mode, the protocol
logic is responsible for monitoring the RXFA[3:0] signals to see which PHY has cells available in
its receive FIFO, and for asserting RXENB to drain cells from the PHY into IXP2400’s receive
FIFOs. The protocol FSM monitors the RXSOF signal to determine the start of a cell. If IXP2400’s
receive FIFO backs up, the protocol FSM will implement flow control by deasserting RXENB.

Parity is checked for all receive data.

UTOPIA MPHY
There are two distinct modes of operation for UTOPIA MPHY.

The first is direct status. Each port in the PHY has its own status signal (RXFA[3:0]). Only a
maximum of four ports may be supported in this mode. The protocol logic monitors the RXFA[3:0]
signals to determine which port has valid cells and uses RXADDR[4:0] to select a port to drain the
cell from. Flow control is achieved by deasserting RXENB.

The second is polled status. The protocol logic uses RXADDR[4:0] to poll for FIFO status, which
is returned on the RXPFA signal. RXADDR[4:0] is also used to perform device selection during
data transfer. A maximum of 32 ports is supported on a 32b bus and a maximum of 31 ports is
supported on one 16b bus.

Parity is checked for all receive data.

POS-PHY SPHY

In POS-PHY SPHY mode, the protocol logic is responsible for monitoring the RXFA[3:0] signals
to see which PHY has data available in its receive FIFO, and for asserting the RXENB signal
associated with that port to drain the data from the PHY into IXP2400’s receive FIFOs.
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Data is drained in bursts, based on the size of the RBUF entry. The protocol FSM monitors the
RXSOF signal to determine the start of a cell, the RXEOF to determine end of cell, and RXERR to
determine if the packet should be marked as bad. RXVAL is used to qualify receive data. If
IXP2400’s receive FIFO backs up, the protocol FSM will implement flow control by deasserting
RXENB to stop the flow of data from the PHY.

POS-PHY MPHY

In POS-PHY Level 3 MPHY mode, no polling is required. When IXP2400 is able and ready to
accept receive data it asserts RXENB; the PHY will select a port to transfer data from, assert RSX
to supply the address, then supply a burst of data. The protocol logic monitors RSX, address,
RXSOF, RXEOF, RXVAL, and RXERR to delineate packet boundaries. Note that packets will
generally not be delivered contiguously to IXP2400; packets from multiple ports will be
interleaved. The PHY must support a minimum burst size of 64 bytes; 128 and 256 byte burst
support is optional.

In POS-PHY Level 2 mode, polling is required. IXP2400 will output polling addresses on
RXADDRJ4:0] and examine the PHY’s FIFO status on RXPFA. The FIFO watermarks on the PHY
should be configured so RXPFA is not asserted unless there is at lease one mpacket’s (64, 128, or
256 bytes) worth of data (or an end-of-packet) in the FIFO. IXP2400 will also use RXADDR[4:0]
for port selection. When IXP2400 selects a port, it will keep RXENB asserted for long enough to
retrieve one mpacket of data. If an end-of-packet condition occurs and there is less than a full
mpacket’s worth of data, the slave is expected to assert RXEOF and during the last cycle of data
and keep RXVAL deasserted afterwards. IXP2400 will then deassert RXENB and perform port
selection again.

CSIX

In CSIX mode, the protocol logic is responsible for performing the following functions:
* monitoring the RXSOF signal for incoming CFrames

¢ checking the length field in the base header and writing the appropriate number of bytes into
the RBUF element or FCEFIFO

* decoding the type field in the base header to determine the CFrame type (data vs. control vs.
flow control) and routing to the appropriate destination (RBUF data, RBUF control,
FCEFIFO, or dropping)

¢ checking horizontal and vertical parity

¢ sending incoming link level flow control information from the base header (SF_CRDY and
SF_DRDY bits) to the ingress processor via CBus

* monitoring for error conditions (such as unexpected RXSOF) and taking appropriate action

RBUF

RBUF is a RAM that holds received data. It stores received data in sub-blocks (referred to as
elements), and is accessed by MEs reading the received information. RBUF contains a total of 8KB
of data. RBUF can be divided into one or two segments, depending on

MSF Rx Control[RBUF Element Size]. When data is received, the associated status is put into
the Full Element List FIFO and subsequently sent to MEs to process. The Full Element List
insures that received elements are sent to the MEs in the order that they were received.
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RBUF contains a total of 8 kb. of data. The data in each partition is divided into 64, 128, or 256
bytes elements, based on MSF_Rx_Control[RBUF_Element_Size]. In the case of two partitions,
both partitions must have the same element size.

Table 89 shows the options for partitioning, partition usage, and element size.

RBUF Partitioning Options

Num.b_er of Usage Element Size Partition 0 Partition 1
Partitions
64 bytes 128 elements
UTOPIA or
0 POS-PHY 128 bytes 64 elements N/A
256 bytes 32 elements
64 bytes 96 elements (0x00- | 35 g oments (0x60-0x7)
0x5f)
1 CSIX 128 bytes 48 e'e”g)igts (0x00- | 46 elements (0x30-0x3f)
256 bytes 24 e'e”ai?tf) (0x00- | g glements (0x18-0x1f)

In any of the UTOPIA/POS-PHY modes, RBUF functions as one large pool of elements which are
shared by all channels.

In CSIX mode, RBUF is partitioned into two segments, partition 0 is meant to be used for data
CFrames and partition 1 is meant to be used for control CFrames. Partitioning guarantees that there
will always be room reserved for incoming control CFrames.

Table 90 below shows the order in which received data is stored in RBUF. Each number represents
a byte, in order of arrival from the receive interface.

RBUF Byte Ordering

Byte Address (Hex) Agi(”frseests
4 5 6 7 0 1 2 3 0x0
C D E F 8 9 A B 08
14 15 16 17 10 11 12 13 0x10

MEs can read data from the RBUF to ME transfer registers using the msf [read] instruction, where
they specify the element number, offset into the element (which must be four byte aligned), and
number of longwords to read. The length in the instruction can either be in units of longwords or
quadwords, using the single or double instruction modifiers, respectively. Data is pushed to ME via
SRAM Push Bus by RBUF control logic.

msf[read, $s_xfer_reg, src_op_1l, src_op_2, ref_cnt], optional_token

The source operands are added together to form the RBUF quadword address. ref cnt is the
number of longwords or quadwords, which are pushed into two sequential S_Transfer In registers
per quadword, starting with $s_xfer_reg.

Using the data in RBUF in Table 90, reading eight bytes from offset 0 into transfer registers 0 and
1 would yield the following results.
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Table 92.

SRAM Read Transfer Register Byte Ordering

Transfer
Register [31:24] [23:16] [15:8] [7:0]
Number

0 0 1 2 3

1 4 5 6 7

MEs can move data from RBUF to DRAM using the instruction:

dram[rbuf_rd, $$s_xfer reg, src_opl, src_op2, ref_cnt], optional_token

The src_op_1 and src_op_2 operands are added together to form the address in DRAM, so the
dram instruction must use indirect mode to specify the RBUF address. The ref_cnt operand is the
number of quadwords which are read from RBUF.

Using data in RBUF in Table 90, reading 16 bytes from offset 0 in RBUF into DRAM would yield
the following.

DRAM Byte Ordering

Note:

8.5.3

8.5.3.1

256

poneM | [63:56] | [55:48] | [47:40] | [39:32] | [31:24] | [23:16] | [15:8] | [7:0]
0x0 4 5 7 0 1 2
0x8 c D E F 8 9 A B

DRAM addresses must be aligned to 8 byte boundaries.

For both types of RBUF read, reading an element does not move any RBUF pointers or destroy any
data, so an element (or parts of an element) can be read as many times as desired.

RBUF elements are not time-stamped in the MSF block; they are time-stamped by the receive
thread.

The status is specific to UTOPIA/POS or CSIX mode based on MSF_Rx_Control[Receive Mode].
A description of how RBUF elements are allocated and filled is based on the mode in

MSF Rx Control[Receive Mode] and is described in Section 8.5.3.1-Section 8.5.3.3.

Receive Status Word

For each RBUF element, a 64 bit Receive Status Word is generated to describe the contents and
status of the contents of the RBUF element. The format of the RSW depends upon the protocol.
The RSWs are placed into the Full Elements FIFO to be sent to a receive thread for processing. The
next three sections describe the loading of RBUF and the format of the Receive Status Word for the
three different supported protocols.

UTOPIA Mode

The RBUF load procedure includes:

1. At chip reset, all elements are marked invalid (available).
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2. When RXSOF has been asserted, that is, when a new cell is received, an available RBUF
element is allocated by receive control logic. The entire cell is written into the RBUF entry.
Because the maximum size of the cell is 56 bytes (in 1x32 mode, with HEC/UDF bytes intact),
it makes little sense to partition RBUF into 128 or 256 byte elements; 64 byte elements are the
ideal size for RBUF entries in UTOPIA mode.

The status word contains the information in Table 93:

Table 93. UTOPIA Receive Status Word Format

3(3(2|2|2|12|2|2|2|2(2|21(1|1|1]1]1]1 1
1/0lol8|7|6|5|4|3]|2|1]|0|9|8|7|6]|5|4]3 1 918|7]6)51413]1211)0
= = 8 =
®|m S o 2
& Element Byte Count Olo|mM|a|=|a|Z|mM|<| Res Channel
o DO TISITSIT|IS|®
138 21N
[er ey
6(6|6|6|5|5|5|5|5|5[(5|5|5|5|4(4|4|4|4|4|4|4|4[4|3(3|3|3|3|3|3]3
3(2(1(0|19|8|7|6|5|4(3|2|1(0|9|8|7|6]|5 3 1710(9(8|7|6|5|4|3]|2
GFC_VPI VPI VCl PTI %
The definitions of the fields are shown in Table 94:
Table 94. UTOPIA Receive Status Word Field Definitions
Field Definition
Channel The channel number from which the cell originated. Valid values are 0x0 to Oxf.

MPHY-32 Channel Identifier. This bit, when set, is used to indicate that the mpacket
originated from the MPHY-32 port (port 0). This bit is provided to guarantee the uniqueness
MPHY-32 id® | of channel numbers. Data received on the MPHY-32 port will have channel numbers 0x00 to
0x1f. However, in x16 MPHY-32 mode, the traffic received on the SPHY channels will have
channel numbers of 0x01, 0x02, 0x03.

This bit is set under the following two conditions

» Multiple RXSOFs seen within one cell time (applies to both SPHY and MPHY modes). If
the UTOPIA receive logic sees RXSOF asserted again while it is receiving a cell, it will
set this bit in the Receive Status Word. The two cells (the first interrupted cell and the
subsequent interrupting cell(s)) will essentially be merged together to form a single cell
in the RBUF entry. This cell should be discarded. After the error occurs UTOPIA receive
logic will be processing a cell when it sees the next RXSOF.

» Late RXSOF (applies only to MPHY mode). When the Rx MPHY arbiter grants a port,
the port number is placed on the RXADDR[4:0] pins and RXENB is asserted to select
the port number and drain the cell from the PHY. The PHY is expected to respond with
RXSOF one or two cycles later, depending up the PHY’s decode response time. If the
PHY responds later than this, this indicates either a protocol violation or incorrect
programming, and SOP Err will be set. (“Early” RXSOF and “unsolicited” RXSOF are
ignored by MSF)

Null receive. If this bit is set, it means that the Rx_Thread_Freelist timeout expired before
any more data was received, and that a null Receive Status Word is being pushed in order to

SOP Error Bit?

Null keep the receive pipeline flowing. The rest of the fields in the Receive Status Word must be
ignored; there is no data or RBUF entry associated with a null Receive Status Word.
Par Err Parity Error. If this bit is set, it means that a parity error was detected
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Field

Definition

Err

Error. If this bit is set, it means that a parity error or a protocol violation has been detected. In
general, software should detect protocol violations and discard corrupted cells. The MSF
hardware does not detect all kinds of protocol violations. In UTOPIA mode, the MSF
hardware can detect whether RXSOF is asserted before the current cell receive completes.
If so, the MSF hardware can flag this situation as protocol violation. Note that the A-step
hardware does not detect or flag any UTOPIA Rx protocol violation. When such situation
occurs, the MSF hardware ignores it. In B-0, the MSF hardware detects and flags this
situation as protocol violation.

SOP

Start of packet bit. In UTOPIA mode this bit is always set.

EOP

End of packet bit. In UTOPIA mode this bit is always set.

Byte_Count

Indicates the number of total number of data bytes present in the cell; this includes both cell
header and cell payload. Byte_Count should range from 52 to 56 bytes, depending upon bus
width and cell size. Any value outside of this range indicates that an error has occurred.

Element

The element number in the RBUF that holds the data. This is equal to the offset in RBUF of
the first byte in the element, shifted right by 6/7/8 places based on the element size
configured.

a. Bits 7 and 8 of this field are only available in IXP2400 BO.

The entire four bytes of the ATM cell header is copied into the upper half of the Receive Status
Word in order to help accelerate table lookups by having the VCI/VPI information available and
avoiding the extra step of having the thread retrieve this information from the RBUF entry.

The definitions of the cell header fields are shown in Table 95:

Cell Header Field Definitions

Field Definition

CLP Cell Loss Priority.

PTI Payload Type Identifier.

VCI Virtual Circuit Identifier.

VPI Virtual Path Identifier, bits [7:0]
GFC_VPI UNI cells: Generic Flow Control

NNI cells: Virtual Path Identifier, bits [11:8]

The entire cell, including the header, is written into RBUF. If the HEC/UDF byte(s) are not stripped
by the PHY (for example, 53 byte cell size), then the payload will not be nicely aligned on a four

byte boundary.

POS-PHY Mode

The way in which RBUF is loaded is:

1. At chip reset, all elements are marked invalid (available).

2. The POS receive logic is burst oriented and will pull in 64, 128, or 256 byte bursts from the
PHY depending upon RBUF entry size. Each burst is placed into an RBUF entry and a
Receive Status Word is constructed. If this is the first burst (RXSOF was asserted), then the
SOP bit is set. If this is the last burst (RXEOF was asserted) then the EOP bit is set. If this is
neither the first nor last, then neither SOP or EOP is set.
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3. In POS-PHY SPHY or MPHY-4 operation, it is implied that all packets received through a
given channel are contiguous; that is, there is no interleaving of mpackets from multiple
packets; this is not true for MPHY-16 operation.

The status word contains the information in Table 96

The definitions of the fields are shown in Table 97:

Table 96. POS-PHY Receive Status Word Format

3132|2222 |2|2(2|2(2|1(1]|1|1][1]1[{1]1[1]1
1/0lo|8|7|6|5|4|3]|2]|1|0|9|8|7|6]|5]|4|3|2][1]0]2|8|7|8]|5[4]|3|2(1]0
3
g
=] n|l Z
olml 22 =32
? Element Byte Count Slo|m |5 |X|&| 2| x| res Channel
® IO |e|m| D =0S
gl Sla
m
6|6|6|6|5|5|5|5|5|5|5|5|5|5|4|4|4|4(4|4|4|4)|4 313(3(3|3[3]|3]3
3/12(1|/0(9|8|7|6|5(4|3(2|1|0[(9|8|7|6|5|4|3[2|1(0]|9|8|7|6|5|4(3]2
Reserved Checksum
The definitions of the fields are shown in Table 97:
Table 97. POS-PHY Receive Status Word Field Definitions
Field Definition
Channel The channel number from which the cell originated. Valid values are 0x0 to Oxf.

MPHY-32 Channel Identifier. This bit, when set, is used to indicate that the mpacket originated
from the MPHY-32 port (port 0). This bit is provided to guarantee the uniqueness of channel
MPHY-32 id® | numbers. Data received on the MPHY-32 port will have channel numbers 0x00 to Ox1f.
However, in x16 MPHY-32 mode, the traffic received on the SPHY channels will have channel
numbers of 0x01, 0x02, 0x03.

If the POS-PHY receive logic sees RXSOF asserted more than once within the same mpacket,
without RXEOF being asserted in between, it will set this bit, indicating that a protocol violation
has occurred, and that microcode needs to discard this mpacket and continue discarding
mpackets until it sees an mpacket with RSW[EOP] set.

SOP Error?

Null receive. If this bit is set, it means that the Rx_Thread_Freelist timeout expired before any
more data was received, and that a null Receive Status Word is being pushed in order to keep
the receive pipeline flowing. The rest of the fields in the Receive Status Word must be ignored;
there is no data or RBUF entry associated with a null Receive Status Word.

Null

Receive Error. If this bit is set, it means that RXERR was asserted during at the end of this

RXEM | hacket. RX Err is valid if and only if EOP is also set.

Par Err Parity Error. If this bit is set, it means that a parity error was detected
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Table 97. POS-PHY Receive Status Word Field Definitions (Continued)

Field Definition

This is used only in SPI-3 MPHY-4/MPHY-32 mode to indicate that a parity error was seen
during the in-band address cycle (RSX asserted).

If the slave device sends one in-band address which results in a parity error, and sends multiple
back-to-back bursts (mpackets) to that address, then all the mpackets will be marked with Addr

In-Band Addr | E-

Par Err If the slave devices sends one in-band address for every burst (mpacket), then only mpackets
that were preceded by an address parity error will be marked with Addr Err.
The MSF_lInterrupt_Status[HP_Error] bit will be set if an address parity error is seen.

AddrErr has no meaning in POS-PHY L2 MPHY mode since in-band addressing is not used in
that protocol, and should always be 0.

Error. If this bit is set, it means that a Receive error, a Parity error, or a protocol violation is
detected. If the POS-PHY receive protocol logic sees RXSOF asserted twice within the same
Err mpacket, without RXEOF being asserted in between, it raises a protocol violation. In general,
software should detect protocol violations and discard corrupted packets. The MSF hardware
does not detect all kinds of protocol violations.

SOP Start of Packet and End of Packet bits. These bits are used to delineate start and end of packet.

{SOP,EOP}

00: This is neither the first not last mpacket, but one in the middle. This also implies that the
mpacket contains 64 bytes of valid data.

01: This is the last mpacket. The number of valid bytes is specified in the Byte_Count field.

10: This is the first mpacket of the packet. Since EOP wasn’t asserted, it is assumed that the
mpacket contains 64 bytes of valid data.

EOP

11: The entire packet is contained within this mpacket. The length of the packet is in
Byte_Count.

Indicates the number of total number of data bytes present; valid values range from 1 to 256

Byte_Count bytes; 256 bytes is encoded as 0x00.

The element number in the RBUF that holds the data. This is equal to the offset in RBUF of the

Element first byte in the element, shifted right by 6/7/8 places based on the element size configured.

Ones complement 16-bit checksum for the mpacket. The checksum is calculated over the entire
Checksum | mpacket, but excludes the Receive Status Word. It is up to software to sum up all the

checksums for the mpackets comprising the packet, and subtract out any headers, trailers, etc.

a. Bit 7 and 8 of this field are only available in IXP2400 BO.

The Checksum is calculated over the entire packet, 16 bits at a time. The operator +' indicates 1's
complement addition. If the mpacket is n bytes long, and n is an even number, the formula used to
calculate the checksum is:

{byte 0, byte 1} +' {byte 2, byte 3} +' ...{byte n-2, byte n-1}

If the mpacket is n bytes long, and n is an odd number, then the formula used to calculate the
checksum is:

{byte 0, byte 1} +' {byte 2, byte 3} +' ...{byte n-1, 0x00}

In general, it is up to microcode (software) to detect protocol violations. Protocol violations include
such situations as two SOPs without an intervening EOP, or two EOPs without an intervening
SOP.1t is also up to microcode to drop the corrupted data. A properly designed slave device should
never generate these protocol violations.The hardware does not filter out data, but attempts to put
enough information in the Receive Status Word so that microcode can make the correct decision.
Here are special situations that the receive microcode needs to be able to handle:
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1. If the receive microcode has seen an SOP, and is waiting for the EOP, but instead receives
another SOP, then it should discard all of the previous packet (which is probably corrupted)
and the next entire packet as well (which may also be corrupted).

2. If the receive microcode has seen an EOP, and is expecting the SOP for the next packet, but
instead receives either another EOP or a mpacket with neither SOP nor EOP, then it should
start discarding mpackets until it sees an EOP. The EOP mpacket should be discarded as well.
After that, it can resume looking for the next SOP. (NOTE: this situation can only occur in
MPHY-4 or MPHY modes, and should never occur in SPHY mode.)

3. If the receive microcode sees an mpacket with the Err bit set, but Par Err and Rx Err are not
set, then what has happened is that the receive protocol logic has seen two SOPs within the
same mpacket. Microcode should discard this mpacket, and continue discarding mpackets,
until it sees an EOP. The EOP mpacket should be discarded as well. After that, it can resume
looking for the next SOP.

8.5.3.3 CSIX Mode

CSIX CFrames are placed into either RBUF or FCEFIFO as follows:
1. At chip reset all RBUF elements are marked invalid (available) and FCEFIFO is empty.

2. When RxSof is asserted and a base header is received, it is stored in a temporary holding
register. The CRDY and DRDY fields are extracted and held to be placed into
FC _Egress_Status[SF_CRDY] and [SF_DRDY] fields at the start of a CFrame. If a parity
error is detected, the flags are cleared as soon as the error is detected. The Type field is used to
index into the CSIX Type Map CSR to determine what to do with the CFrame:

a. Discard (except for the CRDY/DRDY fields as described above)
b. Place into RBUF control partition.

c. Place into RBUF data partition.

d. Place into FCEFIFO.

Note: The CSIX Type Map register provides processing flexibility. Normally, Idle CFrames (type 0x0)
are discarded. Command/Status CFrames (type 0x7) should be placed in the control partition. Flow
control CFrames (type 0x6) should be placed into FCEFIFO. All others (unicast, multicast,
broadcast) should be placed into the data partition.

3. If the action is discard, the entire CFrame is discarded, but the CRDY/DRDY bits are placed
into FC_Egress_Status as described above.

4. If the destination is FCEFIFO, the entire CFrame is placed into FCEFIFO to be sent to the
ingress IXP2400 over the TXCDATA pins. If there is not enough room in FCEFIFO for the
entire CFrame (based on the Payload Length in the base header), the entire CFrame is
discarded and MSF _Interrupt Status[FCEFIFO_Overflow] is set.

5. If the destination is RBUF, either control or data, an available RBUF element of the
corresponding type is allocated by the receive control logic. If there is no available element the
CFrame is discarded and MSF_Interrupt_StatusfRBUF_Overflow] is set. If an element is
allocated, the Type, Payload Length, CR (CSIX reserved), P (private), and extension header
are placed into a temporary holding registers. As the payload is received, it is placed into the
RBUF element starting at offset 0x00.

Note: For unicast, multicast, and broadcast CFrames, the first four bytes after the base header is the
extension header. This will be placed in the Extension Header field of the Receive Status Word.
However, flow control CFrames have no extension header, so in this case the Extension Header is
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undefined and should be ignored. Reserved CFrame types are handled as if they have an extension

header.

6. When all of the payload data is received (per the Payload Length field), the element is marked
valid. If another RxSof is received prior to receiving the entire payload, the element is marked
valid and the Length Error status bit is set. If the Payload Length field of the base header is
greater than the element size (as configured in MSF_Rx_Control[RBUF _Element Size]), then
the Length Error status bit is set and the payload bytes above the element size will be
discarded. The temporary register value is put into Full Element List.

Note: In CSIX mode, the element partitioning must be programmed based on the switch fabric usage. For
example, if the switch never sends a payload greater than 128 bytes, 128 byte elements can be
selected. Otherwise, 256 byte elements must be selected.

Payload information is put into the Payload area of the element, and Base and Extension Header
information is put into the Header Status area of the element.

Data received from the bus is placed into the element lowest offset first in big endian order (that is,
with the first byte received in the most significant byte of the longword, etc).

The Header Status status word is described in Table 98:

Table 98. CSIX Receive Status Word Format
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Extension Header

The definitions of the fields are in Table 99:

Table 99. CSIX Receive Status Word Field Definitions

Field

Definition

Type

Type Field from the CSIX Base Header

Null

Null receive. If this bit is set, it means that the
Rx_Thread_Freelist timeout expired before any more
data was received, and that a null Receive Status Word
is being pushed in order to keep the receive pipeline
flowing. The rest of the fields in the Receive Status
Word must be ignored; there is no data or RBUF entry
associated with a null Receive Status Word.

VP Err

Vertical Parity Error was detected on the CFrame. See
the description in Section 8.5.9.

HP Err

Horizontal Parity Error was detected on the CFrame.
See the description in Section 8.5.9.
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Table 99. CSIX Receive Status Word Field Definitions

8.5.4

Field Definition

Length Error; the MSF hardware detects that another
RxSof has been asserted before the full Payload was
received. The MSF hardware does not detect the late
RsSof case, i.e., the actual amount of Payload
received is more than the length that the base header
specifies. In this case, a Vertical Parity Error will likely
result because the MSF hardware will be expecting to
Length Err receive vertical parity but receiving payload data
instead.

Length Error normally also results in a VP Err, although
it is possible that only Length Err is asserted. This
indicates that the CFrame that follows the interrupted
CFrame contains the vertical parity for the interrupted
CFrame. The user should not assume that if Length Err
is asserted, VP Err is also asserted.

Error. If this bit is set, it means that a Receive error, a
Parity error, or a protocol violation is detected. If the
POS-PHY receive protocol logic sees RXSOF asserted
twice within the same mpacket, without RXEOF being
asserted in between, it raises a protocol violation. In
general, software should detect protocol violations and
discard corrupted packets. The MSF hardware does
not detect all kinds of protocol violations.

The element number in the RBUF that holds the data.
This is equal to the offset in RBUF of the first byte in
the element, shifted right by 6/7/8 places based on the
element size configured.

P P (Private) bit from the CSIX Base Header.
CR CR (CSIX Reserved) bit from the CSIX Base Header.

Payload Length field from the CSIX Base Header. A
value of 0x0 indicates 256 bytes.

Err

Element

Payload Length

The Extension Header from the CFrame. For flow

Extension control CFrames this field is undefined because flow

Header

control CFrames do not have an extension header.

Full Element List

Receive control hardware maintains the Full Element List to hold the element numbers of valid
RBUF elements, in the order in which they were received. When an element is marked valid (as
described previously), its element number is added to the tail of the Full Element List. When a ME
is notified of element arrival (by having the status written to its SRAM Transfer register; see
Section 8.5.5, “Rx_Thread Freelists), it is removed from the head of the Full Element List.

Essentially, the Full Element list stores Receive Status Words. The RSW is autopushed to the
receive thread in the following order:

1. [31:0] to xfer reg n
2. [63:32] to xfer reg n+1

There are four Full Element Lists, one for each SPHY channel or one of the four MPHY channels
in MPHY4 mode. The capacity of these four Full Element Lists is as follows:

¢ Full Element List 0: 128 entries
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¢ Full Element List 1: 32 entries
¢ Full Element List 2: 64 entries
¢ Full Element List 3: 32 entries

Full Element List 0 has the capacity to hold the maximum number of outstanding RBUF entries,
which is 128 (8 Kbyte divided by 64-byte minimum RBUF element size). The size of the Full
Element Lists does not change with RBUF element size. Since some of the Full Element Lists hold
less than the maximum 128 entries, blocking may happen, even when there are available RBUF
elements. For instance, when Full Element List 1 is full, a new mpacket that is targeted for channel
1 can block subsequent mpackets, even though free RBUF elements are available. Note that in this
case, the RBUF_Overflow_Counter register does not get incremented.

Rx_Thread_Freelists

The Rx_Thread Freelists are four FIFOs which indicate ME Contexts that are awaiting an RBUF
element to process. This allows the Contexts to indicate their ready status prior to the reception of
the data, as a way to eliminate latency. Each entry added to the Freelist also has an associated
SRAM transfer register and signal number. Each RX Thread Freelist is associated with a receive
bus channel.

The number of entries in each RX Thread Freelist is shown in Table 100.

Table 100. RX_Thread_Freelist Entries

Note:

FreeList # # of entries
RX_Thread_Freelist_0 64
RX_Thread_Freelist_1 16
RX_Thread_Freelist_2 32
RX_Thread_Freelist_3 16

To be added as ready to receive an element, an ME does a msf [write] Or msf [fast_write] to the
Rx_Thread Freelist address; the data of the CSR write is the ME/Context/S_Transfer Register
number/Signal number to add to the Freelist. Note that using the data (rather than the command bus
ID) permits a Context to add either itself or other Contexts as ready.

When there is a valid element at the head of the Full Element List its status will be pushed to an
ME. The receive control logic pushes the element status information (which includes the element
number) to the ME in the head entry of Rx Thread Freelist. It then removes that thread from the
Rx_Thread Freelist, sends an Event Signal to the ME, and removes the element from Full Element
List. See Section 8.5.6, “Rx_Thread Freelist Timeout” on page 8-266 for more detail.

A Context waiting on status must not read the S_Transfer register until it has been signaled.

In the event that Rx_Thread Freelist is empty, valid element numbers will be held in Full Element
List until an entry is put into Rx_Thread Freelist.

The number of available Rx_Thread Freelists and how they are assigned to channels depends upon
the operating mode.
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8.5.5.1 UTOPIA and POS-PHY SPHY Modes

Table 101 shows which Rx Thread Freelist is associated with a given channel when running in
either UTOPIA or POS_PHY SPHY modes.

Table 101. Rx_Thread Freelist Association in UTOPIA and POS-PHY SPHY Modes

Receive Width Port Number RX Thread Freelist Number
1x32 0 Rx_Thread_Freelist_0
2 Rx_Thread_Freelist_2
2x16
0 Rx_Thread_Freelist_0
3 Rx_Thread_Freelist_3
2 Rx_Thread_Freelist_2
4x8
1 Rx_Thread_Freelist_1
0 Rx_Thread_Freelist_0
3 Rx_Thread_Freelist_3
1x16_2x8 2 Rx_Thread_Freelist_2
0 Rx_Thread_Freelist_0

8.5.5.2 UTOPIA/POS-PHY MPHY-4 Mode

In UTOPIA/POS-PHY MPHY-4 mode, one to four ports share the 32 bit bus; each port has its own

freelist, as shown in Table 102.

Table 102. Rx_Thread Freelist Association in UTOPIA/POS-PHY MPHY-4 Mode

Receive Width

1x32

Port Number RX Thread Freelist Number
0 Rx_Thread_Freelist_0
1 Rx_Thread_Freelist_1
2 Rx_Thread_Freelist_2
3 Rx_Thread_Freelist_3

8.5.5.3 UTOPIA/POS-PHY MPHY-32 Mode

In UTOPIA or POS-PHY MPHY-32 mode, traffic from all 32 ports funnel into a single RBUF;
each mpacket is tagged with the port number from which it originated, as shown in Table 103.

Table 103. Rx_Thread Freelist Association in UTOPIA/POS-PHY MPHY-32 Mode

Receive Width

Port Number

RX Thread Freelist Number

1x32

0-31

Rx_Thread_Freelist_0
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UTOPIA/POS-PHY 16 Bit MPHY + 8 Bit
SPHY + 8 Bit SPHY

Receive Width | Port Number | RX Thread Freelist Number

x16 MPHY 0 Rx_Thread_Freelist_0
x8 SPHY 2 Rx_Thread_Freelist_2
x8 SPHY 3 Rx_Thread_Freelist_3

UTOPIA/POS-PHY 16 Bit MPHY + 16 Bit SPHY

Receive Width | Port Number | RX Thread Freelist Number

x16 MPHY 0 Rx_Thread_Freelist_0
x16 SPHY 2 Rx_Thread_Freelist_2
CSIX Mode

In CSIX mode, data and control CFrames can either have individual Rx Thread Freelists or share
a Rx_Thread Freelist, depending upon the MSF_Rx_Control[CSIX Freelist] bit.

Table 104 shows freelist parameters when freelists are individual.

Table 104. Rx_Thread Freelist Association in CSIX Mode,

MSF_Rx_Control[CSIX_Freelist]=0

Receive Width Port Number RX Thread Freelist Number
Data Rx_Thread_Freelist_0
1x32
Control Rx_Thread_Freelist_1

Table 105 shows freelist parameters when freelists are shared.

Table 105. Rx_Thread Freelist Association in CSIX Mode,

8.5.6

266

MSF_Rx_Control[CSIX_Freelist]=1

Receive Width Port Number RX Thread Freelist Number
1x32 Data and Rx_Thread_Freelist_0
Control — — —

Rx_Thread_Freelist Timeout

Each Rx_Thread Freelist has an associated countdown timer. If the timer expires and no new
receive data is available, the receive logic will autopush a Null Receive Status Word to the next
thread on the Rx_Thread Freelist. A Null Receive Status Word has the Nu/! bit set, and does not
have any data or RBUF entry associated with it.

The Rx_Thread Freelist timer is useful for certain applications. Its primary purpose is to keep the
receive processing pipeline (implemented as microcode running on the MEs) moving even when
the line has gone idle. It is especially useful if the pipeline is structured to handle mpackets in
groups, for example, eight mpackets at a time. If seven mpackets are received, then the line goes
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idle, then the timeout will trigger the autopush of a null Receive Status Word, filling the eighth slot
and allowing the pipeline to advance. Another example is if one valid mpacket is received before
the line goes idle for a long period; seven null Receive Status Words will be autopushed, allowing
the pipeline to proceed. Typically the timeout interval is programmed to be slightly larger than the
minimum arrival time of the incoming cells or packets.

The timer is controlled using the Rx_Thread Freelist Timeout # CSR. The timer may be enabled
or disabled, and the timeout value specified using this CSR.

The following rules define the operation of the Rx Thread Freelist timer.

1. Writing a non-zero value to the Rx Thread Freelist Timeout # CSR both resets the timer and
enables it. Writing a zero value to this CSR resets the timer and disables it.

2. If'the timer is disabled, then only valid (non-null) Receive Status Words are autopushed to the
receive threads; null Receive Status Words are never pushed.

3. If the timer expires and the Rx_Thread Freelist is non-empty, but there is no mpacket
available, this will trigger the autopush of a null Receive Status Word.

4. If the timer expires and the Rx_Thread Freelist is empty, the timer stays in the EXPIRED state
and is not restarted. A null Receive Status Word cannot be autopushed, since the logic has no
destination to push anything to.

5. An expired timer is reset and restarted if and only if an autopush, null or non-null, is
performed.

Receive Operation Summary

Received cells, CFrames, or packets (which in this context are both called mpackets) are placed
into the RBUF, and then, when marked valid, are immediately handed off to ME to process.
Normally some number of Contexts will be assigned to receive processing. Those Contexts will
have their number added to the Rx_Thread Freelist (via msf [write] Or msf[fast_write])and
then will go to sleep to wait for arrival of an mpacket (or alternatively poll waiting for arrival of an
mpacket). When an mpacket becomes valid as previously described, receive control logic will
autopush eight bytes of information (the entire Receive Status Word) for the element to the ME/
Context/S_Transfer Registers at the head of Rx_Thread Freelist

To handle the case where the receive Contexts temporarily fall behind and Rx Thread Freelist is
empty, all received element numbers are held in the Full Element List. In that case, as soon as a
Rx_Thread Freelist entry is entered, the status of the head element of Full Element List will be
pushed to it.

The MEs may read part of (or the entire) RBUF element to their SRAM transfer registers (via
msf [read] instruction) for header processing, etc, and may also move the element data to SDRAM
(via dram[rbuf_rd] instruction).

When a Context is done with an element it does a msf [write] or msf[fast_write] to
RBUF Element Done address; the data of the CSR write is the element number. This marks the

element as free and available to be re-used.

The states that an RBUF element goes through are shown in Figure 96.
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Figure 96. RBUF Element State Transition Diagram
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Table 106 summarizes the differences in UTOPIA mode, POS-PHY mode, and CSIX mode.

Table 106. UTOPIA, POS-PHY, and CSIX Mode Comparison

Comparison Point

UTOPIA Mode

POS-PHY Mode CSIX Mode

Point at which RBUF
Element is allocated

When new cell is
received (RXSOF

Start of Frame and Base
Header Type is anything
except Idle or Flow

When the start of a new
packet is received
(RXSOF asserted) or a

Quantity of Data put into
Element

asserted) new burst of data arrives. | Control.
A burst length worth of
data, or until RXEOF is
asserted (signaling end Number of bytes

The entire cell.

of packet); whichever
comes first. The burst

specified in Payload
Length field of Base

Mechanism for setting
RBUF Element Valid

When the entire cell has
been received and the

Receive Status Word has
been created for the cell.

length is equal to the size | Header.

of the RBUF entry (64,

128, or 256 bytes).

When the entire bursthas | Number of bytes

been received and the
Receive Status Word has
been created for the
burst.

specified in Payload
Length field of Base
Header (or if new SOF,
which is an error).

Mechanism to hand
RBUF Element to ME

Element status is pushed to ME at the head of the appropriate

Rx_Thread_Freelist.

Mechanism to return

CSR write to RBUF_Element_Done.

RBUF Element to free list

Receive Flow Control Status

Flow control is handled in hardware, and is based on MSF_Rx_Control[Receive Mode], which
selects UTOPIA/POS or CSIX mode.
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UTOPIA and POS-PHY Mode

Link level flow control information is passed directly from the PHY to the protocol logic in
IXP2400 using sideband signals. There is no need to communicate this information via CBus.

CSIX Mode

When running in CSIX half-duplex mode, both link level and fabric level flow control information
is forwarded from the egress processor to the ingress processor using the CBus. This is described in
detail in Section 8.7, “CBus Interface” on page 8-287.

Parity

UTOPIA Mode

UTOPIA requires odd single bit parity.

POS-PHY Mode

POS-PHY Level 2 allows both single bit even and odd parity; POS-PHY Level 3 only allows
single bit odd parity. IXP2400 supports both single bit even and odd parity.

CSIX Mode
CSIX specifies both horizontal and vertical parity. Both are odd.

Horizontal Parity

The receive logic computes Horizontal Parity on each received CWord. There is an internal HP
Error Flag. At the end of each CFrame the flag is reset.

As each CWord is received, the expected odd parity value is computed from the data, and
compared to the value received on RxPar. If there is a mismatch the

MSF _Interrupt_Status[HP_ Error] flag is set. The value of the flag becomes the element status HP
Err bit.

If the HP Error Flag is set, the SE_ CRDY and SF_ DRDY bits are cleared, and the
MSF _Interrupt_Enable[HP_Error] bit is set, this will send an interrupt to Intel XScale® core.

Vertical Parity

The receive logic computes Vertical Parity on CFrames. There is a VP Error Flag and a 16-bit VP
Accumulator Register. At the end of each CFrame the flag is reset and the register is cleared. As
each CWord is received, odd parity is accumulated in the register as defined in the CSIX spec. That
is, 16 bits of vertical parity are formed on 32 bits of received data by treating the data as words; bit
0 and bit 16 of the data are accumulated into parity bit 0, bit 1 and bit 17 of the data are
accumulated into parity bit 1, etc. After the entire CFrame has been received (including the Vertical
Parity field; the two bytes following the Payload) the accumulated vertical parity value should be
OxFFFF. If it is not, then the VP Error Flag is set. The value of the flag becomes the element status
VP Err bit.
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Any padding that was inserted to force the CFrame to be an integral multiple of CWords is also
stripped out by the protocol logic.

If the VP Error Flag is set, the SF_ CRDY and SF_DRDY bits are cleared, and the
MSF _Interrupt_Status[VP_Error] bit is set, which can interrupt Intel XScale® core.

8.5.10 Error Cases

Receive errors are specific to the selected mode, UTOPIA, POS-PHY, or CSIX. The element
status, described above, has appropriate error bits defined. Also, there are some IXP2400 specific
error cases, like when an mpacket arrives with no free elements, which are logged in the

MSF _Interrupt_Status register, which can interrupt Intel XScale® core if enabled.

8.6 Transmit

This section covers:
* Transmit Pins (Section 8.6.1)
¢ TBUF and Transmit Control Word (Section 8.6.2)
¢ Byte Aligner

Figure 97 is a simplified Block Diagram of the Transmit function.

Figure 97. Transmit Function Simplified Block Diagram
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Transmit Pins

The transmit pins are shared between the three protocols supported by the IXP2400 media block.
There are three distinct sets of protocol logic:

* UTOPIA
* POS-PHY
* CSIX

The transmit pins include 32 transmit data pins, two transmit clocks, and four sets of control
signals. There are two major modes: CSIX mode and UTOPIA/POS mode.

When running in CSIX mode, all 32 transmit data pins are used, but only one transmit reference
clock and one set of control signals are needed.

When running in UTOPIA/POS-PHY SPHY mode, the 32 transmit data pins can be divided into
one, two, three, or four independent channels. The total width of all the channels must be no more
than 32 bits. Each transmit channel has its own set of control signals and may be programmed for
either UTOPIA or POS-PHY operating modes; however, when running in x8 mode, adjacent
channels must share a clock. It is also possible to program different characteristics (cell size, parity
mode) for each individual channel.

When running in UTOPIA/POS-PHY MPHY mode, the 32 transmit data pins are shared by one to
sixteen channels, all of which must reside in a single physical device.

TBUF and Transmit Control Word

The TBUF is a RAM that holds data and status to be transmitted. The data is written into subblocks
referred to as elements, by MEs or Intel XScale® core. TBUF contains a total of 8KB of data and
associated control.

The data is partitioned into elements, based on MSF_Tx_Control[TBUF Element Size].

Table 107 shows the order in which data is written into TBUF. Each number represents a byte, in
order of transmission on the TX interface. Note that this is reversed on a 32 bit basis relative to
RBUF. The swap of the low longword and the high longword is done by hardware to facilitate the
transmission of bytes as defined below.

Table 107. TBuf Byte Ordering

Byte Address (Hex) Aggf;eests
0 1 2 3 4 5 6 7 0x0
8 9 A B C D E = 08
10 1 12 13 14 15 16 17 0x10

ME:s can write data from ME SRAM write transfer registers to the TBUF using the msf]write]
instruction, where they specify the starting byte number (which must be aligned to four bytes) and
the number of longwords to write. The length in the instruction can be either the number of
longwords or the number of quadwords, using the single and double instruction modifiers,
respectively. Data is pulled from ME to TBUF via SRAM Pull Bus.

msf [write, $s_xfer_reg, src_op_1l, src_op_2, ref_cnt], optional_token
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The src_op_1 and src_op_2 operands are added together to form the address in TBUF (note that the
base address of TBUF is 0x2000). ref cnt is the number of longwords or quadwords, which are
pulled from two S_Transfer Out registers per quadword, starting with $s_xfer_reg. For example,
when writing a quadword from S_Transfer Out register 0/1 to address 0x0 in the TBUF entry (as
shown in Table 107), the byte ordering is shown in Table 108.

Table 108. SRAM Write Transfer Register Byte Ordering

Transfer
Register [31:24] [23:16] [15:8] [7:0]
Number

0 0 1 2 3

1 4 5 6 7

MEs can also write data from DRAM to TBUF using the dram instruction. Data is pushed to TBUF
via DRAM Push Bus by DRAM controller.

dram[tbuf_wr, --, src_op_1, src_op_2, ref_cnt], indirect_ref

The src_op_1 and src_op_2 operands are added together to form address in DRAM, so the dram
instruction must use indirect mode to specify the TBUF address. ref cnt is the number of
quadwords which are written into TBUF.

Data is stored in big-endian order. The most significant byte of each longword is transmitted first.

All data is transmitted in the order in which it is put into the TBUF. Control information associated
with the element (and defined below), defines which bytes are valid. The data from the TBUF will
be shifted and aligned to the TXDATA pins as required. Four parameters are defined.

1. Prepend Offset: number of the first byte to send. This is information that is prepended to the
payload (for example, a header). The offset can range from 0x0 to 0x7 within the first
quadword of the TBUF element.

2. Prepend Length: number of bytes in the prepend. This can range from 0 to 31 bytes.

3. Payload Offset: number of bytes to skip, from the last quadword of the prepend to the start of
payload.

4. Payload Length: number of bytes in the payload.

Here are some rules and observations:
1. If prepend length is zero, then the prepend offset must also be zero.

2. The absolute byte number of the first byte of the payload is given by the following formula:
((Prepend Offset + Prepend Length + 0x7) && O0xF8) + Payload Offset)

3. Thesunl(((Prepend Offset + Prepend Length + 0x7) && 0xF8) + Payload Offset) +
Payload Length) must not exceed the size of the TBUF element.

4. In UTOPIA mode, the sum of Prepend Length and Payload Length must be equal to the cell
size.

5. In POS-PHY mode, the sum of the Prepend Length and Payload Length must be an integral
multiple of the bus width, except if EOP is set.

The following examples illustrates the use of the offset and length parameters. The element is
shown as eight bytes wide, because that is the smaller unit which can be written to TBUF. In this
example:
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1. Prepend Offset = 0x6 (bytes 0x0 to 0x5 are skipped)
2. Prepend Length = 0x10 (16 bytes)

3. Payload Offset = 0x7 (bytes 0x16 to Ox1E are not transmitted). This starts in the next eight
byte row (that is, the next empty row above where the prepend data stops), even if there is
room in the last row containing prepend data. This is done because the TBUF does not have
byte write capability, and the msf [write] and dram[tbuf_write] cannot be merged. The
software computing the Payload Offset only needs to know how many bytes of the payload
that were put into DRAM need to be removed.

4. Payload Length = 0x20 (32 bytes)

Table 109 shows a 64 byte TBUF entry. Bytes 0x06 to 0x15 are the prepend data and bytes 0x1f to
0x3E are the payload data.

Table 109. Example of Offset and Length Usage

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07
0x08 0x09 0x0A 0x0B 0x0C 0x0D Ox0E OxO0F
0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17
0x18 0x19 Ox1A 0x1B 0x1C 0x1D Ox1E Ox1F
0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27
0x28 0x29 0x2A 0x2B 0x2C 0x2D O0x2E Ox2F
0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37
0x38 0x39 0x3A 0x3B 0x3C 0x3D O0x3E Ox3F

Table 110 shows, in bold type and for a 32 bit bus, what data is transmitted. The transmit hardware
will discard unwanted leading and trailing bytes, merge the prepend and payload data, and realign
to fit the 32 bit bus.

Table 110. Example of TBUF Element Transmission

clock cycle [31:24] [23:16] [15:8] [7:0]
0 0x06 0x07 0x08 0x09
1 0x0A 0x0B 0x0C 0x0D
2 0x0E 0xOF 0x10 0x11
3 0x12 0x13 0x14 0x15
4 ox1f 0x20 0x21 0x22
5 0x23 0x24 0x25 0x26
6 0x27 0x28 0x29 0x2A
7 0x2B 0x2C 0x2D 0x2E
8 0x2F 0x30 0x31 0x32
9 0x33 0x34 0x35 0x36

10 0x37 0x38 0x39 0x3A
11 0x3B 0x3C 0x3D 0x3E
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Table 111. UTOPIA/POS-PHY SPHY TBUF Partitioning
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UTOPIA/POS-PHY SPHY TBUF Partitioning

The transmit control logic manages the TBUF as either one, two, three, or four separate segments
based on the selected operating mode. The mapping of elements to channels, as well as to the

associated freelist, depends on the operating mode.

TX Channels

Number of TBUF
Elements

Channel
Number

Elements Used by
Channel

1x32

32 x 256 bytes

o

0-31

64 x 128 byte

0-63

128 x 64 bytes

0-127

2x16

32 x 256 bytes

0-15

16-31

64 x 128 bytes

0-31

32-63

128 x 64 bytes

0-63

64-127

4x8

32 x 256 bytes

O N|OIDN|O|N|O| O O

0-7

N

8-15

16-23

24-31

64 x 128 bytes

o] W[ N

0-15

16-31

3247

48-63

128 x 64 bytes

o] W[ N

0-31

N

32-63

64-95

96-127

1x16_2x8

32 x 256 bytes

0-15

16-23

24-31

64 x 128 bytes

0-31

3247

48-63

128 x 64 bytes

0-63

64-95

WIN| O W[I[N|O| W|IN|O|W[IDN

96-127
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UTOPIA/POS-PHY MPHY-4 TBUF Partitioning

Table 112. UTOPIA/POS-PHY MPHY-4 TBUF Partitioning

8.6.2.3

TX Channels Number of TBUF Channel Elements Used by
Elements Number Channel
0 0-7
1 8-15
32 x 256 bytes
2 16-23
3 24-31
0 0-15
1 16-31
1x32 64 x 128 bytes
2 32-47
3 48-63
0 0-31
1 32-63
128 x 64 bytes
2 64-95
3 96-127

UTOPIA/POS-PHY MPHY-32 TBUF Partitioning

Table 113. UTOPIA/POS-PHY MPHY-32 TBUF Partitioning

TX Channels Number of TBUF Channel Elements Used by
Elements Number Channel
32 x 256 bytes 0-31 0-31
1x32 64 x 128 bytes 0-31 0-63
128 x 64 bytes 0-31 0-127
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8.6.24

8.6.2.5

8.6.2.6

UTOPIA/POS-PHY16 Bit MPHY + 8 Bit
SPHY + 8 Bit SPHY

Number of TBUF Channel Elements Used by
Elements Number Channel
0 (x16 MPHY) 0-15
32 x 256 bytes 2 (x8 SPHY) 16-23
3 (x8 SPHY) 24-31
0 (x16 MPHY) 0-31
64 x 128 bytes 2 (x8 SPHY) 32-47
3 (x8 SPHY) 48-63
0 (x16 MPHY) 0-63
128 x 64 bytes 2 (x8 SPHY) 64-95
3 (x8 SPHY) 96-127

UTOPIA/POS-PHY 16 Bit MPHY + 16 Bit SPHY

Number of TBUF Channel Elements Used by
Elements Number Channel
0 (x16 MPHY) 0-15
32 x 256 bytes
2 (x16 SPHY) 16-31
0 (x16 MPHY) 0-31
64 x 128 bytes
2 (x16 SPHY) 32-63
0 (x16 MPHY) 0-63
128 x 64 bytes
2 (x16 SPHY) 64-127

CSIX TBUF Partitioning

Three quarters of TBUF is allocated for data CFrames; the remaining quarter is allocated for

control CFrames.

Table 114. CSIX TBUF Partitioning
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TX Channels Number of TBUF Channel Elements Used by
Elements Number Channel
data 0-23
32 x 256 bytes
control 24-31
data 0-47
1x32 64 x 128 bytes
control 48-63
data 0-95
128 x 64 bytes
control 96127
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UTOPIA Transmit Control Word Format

In UTOPIA mode, the complete cell is put into the data portion of the element, and information for
the Control Word is written. The Control Word format is in Table 115:

Table 115. UTOPIA Transmit Control Word Format

3(3(2(2(2|2|2]|2]2 212 (11|11 1]1]1[1[1]1
1/0lo|8|7|6]|5|4]3 1)o0lol8|7|6|5|al3|2]1]0]|2|8|7|8|3]|4]|3|2(1]|0
=
Prepend Payload;:mrl‘lcnrng
repen
Payload Length Offset Prepend Length Offset o _g % % % 3 res Channel
N
o
6(6|6|6|5|5|5|5]|5 5|5|5|5|4|4|4|4|4|4|4|4|4|4|3|3|3|3[3[3[3]3
3(2(1/0(9|8|7]|6]|5 3(2(1/0]19|8|7|6|5|4 2(1(0|19|8|7|6|5[|4[3|2
Res

The definitions of the fields are in Table 116:

Table 116. UTOPIA Transmit Control Word Field Definitions

8.6.2.8

Field

Definition

Payload Length

Indicates the number of bytes in the payload, from 1 to 256 bytes, in the element. The
value of 0x00 means 256 bytes. The sum of Prepend Length and Payload Length will be
sent, and should be equal to the cell size, as specified by
MSF_Tx_Control[Transmit_Width] and Tx_UP_Control_{0..3}[Cell_Size]. The only valid
cell sizes in UTOPIA mode are 52, 53, 54, and 56 bytes.

Prepend Offset

Indicates the first valid byte of the prepend, from 0 to 7 bytes.

Prepend Length

Indicates the number of bytes of the prepend from 0 to 31 bytes.

Payload Offset

Indicates the first valid byte of the payload, with respect to the last valid quadword of the
prepend.

Skip

Allows software to allocated a TBUF element and then not transmit any data from it.
0: transmit data according to other fields of the Control Word
1: free the element without transmitting any data

ERR

Error bit. If this bit is set, the transmit logic will force bad parity on the entire cell. This is
useful for testing only; this bit should never be set during normal operation.

SOP

Indicates if the element is the start of a packet. This field is ignored by hardware in
UTOPIA mode, as each element must contain a complete cell.

EOP

Indicates if the element is the end of a packet. This field is ignored by hardware in
UTOPIA mode, as each element must contain a complete cell.

MPHY-32 id

MPHY-32 Channel Identifier. This bit, when set, is used to indicate that the mpacket is
intended for the MPHY-32 port (port 0). This bit is used by the hardware to differentiate
between channels 0x00 to 0x1f of the MPHY-32 channel, and SPHY channels 0x1, 0x2,
and 0x3. It is intended for use in x16 MPHY-32 mode; in x32 MPHY-32 mode, it is a don’t
care. In any MPHY-4 mode, it is a don’t care

Channel

In MPHY mode other than MPHY4, the port number to which the data is directed. In
SPHY or MPHY4 mode, this field has no effect.

POS-PHY Transmit Control Word Format

In POS-PHY mode, a packet is divided into a number of mpackets, where the mpacket size is

equivalent to the TBUF element size. The Control Word format is in Table 117:
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Table 117. POS-PHY Transmit Control Word Format

3(3]|2 212|122 212|111 |{1|1{1]1[1]1]1
1/0]9 65|43 1]olol8|7|6|5]al3|2|1]|0|%|8|7|8]5][4|3]|2]|"]|0O
<
Prepend Payloadmmmmmg
repen
Payload Length Offset Prepend Length Offset o %- ;;g % % 3 res Channel
N
a
6|6|6 5|/5|5|5 5(5|5|5|4|4|4(4|4|4|4|4|4]|4|3|3[3|3[3|3[3]3
3121 8|17|6|5 3(2|1(0(|9(8|7(6|5[4|3|2|1]0|9|8|7|6|5|4[3]|2
Res

The definitions of the fields are in Table 118:

Table 118. POS-PHY Transmit Control Word Field Definitions

Field

Definition

Payload Length

Indicates the number of bytes in the payload, from 1 to 256 bytes, in the element. The
value of 0x00 means 256 bytes. The sum of Prepend Length and Payload Length will be
sent, and must be an integral multiple of the bus width (in bytes), except if EOP = 1.

Prepend Offset

Indicates the first valid byte of the prepend, from 0 to 7 bytes.

Prepend Length

Indicates the number of bytes of the prepend from 0 to 31 bytes.

Payload Offset

Indicates the first valid byte of the payload, with respect to the last valid quadword of the
prepend.

Skip

Allows software to allocated a TBUF element and then not transmit any data from it.
0: transmit data according to other fields of the Control Word
1: free the element without transmitting any data

ERR

Error bit. If this bit is set, the transmit logic will force the TXERR signal to be asserted
during the last word of the packet, when TXEOF is asserted. This bit is only valid if EOP is
set, otherwise it is ignored. This is useful for testing only; this bit should never be set
during normal operation.

SOP

Indicates if the element is the start of a packet.

EOP

Indicates if the element is the end of a packet.

MPHY-32 id

MPHY-32 Channel Identifier. This bit, when set, is used to indicate that the mpacket is
intended for the MPHY-32 port (port 0). This bit is used by the hardware to differentiate
between channels 0x00 to 0x1f of the MPHY-32 channel, and SPHY channels 0x1, 0x2,
and 0x3. It is intended for use in x16 MPHY-32 mode; in x32 MPHY-32 mode, it is a don’t
care. In any MPHY-4 mode, it is a don’t care

Channel

In POS-PHY MPHY mode other than MPHY4, the port number to which the data is
directed. The port number will be sent in-band by the transmit logic. In SPHY or MPHY4
mode, this field has no effect.

8.6.2.9

278

CSIX Mode

In CSIX Mode, the transmit control logic manages the TBUF as two separate segments, one for
Data traffic and one for Control traffic. The lowest 8 elements are for Control traffic, and the
highest 24 elements are for Data traffic.

Payload information is put into the Payload area of the element, and Base and Extension Header
information is put into the Header Control area of the element.

Data is stored in big-endian mode. The most significant byte of each longword is transmitted first.
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The status word contains the information in Table 119.

Table 119. CSIX Transmit Control Word Format

313(|2(2]|2 212121221211 |1[1[1]|1[1[1]1]1
1lo|9|8|7|6|5|4|3|2|1]0|o|8|7|6|5[4|3]|2]1]|0]2|8]7|8|5]|4|3]|2]"|0
Prepen Prepend Payload |m (@ |3 |

Payload Length d Offset Length Offset |2 _g o |g|T reserved Type
6|6|6(6]|5 5|5|5(5|5|5|5|5(4|4|4|4|4(4|4|4|4|4|3|3|3|3(3[3|3]|3
3(2|1]/0|9 716(5(4|13[2(1|0({9|8|7|6|5|4(3|2|1({0(9|8(|7|6|5[4|3]|2

Extension Header
The definitions of the fields are in Table 120.
Table 120. CSIX Transmit Control Word Field Definitions
Field Definition

Payload Length

Indicates the number of bytes in the payload, from 1 to 256 bytes, in the element. The
value of 0x00 means 256 bytes. The sum of Prepend Length and Payload Length will be
sent, and also put into the CSIX base header Length field.

Prepend Offset

Indicates the first valid byte of the prepend, from 0 to 7 bytes.

Prepend Length

Indicates the number of bytes of the prepend from 0 to 31 bytes.

Payload Offset

Indicates the first valid byte of the payload, with respect to the last valid quadword of the
prepend.

Allows software to allocate a TBUF element and then not transmit any data from it.

Skip » 0O-transmit data according to other fields of the Control Word
» 1-free the element without transmitting any data
CR CR (CSIX Reserved) bit to put into the CSIX Base Header.
P P (Private) bit to put into the CSIX Base Header.
Type Type Field to put into the CSIX Base Header. Idle type is not legal here.
Extension The Extension Header to be sent with the CFrame. For flow control CFrames this field is
Header not used by the hardware because flow control CFrames do not have an extension

header.

8.6.3 Transmit Operation Summary

During transmit processing, data to be transmitted is placed into the TBUF under ME control. The
ME allocates an element in software; the transmit hardware processes TBUF elements within a
partition in strict sequential order so the software can track which element to allocate next.

MEs may write directly into an element by msf [write] instruction, or have data from DRAM
written into the element by dram[tbuf_wr] instruction. Data can be merged into the element by
doing both.

There is a Transmit Valid bit per element, which marks the element as ready to be transmitted. MEs
move all data into the element, by either or both the msf [write] and dram[tbuf_wr] instructions to
the TBUF. MEs also write the element Transmit Control Word (TCW) using msf [write] with
information about the element. The order of the TCW is:

1. s_xfer reg n contains TCW[31:0]
2. s_xfer reg n+1 contains TCW[63:32]
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When all the data movement is complete the ME sets the element valid bit. The complete sequence
is:

1. Move data into TBUF by either or both of msf [write] and dram[tbuf_wr] instruction to the
TBUF.

2. Wait for (1.) to complete.

3. Write the Transmit Control Word by msf [write] atthe TBUF Element Control V_# address.
Using this address sets the Transmit Valid bit.

When moving data from DRAM to TBUF using dram[tbuf_wr], it is possible that there could be
an uncorrectable error on the data read from DRAM (if ECC is enabled). In that case, the ME does
not get an Event Signal, to prevent use of the corrupt data. The error is recorded in the DRAM
controller, and will interrupt Intel XScale® core, if enabled, so that it can take appropriate action.
Such action is beyond the scope of this document,. However, it must include recovering the TBUF
element. Note that the transmit pipeline will be stalled since all TBUF elements must be
transmitted in order.

After an element has been sent on the transmit pins, the valid bit for that element is cleared. The
Tx_Sequence register is incremented when the element has been transmitted. By also maintaining a
sequence number of elements that have been allocated (in software), the microcode can determine
how many elements are in-flight.

The remainder of Section 8.6.3 describes the detailed transmit flow for each mode of operation.

UTOPIA SPHY Mode

The TX thread decides which port a cell is to be sent out on. Because the TBUF entries are
transmitted sequentially by the hardware, the thread also uses the TBUF entries sequentially. The
thread knows if the TBUF entry is free because it keeps track of how many entries it has used and,
by reading the Tx_Sequence {0...3} CSR, it knows how many have been transmitted. It then
writes the cell into the TBUF entry, and writes the Transmit Control Word into the control field.
When the necessary valid bits have been set, the transmit protocol hardware will send this cell out
through the transmit pins. When transmission of the cell has been completed, the transmit protocol
hardware will update the appropriate Tx_Sequence {0...3} CSR and clear the three associated bits
(Data Valid, Control Valid, and Transmit Valid).

If the PHY s transmit FIFO is full, then transmission stalls until space is freed up.

UTOPIA MPHY-4 Mode

UTOPIA MPHY-4 mode is very similar to UTOPIA SPHY mode, except that TBUF is always
partitioned into four independent segments; each port has its own segment. The same process used
for UTOPIA SPHY is used here. If hardware is configured for Direct Status Indication, then it uses
TXFA[3:0] for flow control; if hardware is configured for polling, then it uses TXADDR[4:0] to
poll the PHY’s transmit FIFOs and looks for the result on the TXPFA input signal. In either case,
polling is taken care of automatically by hardware.
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UTOPIA MPHY-32 Mode

UTOPIA MPHY-32 (supporting up to 32 ports in 1x32b mode and up to 31 ports one 16b bus)
mode requires that software do some amount of software-driven status polling as well as transmit
scheduling in order to minimize hardware requirements and to provide a solution which is scalable
to an even larger number of ports in the future (i.e., 48 ports). Hardware will provide some hints to
help software; this is described in detail below.

In UTOPIA MPHY-32 mode, TBUF functions as a single large segment; all traffic for the MPHY
ports funnels into a single, large TBUF. (Partitioning TBUF into 31 or 32 equal sized segments
would potentially short change ports which carry higher bandwidth. Also, that solution would not
scale well to 48 ports.)

After the PHY has been initialized and enabled, the transmit polling FSM will update the

Tx MPHY_Status[Tx_Status] flags. Initially, the Tx_Status flags are all zero. The TX thread must
poll the flags and wait for them to become set before initiating transmission to that channel. If the
Tx_Status flag is set, that means that the transmit FIFO in the PHY is able to accept at least one
cell. The TX thread pushes out one cell to each port which is able to accept. Note that only one cell
may be pushed out to a port at any given time; the TXFA[3:0] status signal only says that the PHY
can accept at least one more cell; it does not provide any lookahead beyond one cell.

When a transmit control word is written, thereby initiating the transmission of a cell to a certain
port, the appropriate bit in Tx MPHY _Status[Tx_Pending] corresponding to the port is set. This
indicates two things:

* A cell transmission is in progress for that given port.

* The Tx_Status flag for that port is now stale and should be ignored.

When the cell appears on the TX pins, the transmit hardware will make a request to clear the

Tx Pending flag. However, the Tx_Pending does not actually get cleared until the polling FSM has
updated the status for that port. That means that when Tx_Pending makes the transition back to 0,
Tx_Status is guaranteed to be up to date again.

If Tx_Pending is not equal to 0, meaning that cell transfer is still pending, then the Tx_Status bit
for that port must be ignored, as it is impossible to tell if it is stale or not.

Ideally, software should batch cell transfers for all the ports, rather than doing multiple CSR reads
and writes for each cell transfer.

By avoiding pushing a cell out to port unless it is known that the port can accept the cell, this
avoids head-of-line blocking. If a cell is written to a port which is already full, the cell will not be
lost, as hardware performs its own polling. It may, however, result in sub-optimal performance due
to head-of-line blocking. The Tx MPHY _Status CSR is provided to give software some visibility
and to allow software the option of doing transmit scheduling.

Alternatively, since TBUF should drain at a known rate, the TX thread can use a timer, based on the
number of cells transmitted, to determine when to perform the Tx MPHY _Status read.

POS-PHY SPHY Mode

The TX thread decides which port a packet is to be sent out on. It is up to software to break up the
packet into a number of mpackets, where the mpacket size is equal to the TBUF entry size.
Because the TBUF entries are transmitted sequentially by the hardware, the thread also uses the
TBUF entries sequentially. The thread knows if the TBUF entry is free because it keeps track of
how many entries it has used and, by reading the Tx Sequence {0...3} CSR, it knows how many
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have been transmitted. It then writes the first mpacket into the TBUF data element, constructs the
Transmit Control Word and writes it into the TBUF control element, making sure to set the SOP
bit. It writes the Transmit Control Word by msf[write] at the TBUF_Element Control V_#
address. Using this address sets the Transmit Valid bit. It continues this process until the entire
packet has been pushed into TBUF. For the last mpacket, the TX thread must set the EOP bit, and
for “middle” mpackets neither SOP nor EOP bits are set. In POS-PHY SPHY mode all mpackets
that make up a packet must be transmitted contiguously for a given channel.

The transmit protocol hardware processes one mpacket at a time, send out the data, generating the
correct parity, and generating the necessary control signals (TXENB, TXSOF, TXEOF, TXERR)
and managing flow control for each direction. If the mpacket arrival rate is slower than the POS-
PHY interface rate it deasserts TXENB; if the PHY’s transmit FIFO runs out of space it will
deassert TXFA[3:0]; hardware will detect this and will stop transmitting until there is more space
available (indicated by TXFA[3:0] being reasserted).

POS-PHY MPHY-4 Mode

POS-PHY MPHY-4 mode is similar to POS-PHY SPHY mode, except that TBUF is always
partitioned into four independent segments; each port has its own segment. The same process used
for POS-PHY SPHY is used here. If hardware is configured for Direct Status Indication, then it
uses TXFA x for flow control; if hardware is configured for polling, then it uses TXADDR[4:0] to
poll the PHY’s transmit FIFOs and looks for the result on the TXPFA input signal. In either case,
polling is taken care of automatically by hardware. Address is sent in-band.

POS-PHY MPHY-32 Mode

POS-PHY MPHY-32 (supporting up to 32 ports in 1x32b mode or supporting up to 31 ports on one
16b bus) mode requires that software do some amount of software-driven status polling as well as
transmit scheduling in order to minimize hardware requirements and to provide a solution which is
scalable to an even larger number of ports in the future (i.e., 48 ports). Hardware will provide some
hints to help software; this is described in detail below.

In POS-PHY MPHY-32 mode, TBUF functions as a single large segment; all traffic for the MPHY
ports funnels into a single, large TBUF. (Partitioning TBUF into 31 or 32 equal sized segments
would potentially short change ports which carry higher bandwidth. Also, that solution would not
scale well to 48 ports.)

After the PHY has been initialized and enabled, the transmit polling FSM will update the

Tx MPHY Status[Tx_Status] flags. Initially, the Tx Status flags are all zero. The TX thread must
poll the flags and wait for them to become set before initiating transmission to that channel; the
flags indicate which transmit FIFOs in the PHY is able to accept data. In POS-PHY mode, the
transmit FIFO in the PHY has a programmable threshold. If the PHY’s transmit FIFO contains less
data than the threshold, then TXPFA will be asserted in response to a status poll. If the transmit
FIFO contains more data than the threshold, then TXPFA will be deasserted in response to a status
poll. Since software knows both the size of the FIFO and the threshold, software also knows that if
TXPFA is deasserted, then the FIFO should be able to accept at least “n” mpackets of data, where
"n" is the difference between the FIFO size and the threshold.

The TX thread pushes out up to n mpackets of data to each port which is able to accept data.
Hardware maintains an mpacket-based counter for each port. When a transmit control word is
written, thereby initiating the transmission of a mpacket to a certain port, the counter for that port is
incremented; whenever an mpacket has been completely sent to the PHY, the counter is
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decremented. The summary bit for each port is visible in Tx MPHY _Status[Tx Pending]; if the
counter is zero, indicating no pending transmit activity for that port, then Tx Pending is 0; if the
counter is non-zero, then Tx_Pending is 1.

Before Tx_Pending makes the transition back to 0, the polling FSM will update Tx_Status. When
Tx Pending = 0, this means that Tx_Status is guaranteed to be updated with the latest FIFO status.

After all transmit data is pushed out, the TX thread waits, then reads Tx MPHY _Status.

1. If Tx_Pending[x] = 0, then Tx_Status[x] contains up to date status. If Tx_Status[x] = 1, it is
OK to send another batch of “n” mpackets to that port. If Tx_Status[x] = 0, that port’s FIFO
does not have sufficient space to accept a batch of “n” mpackets and the TX scheduler has to
wait and poll again later. The value "n" is the difference between the FIFO size and the
threshold.

2. If Tx_Pending[x] = 1, then Tx_Status[x] is indeterminate. It is impossible to tell if the port
FIFO can accept any more data because it is unknown how many mpackets are in flight and
when the last time Tx_Status has been updated. The TX schedule has to wait and poll again
later.

By following the above rules, the TX thread may then push out more transmit data to ports which
are able to accept more data. By avoiding pushing data out to port unless it is known that the port
can accept the data helps avoids unnecessary head-of-line blocking.

If data is written to a port which is full or near full, the data will not be lost as long as the high
watermarks in the PHY are correctly set to avoid overflow. It may, however, result in sub-optimal
performance due to head-of-line blocking. The Tx MPHY _Status CSR is provided to give
software some visibility and to allow software the option of doing transmit scheduling.

POS-PHY Level 3 MPHY-4 and MPHY-32 modes support “packet level” transfers only, in that
TXPFA or TXFA asserted high means that the PHY can accept some fixed amount of transmit data.
In polled mode, TXPFA (in MPHY-4 or MPHY-32 polled mode) or TXFA[3:0] (in MPHY-4 direct
status mode) is used to decide if the PHY’s transmit FIFO can accept more data. TXSFA is not used
and should be tied low. Arbitration is mpacket based; once the arbiter selects a port, IXP2400 will
send out one entire mpacket to the PHY (may be less than one full mpacket if TXEOF is asserted).
This means that the high watermarks in the PHY that control TXPFA or TXFA[3:0] must be set
low enough so that if TXPFA/TXFA is asserted, the slave is guaranteed to be able to accept at least
one entire mpacket. In order to account for various latencies, the high watermark on the slave’s
transmit FIFO should be configured so that TXPFA or TXFA[3:0] are deasserted if the amount of
remaining space in the slave’s transmit FIFO is less than (TBUF element size + 8 clock cycles) of
data, or (TBUF element size + 32 bytes).

In POS-PHY Level 2 MPHY-32 mode, two modes of transfer are supported: non-TXSFA and
TXSFA.

In non-TXSFA mode, TXSFA is ignored and the behavior is the same as described in the previous
paragraph for POS-PHY Level 3 MPHY mode. TXSFA should be tied high, and the same rule
regarding high watermark settings applies. In order to avoid FIFO overflow, the high watermark on
the slave’s transmit FIFO should be configured so that TXPFA or TXFA[3:0] are deasserted if the
amount of remaining space in the slave’s transmit FIFO is less than (TBUF element size + 8 clock
cycles) of data, or (TBUF element size + 16 bytes).

In TXSFA mode, TXSFA is used as described in the POS-PHY Level 2 spec. Here are the rules
describing IXP2400’s behavior:

1. It is assumed that both TXPFA and TXSFA are controlled by the same high watermark level.
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2. The decision to grant a port is based purely on TXPFA.

3. If there is data ready to be transmitted to a given port, and if the TXPFA for that port is high,
the port will be selected. Once the port is selected, IXP2400 will ignore TXSFA for the first
four clock cycles of data transfer.

4. Once IXP2400 sees TXSFA deasserted, it will send out up to four more clock cycles of data.
This means that the high watermark in the PHY must be set lower than eight clock cycles, or
16 bytes, from the end of the FIFO.

5. Once data transferred is stopped, IXP2400 will not restart data transfer until it polls TXPFA
high again for that port. IXP2400 will not switch to another port until the data transfer from the
current port is completed.

The advantage of TXSFA mode over non-TXSFA mode is that the high watermark can be set
lower.

In order to achieve maximum performance it is important to push out the maximum amount of data
in the loop and overlap status updates with transmit.

CSIX Mode

Transmit control logic sends valid elements on the transmit pins in element order. Each element
sends a single CFrame—the Base Header is sent first using the information in the Transmit Control
Word for the element. The Ready Field placed into the Base Header is taken from TM_CRDY and
TM_DRDY bits generated by the egress processor (described in greater detail in Section 8.7,
“CBus Interface” on page 8-287). Next the Extension Header is sent, using the information in the
Control for the element. Finally the Payload is sent. The Payload Length Field determines how
many CWords of Payload are sent. Both Horizontal Parity and Vertical Parity are transmitted, as
described below.

When transmitting a flow control CFrame, the entire payload must be written into the TBUF entry.
The extension header field of the Transmit Control Word is ignored by hardware for flow control
CFrames.

Table 121. Transmit Control Word to CSIX Header Mapping
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CSIX_Header Derivation
Field
DRDY FC_Ingress_Status[TM_DRDY]; received via RXCSRB pin from egress processor
CRDY FC_Ingress_Status[TM_CRDY]; received via RXCSRB pin from egress processor
Type Type field from Transmit Control Word
CR CR bit from Transmit Control Word
P P bit from Transmit Control Word
Payload Length | Prepend Length + Payload_Length
Extension Extension Header field from Transmit Control Word. For flow control CFrames there is no
Header extension header so the Extension Header field is not used.

TBUF is divided into two segments, one for data and one for control. (Note: there is no hardware
restriction on what type of CFrames can be placed into either segment. For example, it is possible
to put control CFrames in the data segment and vice versa.)

Control elements and Data elements share use of the transmit pins. Each will alternately transmit a
valid element in a round-robin fashion.
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If the next sequential element is not valid when its turn comes up, then transmit logic will alternate
sending Idle CFrames with Dead Cycles; it will continue to do so until a valid element is ready. Idle
CFrames get the value for the Ready Field from the TM_CRDY and TM_DRDY bits, and the
Payload Length is set to 0.

After an element has been sent on the transmit pins, all valid bits for that element are cleared,
which marks the element as available to be re-used.

Transmit Summary

The states that a TBUF element goes through are shown in Figure 98.

Figure 98. TBUF State Transition Diagram
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Transmit Flow Control Status

Transmission of TBUF elements is controlled by MSF Tx Control[Tx En] bit for a given TBUF
segment. Software can allocate and fill TBUF elements, and then (temporarily) disable them from
being transmitted by setting bits in MSF Tx_ Control[Tx En] bit. Note that
MSF_Tx_Control[Tx_En] bit does not invalidate any elements, nor prevent allocation of elements.

When MSF_Tx_Control[Tx_En] bit changes to disable transmission, any element whose
transmission is in-progress will be completed.

Communication of flow control information between IXP2400 and other external devices is
handled in hardware through the CBus interface, and is based on
MSF_Tx_Control[Transmit Mode], and is only applicable to CSIX mode. Link level and fabric
level flow control information is sent by the egress processor to the ingress processor using CBus.
This is described in further detail in Section 8.7.
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Parity

UTOPIA Mode

Single bit odd parity, as selected by the Tx_UP_Control {0...3}[Parity Mode] bits, is always
generated for transmit data. If parity is not needed, then the TxPrty pin should be left unconnected.

POS-PHY Mode

Single bit odd or even parity, as selected by the Tx_UP_Control {0...3}[Parity Mode] bits, is
always generated for transmit data. If parity is not needed, then the TxPrty pin should be left
unconnected.

CSIX Mode

Horizontal Parity

The transmit logic computes Horizontal Parity for each transmitted Cword, and transmits it on
TxPar.

Vertical Parity

The transmit logic computes Vertical Parity on CFrames. There is a 16-bit VP Accumulator
Register. At the beginning of each CFrame the register is cleared. As each CWord is transmitted,
odd parity is accumulated in the register as defined in the CSIX spec. The 16 bits of vertical parity
are formed on 32 bits of transmitted data by treating the data as words; that is, bit 0 and bit 16 of
the data are accumulated into parity bit 0, bit 1 and bit 17 of the data are accumulated into parity bit
1, etc. The accumulated value is transmitted in the Cword along with the last two bytes of Payload.

RBUF and TBUF Summary

Table 122 compares RBUF and TBUF operations.

Hardware Reference Manual



Intel® IXP2400 Network Processor
Media and Switch Fabric Interface

Table 122. RBUF and TBUF Summary

Operation RBUF TBUF
UTOPIA
Hardware allocates an element upon receipt of a
cell. Any available element may be allocated,
however, elements are guaranteed to be handed
to threads in the order they arrive.
POS-PHY
Hardware allocates an element upon the receipt ME allocates an element. Because
> the elements are transmitted in
of a burst. Any available may be allocated, o
Allocate an however, elements are guaranteed to be handed FIFO order (within each TBUF
element ' g partition), the ME can keep the

to threads in the order they arrive.
CSIX

Hardware allocates an element upon receipt of
RxSof asserted. Any available element may be
allocated, however, elements are guaranteed to
be handed to threads in the order they arrive.

Any element can be allocated to Control or Data
CFrame.

number of the next element in
software.

Set an element
valid

UTOPIA
Hardware fills the element with the entire cell. Microcode fills the element from
Fill an element POS-PHY DRAM using dram[tbuf_wr...]
Hardware fills the element with data. instruction and from ME registers
csIX usingmsf [write] instruction.
Hardware fills the element with Payload.
UTOPIA

Set valid by hardware then the entire cell has
been received.

POS-PHY

Set valid by hardware when either the element
has been filled or RXEOF is asserted, whichever
comes first.

CSIX

Set valid by hardware when the number of bytes
in Payload Length have been received.

The element’s Transmit Valid bit is
set. This is done by a write to the
Transmit_Control_Word_V_#CSR,
where # is the element number.

Remove data from
an element

Microcode moves data from the element to DRAM
using dram[rbuf_rd..] instruction and to ME
registers using msf [read] instruction.

Hardware transmits information
from the element to the Tx pins.
Transmission of elements is in
FIFO order; that is an element will
be transmitted only when all
preceding elements have been
transmitted.

Return an element
to its Free List

Microcode writes to Rx_Element_Done with the
number of the element to free.

Hardware returns the element
when its information has been
transmitted.

8.7

Note:

CBus Interface

Per the CSIX specification, the terms “egress” and “ingress” are with respect to the switch fabric.

So the egress processor handles traffic received from the switch fabric and the ingress processor
handles traffic sent to the switch fabric.
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8.71

8.71.1

288

CBus has two major modes of operation: full duplex and simplex.

In full duplex mode, the CBus interface is used to communicate link level and fabric level flow
control information from the egress (receive) processor to the ingress (transmit) processor. Full
duplex mode is described in detail in Section 8.7.2.

In simplex mode, the CBus interface is used to communicate link level and fabric level flow
control information directly with the switch fabric. Simplex mode is described in detail in
Section 8.7.3.

Per the CSIX specification, the terms egress and ingress are with respect to the switch fabric. So
the egress processor handles traffic received from the switch fabric and the ingress processor
handles traffic sent to the switch fabric.

CBus Signals

TXCSOF/TXCDATA/TXCPAR
and RXCSOF/RXCDATA/RXCPAR

The CBus data width can be programmed to either 4-bits TXCDATA[3:0] or 8 bits TXCDATA[7:0]
as specified in the MSF_Rx_Control and MSF_Tx_Control registers (see the Intel® IXP2400/
IXP2800 Programmer s Reference Manual for details). The mapping of the exact pins used for
these signals is shown in Section 8.4.

CFrames are transmitted from the egress processor using TXCSOF, TXCDATA[3:0] (or
TXCDATA[7:0] depending on the mode), and TXCPAR and received on the ingress processor
using RXCSOF, RXCDATA[3:0] (or RXCDATA[7:0] depending on the mode), and RXCPAR.
These signals can be thought of as a thin version of CSIX-L1. The protocol is identical except that
data is transferred four or eight bits at a time rather than 32 bits at a time. Since CBus runs at the
same clock rate as the CSIX interface, this implies that amount of traffic that is forwarded or
generated as a result of CSIX traffic cannot be more than an eighth or a quarter of the total CSIX
traffic depending on the mode selected.

TXCSOF is used to mark the start of frame. In the 4-bit mode, data is sent one nibble at a time, and
is transferred in big-endian order:

1. [31:28]
[27:24]
[23:20]
[19:16]
[15:12]
[11:8]
[7:4]
[3:0]

® =N N kWD

TXCPAR is generated for every 32 bits and is valid only when the final nibble of the CWord (bits
[3:0]) are valid on the bus.

In the 8-bit mode, data is sent one byte at a time, and is transferred in the big-endian order:
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1. [31:24]
2. [23:16]
3. [15:8]
4. [7:0]

TXCPAR is generated for every 32 bits and is valid only when the final byte of the CWord (bits
[7:0]) are valid on the bus.

TXCSRB and RXCSRB
TXCSRB and RXCSRB are used only in full duplex mode.

The egress processor uses TXCSRB to transmit the Serialized Ready Bits. This consists of five
framing bits and the SF_xRDY and TM_xRDY bits. The bits are transmitted in the following
order:

1. 00001 (framing)
2. SF_CRDY
3. SF DRDY
4. TM_CRDY
5. TM_DRDY

The Serialized Ready Bits are received in the ingress processor using the RXCSRB input pin.

TXCFC and RXCFC
TXCFC and RXCFC are used only in full duplex mode.
RXCFC is a flow control output signal that is used by the ingress processor to indicate that its

FCIFIFO has exceeded a high watermark. It is connected to the TXCFC input pin of the egress
processor.

Full Duplex Mode

In full duplex mode, flow control information is communicated from the egress processor to the
ingress processor using CBus.

Figure 99 contains a block diagram which shows the CBus interconnections and usage.
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Figure 99. Full Duplex Mode Block Diagram
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Link level flow control information is transmitted serially on the TXCSRB output pin on the egress
processor and received serially on the RXCSRB input pin on the ingress processor. Four bits of
information are sent: SF_ CRDY, SF DRDY, TM_CRDY, and TM_DRDY.
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The switch fabric supplies link level flow control information in the base header of each CFrame
that it sends to the egress processor. Every CFrame base header contains a Ready Field, which
contains two bits; one for Control traffic (bit 6 of byte 1) and one for Data traffic (bit 7 of byte 1).
These are referred to in this document as the SF_ CRDY and SF_DRDY bits, because they
originate from the switch fabric. The SF_*RDY bits reflect the state of the switch fabric’s ingress
FIFOs. If one of the bits is deasserted by the switch fabric, that means it is running out of space in
its control or data ingress FIFO.

In addition to the SF_ CRDY and SF_DRDY bits, the egress processor also provides TM_CRDY
and TM_DRDY bits to the ingress processor. (TM stands for Traffic Manager; IXP2400 is the
traffic manager.) These bits reflect the state of the control and data receive FIFOs in the egress
processor and are sent to the ingress processor to be forwarded to the switch fabric in the base
header of all outgoing CFrames. TM_CRDY and TM_DRDY are deasserted whenever the egress
processor is running out of space in its receive FIFOs. These high watermarks are set using
HWM_Control[RBUF C HWM] and HWM_Control[RBUF_D HWM]. When the egress
processor detects a horizontal or vertical parity error in any incoming CFrame, it deasserts
SF_CRDY and SF_DRDY bits.

On the egress processor, the ready bits are readable via the FC_Egress_Status register. Table 123
shows how the ready bits are derived in the egress processor.

Table 123. Egress Processor Ready Bit Handling

Ready Bit Derivation

READY]0] of all incoming base headers. This bit is visible to software as

SF_CRDY FC_Egress_Status[SF_CRDY].

READY][1] of all incoming base headers. This bit is visible to software as
FC_Egress_Status[SF_DRDY].

RBUF control partition above/below high watermark set by HWM_Control[RBUF_C_HWM]
TM_CRDY or FCEFIFO above/below high watermark set by HWM_Control[FCEFIFO_HWM]. This bit
is visible to software as FC_Egress_Status[TM_CRDY].

RBUF data partition above/below high watermark set by HWM_Control[RBUF_D_HWM].
This bit is visible to software as FC_Egress_Status[TM_DRDY].

SF_DRDY

TM_DRDY

Table 124 summarizes how the serialized ready bits should be handled by the ingress processor. On
the ingress processor, these bits are readable via the FC_Ingress Status register.

Table 124. Ingress Processor Ready Bit Handling

Bit Value
Ready Bit

Stop sending control CFrames to OK to send control CFrames to the
SE CRDY the switch fabric. switch fabric.

This bit is visible to software as FC_Ingress_Status[SF_CRDY].

Stop sending data CFrames to the | OK to send data CFrames to the
SF DRDY switch fabric. switch fabric.

This bit is visible to software as FC_Ingress_Status[SF_DRDY].

Place this bit in the READY]O0] field of all outgoing base headers.

TM_CRDY e
- This bit is visible to software as FC_Ingress_Status[TM_CRDY].

Place this bit in the READY[1] field of all outgoing base headers.
TM_DRDY

This bit is visible to software as FC_Ingress_Status[TM_DRDY].
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On the egress processor, software has some control over what gets transmitted on the TXCSRB
output pin by using CBus_Control[TXCSRB_En] and CBus_Control[TXCSRB_Force]. If
TXCSRB_En =0, then the SF_*RDY and TM_*RDY bits will be sent on the TXCSRB pin; if
TXCSRB_En = 1, then the values specified in TXCSRB_Force are transmitted. This can be used
for debug, test, and to allow software to override hardware.

On the ingress processor, software also has some control over what gets used by hardware by using
CBus_Control[RXCSRB_En] and CBus_Control[RXCSRB_Force]. [f RXCSRB_En = 0, then the
values received on the RXCSRB input pin are used; if RXCSRB_En = 1, then the values specified
in RXCSRB_Force are used instead. This can be used for debug, test, and to allow software to
override hardware.

Buffering and Link Level Flow Control Latency

In the full duplex connection, the latency for the switch fabric to respond to a change in the
TM_CRDY/TM_DRDY is large. The worst case latency for the total time elapsed from the time
the egress processor de-asserts the TM_xRDY bits to when the switch fabric stops sending traffic
to the egress processor is estimated as shown in the following steps:

1. latency for sending TM_xRDY across the c-bus (pipeline delay, synchronization delays etc)
from the egress processor to the ingress processor is 18 cycles.

2. The ingress processor will append the incoming TM_xRDY bits to the next cframe that will be
sent out. Assuming that the ingress processor just missed a maximum size cframe that is being
sent out - 2B base header + 4B extension header + 256B payload + 2B vertical parity = 264B =
66 cycles, the TM_xRDY bit will be delayed by 66 cycles before it is sent across the CSIX
interface.

3. If'the ingress processor appends the TM_xRDY bit on a maximum size cframe, then assuming
that a parity error occurs on the READY[0/1] bit of the base header, it will be detected only
when VP parity is computed for the entire cframe, adding another 66 cycles.

4. According to the CSIX spec. the fabric has 32 cycles to react to change in the TM_xRDY bits.

5. Assume that just before the fabric decided to stop, a maximum size cframe slipped out, adding
another 66 cycles.

Thus the total latency for the link level flow control to respond can be 248 cycles. Assume that
during this interval, the switch fabric transmits a series of minimum size cframes (2B base header +
4B extension header + 1B payload + 3B padding + 2B vertical parity = 12B or 3 cycles) followed
by the last maximum size cframe. Thus the total number of cframes received will be 62 (61 cframes
in the first 182 cycles + 1 cframe in the next 66 cycles). Assuming that the RBUF element size in
the egress processor is configured to be 256B, the total number of elements is 32. In other words,
the egress processor can buffer only up to 32 cframes. Thus, even if the high watermark control,
HWM_Control[RBUF x HWM] is set to 0, buffer overflow may occur.

In order to overcome this condition, an additional level of buffering is provided on the receive
interface of each processor. This buffer, comprising of Rx Data Fifo and Rx Status FIFO, is not
visible to software. The Rx Data Fifo is sized to be 256 c-words (256 32-bit entries) to buffer the
248 cycles worth of data. The Rx Status FIFO is 64 entries, enough to buffer the status of the 62
received cframes.
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Fabric Level

The CBus interface on the egress processor contains a 256 x 32 FIFO called FCEFIFO. The

CSIX Type Map CSR allows any CFrame type to be routed into FCEFIFO, although typically
only flow control CFrames are put into FCEFIFO. The entire CFrame is placed into FCEFIFO. All
CFrames in FCEFIFO are sent out of the egress processor on the TXCSOF, TXCDATA[1:0], and
TXCPAR output pins.

In order to minimize latency, CFrames are forwarded in a cut-through manner. CFrames which get
routed to FCEFIFO never become visible to software running on the egress processor. In order to
minimize latency, CFrames are forwarded using a cut-through approach. If there is no data in
FCEFIFO then the egress processor sends Idle CFrames.

FCEFIFO has its own high watermark, set using HWM_Control[FCEFIFO_HWM]. If the high
watermark is exceeded, this will cause TM_CRDY to be deasserted.

Flow control CFrames are received by the ingress processor on the RXCDATA, RXCPAR, and
RXCSOF pins. They are deposited into the FCIFIFO. FCIFIFO is 256 x 32. The ingress processor
is responsible for checking horizontal and vertical parity and length error (premature RXCSOF) for
each incoming CFrame. If an error is detected, the CFrame is dropped and

MSF _Interrupt_Status[FCIFIFO_Error] is set.

The FCIFIFO has two signals which are used to signal a thread: not-empty and nearly-full. These
two signals are connected to the STATE inputs of every Microengine and can be tested using the
BR_STATE instruction:

* FCI Not Empty: if asserted, this indicates that there is at least one CWord in FCIFIFO. This
signal stays asserted until all CWords have been read. This signal is not asserted until there is a
complete, valid, error-free CFrame in FCIFIFO. As the CFrame is dequeued by the ME
handler thread, this signal stays asserted until all CWords have been removed, including
subsequent CFrames.

* FCI Near Full: if asserted, this dictates that FCIFIFO is above the high watermark set in
HWM_Control[FCIFIFO Int HWM].

The not-empty signal is asserted if and only if an entire CFrame has been received without error
into the FCIFIFO. The thread that has been assigned to handle FCIFIFO is woken up, then must
read the CFrame, 32 bits at a time, from the FCIFIFO by issuing msf [read] to the FCIFIFO CSR.
(Burst read of up to sixteen words is allowed.) The FCIFIFO handler thread must examine the base
header to determine how long the CFrame and perform the necessary number of CSR reads from
the FCIFIFO register to dequeue the entire CFrame, including padding and vertical parity. If a read
is issued to an empty FCIFIFO, or if the FCIFIFO does not yet contain a complete CFrame, then an
four byte idle CFrame (0x0000FFFF) will be read back.

The nearly-full signal is based on the high watermark programmed into
HWM_Control[FCIFIFO_Int HWM]. The nearly-full is asserted, this means that the FCIFIFO
handler thread should contain multiple CFrames (unless the high watermark has been set low) and
that higher priority needs to be given to draining the FCIFIFO to prevent flow control from being
asserted to the switch fabric.

In addition, FCIFIFO has a flow control signal called RXCFC which is connected to the TXCFC
input pin of the egress processor. If asserted, this tells the egress processor to stop on the CBus.
RXCFC is triggered by a high watermark set in HWM_Control[FCIFIFO_Ext HWM].
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Note: FCIFIFO in the ingress processor never enqueues Idle CFrames in either full duplex or simplex
modes. The transmitted Idle CFrames are injected by the control state machine, not taken from the
FCEFIFO.

8.7.3 Simplex Mode

In simplex mode, the CBus is connected directly to the switch fabric; flow control information is
exchanged directly between the egress processor and the switch fabric, and directly between the
ingress processor and the switch fabric. IXP2400 MSF does not support transmit of flow control
CFrames on CBus in simplex mode whose length is not n*4 bytes in length (there is no such
restriction on non-flow control CFrames, they can have arbitrary length).

Figure 100 contains a block diagram which shows how CBus is connected and used in simplex
mode.
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Figure 100. Simplex Mode Block Diagram
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8.7.3.1 Link Level

The TXCSRB/RXCSRB and TXCFC/RXCFC pins are not used at all in simplex mode.
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Note:

Note:

The egress processor uses the TXCSOF, TXCDATA, and TXCPAR pins to send flow control
CFrames directly to the switch fabric. The TM_CRDY and TM_DRDY bits are placed directly into
the base header of outgoing CFrames by hardware. The TM_xRDY bits are also visible to software
through Fc_Egress_Status [TM_CRDY] and FC_Egress_Status[TM_DRDY].

The switch fabric uses the SF_ CRDY bit to indicate that its flow control FIFO cannot accept any
more data. This bit is set by the egress processor to stop transmission of CFrames from the
FCEFIFO onto the CBus transmit bus. If SF_CRDY is deasserted, the CFrame currently being
transmitted will complete. SF_ DRDY is ignored by the egress processor.

The ingress processor uses the RXCSOF, RXCDATA, and RXCPAR pins to receive flow control
CFrames directly from the switch fabric. The SF_ CRDY and SF_DRDY bits are extracted from the
base header of incoming CFrames. Transmit hardware in the ingress processor uses the SF_ xRDY
bits to flow control the data and control transmit. The SF_xRDY bits are also visible to software
via FC_Ingress_Status[SF_CRDY] and FC_Ingress Status[SF_DRDY].

The ingress processor uses the TM_CRDY bit to indicate that FCIFIFO is nearly full and cannot
accept any more CFrames. If the ingress processor deasserts TM_CRDY, the switch fabric should
finish transmitting the current CFrame from its flow control FIFO, then stop until TM_CRDY is
asserted again. TM_DRDY is not used by the ingress processor and is always asserted.

Fabric Level

The ingress processor receives flow control CFrames through the CBus interface into FCIFIFO.
FCIFIFO is accessed exactly the same way as in half-duplex mode. The steps are the same.

If FCIFIFO exceeds its high watermark, as determined by HWM_Control[FCIFIFO Ext HWM],
it will cause the TM_CRDY bit to be deasserted. This bit is carried in all outgoing CFrames on the
main CSIX interface.

The egress processor transmits flow control CFrames through the CBus interface using FCEFIFO.
This is done by performing CSR writes, using msf]write], to the FCEFIFO register. The ME must
test FC_Egress_Status|[FCEFIFO_Full] to check if the FCEFIFO has sufficient space before
writing to it. The ME creating the CFrame must first write a valid header followed by the payload,
hardware will generate horizontal and vertical parity and insert any necessary padding.

After the CFrame has been written to the FCEFIFO, the ME writes to the FCEFIFO_Validate CSR
to indicate that the CFrame is ready to be sent out on TXCDATA. This is required to prevent
underflow by insuring that the entire CFrame is in FCEFIFO before transmission is started. A
validated CFrame at the head of FCEFIFO will be transmitted only if the SF_ CRDY bit from the
switch fabric is asserted; transmission is held off if it is deasserted. Once CFrame transmission
begins, the entire CFrame is sent regardless of changes in SF_CRDY. SF_DRDY is ignored.

If there is no valid CFrame in FCEFIFO or if SF_CRDY is deasserted, then idle CFrames are sent
on TXCDATA. The idle CFrames will carry TM_CRDY and TM_DRDY information. In all cases,
the switch fabric must honor the ready bits to prevent overflowing RBUF.

Although the intent is to transmit flow control CFrames via CBus, there are no hardware
restrictions on transmitting any type of CFrame through this interface.

If there is no switch fabric present, the CBus ports can be used for interchip communication. The
hardware configuration would be the same as for Full Duplex Mode, but the CBus interfaces would
be configured for Simplex mode operation. This makes it possible for software running on one
processor to write messages, in CFrame format, into FCEFIFO and have the messages passed to
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the other processor via CBus. TXCFC/RXCFC is used to indicate that the FCIFIFO has exceeded
the high watermark.

8.8 Interface to Command and Push and Pull Buses

Figure 101 shows the interface of the MSF block to the command and push and pull buses.

Figure 101. Block Diagram of the MSF Block to the Command and Push and Pull Buses
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Data transfers to and from the TBUF/RBUF are done in the following cases.

8.8.1 RBUF or CSR to ME SRAM Read Transfer Register

msf[read, $s_xfer_reg, src_op_1l, src_op_2, ref_cnt], optional_token
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8.8.3

8.8.4

8.8.5
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For transfers to ME, the MSF act as a target. Commands from MEs are received on the command
bus. The commands are checked to see if they are targeted to MSF. If so they are enqueued into the
Command Inlet FIFO, and then moved to the Read Command FIFO. When the Command Inlet
FIFO is near full, it asserts a signal to the command arbiters. The command arbiters will prevent
further commands to MSF until after the full signal is deasserted. The RBUF element or CSR
specified in the address field of the command is read and the data is registered in the
SPUSH_DATA register. The control logic then arbitrates for S PUSH BUS, and when granted it
drives the data.

ME SRAM Write Transfer Register to TBUF or CSR

msf [write, $s_xfer_reg, src_op_1, src_op_2, ref_cnt], optional_token

For transfers from ME, MSF acts as a target. Commands from MEs are received on the command
bus. The commands are checked to see if they are targeted to MSF. If so they are enqueued into the
Command Inlet FIFO, and then moved to the Write Command FIFO. When the Command Inlet
FIFO is near full, it asserts a signal to the command arbiters. The command arbiters will prevent
further commands to MSF until after the full signal is deasserted. The control logic then arbitrates
for S PULL BUS, and when granted it receives and registers the data from the ME into the

S PULL DATA register. It then writes that data into the TBUF element or CSR specified in the
address field of the command.

ME to MSF CSR Fast Write

msf[fast_write, src_opl, src_op2]

For fast write transfers from ME, MSF acts as a target. Commands from MEs are received on the
command bus. The commands are checked to see if they are targeted to MSF. If so they are
enqueued into the Command Inlet FIFO, and then moved to the Write Command FIFO. When the
Command Inlet FIFO is near full, it asserts a signal to the command arbiters. The command
arbiters will prevent further commands to MSF until after the full signal is deasserted. The control
logic uses the address and data, both found in the address field of the command (see the IXP2400/
IXP2800 Network Processor Programmer’s Reference Manual for register details). It then writes
the data into the CSR specified.

Transfer from RBUF to DRAM

dram[rbuf_rd, -, src_opl, src_op2, ref_cnt], indirect_ref

For the transfers to DRAM, the RBUF acts like a slave. The address of the data to be read is given
inD PULL _ID. The data is read from RBUF and registered in D_PULL DATA Register. It is then
multiplexed and driven to the DRAM channel on D_ PULL BUS.

Transfer from DRAM to TBUF

dram[tbuf_wr, -, src_opl, src_op2, ref_cnt], indirect_ref

For the transfers from DRAM, the TBUF acts like a slave. The address of the data to be written is
givenin D_PUSH_ID. The data is registered and assembled from D PUSH BUS, and then written
into TBUF.
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8.9 Registers

Please see the IXP2400/IXP2800 Network Processor Programmer s Reference Manual for
IXP2400 MSF register information.
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Intel® IXP2400 Network Processor
PCI Unit

PCI Unit 9

This section contains information on the IXP2400 Network Processor PCI Unit.

9.1 Overview

The PCI Unit allows PCI target transactions to internal registers, SRAM, and DRAM. It also
generates PCI initiator transactions from the DMA Engine, Intel XScale® core, and Microengines.

The PCI Unit main functional blocks are shown in Figure 102 and include:

PCI Core Logic

PCI Bus Arbiter

DRAM Interface Logic

SRAM Interface Logic

Mailbox and Message Registers
DMA Engine

XScale core Direct Access to PCI

The main function of the PCI Unit is to transfer data between the PCI Bus and the internal devices.

These are the data transfer paths supported as shown in Figure 103:

PCI Slave read and write between PCI and internal buses

— CSRs (PCI_CSR _BAR)

— SRAM (PCI_SRAM BAR)

— DRAM (PCI_DRAM BAR)
Push/Pull Master (XScale core, Microengine) accesses to internal registers within PCI unit
DMA

— Descriptor read from SRAM.

— Data transfers between PCI and DRAM.

Push/Pull Master (XScale core and Microengines) direct read and write to PCI Bus
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Figure 102. PCI Functional Blocks
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Figure 103. Data Access Paths
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9.2

PCI Protocol Interface Block

This block generates the PCI-compliant protocol logic. It operates either as an initiator or a target
device on the PCI Bus. As an initiator, all bus cycles are generated by the core. As a PCI target, the
core responds to bus cycles that have been directed towards it.

On the PCI Bus, the interface supports interrupts, 64-bit data path, 32-bit addressing, and single
configuration space. The local configuration registers are accessible from the PCI Bus or from the
XScale core through an internal path.

The PCI block interfaces with the other sub-blocks with a FIFO bus called FBus. The FBus speed
is the same as the internal Push/Pull bus speed. The FIFOs are implemented with clock
synchronization logic between the PCI speed and the internal Push/Pull bus speed.

There are eight data FIFOs and four address FIFOs in the core. The separate slave and master data
FIFOs allows simultaneous operations and multiple outstanding PCI bus transfers. The target
address FIFO latches up to four PCI read or write addresses. If a read address is latched, the
subsequent cycles will be retried and no address will be latched until the read completes. The
initiator address FIFO can accumulate up to four addresses, which can be PCI reads or writes.
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Table 125. Atomic Target Write to Memory Option

Stepping

Description

IXP2400 AO/A1

The address FIFO is always set as a 4-entry FIFO.

IXP2400 BO

If the PCI Control CSR bit[18] of the ATWE Atomic
Write Enable register is set to 0, the address FIFO will
always be set as a 4-entry FIFO.

If the PCI Control CSR bit[18] of the ATWE Atomic
Write Enable register is set to 1, the address FIFO will
be set to a single-entry FIFO. The write to memory will
always be a single burst if the address is aligned. And,
the burst size must be 64 bytes (or less) for atomic
write purposes.

Table 126. PCI Core FIFO Sizes

Location

Depth

Target Address

4

Target Write Data

Target Read Data

Initiator Address

Initiator Write Data

Initiator Read Data

8
8
4
8
8

These FIFOs are inside the PCI core, which stores data that are received from the PCI Bus or to be
sent out to the PCI Bus. There are additional buffers implemented in other sub-blocks that buffers
data to and from the internal push/pull buses.

Table 127 lists the maximum PCI Interface loading.

Table 127. Maximum Loading

Bus Interface

Max # of Loads Trace Length (inches)

4]
PCI oa
8 loa

ds at 66 MHz bus frequency

5to7
ds at 33 MHz bus frequency

9.2.1 PCl Commands

Table 128 lists the supported PCI commands and identifies them as either a target or initiator.

Table 128. PCI Commands (Sheet 1 of 2)

Support
C_BE_L Command
Target Initiator
0x0 Interrupt Acknowledge Not Supported Supported
0x1 Special Cycle Not Supported Supported
0x2 10 Read cycle Not Supported Supported
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Table 128. PCI Commands (Sheet 2 of 2)

Support
C_BE_L Command
Target Initiator
0x3 10 Write cycle Not Supported Supported
0x4 Reserved - -
0x5 Reserved - -
0x6 Memory Read Supported Supported
0x7 Memory Write Supported Supported
0x8 Reserved - -
0x9 Reserved - -
O0xA Configuration Read Supported Supported
0xB Configuration Write Supported Supported
Aliased as Memory Read except
0xC Memory Read SRAM accesses where the number Supported
Multiple of Dwords to read is given by the PP
cache line size
0xD Reserved
Aliased as Memory Read except
. SRAM accesses where the number
OxXE Memory read line of Dwords to read is given by the Supported
cache line size
OxF Memory Write and Aliased as Memory Write Not Supported
Invalidate

PCI functions not supported by the PCI Unit include:
* O Space response as a target
* Cacheable memory
* VGA palette snooping
* PCI Lock Cycle
* Multi-function Devices

* Dual Address cycle

9.2.2 IXP2400 Network Processor Initialization

When the IXP2400 Network Processor is a target, the internal CSR, DRAM, or SRAM address is
generated when the PCI address matches the appropriate base address register. The window sizes to
the SRAM and DRAM BARs can be optionally set by PCI_SWIN and PCI_DWIN strap pins or
mask registers depending on the state of the PROM_BOOT signal.

There are two initialization modes supported. They are determined by the PROM_BOOT signal
sampled on the de-assertion edge of Chip Reset. [f PROM_BOOT is asserted, which indicates that
there is a boot prom in the system. The XScale core will boot from the prom and be able to
program the BAR space mask registers. f PROM_BOOT is not asserted, the XScale core is held in
reset and the BAR sizes are determined by strap pins.
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9.2.2.1

Initialization by the Intel® XScale® Core

The PCI unit is initialized to an inactive, disabled state until the XScale core has set the Initialize
Complete bit in the Control register. This bit is set after the XScale core has initialized the various
PCI base address and mask registers (which should occur within 1 ms of the end of PCI_RESET).
The mask registers are used to initialize the PCI base address registers to values other than the
default power-up values which includes the base address visible to the PCI host and the
prefetchable bit in the base registers (see Table 129).

Table 129. PCI BAR Programmable Sizes

9.2.2.2

Base Address | Address

Register Space Sizes

PCI_CSR BAR | CSR | 1Mbyte

0Byte,256Kbyte,512Kbyte, 1Mbyte,2Mbyte,4Mbyte,
8Mbyte,16Mbyte,32Mbyte,64MByte, 128Mbyte,256Mbyte

0Byte,1Mbyte,2Mbyte,4Mbyte,8Mbyte, 16Mbyte,32Mbyte,64Mbyte, 128Mbyte,
256Mbyte,512Mbyte, 1Gbyte

PCI_SRAM_BAR | SRAM

PCI_DRAM_BAR | DRAM

When the PCI unit is in the inactive state, it returns retry responses as the target of PCI
configuration cycles if the PCI Unit is not configured as the PCI host. In the case of PCI Unit being
configured as the PCI host, the PCI bus will be held in reset until the XScale core completes the
PCI Bus configurations and clears the PCI Reset (as described in Section 9.2.11).

Initialization by an External PCI Host

In this case, the internal PCI Unit is not hosting the PCI Bus. The host processor is allowed to
configure the internal CSRs while the XScale core is held in reset. The host processor configures
the PCI address space, the memory controllers, and other interfaces. Also, the program code for the
XScale core may be downloaded into local memory.

The host processor then clears the XScale core reset bit in the PCI Reset Register. This de-asserts
the internal reset signal to the XScale core and the core begins its initialization process. The
PCI_SWIN and PCI_DWIN strap signals are used to select the window sizes to SRAM BAR and
DRAM BAR (see Table 130).

Table 130. PCI BAR Sizes with PCI host Initialization

9.2.3

306

Base Address Address .
. Sizes
Register Space
PCI_CSR_BAR CSR 1MByte
PCI_SRAM_BAR SRAM 32M/64MByte/128MByte/256MByte
PCI_DRAM_BAR DRAM 128M/256M/512M/1GByte

PCI Type 0 Configuration Cycles

A PCI access to a configuration register occurs when the following conditions are satisfied:
¢ PCI _IDSEL is asserted. (PCI_IDSEL only support PCI_AD[23:16] bits)
* The PCI command is a configuration write or read.

* The PCI_AD [1:0] are 00.
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A configuration register is selected by PCI_AD[7:2]. If the PCI master attempts to do a burst
longer than one 32 bit Dword, the PCI unit signals a target disconnect. PCI unit does not issue
PCI_ACKO64 for configuration cycle.

Configuration Write

A write occurs if the PCI command is a Configuration Write. The PCI byte enables determine
which bytes are written.If a nonexistent configuration register is selected within the configuration
register address range, the data is discarded and no error action is taken.

Configuration Read

A read occurs if the PCI command is a Configuration Read. The data from the configuration
register selected by PCI_AD([7:2] is returned on PCI_ADJ[31:0]. If a nonexistent configuration
register is selected within the configuration register address range, the data returned are zeros and
no error action is taken.

PCI 64-Bit Bus Extension

The PCI Unit is in 64-bit mode when PCI_REQ64# is sampled active on the de-assertion edge of
PCI Reset. The 64-bit mode can be overridden by writing to IXP_ PARA CSR bit 1.

These are the general rules in assertions of PCI_REQ64# and PCI_ACK64#:

As a target:
1. PCI Unit asserts PCI_ ACK64# only in 64 bit mode.

2. PCI Unit asserts PCI_ ACK64# only to target cycles that matches the PCI SRAM BAR and
PCI_DRAM BAR and a 64-bit transaction is negotiated

3. PCI Unit does not assert PCI_ACK64# target cycles that matches the PCI CSR_BAR even a
64-bit transaction is negotiated.

As an initiator:
1. PCI Unit asserts PCI_REQ64# only in 64 bit mode.

2. PCI Unit asserts PCI_REQ64# to negotiate a 64-bit transaction only if the address is double
Dword aligned (PCI_AD[2] must be 0 during the address phase).

3. If the target responses to PCI_REQ#64 with PCI_ACK64# de-asserted, PCI Unit will
complete the transaction acting as a 32-bit master by not asserting PCI_REQ64# on
subsequent cycle.

PCI Target Cycles

The following PCI transactions are not supported by the PCI Unit as a target:
* 1O read or write
* Type 1 configuration read or write
* Special cycle
* JACK cycle
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9.2.5.2

9.2.5.3

9.2.5.4

9.2.5.5
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* PCI Lock Cycle
* Multi-function Devices

* Dual Address cycle

PCIl Accesses to CSR

A PCI access to a CSR occurs if the PCI address matches the CSR base address register
(PCI_CSR_BAR).The PCI Bus will be disconnected after the first data-phase if the data is more
than one data phase. For 64-bit CSR accesses, the PCI Unit will not assert PCI_ACK64# on the
PCI bus.

PCI Accesses to DRAM

A PCI access to DRAM occurs if the PCI address matches the DRAM base address register
(PCI_DRAM_BAR).

PCIl Accesses to SRAM

A PCI access to SRAM occurs if the PCI address matches the SRAM base address register
(PCI_SRAM _BAR). The SRAM is organized as two distinct channels and the address is not
contiguous. The PCI_SRAM_BAR programmed window size will be used as the total memory
space. The upper two bits of the address will be used as channel number in addressing the
particular channel and the remaining address bits will be used as the memory address.

Target Write Accesses From PCI Bus

A PCI write occurs if the PCI address matches one of the base address registers and the PCI
command is either a Memory Write or Memory Write and Invalidate. The core will store up to 4
write addresses into the target address FIFO along with the BAR IDs of the transaction. The write
data will be stored into the target write FIFO.When either the address FIFO or data FIFO is full, a
retry is forced on the PCI Bus in response to write accesses.

A long-burst enable mode ensures that long bursts will not be disconnected unless the write buffer
data cannot be appropriately drained.

The FIFO data is forwarded to an internal slave buffer before being written into SRAM or DRAM.
If the FIFO fills during the write, the address is crossing the 64 byte address boundary, or in the
case of the command being a burst to the CSR space, the PCI unit signals target disconnect to the
PCI master.

Target Read Accesses From PCI Bus

A PCI read occurs if the PCI address matches one of the base address registers and the PCI
command is either a Memory Read, Memory Read Line, or Memory Read Multiple.

The read is completed as a PCI delayed read. That is, on the first occurrence of the read, the PCI
unit signals a retry to the PCI master,. If there is no prior read pending, the PCI unit latches the
address and command and places it into the target address FIFO. When the address reaches the
head of the FIFO, the PCI unit reads the DRAM. Subsequent reads or writes will also get retry
responses until data is available.
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When the read data is returned into the PCI Read FIFO, the PCI unit begins to decrement its
discard timer. If the PCI bus master has not repeated the read by the time the timer reaches zero, the
PCT unit discards the read data, invalidates the delayed read address and sets Discard Timer
Expired (bit 16) in the Control Register gPCI_CONTROL). If enabled, the PCI unit interrupts the
XScale core. The discard timer counts 21 (32768) PCI clocks.

When the master repeats the read command, the PCI unit compares the address and checks that the
command is a Memory Read, a Memory Read Line, or a Memory Read Multiple. If there is a
match, the response is as follows:

¢ If the read data has not yet been read, the response is retry.

* [fthe read data has been read, assert PCI_TRDY# and deliver the data. If the master attempts
to continue the burst past the amount of data read, the PCI unit signals a target disconnect.

* CSR reads are always 32 bit reads.

* [f the discard timer has expired for a read, the subsequent read will be treated as a new read.

PCI Initiator Transactions

PCI master transactions are caused by either the XScale core loads and stores that fall into the
various PCI address spaces, Microengine read and write commands, or by DMA engine. The
command register (PCI_CMD_STAT) bus master bit (BUS_MASTER) must be set for the PCI unit
to perform any of the initiator transactions.

The PCI cycle is initiated when there is an entry in the PCI Core Interface initiator address FIFO.
The core handshakes with the master interface with the FBus FIFO status signals. The PCI core
supports both burst and non-burst master read transfers by the burst count inputs, driven by Master
Interface to inform the core the burst size. For a Master write, FB_ WBstonN indicates to the PCI
core whether the transfers are burst or non-burst, on a 64 bit double Dword basis.

The PCI core supports read and write memory cycles as an initiator while taking care of all
disconnect/retry situations on the PCI Bus.

PCI Request Operation

If an external arbiter is used (CFG_PCI_ARB is not active), the reql[0] and gnt[0] are connected to
the PCI_REQ# and PCI_GNT# pins. Otherwise, they are connected to the internal arbiter.

The PCI unit asserts req_1[0] to act as a bus master on the PCI. If gnt_1[0] is asserted, the PCI unit
can start a PCI transaction regardless of the state of req_1[0]. When the PCI unit requests the PCI
bus, it performs a PCI transaction when gnt_1[0] is received. Once req_1[0] is asserted, the PCI unit
never de-asserts it prior to receiving gnt 1[0] or de-asserts it after receiving gnt_1[0] without doing
a transaction. PCI Unit de-asserts req_1[0] for two cycles when it receives a retry or disconnect
response from the target.

PCI Commands

The following PCI transactions are not generated by PCI Unit as an initiator:
* PCI Lock Cycle
* Dual Address cycle
* Memory Write and Invalidate
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9.2.6.6

9.2.7
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Initiator Write Transactions

The following general rules apply to the write command transactions:

¢ [f the PCI unit receives either a target retry response or a target disconnect response before all
of the write data has been delivered, it resumes the transaction at the first opportunity, using
the address of the first undeliverable data.

¢ Ifthe PCI unit receives a master abort, it discards all of the write data from that transaction and
sets the status register (PCI_CMD_STAT) received master abort bit, which, if enabled,
interrupts the XScale core.

¢ [f the PCI unit receives a target abort, it discards all of the remaining write data from that
transaction, if any, and sets the status registers (PCI_CMD_STAT) received target abort bit,
which, if enabled, interrupts the XScale core.

* The PCI unit can dessert frame_1 prior to delivering all data due to the master latency timer, If
this occurs, it resumes the write at the first opportunity, using the address of the first
undeliverable data.

Initiator Read Transactions

The following general rules apply to the read command transactions:

¢ If the PCI unit receives a target retry, it repeats the transaction at the first opportunity until the
whole transaction is completed.

¢ If the PCI unit receives a master abort, it substitutes OXFFFF FFFF for the read data and sets
the status register (PCI_CMD_STAT) received master abort bit, which, if enabled, interrupts
the XScale core.

¢ [f the PCI unit receives a target abort, it sets the status registers (PCI_CMD_STAT) received
target abort bit, which, if enabled, interrupts the XScale core and does not try to get any more
read data. PCI unit will substitute OxFFFF FFFF for the data which are not read and complete
the cycle.

Initiator Latency Timer
When the PCI unit begins PCI transaction as an initiator, asserting PCI_FRAME#, it begins to
decrement its master latency timer. When the timer value reaches zero, the PCI unit checks the

value of gnt 1[0]. If gnt 1[0] is de-asserted, the PCI unit de-asserts frame 1 (if it is still asserted) at
the earliest opportunity. This is normally the next data phase for all transactions.

Special Cycle

As an initiator, special cycles are broadcast to all PCI agents, so PCI_DEVSEL# will not be
received, and therefore no errors can be received.

PCI Fast Back to Back Cycles

The core supports fast back-to-back target cycles on the PCI Bus. The core does not generate
initiator fast back-to-back cycles on the PCI Bus regardless of the value in the fast back to back
enable bit of the Command and Status register in the PCI configuration space.
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PCl retry

As a slave, the PCI Unit generates retry on:
* A slave write when the Data write FIFO is full.
* When address FIFO is full

* Data read is handled as delay transactions.

As an initiator, the core supports retry by maintaining an internal counter of the current address. On
receiving a retry, the core de-asserts PciFrameN and then re-assert PciFrameN with the current
address from the counter.

PCI Disconnect

As a slave, it disconnects for the following conditions:
* Bursted PCI configuration cycle.
* Bursted access to PCI_CSR_BAR.
* PCI reads past the amount of data in the read FIFO.

* Crossing the 64-byte boundary on the SRAM and DRAM BAR (except on burst writes, where
the long-burst enable bit is set).

* PCI burst cycles that cross 1K PCI address boundary which includes PCI burst cycles that
cross memory decodes from the core as a target to decodes that are outside the core (e.g.
started inside a BAR and ends outside of that BAR).

As an initiator, the core supports retry and disconnect by maintaining an internal counter of the
current address. On receiving a retry or disconnect, the core de-asserts PCIFRAMEN# and then re-
assert PCIFRAMEN# with the current address +”current transfer byte size” from the counter.

PCI Built In System Test

The IXP2400 Network Processor supports BIST when there is an external PCI host. The PCI host
will set the STRT bit in the PCI CACHE LAT HDR_BIST configuration register. An interrupt is
generated to the XScale core if it is enabled by the XScale core Interrupt Enable Register. The
XScale software can respond to the interrupt by running an application specific test. Upon
successful completion of the test, the XScale core will reset the STRT bit. If this bit is not reset 2
seconds after the PCI host sets the STRT bit, the host will indicate that the IXP failed the test.

PCI Central Functions

The CFG_RST DIR pin is active high for enabling the PCI Unit central function.

The CFG_PCI_ARB(GPIO[2]) pin is the strap pin for the internal arbiter. When this strap pin is
high during reset then the PCI Unit owns the arbitration.

The CFG_PCI_BOOT_ HOST(GPIO[1]) pin is the strap pin for the PCI host. When
PCI_BOOT HOST is asserted during reset then PCI Unit will support as a PCI host.
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Table 131. Legal Combinations of the Strap Pin Options

9.2.111

9.2.11.2

9.2.11.3
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CFG_PCLHOST | CFG_PCLARB | CFG_RST_DIR |CFG-PROM_BOO
(GPIO[1]) (GPIOI[2]) (Central function) (GPIO[0])

ok 0 0 0 0

ok 0 0 0 1

ok 0 0 1 1

Not support 0 1 0 X

ok 0 1 1 !

Not support 1 0 0 X

ok 1 0 1 !

Not supported 1 1 0 X
ok 1 1 1 1

Note  * CFG_RST_DIR = 1 then central function.
* CFG_PCI_HOST must be central function.
* CFG_PCI_ARB must be central function.

PCI Interrupt Inputs

The PCI Unit supports two interrupt lines from the PCI Bus as host. One of the interrupt lines will
be open-drain output and input. The other interrupt line will be selected as PCI interrupt input.
Both the interrupt lines can be enabled in the XScale core Interrupt Enable Register.

PCI Reset Output

If the IXP2400 Network Processor is central function (CFG_RST DIR =1), PCI Unit will be
asserting the PCI_RST# after the system power-on. The XScale core has to write to the PCI
External Reset bit in the IXP Reset register to de-assert the PCI_RST#. In this case, chip reset
(SYS_RESET L) is driven by a signal other than PCI_RST#.

When the PCI Unit is not configured as the central function (CFG_RST DIR =0), PCI_RST# is
used as a chip reset input.

PCI Internal Arbiter

The PCI unit contains a PCI bus arbiter that supports two external masters in addition to the PCI
Unit’s initiator interface. To enable the PCI arbiter, the CFG_PCI_ARB(GPIO[2]) strapping pin
must be 1 during reset. As shown in Figure 104, the local bus request and grant pair become
externally not visible.
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Figure 104. PCI Arbiter Configuration Using CFG_PCI_ARB(GPIO[2])
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The arbiter uses a simple round-robin priority algorithm, The arbiter asserts the grant signal
corresponding to the next request in the round-robin during the current executing transaction on the
PCI bus (this is also called hidden arbitration). If the arbiter detects that an initiator has failed to
assert PCI_FRAME# after 16 cycles of both grant assertion and PCI bus idle condition, the arbiter
de-asserts the grant. That master does not receive any more grants until it de-asserts its request for
at least one PCI clock cycle. Bus parking is implemented in that the last bus grant will stay asserted
if no request is pending.

To prevent bus contention, if the PCI bus is idle, the arbiter never asserts one grant signal in the
same PCI cycle in which it de-asserts another, It de-asserts one grant, and then asserts the next
grant after one full PCI clock cycle has elapsed to provide for bus driver turnaround.

Slave Interface Block

The slave interface logic supports internal slave devices interfacing to the target port of the FBus.
* CSR—register access cycles to local CSRs.
* DRAM-—memory access cycles to the DRAM push/pull Bus.
* SRAM—memory access cycles to the SRAM push/pull Bus.

The slave port of the Fbus is connected to a 64 byte write buffer to support bursts of up to 64 bytes

to the memory interfaces. The slave read data are directly downloaded into the FBus read FIFO.
See Table 132.
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Table 132. Slave Interface Buffer Sizes

9.3.1

9.3.2

9.3.2.1

314

Location Slave Address Slave Write Slave Read
Buffer Depth 1 64Byte 0
Usage CSR, SRAM, DRAM SRAM, DRAM NONE

As a push/pull command bus master, the PCI Unit translates these accesses into different types of
push/pull command. As the push/pull data bus target, the write data is sent through the pull data
bus and the read data is received on the push data bus.

CSR Interface

The internal Control and Status registers data is directed to or from the Slave FIFO port of the PCI
core FBus when the BAR id matches PCI_CSR_BAR (BARO). The CSR accesses from the PCI
Bus directed towards CSRs not in PCI Unit is translated into a push/pull CSR type command. PCI
local CSRs are handled within the PCI Unit.

For writes, the data is sent when the pull bus is valid and the ID matches. The address is unloaded
from the FBus target address FIFO as indication to the PCI core logic that the cycle is completed.
The slave write buffer is not used for CSR access.

For reads, the data is loaded into the target receive FIFO as soon as the push bus is valid and the ID
matches. The address is unloaded from the FBus address FIFO.

One example of a PCI host access to internal registers is the initialization of internal registers and
memory to enable the XScale core to boot off the DRAM in the absence of a boot up PROM.

The accesses to the CSRs inside the PCI Unit are completed internally without sending the
transaction out to the push pull bus.

SRAM Interface

The SRAM interface connects the FBus to the internal push/pull command bus and the 32-bit
SRAM push/pull data buses. Request to memory is sent on the command bus. Data request is
received as valid push/pull ID sent by the SRAM push/pull data bus.

If the PCI_SRAM BAR is used, the target state machine generates a request to the command bus

for SRAM access. Once the grant is received, the address, then data is directed between the slave
FIFOs of the PCI core and the SRAM push/pull bus.

SRAM Slave Writes

The slave write buffer is used to support memory burst accesses. The buffer is added so that the
data transfer for each clock and burst size can be determined before a memory request is issued.
Data is assembled in the buffers before being sent to memory for SRAM write.

On the push/pull bus, SRAM access can start at any address and have length up to 16 Dwords as
shown in Figure 105. For masked writes, only size 1 is supported to transfer up to four bytes.
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Figure 105. Example of Target Write to SRAM of 68 bytes
Memory Transfer
Address Byte Enables  Size
0x0
PCl Bus Internal m 2 bytes
Byte Enables Bus Data
0x4
Eh 1111 Byte Lane l_/_) 1 o4 bytes
00000000 | ———> 1111
00000000 1111
00000000 1111
00000000 1111
00000000 1111
00000000 1111
00000000 1111
00000000 1111
11111100 | B 1111

9.3.2.2

1111
1111
1111
1111
1111
1111

Slave Write Burst to memory
Starting address = 0x2

2 bytes

B1480-01

The slave interface also has to make sure there is enough data in the slave write buffer to complete
the memory data transfer before making a memory request.

SRAM Slave Reads

For a slave read from SRAM, a 32 bit DWORD is fetched from the memory for memory read
command, one cache line is fetched for memory read line command, and two cache lines are read
for memory read multiple command. Cache line size is programmable in the CACHE LINE field
of the PCI_CACHE_LAT_HDR_BIST configuration register. If the computed read size is greater
than 64 bytes, the PCI SRAM read will default to the minimum of 8 bytes. No pre-fetch is
supported in that the PCI Unit will not read beyond the computed read size.

The PCI core resets the target read FIFO before issuing a memory read data request on FBus. The
maximum size of SRAM data read is 64 bytes. The PCI core will disconnect at the 64 byte address
boundary.
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9.3.3.1
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DRAM Interface

The memory is accessed using the push/pull mechanism. Request to memory is sent on the
command bus. If the PCI_ DRAM_BAR is used, the target state machine generates a request to the
command bus for DRAM access with the address in the slave address FIFO. Once the push/pull
request is received. The data is directed between the Slave FIFOs of the PCI core and DRAM push/
pull bus.

DRAM Slave Writes

The slave write buffer is used to support memory burst accesses. The buffer is added to guarantee
data transfer for each clock and burst size can be determined before memory request is issued. Data
is assembled in the buffers before being sent to memory for memory write.

DRAM target write access is only required to be 8-byte address aligned and the address does not
wrap around the 64-byte address boundary on a DRAM burst. Each 8-byte access which is a partial
write to the memory is treated as single write. Remaining writes of the 64-byte segment is written
as one single burst. Transfers which cross a 64 -byte segment are split in to separate transfers.
Figure 107 splits the 68 bytes transfers in to two partial 8-byte transfer to address 06 and address 48
and one 56 byte burst transfer in the first 64-byte segment from address 08 to 38 and one 8-byte
transfer to address 40.

For write to DRAM on the push/pull bus, the burst must be broken down into address aligned
smaller transfer sizes (see Figure 106).

The Target interface also must make sure there is enough data in the target write buffer to complete
the memory data transfer before making a memory request.
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Figure 106. Example of Target Write to DRAM of 68 bytes
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9.3.3.2 DRAM Slave Reads

For a target read from memory, the whole 64 byte is fetched from the DRAM in the case of system
using DDR memory technology. In the case of a DRAM system using RDRAM, the block size is
16 bytes. Depending on the address for the target request, extra data is discarded at the beginning
until the target address is reached. Also, extra data is discarded at the end of the transfer also when
the burst ends in the middle of a data block. No pre-fetch is supported for DRAM access. See

Figure 107.
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Figure 107. Example of Target Read from DRAM using 64-Byte Burst.

Memory Transfer Internal PCI Bus
Address  Byte Enables  Size Bus Data Address Byte Enables
0x08
ox0  [11111111] 64 byte 0000000}t
11111111 li 00000000
11111111 00000000
11111111 Byte Lane 00000000
11111111 - Swap 00000000
11111111 - 00000000
11111111 00000000
11111111
Disconnect
0x40
0x40 11111111 64 byte 00000000
11111111 00000000
11111111 J 11111100
11111111
11111111 Discard
11111111 Discard
11111111 -
Discard Slave Read Burst from memory
111111 Discard Starting address = 0x9
- Transfer Size - 73 bytes
Discard
A9770-01

The PCI core resets the read FIFO before issuing a memory read data request on FBus. The
maximum size of DRAM data read is 64 bytes. The PCI core will disconnect at the 64 byte address

boundary.

9.34 Mailbox and Doorbell Registers

318

Mailbox and Doorbell registers provide hardware support for communication between the XScale

core and a device on the PCI Bus.

Four mailbox registers are provided so that messages can be passed between the XScale ¢

ore and a

PCI device. All four registers are 32 bits and can be read and written from both the XScale core and
PCI. How the registers are used is application dependent and the messages are not used internally
by the PCI Unit in any way. The mailbox registers are often used with the Doorbell interrupts.

Doorbell interrupts provide an efficient method of generating an interrupt as well as enco

ding the

purpose of the interrupt. The PCI Unit supports an XScale core Doorbell register that is used by a

PCI device to generate an XScale core FIQ and a separate PCI Doorbell register that is us

ed by the

XScale core to generate a PCI interrupt. A source generating the Doorbell interrupt can write a
software defined bitmap to the register to indicate a specific purpose. This bitmap is translated into
a single interrupt signal to the destination (either a PCI interrupt or a IXP2400 Network Processor
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interrupt). When an interrupt is received, the Doorbell registers can be read and the bit mask can be
interpreted. If a larger bit mask is required than that is provided by the Doorbell register, the
Mailbox registers can be used to pass up to four 32 bits of data.

The doorbell interrupts are controlled through the registers shown in Table 133.

Table 133. Doorbell Interrupt Registers

Register Name Description

XScale core Doorbell Used to generate the XScale core Doorbell interrupts

XScale core Doorbell Used to initialize the XScale core Doorbell register and for diagnostics.

Setup
PCI Doorbell Used to generate the PCI Doorbell interrupts
PCI Doorbell Setup Used to initialize the PCI Doorbell register and for diagnostics.

The XScale core and PCI devices write to the corresponding DOORBELL register to generate up
to 32 doorbell interrupts. Each bit in the DOORBELL register is implemented as an SR flip-flop.
The XScale core writes a 1 to set the flip-flop and the PCI device writes a 1 to clear the flip-flop.
Writing a 0 has no effect on the registers. The PCI interrupt signal is the output of an NOR
functions of all the PCI DOORBELL register bits (outputs of the SR flip-flops). The XScale core
interrupt signal is the output of an NAND function of all the XScale core DOORBELL register bits
(outputs of the SR flip-flops).

To assert an interrupt (i.e. to “push a doorbell”):

* A write of 1 to the corresponding bit of the DOORBELL Register generates an interrupt. This
is the case for either PCI device or the XScale core, since writing 1 changes the doorbell bit to
the proper asserted state (i.e., 0 for an XScale core interrupt and 1 for a PCI interrupt).

To dismiss an interrupt:

* A write of 1 to the corresponding bit of the DOORBELL Register clears an interrupt. This is
the case for either PCI device or the XScale core, since writing 1 changes the doorbell bit to
the proper de-asserted state (i.e., 1 for an XScale core interrupt and 0 for a PCI interrupt).

Figure 108 and Figure 109 illustrates how a Doorbell interrupt is asserted and cleared by both the
XScale core and a PCI device.
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Figure 108. Generation of the Doorbell Interrupts to PCI
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Figure 109. Generation of the Doorbell Interrupts to the Intel® XScale® Core
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The Doorbell Setup register allows the XScale core and a PCI device to perform two functions that
are not possible using the Doorbell register. This register is used during setup and diagnostics and
is not used during normal operations. First, it allows the XScale core and PCI device to clear an
interrupt that it has generated to the other device. If the XScale core sets an interrupt to PCI device
using the Doorbell register, the PCI device is the only one that can use the Doorbell register to clear
the interrupt by writing one. With the Doorbell setup register, the XScale core can clear the
interrupt by write 0 to it.

Second, it allows the XScale core and PCI device to generate a doorbell interrupt to itself. This can

be used for diagnostic testing. Each bit in the Doorbell Setup register is mapped directly to the data
input of the Doorbell register such that the data is directly written into the Doorbell register.
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During system initialization, the doorbell registers must be initialized by clearing the interrupt bits
in the Doorbell register using the Doorbell Setup register by writing zeros to the PCI Doorbell
setup register and ones to the XScale core Doorbell setup register.

9.3.5 PCI Interrupt Pin

An external PCI interrupt can be generated in the following ways:
* The XScale core initiates a Doorbell interrupt XSCALE INT ENABLE.
* One or more of the DMA channels have completed the DMA transfers.
e The XS INT bit is set by XScale to generate a PCI Interrupt.
* Internal-unit-generated error or interrupt

* Watchdog interrupt

Figure 110 shows how PCI interrupts are managed via the PCI and the XScale core.

Figure 110. PCI Interrupts
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Table 134. Internal Unit Interrupt Directly to PCI Option

9.4

9.4.1

322

Stepping Description

The IRQ registers are in the XScale gasket; the PCI
does not have IRQ status information. If the XScale
gasket is in reset mode, the interrupt resources cannot
be handled by the PCI host.

A0, A1

The IRQ status registers are in both XScale gasket and
PCI.

If PCI_OUT_INT_MASK]|O] set to 1 then the PCI will
not pass the interrupt information to an external PCI.

If PCI_OUT_INT_MASK]JO] set to 0, the XScale gasket
is in reset mode. The interrupt resources can be
handled by the PCI host, PCI IRQ CSR.
PCI_OUT_INT_STATUSJO0] will collect all the different
unit interrupts from XScale_Interrupt_Status or
Xscale_Error_Status CSR to external PCI.

Add DRAM, SRAM, Slowport, ME interrupt to the
following CSR:

XScale Error Status (XSCALE_ERR_STATUS)
XScale Error Enable (XSCALE_ERR_ENABLE)
XScale Interrupt Status (XSCALE_INT_STATUS)
XScale Interrupt Enable (XSCALE_INT_ENABLE)

BO

Master Interface Block

The Master Interface consists of the DMA engine and the Push/pull target interface. Both can
generate initiator PCI transactions:

DMA Interface

There are three DMA channels, each of which can move blocks of data from DRAM to the PCI or
from the PCI to DRAM. The DMA channels read parameters from a list of descriptors in SRAM,
perform the data movement to or from DRAM, and stop when the list is exhausted. The descriptors
are loaded from predefined SRAM entries or may be set directly by CSR writes to DMA registers.
There is no restriction on byte alignment of the source address or the destination address. For PCI
to DRAM transfers, the PCI command is Memory Read, Memory Read line, or Memory Read
Multiple. For DRAM to PCI transfers, the PCI command is Memory Write. Memory Write
Invalidate is not supported.

DMA reads are unmasked reads (all byte enables asserted) from DRAM. After each transfer, the
byte count is decremented by the number of bytes read, and the source address is incremental by
one 64-bit double Dword. The whole data block is fetched from the DRAM. The DRAM read is
always 64-byte.

DMA reads are masked reads from the PCI and writes are masked for both the PCI and DRAM.
When moving a block of data, the internal hardware adjusts the byte enables so that the data is
aligned properly on block boundaries and that only the correct bytes are transferred if the initial
and final data requires masking.
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For DMA data, the DMA FIFO consists of separate FBus initiator read FIFO and initiator write
FIFO, which are inside the PCI Core and three DMA buffers (corresponding to the three DMA
channels), which is for buffering data to and from the DRAM. Since there is no simultaneous DMA
read and write outstanding, one shared 128-byte buffer is used for both read and write DRAM data

Up to three DMA channels are running at a time with three descriptors outstanding. The three
DMA channels and the direct access channel to PCI Bus from Command Bus Master are
contending to use the address, read and write FIFOs inside the Core.

Effectively, the active channels interleave bursts to or from the PCI Bus. Each channel is required
to arbitrate for the PCI FIFOs after each PCI burst request.

Allocation of the DMA Channels

Static allocation are employed such that the DMA resources are controlled exclusively by a single
device for each channel. The XScale core, a Microengine and the external PCI host can access the
three DMA channels. The first two channels can function in one of the following modes, as
determined by the DMA_INF_MODE register:

* The XScale core owns both DMA channel 1 and channel 2

* The Microengines own both DMA channelsl and channel 2

* PCI host owns both DMA channel 1 and channel 2

* The XScale core owns DMA channel 1 and the Microengines own DMA channel 2 (default).

The third channel can be allocated to either the XScale core, PCI host, or Microengines.

The DMA mode can be changed only by the XScale core under software control. The software
should signal to suspend DMA transactions and wait until all DMA channels are free before
changing the mode. Software should determine when all DMA channels are free either by polling
XSCALE _INT STATUS register bits DMA1, DMA2, and DMA3 until all three DMA channels
are done.

Special Registers for Microengine Channels

Interrupts are generated at the end of DMA operation for the XScale core and PCI initiated DMA.
However, the Microengine does not provide the interrupt mechanism. The PCI Unit will instead
use an “Auto-Push” mechanism to signal the particular Microengine on completion of DMA.

When the Microengine sets up the DMA channel, it would also write the CHAN X ME PARAM
with Microengine number, Context number, Register number, and Signal number. When the DMA
channel completes, it writes the contents of DMA control to the Microengine/Context/Register/
Signal. PCI Unit will arbitrate for the SRAM Push bus. The Push ID is from the parameters in the
register.

The ME_PUSH_STATUS reflects the DMA Done bit in each of the CHAN_X CONTROL
registers. The Auto-Push operation will proceed after the DMA is done for the particular DMA
channel if the corresponding enable bit in the ME_ PUSH ENABLE is set.

DMA Descriptor

Each descriptor occupies four 32 bit Dwords and is aligned on a 16 byte boundary. The DMA
channels read the descriptors from local SRAM into the four DMA working registers once the
control register has been set to initiate the transaction. This control must be set explicitly. This
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starts the DMA transfer. After a descriptor is processed, the next descriptor is loaded in the
working registers. This process repeats until the chain of descriptors is terminated (i.e., the End of
Chain bit is set). See Table 135.

Table 135. DMA Descriptor Format

9.4.14
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Offset from Descriptor Pointer Description
0x0 Byte Count
0x4 PCI Address
0x8 DRAM Address
0xC Next Descriptor Address

DMA Channel Operation

Since a PCI device, Microengine, or the XScale core can access the internal CSRs and memory in a
similar way, the DMA channel operation description that follows will apply to all channels.
CHAN 1 ,CHAN 2 ,or CHAN 3 can be placed before the name for the DMA registers.

The DMA channel owner can either set up the descriptors in SRAM or it can write the first
descriptor directly to the DMA channel registers.

When descriptors and the descriptor list are in SRAM, the procedure is as follows:

1.

6.

The DMA channel owner writes the address of the first descriptor into the DMA Channel
Descriptor Pointer register (CHAN_X DESC PTR).

The DMA channel owner writes the DMA Channel Control register (CHAN X CONTROL)
with miscellaneous control information and also sets the channel enable bit (bit 0). The
channel initial descriptor bit (bit 4) in the CHAN_ X CONTROL register must also be cleared
to indicate that the first descriptor is in SRAM.

. Depending on the DMA channel number, the DMA channel reads the descriptor block into the

corresponding DMA registers, CHAN X BYTE COUNT, CHAN X PCI_ADDR,
CHAN DRAM ADDR, and CHAN X DESC PTR.

. The DMA channel transfers the data until the byte count is exhausted, and then sets the

channel transfer done (bit 2) in the CHAN X CONTROL register.

. If the end of chain bit (bit 31) in the CHAN_ X BYTE COUNT register is clear, the channel

checks the Chain Pointer value. If the Chain Pointer value is not equal to 0. it reads the next
descriptor and transfers the data (step 3 and 4 above). IF the Chain Pointer value is equal to 0,
it waits for the Descriptor Added bit of the Channel Control Register to be set before reading
the next descriptor and transfers the data (step 3 and 4 above). If bit 31 is set, the channel sets
the channel chain done bit (bit 7) in the CHAN X CONTROL register and then stops.

Proceed to the Channel End Operation.

When single descriptors are written directly into the DMA channel registers, the procedure is as
follows:

1.

The DMA channel owner writes the descriptor values directly into the DMA channel registers.
The end of chain bit (bit 31) in the CHAN X BYTE COUNT register must be set, and the
value in the CHAN_ X DESC PTR register is not used. (If the end of chain bit is not set, the
CHAN_ X DESC PTR will point to the next description in a chain.)

The DMA channel owner writes the base address of the DMA transfer into the
CHAN_X PCI_ADDR to specify the PCI starting address.
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3. When the first descriptor is in the CHAN X BYTE COUNT register, the
CHAN X DRAM ADDR register must be written with the address of the data to be moved.

4. The DMA channel owner writes the CHAN X CONTROL register with miscellaneous
control information, along with setting the channel enable bit (bit 0). The channel initial
descriptor in register bit (bit 4) in the CHAN_X CONTROL register must also be set to
indicate that the first descriptor is already in the channel descriptor registers.

5. The DMA channel transfers the data until the byte count is exhausted, and then sets the
channel transfer done bit (bit 2) in the CHAN X CONTROL register.

6. Since the end of the chain bit (bit 31) in the CHAN X BYTE_ CONT register is set, the
channel sets the channel chain done bit (bit 7) in the CHAN X CONTROL register and then
stops.

7. Proceed to the Channel End Operation.

DMA Channel End Operation

1. Channel owned by PCI
If not masked via the PCI Outbound Interrupt Mask register, the DMA channel interrupts the
PCI host after the setting of the DMA done bit in the CHAN_ X CONTROL register, which is
readable in the PCI Outbound Interrupt Status register.

2. Channel owned by the XScale core
If enabled via the XScale core Interrupt Enable registers, the DMA channel interrupts the
XScale core by setting the DMA channel done bit in the CHAN X CONTROL register,
which is readable in the XScale core Interrupt Status register.

3. Channel owned by Microengine
If enabled via the Microengine Auto-Push Enable registers, the DMA channel signals the
Microengine after setting the DMA channel done bit in the CHAN X CONTROL register,
which is readable in the Microengine Auto-Push Status register.

Adding Descriptor to an Unterminated Chain

It is possible to add a descriptor to a chain while a channel is running. To do so the chain should be
left un-terminated, that is the last descriptor should have End of Chain clear, and the Chain Pointer
value equal to 0. A new descriptor (descriptors) can be added to the chain by overwriting the Chain
Pointer value of the un-terminated descriptor (in SRAM) with the Local Memory address of the
(first) added descriptor (Note that the added descriptor must actually be valid in Local Memory
prior to that). After updating the Chain Pointer field, the software must write a 1 to the Descriptor
Added bit of the Channel Control Register. This is necessary for the case where the channel was
paused in order to re-activate the channel. However, software need not check the state of the
channel before writing that bit; there is no side-effect of writing that bit in the case where the
channel had not yet read the unlinked descriptor.

If the channel was paused or had read an unlinked Pointer, it will re-read the last descriptor
processed (i.e. the one that originally had the zero value for Chain Pointer) to get the address of the

newly added descriptor.

A descriptor can not be added to a descriptor which has End of Chain set.
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DRAM to PCI Transfer

For a DRAM-to-PClI transfer, the DMA channel reads data from DRAM and places it into the
DMA buffer for transfer to the FBus FIFO when the following conditions are met:

* There is at least free space for a read block in the buffer.
¢ The DRAM controller issues data valid on DRAM push data bus to the DMA engine.

* DMA transfer is not done.

Before data is stored into the DMA buffer, the DRAM starting address is evaluated. Extra data will
be discarded in case the DRAM starting address does not start at aligned addresses. The lower
address bits determine the byte enables for the first data double Dword. At the end of the DMA
transfer, extra data will be discarded and byte enables are calculated for the last 64 bit double
Dword. After the data is loaded into the buffer, the PCI starting address is evaluated and the buffer
is shifted byte wise to align the starting DRAM data with the starting PCI starting address.

A 64 bit double Dword with byte enables is pushed into the FBus FIFO from the DMA buffers as
soon as there is data available in the buffer and there is space in the Fbus FIFO. The Core logic will
transfer the exact number of bytes to the PCI Bus.

PCIl to DRAM Transfer

The DMA channel issues a sequence of PCI read request commands through the FBus address
FIFO to read the precise byte count from PCI.

The DMA engine will continue to load the DMA write buffer with FBus FIFO data as soon as data
is available.

The DMA engine determines the largest size of memory request possible with the current DRAM
address and remaining byte count. It also has to make sure there is enough data in the write buffer
before sending the memory request.

Table 136. PClI Maximum Burst Size

9.4.2
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Stepping Description

The maximum burst size on the PCI Bus is always 64

IXP2400 AO/A1
bytes.

The maximum burst size on the PCI Bus is a 64-bytes
if the PCI_LONG_EN bit is not set.

If DMA Control (CHAN_1:3_CONTROL) register for
DMA long burst enable is set, the PCI will continue
IXP2400 BO burst DMA as long as data is available from the FIFO.
If the PCI_CONTROL register for Target Write long
burst enable is set, the PCI Target will continue to burst
as long as data is available from the FIFO.

PCI Target read will not support long burst.

Push/Pull Command Bus Target Interface

Through the command bus target interface, the command bus masters (PCI, XScale core, and
Microengines) can access the PCI Unit internal registers including the local PCI configuration
registers and the local PCI Unit CSRs. Also, the Microengine and the XScale core can issue
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transactions on the PCI bus. The requests are generated from the command master to the command
bus arbiter. The arbiter selects a master and sends it a grant. That master then sends a command,
which is passed through by the arbiter.

PCI Unit will issue the push and pull data responses to the SRAM push/pull data buses. When the
read command is received, the PCI Unit will issue the push data request on the SRAM push data
bus. When the write command is received, PCI Unit will issue the pull command on the SRAM
pull data bus.

Command Bus Master Access to Local
Configuration Registers

The configuration register within the PCI unit can be accessed by push/pull command bus access to
configuration space through the FBus interface of the PCI core. When the IXP2400 Network
Processor is a PCI host, these registers have to be accessed through this internal path and no PCI
bus cycle will be generated.

Command Bus Master Access to Local
Control and Status Registers

These are CSRs within the PCI Unit that are accessible from push/pull bus masters. The masters
include the XScale core, Microengines. There is no PCI bus cycles generated. The CSRs within the
PCI Unit can be accessed internally by external PCI devices.

Command Bus Master Direct Access to PCI Bus

The XScale core and Microengines are the only command bus masters that have direct access to
the PCI bus as a PCI Bus initiator. The PCI Bus can be accessed by push/pull command bus access
to PCI bus address space. The PCI Unit will share the internal SRAM push/pull data bus with
SRAM for the data transfers.

The data from the SRAM push/pull data bus are transferred through the master data port of the
FBus interface of the PCI core. The PCI Core will handle all the PCI Bus protocol handshakes. The
SRAM pull data received for a write command will be transferred to the Master write FIFO for PCI
writes. For PCI reads, data is transferred from the read FIFO to the SRAM push data bus. A 32 byte
Direct buffer is used to support up to 32 byte of data responses to the direct access to PCI Bus.

The Command Bus Master access to PCI bus will require internal arbitration to gain access to the
data FIFOs inside the core, which are shared between the DMA engine and direct access to PCI.

PCI Address Generation for |0 and MEM cycles

When push/pull command bus master is accessing the PCI Bus, the PCI address is generated based
on the PCI address extension register (PCI_ADDR_EXT). Figure 111 shows how the address is
generated from a Command Bus Master address.
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Figure 11

1. PCI Address Generation for Command Bus Master to PCI

3
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1 2928 2 10
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PCI Address for PCI
Memory Accesses
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PIOADD PMSA RES Register
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PIGADD Intel XScale® Core /0 | PCI Address for
/ME Address[15:2] [1:0]| PCI /O Accesses
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B2865-01

9.4.2.3.2

PCI Address Generation for Configuration cycles

When a push/pull command bus master is accessing the PCI Bus to generate a configuration cycle,
the PCI address is generated based on the a Command Bus Master address as shown in Table 137
and Figure 112:

Table 137. Command Bus Master Configuration Transactions

Cycle Result
Type 1 Configuration Cycle Command Bus address bits [31:24] are equal to OxDA
Type 0 Configuration Cycle Command Bus address bits [31:24] are equal to OxDB.

Figure 112. PCl Address Generation for Command Bus

9.4.2.3.3

9.4.2.3.4
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Master to PCI Configuration Cycle

31 2423 21 0

0000 0000 XScale® Address[23:2] 00

PCI Address Generation for Special and IACK cycles

The PCI address is undefined for special and IACK PCI cycles

PCI Enables

The PCI byte enables are generated based on the Command Bus Master instruction and the PCI

unit does not change the states of the enables. The XScale core doesn’t generate byte enables for
reads; XScale-to-PCI, memory or 10 reads require that all byte enables be active.
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The PCI command is derived from the Command Bus Master address space map. The different
spaces supported are listed in Table 138:

Command Bus Master Address Space Map to PCI

PCI Command

Intel® XScale® Core Address Space

PCI Memory

0xE000 0000 to OxFFFF FFFF

Local CSR

0xDF00 0000 to OXDFFF FFFF

Local Configuration Register

0xDEOO 0000 to OXDEFF FFFF

PCI Special Cycle/PCI IACK Read

0xDC00 0000 to OXDDFF FFFF

PCI Type 1 Configuration Cycle

0xDBO00 0000 to OxDBFF FFFF

PCI Type 0 Configuration Cycle

0xDA00 0000 to OXDAFF FFFF

PCI /O

0xD800 0000 to OxD8FF FFFF

9.5

9.5.1

9.5.1.1

9.5.1.2

9.5.1.3

PCI Unit Error Behavior

PCI Target Error Behavior

Target Access Has an Address Parity Error

1. If PCI_ CMD_STAT[PERR RESP] is not set, PCI Unit will ignore the parity error.

2. IfPCI_CMD_STAT[PERR_RESP] is set:

a. PCI core will not claim the cycle regardless of internal device select signal.

b. PCI core will let the cycle terminate with master abort.

c. PCI core will not assert PCI_SERR#

o

core if enabled

Initiator Asserts PCI_PERR# in Response to One of Our

Data Phases

1. Core does nothing

2. Responsibility lies with the initiator to discard data, report this to the system, etc.

Discard Timer Expires on a Target Read

. PCI unit discards the read data,

1
2. PCI Unit invalidates the delayed read address

3. PCI Unit sets Discard Timer Expired bit (DTX) in the PCI CONTROL.
4. If enabled (XSCALE INT ENABLE [DTE]), the PCI unit interrupts the XScale core.
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Target Access to the PCI_CSR_BAR
Space Has lllegal Byte Enables

The acceptable byte enables are BE[3:0] = 0x0 or OxF.
1. Slave Interface will sets PCI CONTROL[TGT CSR_BE]

2. Slave Interface will issue target abort for target read and drop the transaction for target write.

Target Write Access Receives Bad
Parity PCI_PAR With the Data
1. If PCI CMD_STAT[PERR RESP] is not set, PCI Unit will ignore the parity error.
2. If PCI_CMD_STAT[PERR RESP] is set:
a. core asserts PCI_PERR# and sets PCI_ CMD_STAT[PERR].

b. Slave Interface sets PCI CONTROL[TGT WR_PAR], which will interrupt the XScale
core if enabled.

c. Data is discarded

SRAM Responds With a Memory Error on One or More
Data Phases on a Target Read

1. Slave Interface sets PCI CONTROL[TGT SRAM _ERR], which will interrupt the XScale
core if enabled

2. Assert PCI Target Abort at or before the data in question is driven on PCI.

DRAM Responds With a Memory Error on One or More Data
Phase on a Target Read

1. Slave Interface sets PCI CONTROL[TGT DRAM _ ERR], which will interrupt the XScale
core if enabled.

2. Slave Interface asserts PCI Target Abort at or before the data in question is driven on PCIL.

As a PCI Initiator During a DMA Transfer

DMA Read From DRAM (Memory-to-PCIl Transaction)
Gets a Memory Error
1. Set PCI_ CONTROL[DMA DRAM ERR] which will interrupt the XScale core if enabled.

2. Master Interface terminates transaction before bad data is transferred (okay to terminate
earlier)

3. Master Interface clears the Channel Enable bit in CHAN_ X CONTROL.
4. Master Interface sets DMA channel error bitin CHAN X CONTROL.

5. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer pointing to
the DMA descriptor of the failed transfer.
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6. Master Interface resets the state machines and DMA buffers

9.5.2.2 DMA Read From SRAM (Descriptor Read)
Gets a Memory Error
1. Set PCI CONTROL[DMA SRAM_ERR] which will interrupt the XScale core if enabled.
2. Master Interface clears the Channel Enable bit in CHAN_ X CONTROL.
3. Master Interface sets DMA channel error bit in CHAN_X CONTROL.
4

. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer pointing to
the DMA descriptor of the failed transfer.

5. Master Interface resets the state machines and DMA buffers

9.5.2.3 DMA From DRAM Transfer (Write to PCI)
Receives PCI_PERR# on PCI Bus
1. If PCI_ CMD_STAT[PERR_RESP] is not set, PCI Unit will ignore the parity error.
1. IfPCI CMD_STAT[PERR RESP] is set:

a. Master Interface sets PCI CONTROL[DPE] which will interrupt the XScale core if
enabled

b. Master Interface clears the Channel Enable bit in CHAN X CONTROL.
c. Master Interface sets DMA channel error bit in CHAN X CONTROL.

d. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer
pointing to the DMA descriptor of the failed transfer.

e. Master Interface resets the state machines and DMA buffers

f. Core sets PCI CMD_STAT[PERR] if properly enabled

9.5.24 DMA To DRAM (Read from PCI) Has Bad Data Parity

1. If PCI_CMD_STAT[PERR RESP] is not set, PCI Unit will ignore the parity error.
2. if PCI_ CMD_STAT[PERR_RESP] is set:
a. Core asserts PCI_PERR# on PCI if PCI CMD STAT[PERR RESP] is set

b. Master Interface sets PCI_CONTROL[DPED] which can interrupt the XScale core if
enabled.

c. Master Interface clears the Channel Enable bit in CHAN_X CONTROL.
d. Master Interface sets DMA channel error bit in CHAN X CONTROL.

e. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer
pointing to the DMA descriptor of the failed transfer.

f. Master Interface resets the state machines and DMA buffers
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DMA Transfer Experiences a Master Abort
(Time-Out) on PCI

That is, nobody asserts DEVSEL during the DEVSEL window.
1. Master Interface sets PCI_ CONTROL[RMA] which will interrupt the XScale core if enabled.
2. Master Interface clears the Channel Enable bit in CHAN X CONTROL.
3. Master Interface sets DMA channel error bit in CHAN_X CONTROL.
4

. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer pointing to
the DMA descriptor of the failed transfer.

5. Master Interface resets the state machines and DMA buffers

DMA Transfer Receives a Target Abort Response
During a Data Phase
1. Core terminates the transaction.
2. Master Interface sets PCI_CONTROL[RTA] which can interrupt the XScale core if enabled.
3. Master Interface clears the Channel Enable bit in CHAN X CONTROL.
4. Master Interface sets DMA channel error bit in CHAN X CONTROL.

5. Master Interface does not reset the DMA CSRs; This leaves the descriptor pointer pointing to
the DMA descriptor of the failed transfer.

6. Master Interface resets the state machines and DMA buffers

DMA Descriptor Has a 0x0 Word Count (Not an Error)

1. No data is transferred

2. Descriptor is retired normally.

As a PClI Initiator During a Direct
Access from the Intel® XScale® Core or Microengine

Master Transfer Experiences a Master Abort
(Time-Out) on PCI

1. Core aborts the transaction

2. Master Interface sets PCI_ CONTROL[RMA] which will interrupt the XScale core if enabled.

Master Transfer Receives a Target Abort Response
During a Data Phase

1. Core aborts the transaction.

2. Master Interface sets PCI_CONTROL[RTA] which will interrupt the XScale core if enabled.
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Master from the Intel® XScale® Core or Microengine Transfer
(Write to PCI) Receives PCI_PERR# on PCI bus
1. If PCI_ CMD_STAT[PERR_RESP] is not set, PCI Unit will ignore the parity error.
2. If PCI_CMD_STAT[PERR RESP] is set:
a. Core sets PCI_ CMD_STAT[PERR]

b. Master Interface sets PCI_CONTROL[DPE] which will interrupt the XScale core if
enabled.

Master Read From PCI (Read from PCI)
Has Bad Data Parity
1. If PCI_CMD_STAT[PERR RESP] is not set, PCI Unit will ignore the parity error.
2. If PCI_CMD_STAT[PERR RESP] is set:
a. Core asserts PCI_PERR# on PCI

b. Master Interface sets PCI_ CONTROL[DPED] which will interrupt the XScale core if
enabled.

c. Data that has been read from PCI is sent to the XScale core or Microengine.

Master Transfer Receives PCI_SERR# from the PCI Bus

Master Interface sets PCI_CONTROL[RSERR] which will interrupt the XScale core if enabled.

Intel® XScale® Core Microengine Requests Direct
Transfer When the PCI Bus is in Reset

Master Interface will complete the transfer and drop the write data and return all ones on the read
data.

PCI Data Byte Lane Alignment

During any endian conversion, the PCI doesn’t need to do any long word swapping between two 32
bits long words (LW 1, LWO0). But the PCI may need to do byte swapping within the 32 bits long
word. Because of the different endian convention between PCI Bus and the memory, all data going
between the PCI core FIFO and memory data bus passes through the byte lane reversal as shown in
Table 139 through Table 146:

PCl is allow to do byte enable swapping only without the data swapping or allow data swapping
only without byte enable swapping. When the PCI handle the mis-aligned data in the above two
cases, PCI will only care about valid data. So the PCI will drive any data values for those mis-
aligned and invalid data portions.
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Table 139. Byte Lane Alignment for 64 bit PCI Data In
(64 bits PCI little endian to big endian with Swap)

intel.

PCI Data IN[63:56] IN[55:48] | IN[47:40] | IN[39:32] | IN[31:24] | IN[23:16] IN[15:8] IN[7:0]
OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24] | OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24]
SRAM Data Long Word1 (32 bits) Long WordO (32 bits)
LW1 drive after LWO LWO drive first
DRAM Data | OUT[39:32] | OUT[47:40] | OUT[55:48] | OUT[63:56] | OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24]
Table 140. Byte Lane Alignment for 64 bit PCI Data In
(64 bits PCI big endian to big endian without Swap)
PCI Data IN[39:32] | IN[47:40] | IN[55:48] | IN[63:56] IN[7:0] IN[15:8] IN[23:16] | IN[31:24]
OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24] | OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24]
SRAM Data
Long Word1 (32 bits) Long Word0 (32 bits)
LW1 drive after LWO LWO drive first
DRAM Data | OUT[39:32] | OUT[47:40] | OUT[55:48] | OUT[63:56] | OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24]
Table 141. Byte Lane Alignment for 32 bit PCI Data In
(32 bits PCI little endian to big endian with Swap)
PCI Add[2]=1 PCI Add[2]=0
Long Word1 (32 bits) Long WordO0 ((32 bits)
LW1 drive after LWO LWO drive first
PCl Data IN[31:24] IN[23:16] IN[15:8] IN[7:0] IN[31:24] | IN[23:16] | IN[15:8] IN[7:0]
OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24] | OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24]
SRAM Data
Long Word1 (32 bits) Long WordO ((32 bits)
LW1 drive after LWO LWO drive first
DRAM Data | OUT[39:32] | OUT[47:40] | OUT[55:48] | OUT[63:56] | OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24]
Table 142. Byte Lane Alignment for 32 bit PCI Data In
(32 bits PCI big endian to big endian without Swap)
PCI Add[2]=1 PCI Add[2]=0
Long Word1 (32 bits) Long Word0 ((32 bits)
LW1 drive after LWO LWO drive first
PCI Data IN[7:0] IN[15:8] IN[23:16] | IN[31:24] IN[7:0] IN[15:8] IN[23:16] IN[31:24]
OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24] | OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24]
SRAM Data Long Word1 (32 bits) Long WordO (32 bits)
LW1 drive after LWO LWO drive first
direct map
PClto IN[7:0] IN[15:8] IN[23:16] | IN[31:24] IN[7:0] IN[15:8] IN[23:16] IN[31:24]
DRAM
DRAM Data | OUT[39:32] | OUT[47:40] | OUT[55:48] | OUT[63:56] | OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24]
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Table 143. Byte Lane Alignment for 64 bit PCI Data Out
(big endian to 64 bits PCI little endian with Swap)
IN[7:0] IN[15:8] IN[23:16] | IN[31:24] IN[7:0] | IN[15:8] IN[23:16] | IN[31:24]
SRAM Data Long Word1 (32 bits) Long Wordo (32 bits)
LW1 drive after LWO LWO drive first
DRAM Data | IN[39:32] | IN[47:40] | IN[55:48] | IN[63:56] IN[7:0] IN[15:8] IN[23:16] | IN[31:24]
PCI Side OUTI[63:56] | OUT[55:48] | OUT[47:40] | OUT[39:32] | OUT[31:24] | OUT[23:16] | OUT[15:8] | OUT[7:0]
Table 144. Byte Lane Alignment for 64 bit PCI Data Out
(big endian to 64 bits PCI big endian without Swap)
SRAM Data |  IN[7:0] IN[15:8] IN[23:16] | IN[31:24] IN[7:0] IN[15:8] IN[23:16] | IN[31:24]
Long Word1 (32 bits) Long Word0 ((32 bits)
LW1 drive after LWO LWO drive first
DRAM Data | IN[39:32] | IN[47:40] | IN[55:48] | IN[63:56] IN[7:0] IN[15:8] IN[23:16] | IN[31:24]
gi‘;ﬁ;gaR%M IN[7:0] IN[15:8] IN[23:16] | IN[31:24] IN[7:0] IN[15:8] IN[23:16] | IN[31:24]
PCI Side OUT[39:32] | OUT[47:40] | OUT[55:48] | OUT[63:56] | OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24]
Table 145. Byte Lane Alignment for 32 bit PCI Data Out
(big endian to 32 bits PCI little endian with Swap)
SRAM Data IN[7:0] IN[15:8] IN[23:16] | IN[31:24] IN[7:0] IN[15:8] IN[23:16] | IN[31:24]
Long Word1 (32 bits) Long WordO0 ((32 bits)
LW1 drive after LWO LWO drive first
DRAM Data | IN[39:32] IN[47:40] | IN[55:48] | IN[63:56] IN[7:0] IN[15:8] IN[23:16] | IN[31:24]
PCI Data OUT[31:24] | OUT[23:16] | OUT[15:8] | OUT[7:0] | OUT[31:24] | OUT[23:16] | OUT[15:8] | OUT[7:0]
Long Word1 (32 bits) Long Word0 ((32 bits)
LW1 drive after LWO LWO drive first
PCI Add[2]=1 PCI Add[2]=0
Table 146. Byte Lane Alignment for 32 bit PCI Data Out
(big endian to 32 bits PCI big endian without Swap)
SRAM Data IN[7:0] IN[15:8] IN[23:16] IN[31:24] IN[7:0] IN[15:8] IN[23:16] IN[31:24]
Long Word1 (32 bits) Long Word0 ((32 bits)
LW1 drive after LWO LWO drive first
DRAM Data | IN[39:32] | IN[47:40] | IN[55:48] IN[63:56] IN[7:0] IN[15:8] IN[23:16] IN[31:24]
PCI Data OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24] | OUT[7:0] | OUT[15:8] | OUT[23:16] | OUT[31:24]
Long Word1 (32 bits) Long Word0 ((32 bits)
LW1 drive after LWO LWO drive first
PCI Add[2]=1 PCI Add[2]=0
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The BE DEI bit of the PCI CONTROL register can be set to enable big endian on the incoming
data from the PCI Bus to both the SRAM and DRAM. The BE_DEO bit of the PCI_ CONTROL

register can be set to enable big endian on the outgoing data to the PCI Bus from both the SRAM
and DRAM.

9.6.1 Endian for Byte Enable

During any endian conversion, PCI do not need to do any long word byte enable swapping between
two 32 bits long words(LW 1, LWO0). But PCI may need to do byte enable swapping within the 32
bits long word byte enable. Because of the different endian convention between PCI Bus and the
memory, all data going between the PCI core FIFO and memory data bus passes through the byte
lane reversal as shown in Table 147 through Table 154:

Table 147. Byte Enable Alignment for 64 bit PCI Data In
(64 bits PCI little endian to big endian with Swap)

PCI Data IN_BE[7] | IN_BE[6] | IN_BE[5] | IN_BE[4] | IN_BE[3] | IN_BE[2] | IN_BE[1] | IN_BE[0]

OUT_BE[3] | OUT_BE[2] | OUT_BE[1] | OUT_BE[0] | OUT_BE[0] | OUT_BE[1] | OUT_BE[2] | OUT_BE[3]

SRAM Data Long Word1byte enable Long Word0 byte enable
LW1 byte enable drive after LWO byte enable LWO byte enable drive first

DRAM Data | OUT_BE[4] | OUT_BE[5] | OUT_BE[6] | OUT_BE[7] | OUT_BE[0] | OUT_BE[1] | OUT_BE[2] | OUT_BE[3]

Table 148. Byte Enable Alignment for 64 bit PCI Data In
(64 bits PCI big endian to big endian without Swap)

PCI Data IN_BE[4] | IN_BE[5] | IN_BE[6] | IN_BE[7] | IN_BE[0] | IN_BE[] | IN_BE[2] | IN_BE[3]

OUT_BE[0] | OUT_BE[1] | OUT_BE[2] | OUT_BE[3] | OUT_BE[0] | OUT_BE[1] | OUT BE[2] | OUT_BEJ[3]

SRAM Data Long Word1byte enable Long Word0 byte enable
LW1 byte enable drive after LWO byte enable LWO byte enable drive first

DRAM Data | OUT BE[4] | OUT_BE[5] | OUT_BE[6] | OUT_BE[7] | OUT_BE[0] | OUT_BE[1] | OUT_BE[2] | OUT_BE[3]

Table 149. Byte Enable Alignment for 32 bit PCI Data In
(32 bits PCI little endian to big endian with Swap)

PCI Add[2]=1 PCI Add[2]=0
Long Word1byte enable Long WordO byte enable
LW1 byte enable drive after LWO byte enable LWO byte enable drive first
PCI Data IN_BEI[3] IN_BE[2] IN_BE[1] IN_BE[0] IN_BEI[3] IN_BE[2] IN_BE[1] IN_BE[0]
OUT_BE[0] | OUT_BE[1] | OUT_BE[2] | OUT_BE[3] | OUT_BE[0] | OUT_BE[1] | OUT_BE[2] | OUT_BE[3]
SRAM Data
Long Word1byte enable Long WordO0 byte enable
LW1 byte enable drive after LWO byte enable LWO byte enable drive first

DRAM Data | OUT_BE[4] | OUT_BE[5] | OUT BE[6] | OUT BE[7] | OUT_BE[0] | OUT_BE[1] | OUT_BE[2] | OUT_BE[3]
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Table 150. Byte Enable Alignment for 32 bit PCI Data In
(32 bits PCI big endian to big endian without Swap)
PCI Add[2]=1 PCI Add[2]=0
Long Word1byte enable Long Word0 byte enable
LW1 byte enable drive after LWO byte enable LWO byte enable drive first
PCI Data IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]
SRAM Data OUT_BE[0] | OUT_BE[1] | OUT_BE[2] | OUT_BE[3] | OUT_BE[0] | OUT_BE[1] | OUT_BE[2] | OUT_BE[3]
Long Word1byte enable Long WordO byte enable
LW1 byte enable drive after LWO byte enable LWO byte enable drive first
direct map
PCI to IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]
DRAM
DRAM Data | OUT_BE[4] | OUT_BE[5] | OUT_BE[6] | OUT_BE[7] | OUT_BE[0] | OUT_BE[1] | OUT_BE[2] | OUT_BE[3]
Table 151. Byte Enable Alignment for 64 bit PCI Data Out
(big endian to 64 bits PCI little endian with Swap)
IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3] IN_BE[0] l IN_BE[1] IN_BE[2] IN_BE[3]
SRAM Data Long Word1byte enable Long Word0 byte enable
LW1 byte enable drive after LWO byte enable LWO byte enable drive first
DRAM Data | IN_BE[4] IN_BE[5] IN_BE[6] IN_BE[7] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]
PCI Side OUT_BE[7] | OUT_BE[6] | OUT_BE[5] | OUT_BE[4] | OUT_BE[3] | OUT_BE[2] | OUT_BE[1] | OUT_BE[0]
Table 152. Byte Enable Alignment for 64 bit PCI Data Out
(big endian to 64 bits PCI big endian without Swap)
SRAM Data | IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]
Long Word1byte enable Long Word0 byte enable
LW1 byte enable drive after LWO byte enable LWO byte enable drive first
DRAM Data | IN_BE[4] IN_BE[5] IN_BE[6] IN_BE[7] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]
PCI Side OUT_BE[4] | OUT_BE[5] | OUT_BE[6] | OUT_BE[7] | OUT_BE[0] | OUT_BE[1] | OUT_BE[2] | OUT_BE[3]
Table 153. Byte Enable Alignment for 32 bit PCI Data Out
(big endian to 32 bits PCI little endian with Swap)
SRAM Data IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]
Long Word1byte enable Long Word0 byte enable
LW1 byte enable drive after LWO byte enable LWO byte enable drive first
DRAM Data IN_BE[4] IN_BE[5] IN_BE[6] IN_BE[7] IN_BE[0] IN_BE[1] IN_BE[2] IN_BE[3]
PCI Data OUT_BE[3] | OUT_BE[2] | OUT_BE[1] | OUT_BE[0] | OUT_BE[3] | OUT_BE[2] | OUT_BE[1] | OUT_BE[0]
Long Word1byte enable Long WordO byte enable
LW1 byte enable drive after LWO byte enable LWO byte enable drive first
PCI Add[2]=1 PCI Add[2]=0
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Table 154. Byte Enable Alignment for 32 bit PCI Data Out
(big endian to 32 bits PCI big endian without Swap)

SRAM Data | IN_BE[0] | IN_BE[1] | IN_BE[2] | IN_BE[3] | IN_BE[0] | IN_BE[1] | IN_BE[2] | IN_BE[3]

Long Word1byte enable Long Word0 byte enable
LW1 byte enable drive after LWO byte enable LWO byte enable drive first

DRAM Data | IN_BE[4] | IN_BE[5] | IN_BE[6] | IN_BE[7] | IN_BE[0] | IN_BE[1] | IN_BE[2] | IN_BE[3]

PCI Data OUT_BE[0] | OUT_BEJ[1] | OUT_BE[2] | OUT_BE[3] | OUT_BE[0] | OUT_BE[1] | OUT_BE[2] | OUT_BE[3]
Long Word1 byte enable Long Word0 byte enable
LW1 byte enable drive after LWO byte enable LWO byte enable drive first
PCI Add[2]=1 PCI Add[2]=0

Table 155. PCI I/O Cycles Generate Data Swap Enable Option

Stepping Description
AO. A1 PCI 1/O cycle is treateq like a CSR, \A{here the data! bytgs are not swe_lpped; it will be sent in the
’ same byte order even if the PCI bus is configured in Big or Little endian mode.
When PCI Control (PCI_CONTROL) CSR bit 17 IEE is 0, then it will be sent in the same byte
order even if the PClI bus is configured in Big or Little endian mode.
When PCI Control (PCI_CONTROL) CSR bit 17 IEE is 1, then PCI 10 data will follow the same
memory space-swapping rule. The address always follows the physical location, for example:
BEs swapped (1 byte access) BEs not swapped (1 byte access)
ad[1:0] BE3 BE2 BE1 BEO ad[1:0] BE3 BE2 BE1 BEO
0 0 1 1 1 0 11 0 1 1 1
0 1 1 1 0 1 10 1 0 1 1
10 1 0 1 1 0 1 1 1 0 1
11 0 1 1 1 00 1 1 1 0
BEs swapped (2 byte access) BEs not swapped (2 byte access)
BO ad[1:0] BE3 BE2 BE1 BEO ad[1:0] BE3 BE2 BE1 BEO
0 0 1 1 0 0 10 0 0 1 1
0 1 1 0 0 1 0 1 1 0 0 1
10 0 0 1 1 00 1 1 0 0
BEs swapped (3 byte access) BEs not swapped (3 byte access)
ad[1:0] BE3 BE2 BE1 BEO ad[1:0] BE3 BE2 BE1 BEO
0 0 1 0 0 0 0 1 0 0 0 1
0 1 0 0 0 1 00 1 0 0 0
BEs swapped (4 byte access) BEs not swapped (4 byte access)
ad[1:0] BE3 BE2 BE1 BEO ad[1:0] BE3 BE2 BE1 BEO
0 0 0 0 0 0 00 0 0 0 0

The BE_BEI bit of the PCI_CONTROL register can be set to enable big endian on the incoming
byte enable from the PCI Bus to both the SRAM and DRAM. The BE BEO bit of the
PCI_CONTROL register can be set to enable big endian on the outgoing byte enable to the PCI
Bus from both the SRAM and DRAM.
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9.7 PCI Strap Pins Options

Table 156. PCI Strap Pins

PCI Unit

Signal

Name

Description

CFG_RST_DIR

PCFO

PCI central function pin:
1: IXP is supporting central function
0: IXP is non central function

CFG_PCI_ARB

PCF1

PCI Internal Arbiter pin:1—IXP2400 internal arbiter is used
» PCI_Host must be central function.
» PCI_Arbiter must be central function.

CFG_PROM_BOOT

PCF2

PCI Prom Boot pin:
1—IXP will boot from PROM
0—IXP will boot from DRAM initialized by PCI Host.

CFG_PCI_BOOT_HOST

PCF3

PCI Prom Boot pin:

1—IXP will configure the PCI system

0—The external host will configure the PCI system.
» PCI_Host must be central function.

» PCI_Arbiter must be central function.

CFG_PCI_SWIN[1:0]

SWIN

SRAM BAR Window

11: SRAM BAR size of 256 Mbyte
10: SRAM BAR size of 128 Mbyte
01: SRAM BAR size of 64 Mbyte
00: SRAM BAR size of 32 Mbyte

CFG_PCI_DWIN[1:0]

DWIN

DRAM BAR Window

11: SRAM BAR size of 1024 Mbyte
10: SRAM BAR size of 512 Mbyte
01: SRAM BAR size of 256 Mbyte
00: SRAM BAR size of 128 Mbyte
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Clocks, Reset, and Initialization 10

10.1 Overview

This chapter describes the IXP2400 clocks, reset and initialization sequence.

10.2 Clocks

Figure 113 shows the overall clock generation and distribution.

Figure 113. Overall Clock Generation and Distribution
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As shown in Figure 113, there is a centralized clock generator. It takes an external reference clock
and multiplies it to a higher frequency clock using a PLL. That clock is then divided down by a set
of programmable dividers to provide clocks to the Intel XScale® core, Microengines (MEs),
SRAM and DRAM controllers, peripheral units. The Media, Switch Fabric Interface and PCI
controller use external clocks.
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Table 157.

Clock Usage Summary

Unit Name Description Comment
ME MEs internal. Nominal value = 600 MHz
Command/Push/Pull interface of
Internal DRAM controller, SRAM . ) _
Buses controller, XScale, Peripheral, 72 ME frequency. Nominal Value = 300 MHz.
MSF, and PCI Units.
Operating at 1/6 of CPP clock Frequency. i.e 50MHz. The
Peripheral block consisting of 50-MHz clock is delayed with respect to the 300 MHz. Any
P : 9 use of APB clock logic to interface with the peripheral units
UART, GPIO, timers and f .
XPI . . . clocks and the CPP clock units should involve
Performance Monitor Unit. This hronizati h hake loaic. APB clock
clock is APB clock synchronization and handshake logic. PB clock runs at 50
’ MHz and does not bear any phase relationship with other
clocks in the design.
XScale XScale core, caches, core side of Same as ME, nominal value = 600 MHz
Gasket.
DRAM pins and control logic (all Divide of PLL frequency. The DRAM channel uses two
clocks, one at the data rate (2x clock) and one at the output
DRAM | of DRAM unit except Internal Bus | freauency (1x deck - - | ) P
interface). '
) Clocks are driven by IXP2400 to external DRAMs.
Divide of PLL frequency. Each SRAM channel has its own
) . frequency selection. Each SRAM channel uses two clocks,
SRAM pins and control logic (all | 5ng at the data rate (2x clock) and one at the output
SRAM of SRAM unit except Internal Bus frequency (1x clock)
interface). '
) Clocks are driven by IXP2400 to external SRAMs and/or
Coprocessors.
Scratch, | Scratch RAM, Hash Unit, CSR % of ME. Note that SlowPort has no clock. Timing for
Hash, CSR | access block SlowPort accesses is defined in SlowPort registers.
The receive clock for the Media and Switch interface can be
derived:
» From two external RX reference clocks (supplied by
MSE Receive and Transmit pins and media or switch fabric PHY device) to two internal RX
control logic. PLL then driven by IXP2400.
» From two external Tx reference clocks (supplied by
media or switch fabric PHY device) to two internal TX
PLL then driven by IXP2400.
External reference.
) ) The receive clock for the PCl interface can be derived:
PCI PCI pins and control logic. « From external PCI reference clock (supplied by either
from Host system or on-board oscillator) to internal PCI
then driven by IXP2400.

The fast frequency on IXP2400 is generated by an on-chip PLL that multiplies a reference
frequency provided by an on the board oscillator (frequency 100MHz) by a fixed multiplier. The

multiplier value is 12 so the PLL will generate 1.2 GHz clock. Dividing the PLL frequency clock
by various programmable integers (in the Clock Control CSR) generates internal clocks. All of
these frequencies will be at 50% duty cycle with the accuracy determined by the symmetry of the
PLL output.

Table 158 shows the frequencies that are available for DRAM and SRAM units based on various
values of fast clock (Core PLL Output Frequency), for the supported divisor values of 3 to 6. For
each value of the divisor the divider will provide the 2x clock and divide again by two to drive the
1x clock. This is shown for divide by 3 as 400/200.
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Table 158. Available Clock Rates by Dividing Core PLL Output

10.2.1

10.2.1.1

10.2.1.2

PLL Output Frequency
(MHz) / Sys_clock OSC
Divisor(n) (MHZ)
800/ 66.7 1200/100
Divide by 2 (Microengine,
400 600
XScale core Frequency)

Divide by 4 (CPP Frequency) 200 300
Divide by 8 (DRAM Frequency) 100 150
Divide by 12 (DRAM Frequency) 66.7 100
Divide by 6 (SRAM Frequency) 133.3 200
Divide by 8 (SRAM Frequency) 100 150
Divide by 12 (SRAM Frequency) 66.7 100

Divide by 24 (APB Frequency) 334 50

Table 158 shows the clock generation circuit in IXP2400. When the chip is powered up, a ring
oscillator clock will be sent to all units as the chip begins to power up. When the internal RC detect
circuit is active, the clock unit will switch from using the ring oscillator to using the PLL clock.

CSRs

Clock Control CSR (CCR)

Clock Control selects the clock ratio for the SRAM and DRAM controllers. This register must be
programmed before accesses to the SRAM/DRAM are done. In all cases a value of 0x3 indicates
divide by 3, 0x4 is divide by 4, etc. up to 0x6, which is divide by 6. This register is part of the
Global Chassis registers. Please see the IXP2400/IXP2800 Network Processor Programmer §
Reference Manual for additional CSR register information.

MSF Clock Control CSR (MCCR)

MSF Clock Control Register (MCCR) selects the clock ratio for the four MSF PLLs: RX0, RX1,
TXO0, and TX1. This register must be programmed before an application accesses the MSF. Please
see the IXP2400/IXP2800 Network Processor Programmer s Reference Manual for additional
MCCR register information.

These steps must be followed during power on initialization:
1. Set the PLL in PLL disable mode (MCCR[MSF POWERDOWN] =1 default)
Set the PLL in bypass mode (MCCR[MSF _BYPASS SEL] =1 default)
Set up each of MSF clock ratio (MCCR[MSF_CLKCFG])
Disable the PLL bypass mode (MCCR[MSF _BY PASS SEL]=0)
Enable the PLL(MCCR[MSF_POWERDOWN] =0)
Wait for MSF PLL lock (MCCR[MSF_PLL_LOCK] = 1)
Enable MSF block (via MSF_Rx_Control[Rx_En] or MSF_Tx_Control[Tx_En])

NS kv
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10.3

10.3.1

344

8. Initialize the MSF CSR registers.

Reset History CSR

Bits Field Description RW | Reset
Set when watchdog timer expires.
[0] Watchdog history 9 ) p‘ . . RW | 0x0
Reset when hard reset is applied or the register is read.
Reserved
. Set when application software sets the IXP_RESETO0[16]
[1] Soft Reset history RSTALL to 1. RW | 0x0
Reset when hard reset is applied or the register is read.
Reserved
[2] Hard Reset history | Set when Hardware resets the IXP. RW | 0Ox1
Reset when the register is read.
[31:3] Reserved reserved RO 0x0
Reset

There are four different ways IXP2400 can be reset.
¢ Hardware reset via SYS RESET L

* CFG_RSTDIR is not asserted and PCI_RST L is asserted

CFG_RSTDIR is a strap pin to select the IXP2400 to drive the PCI_RST L signal. When
CFG_RSTDIR is not asserted, PCI_RST_L signal is a chip input signal.

¢ Watchdog timer expires and Watchdog enable bit in Timer Watchdog Enable register is set

Once the timer expires, reset sequence is initiated. In this reset sequence, IXP_ RESETO0

register is reset, which in turn generates PCI_RST L (if CFG_RSTDIR is asserted).

* Software Initiated Reset

PCI host or XScale writes 1 at bit [16] (RSTALL) in IXP_RESETO register. In addition to this,
individual units can be reset using their respective bits in IXP_ RESET0 and IXP_RESET1
registers.

Hardware Reset

The IXP2400 provides the SYS _RESET L pin so that an external device can reset the IXP2400.
Asserting this pin resets the internal functions and generates an external reset via the
RESET OUTH# pin.

Upon power-up, SYS RESET L must remain asserted for 1ms after VDD is stable to properly
reset the IXP2400 and ensure that the external clock is stable. While SYS RESET L is asserted,
the processor is held in reset. When SYS RESET L is released, the Intel XScale® core processor
begins executing from address 0X0 after the initial reset sequence is completed.

If SYS RESET L is asserted, while the Intel XScale® core is executing, the current instruction is
terminated abnormally and the reset sequence is initiated.
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The RESET_OUT# signal remain asserted until deasserted by the Intel XScale® core. It deasserts
the signal by writing bit [15] of the IXP_RESETO register.

PCI Initiated Reset

The IXP2400 can be reset by an external PCI Bus master when the IXP2400 is not the PCI central
function (CFG_RSTDIR = 0) and PCI_RST L is an input. The entire IXP2400 is reset during a
PClT initiated reset.

When the IXP2400 is reset and CFG_RSTDIR = 1 (the IXP2400 is assigned as the PCI central
function), IXP2400 drives PCI_RST L as an output to the other devices on the PCI bus.

The RESET OUTH# signal remains asserted until deasserted by the XScale core. It deasserts the
signal by writing bit [15] of the IXP_RESETO register.

Watchdog Timer Initiated Reset

The IXP2400 provides a watchdog timer that can reset the Intel XScale® core. There are four
timers in the IXP2400 architecture. Timer 4 can be set to be a watch dog timer. Please refer the XPI
EAS in the Timer section for more details. The Intel XScale® core should be programmed to reset
the watchdog timer periodically to ensure that the timer does not expire. If a watchdog timer
expires, it is assumed that the Intel XScale® core has ceased executing instructions properly.

The reset generated by the Watchdog timer will reset each of the functions in the IXP2400 if
Watchdog reset enable bit is set (IXP_RESETO0[22]=1). In this reset sequence, IXP_RESETO0
register is reset after 512 cycles later, which in turn generates PCI RST L (if CFG_RSTDIR =1 is
set, IXP is the PCI central function).

The reset generated by the Watchdog timer will not reset each of the functions in the IXP2400 if
Watchdog reset enable bit is not set (IXP_RESET0[22]=0). Instead of reset each of the functions in
the IXP2400, It will generate PCI interrupt (PCI_INTA L) to external if PCI Outbound Interrupt
Mask Register[3] to 0.1t will also set PCI Outbound Interrupt Status Register[3] to 1.

The RESET OUTH# signal remain asserted until deasserted by the Intel XScale® core. It deasserts
the signal by writing bit [15] of the IXP_RESETO register.

Table 159. Watchdog Timer Reset

XP'EV)YngZ“e’ WathE%ggﬁ%‘[i{‘]ab'e PCI lutbound Interrupt Mask[3]
Software can set the 1. WD Timer History bit will set to 1.
IXP_RESETO0[24] to 0 if IXPisnon | 2. PCI Interrupt will be generated if PCI outbound
PCI Interrupt central function or any cases [not Interrupt Mask[3] set to 0.

grammatical but | don’t know what | 3. PCI outbound Interrupt status[3] set to 1
it means.]
Software can set the 1. WD Timer History bit will setto 1.
IXP_RESETO[24] to 1if IXP is PCI | 2. PCI Interrupt will not be generated.

R Host & Central Function or any 3. PClI outbound Interrupt status[3] set to 0.

eset IXP - ,

cases [not grammatical but | don’t
know what it means.]

Hardware Reference Manual 345



Intel® IXP2400 Network Processor u
Clocks, Reset, and Initialization In ®

10.3.4

346

Software-Initiated Reset

The Intel XScale® core or an external PCI bus master can reset specific functions in the IXP2400
by writing to the IXP_ RESETO0 and IXP_RESET]1 register. All the individual microengines or
specific units can be reset.

1. If software write IXP_RESETO[16] to 1(Reset All), Reset Unit need to hold 512 cycles then set
the each of reset unit registers to 1 (include PCI).During this 512 cycles PCI should be in the PCI
bus IDLE state, once PCI bus get IDLE PCI unit need to reset all the PCI blocks. IXP is bus parked
during soft reset, IXP need to drive these I/O devices PCI_AD[31:0], PCI BE[3:0], and PCI _PAR
to known values even in soft reset mode. otherwise all these 1/O devices to tristates.

2. If software write IXP_RESETO[1] to 1(Reset PCI only), PCI unit need to reset all the PCI blocks
right away without PCI bus get idle. There is no 512 idle cycles in reset period. All these I/O
devices to tristates regardless of bus parking.

The RESET OUTH# signal remain asserted until deasserted by the Intel XScale® core. It deasserts
the signal by writing bit [15] of the IXP_RESETO register.
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10.3.5 Strap Pins

The following are the strap pins required for reset. These strap pins determine the initialization
sequence.

Table 160. Strap Pins required for IXP2400

Signal Name Description External Pin

PCI central function pin:

» 1-IXP is supporting central functions
PCI_RST_L is an output (SYS_RST L is
input).

PCI_REQ64 is an output.(drive low during
PCI reset)

PCI AD[31:0], PCI_BE[3:0], and PCI_PAR
drive to Low during PCI reset. After PCI reset
all these /0 lines to tristates unless IXP bus
parked.

PCI AD[63:32], BE[7:4] and PAR64 during
PCI reset or after PCI reset all these 1/O lines
to tristates.

NOTE: If the PCI bus is 32 bits wide, the board must
support external pull up of I/O lines.

CFG_RSTDIR PCFO |- Explicit Pin
« 0O-External PCl is supporting central functions
PCI_RST_L is an input.
Both PC/_RST_L and SYS_RST_L are
inputs; tie both reset lines together.
PCI_REQ64 is an input.
PCI AD[31:0], PCI_BE[3:0], and PCI_PAR

during PCI reset or after PCI reset all these
1/0 to tristates.

During PCI reset or after PCI reset PC/
AD[63:32], BE[7:4] and PAR64 1/O are
tristate.

NOTE: If PCl bus is 32 bits wide, the board need to
support external pull up of I/O lines.

This pin is stored at XSC[31] (XSCALE_CONTROL
Register) at the trailing edge of reset.
PCI Prom Boot pin (BOOT_PROM)
PCF2 * 1-IXP will boot from PROM
CFG_PROM_BOOT + 0-IXP will boot from DRAM initialized by PCI Host GPIO[]
This pin is stored at XSC[29] (XSCALE_CONTROL
register) at the trailing edge of reset.
PCIBOOT HOST

« 1—Intel XScale® core will configure the PCI system

« 0-Intel XScale® core will not configure the PCI
system

This pin is stored at XSC[28] (XSCALE_CONTROL
register) at the trailing edge of reset.

If CFG_PCI_BOOT_HOST set to 1 then
CFG_RSTDIR must set to 1 (central function).

CFG_PCI_BOOT_HOST PCF3 GPIO[1]
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Table 160. Strap Pins required for IXP2400

Signal Name Description External Pin

PCI Arbiter Pin

» 1—-IXP will do the PCI arbitration function
CFG_PCI_ARB PCF1 « o—IXP will not do the PClI arbitration function GPIO[2]
If CFG_PCI_ARB set to 1 then CFG_RSTDIR must
set to 1 (central function).
DRAM BAR Window

* 11-DRAM BAR size:1024 MByte
CFG_PCI_DWIN[1:0] * 10-DRAM BAR size: 512 MByte

DWIN ) GPIO[4:3]

* 01-DRAM BAR size: 256 MByte

* 00-DRAM BAR size: 128 MByte
This is part of the PCI_DRAM_BAR register.

SRAM BAR Window

* 11-SRAM BAR size:256 MByte
CFG_PCI_SWINJz:0] SWIN * 10—SRAM BAR size:12s8 MByte

* 01—-SRAM BAR size: 64 MByte

* 00—SRAM BAR size: 32 MByte
This is part of the PCI_SRAM_BAR register.

GPIO[6:5]

Table 161. Legal Combinations of the Strap Pin Options?

csé‘n‘iﬁ.‘?f;tfféi CFG_PCI_HOST | CFG_PCI_Arbiter fgfn—t':a?hiizg:s CFG_PROM_BOOT
ok 0 0 0 0
ok 0 0 0 1
ok 0 0 1 !
Not supported 0 1 0 X
ok 0 1 1 !
Not supported 1 0 0 X
ok 1 0 1 !
Not supported 1 1 0 X
ok 1 1 1 !

a.  PCI_Host and PCI_Arbiter must be central function.

10.3.6 Power Up Reset Sequence

The basic sequence for reset is shown in Figure 114.
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Figure 114. Reset Sequence

VDD
INT CLK (I e 1 6
1 ms
< >
PCI RST L
GLB_RST
Reset On - chip Switch to External Internal Reset Internal reset deasserted.
must be |oscillator clock. PLL completes Sequence. Set the Code starts executing.
asserted |starts power lock and samples IXP_RESETn
before  |up configuration pins at registers.
VDD the deasserting edge
of SYS RESET L

When the system is powered up, the SYS RESET L must be stay asserted (L) for at least 1ms after
VDD and SYS_CLK have reached their proper DC and AC levels. All the I/O must de-asserted
their output within 2 cycles.

When the system is powered up, a ring oscillator clock will be sent to all units as the chip begins to
power up. It will merely be used to allow a gradual power up and to begin clocking state elements
to remove possible circuit contention. When the internal RC detect circuit is active, the clock unit
will switch from using the ring oscillator to using the PLL clock. Throughout this time the

SYS RESET L is asserted. After the SYS RESET L pin transitions to an inactive state, the
internal reset signal (GLB_RST) will remain active for a number of clocks to allow the IXP2400 to
achieve a clean reset state. The GLB_RST signal will be used to reset the IXP_ RESETO and
IXP_RESETI registers. During warm reset, the PLL is already locked and the internal reset
sequence is initiated on detecting a SYS RESET L signal.

The reset sequence shown above is the same in the case when reset happens through the
PCI_RST L signal and CFG_RSTDIR is 0.

Once in operation, if watchdog timer expires with watchdog timer enable bit ON, reset pulse from
the watchdog timer logic resets the IXP_RESETn registers and in turn causes entire chip to be
reset.

The IXP2400 has the following power supplies:

1. VCC33 3.3V power supply for the Media Switch Fabric interface, PCI, GPIO,
SlowPort and Misc.

2. VCCand VCCA 1.3V power supply for the Core and for the PLL
3. VCC25 2.5V power supply for the DDR DRAM

4. VCCL.5 1.5V power supply for the QDR SRAM

5. D_Vref 1.25V for the DDR DRAM

6. Sn_Vref 0.75V for QDR SRAM channel 0, and channel 1

The power supplies for the IXP2400 should be brought up in a controlled sequence. The delay
between the power-up of the power supplies should be 5 ms or less.
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Note:

1. The 3.3V must be brought up before thel.3V

2. The 1.3V must be brought up before the 1.5V and 2.5V

3. The 1.5V must be brought up before or at the same time as the 0.75V
4. The 2.5V must be brought up before or at the same time as the 1.25V

Power-Down Sequence

All the power supplies should be brought down simultaneously. If the user cannot power down all
the supplies simultaneously, the Power-down sequence is recommended to be the reverse order of
the Power-up sequence shown in Section 10.3.6.

Please see the IXMB2400 Base Board Design Guide for the timing and algorithm of power
sequencing.

Reset Register

IXP System Reset Register consists of two 32-bit registers: IXP_RESETO [31:0] and
IXP_RESET]! [31:0]. IXP_RESETO [31:0] is used to reset everything except microengines.
IXP_RESET]I [31:0] is used to reset the microengines. Bits from these registers going to different
modules should be synchronized when they are going to different frequency domain. These bits are
read/write by both PCI host and the Intel XScale® core. Please see the IXP2400/IXP2800 Network
Processor Programmer s Reference Manual for additional IXP System Reset Register information.

Boot Mode

Upon deassertion of the external reset signals, the internal reset signals in the IXP_RESETO0
registers are cleared based on the pin strapping options. Figure 115 outlines the initialization
sequence.
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Figure 115. IXP2400 Initialization Sequence

START

Reset Signal asserted
(hardware, software, PCI or Watchdog)

Reset Signal deasserted. If CFG_RST_DIR
is 1, Intel® IXP2000 Network Processor
drives PCI RST# signal. If CFG_RST_DIR
is 0, PCI_RST# is input.

CFG_PROM_BOOT-
Boot From Present

J ¥

1. Intel XScale® Core is 1. Intel XScale® Core boots
held in reset. off PROM.

2. PCI BAR window sizes 2. Configures SRAM, DRAM,
are configured by strap Media, etc.
options. 3. If CFG_RST# signal after

3. External PCI host 1 ms timeout once PCI
configures PCI registers clock active is detected.
and DRAM registers. 4. Retries PCI config cycles.

4. External PCI host loads 5. Programs PCI BAR
boot image in DRAM. window size.

5. Release Intel XScale® 5. Intel XScale® Core writes
Core from reset and Intel the IXP_RESETO0[21]
XScale® starts code fetch register to enable PCI bus.
from DRAM at 0x0.

Yes CFG_PROM_

BOOT_HOST

Y

Intel XScale® Core
initializes the system
by initiating PCI
config cycles.

B2855-01

As shown in Figure 115, IXP2400 can boot in following two boot modes:
* Flash ROM
* PCI Host Download
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Flash ROM

At power up, if FLASH ROM is present, strap pin CFG_ PROM_BOOT should be sampled “1”
(should be pulled up). Therefore after reset being removed by the PLL logic from the
IXP_RESETO register, the Intel XScale® core reset is automatically removed. “Flash Alias
Disable” (bit [8] of Misc Control Register) information is used by the XScale gasket to decide
where to forward address “0” from the XScale core when the XScale core wakes up and starts
accessing the code from address 0. In this mode, since “flash alias disable: bit is reset to “0”,the
XScale gasket will convert access to address “0” to PROM access from address “0” using the CAP
command. Based on the code residing inside PROM, the XScale core starts removing reset from
SRAM, PCI, DRAM, Microengines, etc., by writing “0” in their corresponding bit location of
IXP_RESETn register and then initializing their configuration registers.

Boot code in PROM can change flash alias disable bit to "1" any time to map DRAM at address
zero and therefore block further accesses to PROM at address "0". This change should be done
before putting any data in DRAM at address “0”.

The XScale core also sets different BARs inside PCI unit to define memory requirements for
different windows.

The XScale core behavior as a host is controlled by CFG_PCI BOOT HOST strap option. If
CFG_PCI_BOOT_HOST is sampled asserted in the de-asserting edge of reset, the XScale core
will behave as boot host and configure the PCI system.

PCIl Host Download

At power up, if FLASH ROM is not present, strap pin CFG_PROM_BOOT should be sampled
“0” (should be pulled down). In this mode CFG_RST DIR pin should be “0” at power up signaling
PCI_RST# pin is an input that behaves as global chip reset.

1. Even after reset is removed by the PLL logic from IXP_RESETO register (after PCI_RST#
reset is de-asserted), the XScale core reset is not removed.

2. PCI Reset through IXP_RESETO [16] is removed automatically after being set and reset being
removed.

3. IXP_RESETO[21] is set after PCI_RST# has been removed and PLL_LOCK is sampled
asserted.

4. Once IXP_RESETO0[21] is set, PCI unit starts responding to transactions.

5. PCI Host first configures CSR, SRAM and DRAM base address registers after reading size
requirements for these BARs. The size for CSR, SRAM and DRAM is defined by the use of
Strap pins. Pre-fetchability for the window is defined by bit [3] of the respective BAR registers
therefore when host reads these registers, bit [3] is returned as “0” for CSR, SRAM and
DRAM defining CSRs and also if SRAM and DRAM are to be non-prefetchable. “Type” Bits
[2:0] are always Read-Only and return the value of “0x0” when read for CSR, SRAM and
DRAM BAR registers.

6. PCI Host also programs “Clock Control CSR”, for PLL unit to generate proper clocks for
SRAM, DRAM and other units.

Once these base address registers have been programmed, PCI host programs DRAM channels by
initializing DU _CONTROL, DU CONTROL2 and DU_INIT" registers. Once these registers have
been programmed, PCI host writes the BOOT Code in DRAM starting at DRAM address “0”. PCI
Host can also program other registers if required. Once the boot code is written in DRAM, PCI host
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writes “1” at bit [8] of Misc_Control register called “Flash Alias Disable” (Reset value “0”). Alias

Disable bit can be wired to the XScale gasket directly so that gasket knows how to transform

address 0 from the XScale core After writing “1” at “Flash Alias Disable” bit, host removes reset

from the XScale core by writing “0” in bit [0] of IXP_RESETO register. The XScale core starts

booting from address 0, which is now directed by the gasket to DRAM.

10.6

Reset Strategy for Different Sections in IXP2400

Table 163 defines the strategy for resetting IXP2400 for logic not directly affected by
IXP_RESETn registers. Table 164 and Table 165 defines the strategy for resetting IXP2400 for

logic affected by IXP_RESETn registers. The contents of Table 163, Table 164, and Table 165 are
described in Table 162.

Table 162. Description of the Content of Table 163 through Section 165

Column Contents
Unit Name of the unit where reset is applied
Reset Bit # E—;itsgtutrr?izedr:irt%m IXP_RESETN register that is used to
When Set Conditions to set this bit
When Reset Conditions to reset this bit
Comments Special behavior

a.

Not applicable to Table 163.

Table 163. Resetting® IXP2400 Strategy—Logic Unrelated to IXP_RESETn

Unit When Set When Clear Comment
Reset Reset
PCI_RST_L (if CFG_RSTDIR =1) and
SYS_RESET_L are combined to
PLL generate a HARD RESET for the PLL
(Core_pll, Hard Reset Hardware Reset logic.
MSF_pll, Active De-Active Based on this input reset,
PCI_pll) IXP_RESETO and IXP_RESET1
- registers are reset causing the entire
chip to be reset.
Stepping Hard Reset Hardware Reset
Stone Logic Active De-Active

a.

Reset definitions:
Hard Reset: combine PC/_RST_L (if CFG_RSTDIR =1) and SYS_RESET_L.
Soft Reset: combine Watchdog timer, Reset_All_Reg (IXP_RESETO0[16] =1 and each reset bit set to 1).

Hardware Reference Manual

353



Intel® IXP2400 Network Processor

Clocks, Reset, and Initialization

354

INlal.

Table 164. Resetting IXP2400 Scheme—Logic Related to IXP_RESETO0[31:0]

Unit ResetBit When Set When Clear Comment
# Reset Reset
CFG_PROM_BOOT=1
After Reset it
will automati-
Hard Reset cally take about
Active 256 cycles to
XScale [o] or clear the reset
Soft Reset bit.
Active CFG_PROM _BOOT=0
This bit need to
be cleared by
software.
CFG_PROM_BOOT=1
After Reset
Hard Reset happen it need
) to be cleared by
Active XScale
PCI Unit 1] or CFG_PROM _BOOT=0
Soft Reset After Reset
Active happen it will
automatically
take about 256
cycles to clear
the reset bit.
If the CFG_RSTDIR pin is asserted
high, PCI_RST_L is an output and
PCIRST is:
* 1-IXP2400 asserts the
PCI_RST_L pin
* 0-IXP2400 does not assert the
PCI_RST_L pin
The Intel XScale® core clears this
bit after a reset to release the PCI
bus from reset.
PCIRST [2] See Comment See Comment If the CFG_RSTDIR pin is asserted
low, PCI_RST_L is an input and
PCIRST is:
* 1-reset was caused by a PCI
device
» O-reset was not caused by a
PCI device
The Intel XScale® core can read
this bit to determine whether a PCI
device reset the IXP2400.
Hard Reset
Active After Reset it will
. . automatically take about
SRAM[1:0] [a:3] or 256 cycles to clear the
Soft Reset reset bit.
Active
Bits[6:5] are reserved.
SRAM[3:2] [6:5] Reserved
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Table 164. Resetting IXP2400 Scheme—Logic Related to IXP_RESETO0[31:0]

. Reset Bit When Set When Clear
Unit Comment
# Reset Reset
This bit need to be
Hard Reset cleared by software.
Active Wait until all the MSF
Media[o] [71 or PLL are locked then
Soft Reset tc)lifar the Media reset
Active '
This bit need to be
Medial[10:8] [10:8] Reserved cleared by software. Bits[10:8] are reserved right now.
Hard Reset
Active After Reset happen it
or will automatically take
DRAMI0] [11] about 256 cycles to
Soft Reset clear the reset bit.
Active
DRAM[::1] [ ] Reserved Bits[14:12] are reserved right now.
3.1 14:12
Hard Reset
Active This bit need to be
EXRST [15] or cleared by software.
Soft Reset
Active
When RSTALL is set,
Intel XScale® core will
idle? 512 cycles then it
resets the whole unit
RSTALL Lel Soft Reset exgept PLLs and some | When this bit is set, both
Active registers. IXP_RESET registers are reset.
After Reset it will
automatically take about
256 cycles to clear the
reset bit.
Hard Reset
Active After Reset it will
b or automatically take about
SHaC [17] 256 cycles to clear the
Soft Reset reset bit.
Active
Ha;\‘i tE/Zset After Reset it will
automatically take about
CMDEQRB”- [2¢] or 256 cycles to clear the
Soft Reset reset bit.
Active
Ha;\‘i tE/Zset After Reset it will
automatically take about
SBUTSE—RARBI [19] or 256 cycles to clear the
Soft Reset reset bit.
Active
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Table 164. Resetting IXP2400 Scheme—Logic Related to IXP_RESETO0[31:0]
Unit ResetBit When Set When Clear Comment
# Reset Reset
Hard Reset | After Reset it will
Active automatically take about
DBUS_ [20] or 256 cycles to clear the
ARBITER Soft Reset reset bit.
Active
Hard Reset When CFG_PROM_BOOT
Active (BOOT_PROM) =0 INIT_COMP is
t when GLB_RST is d rted
INIT_ COMP | [21] or See comment setwhen BLB_ReTIS deassere
Soft Reset When CFG_PROM_BOOT
) (BOOT_PROM) =1 INIT_COMP is
Active set when Intel XScale® core sets
When WatchDog_Reset_En is:
* 0-Watchdog reset will trigger
the PCl interrupt to external
WatchDog_ Set By Soft Reset By Soft Pe ot
Reset En [24] €L by oortware | kesel by conware. + 1-Watchdog reset will trigger
- the soft reset (set IXP
RESETO[16] RSTALLto 1),
then it will reset all units after
512 cycles

a.  Waiting for PCI bus to IDLE and PCI unit to start PCI unit Reset.
b. SHaC is Scratch, Hash and CSR.

Table 165. Resetting IXP2400 Scheme—Logic Related to IXP_RESET1[31:0]

10.7

356

. Reset When Set When Clear
Unit Bit # Reset Reset Comment
Hard Reset
L] Active This bit need to be
Microengines 30 or cleared by software.
[19:16] Soft Reset
Active
Initialization

The boot sequence task must be performed by the IXP2400 after reset for proper processor
functioning. The boot sequence tasks configure IXP2400 resources to a predetermined state by
writing values to certain registers. Some of these register settings are determined by the
components selected, such as SDRAM, SRAM, and BootROM. Other register settings are
determined by the desired processor performance and system configuration.

The resources that must be configured after reset are the PROM interface, the SRAM controller,
the SDRAM controller and the Memory Management Unit (MMU). There are other resources that,
if used during the boot sequence, must be configured at this time; specifically the UART and the
PCI Interface.

The configuration tasks must be performed in the following sequence:

1. Configure XPI Interface to access PROM; if CFG_PROM BOOT (BOOT PROM) is present
the following registers should be programmed:
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—SP_CCR: configures the clocks for the SlowPort; initially these clocks start at some
default value which may not be optimal

—SP_WTC: program this register for PROM interface to define proper write timing
—SP_RTC: program this register for PROM interface to define proper read timing
—SP_FAC: defines the address size of flash memory device used

—SP_FRM: defines the data width of the read back from the flash memory

2. Configure Clock Ratio CCR and MCCR CSR; to define the operating frequency of SRAM and

DRAM interface the following registers define the operation of stepping stone logic and must
be initialized:

—CCR: Clock Control CSR to define the frequency of SRAM and DRAM channels
—MCCR Media Clock Control CSR to define the frequency of RX and TX

—Set up each of the MSF clock ratios (each of the MCCR[MSF_CLKCFG] bits)
—Disable the PLL bypass mode (MCCR[MSF_BY_PASS_SEL] =0)

—Turn on PLL (MCCR[MSF_POWERDOWN] =0)

—Wait for MSF PLL lock (MCCR[MSF_PLL_LOCK] = 1)

. Release from Reset; after reset, units not coming out of reset automatically are brought out of

reset by programming the IXP_RESETO0 and IXP_RESET1 registers. For a description of
what units come out of reset automatically, please refer to Section 10.6 of this document.

. Configure the SRAM controller using the following registers:

—SRAM_Control:To define the configuration of SRAM Controller
—SRAM_Parity_Status1:For parity control and recording of last faulty address

—SRAM_Parity_Status2:Recording of source of request which generated parity Error
The following registers are application specific and must be programmed if required.

—Q_Array_Entry_nn_Low:To access EOP, Cell Count and Head Fields. “nn” is entry #
—Q_Array_Entry_nn_Med:To access Tail Fields. “nn” is entry #
—Q_Array_Entry_nn_High:To access Q Count. “nn” is entry #

. Configure the in-use DRAM channels through a sequence of register writes:

a. DU_CONTROL
b. DU_CONTROL2
c. DU_INIT

. Configure the Memory Mapped Unit, Cache, and Buffer by configuring the following register:

XScale Coprocessor 15—CONTROL_CP15

. Configure PCI; if CFG_PROM_BOOT (BOOT_PROM) is not present, loading the boot

image into DRAM by the PCI host is required. To do this,

a. The following registers should be set to their required value on the de-asserting edge of
reset:

—PCI_DRAM_BAR: strap pins define the window size
—PCI_SRAM_BAR: strap pins define the window size
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—PCI_CSR_BAR
b. IXP_RESETO[21] should be set to “1”

c. After boot image is loaded into DRAM, Flash_Alias Disable bit in Misc Control register
from IXP_CHASSIS should be set to 1 so that DRAM appears at address o.

d. If CFG_PROM BOOT (BOOT PROM) is present, configure the following four
registers:

— SRAM_BASE_ADDR_MASK:
— DRAM_BASE_ADDR_MASK:
— PCI_Command _Status:
— PCI_Write_Address_Ext:

Note: In this mode, code jumps to normal flash location and then disables the “map flash to zero” feature.
If PCI_CFN[3](BOOT HOST) is not true, then the external PCI host will configure IXP2400 PCI
interface based on its memory requirements. If PCI_CFN[3](BOOT_HOST) is true, then IXP2400
will program the PCI interface.

8. Configure Serial Port, if required by configuring the following registers:
—UART_DLRH
—UART_DLRL
—UART_IER
—UART_FCR
—UART_LCR
9. Configure Media
—Initialize the MSF
—Enable MSF block (via MSF_Rx_Control[Rx_En] or MSF_Tx_Control[Tx_En])
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Performance Monitor Unit 11

11.1

11.11

Introduction

Performance Monitor Unit is a hardware block consisting of counters and comparators which may
be programmed and controlled using a set of configured registers to monitor and to fine tune
performance of different hardware units in the IXP2400. The total number of such counters needed
is determined based on the different events and functions that need to be monitored concurrently.
Observation of such events on chip is used for statistical analysis, uncovering bottlenecks and to
tune the software to fit the hardware resources.

Motivation for Performance Monitors

For a given set of functionality, a measure of performance is very important to make decisions on
feature sets to be supported and to tune the embedded software on chip. An accurate estimate of
latency and speed in hardware blocks enables firmware and software designers to understand the
limitations of the chip and make prudent judgments of their software architecture. The current
generation IXP1200 processors do not provide any performance monitor hooks. Since IXP2400
processors are targeted for high performance segments (OC48 and above), the need for tuning the
software to get the most of out the hardware resources becomes extremely critical. The
performance monitors provide valuable insight into the chip by providing real time data on latency
and utilization of various resources. These monitors also enable hardware architects to make
effective design trade-off in future generation of the product by uncovering implementation glass
jaws, flaws and limitations. See Figure 116.
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Figure 116. Performance Monitor Interface Block Diagram
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Motivation for Choosing CHAP Counters

The Chipset Hardware Architecture Performance (CHAP) counters enable gathering statistics of
internal hardware events in real-time. This implementation provides users with direct event
counting and timing for performance monitoring purposes, provides enough visibility into the
internal architecture to perform utilization studies and workload characterization and can also be
used for chipset validation, higher-performing future chipset, and applications tuned to the current
chipset. The goal is that this will benefit both internal and external hardware and software
development. Primary motivation for selecting the CHAP architecture for use in the IXP2400
product family is that it has been designed and validated in several Intel desktop chipset and the
framework also provides a set of software suite which may be reused with a very limited
modification.

Functional Overview of CHAP Counters

At the heart of the CHAP counters functionality are counters, each with associated registers. Each
counter has a corresponding command, event, status, and data register. The smallest
implementation will have 2 counters, but if justified for a particular product, this architecture can
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support many more counters. The primary consideration is available silicon area. The memory-
mapped space currently defined can accommodate registers for 256 counters. It could be
configured for more, but that is beyond what is currently practical.

Signals representing events from throughout the chip are routed to the CHAP unit. Software can
select events that will be recorded during a measurement session. The number of counters in an
implementation defines the numbers of events that can be recorded simultaneously. Software and
hardware events can control the starting, stopping, and sampling of the counters. This can be done
in a time-based (polling) or event-based fashion. Each counter can be increment or decrement by
different events. In addition to simple counting of events the unit can provide data for histograms,
queue analysis, and conditional event counting (example: How many times did event A happen
before the first event B took place).

When a counter is sampled, the current value of the counter is latched into the corresponding data
register. The command, event, status, and data registers are accessible via standard APB memory
mapped registers in order to facilitate high-speed sampling.

Two optional external pins allow for external visibility and control of the counters. The output pin
signals that one of the following conditions generated an interrupt from any one of the counters:

* A programmable threshold condition was true,
* A command was triggered to begin
* A counter overflow or underflow occurred.
The input pin allows an external source to control when a CHAP command is executed.
Figure 117 represents a single counter block. The muxes, registers, and all other logic are repeated

for each counter that is present. There is a threshold event from each counter block that feeds into
each mux.
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Figure 117. Block Diagram of a Single CHAP Counter
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Basic Operation of Performance Monitor Unit

At power up, the XScale core invokes performance monitoring software code. PMU software has
the application code to generate different types of data such as histograms and graphs. It also has
device driver to configure and read data from PMU in IXP2400. This software programs the
configuration registers in the PMU block to perform a certain set of monitoring and data collection.
PMU CHAP counters execute the commands programmed by XScale and they collect various
types of data such as latency and counts. Upon collection it triggers an interrupt to XScale to
indicate the completion of monitoring.

XScale either periodically monitors the PMU registers or waits for an interrupt to collect the
observed data. XScale uses the APB bus to communicate with the PMU configuration registers.

Figure 118 represents a block diagram of IXP2400 and Performance Monitor Unit’s (PMU) in
relation to other hardware blocks in the chip.
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Figure 118. Basic Block Diagram of IXP2400 with PMU
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1.1.5 Definition of CHAP Terminology

Duration Count

MMR
OA

Occurrence Count

Preconditioning

RO (register)

R/W (register)
WO (register)
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The counter is increment for each clock for which the event signal is
asserted logic high.

Memory Mapped Register

Observation Architecture. The predecessor to CHAP counters that
facilitates counting of hardware events.

The counter is increment each time a rising edge of the event signal is
detected.

Altering a design block signal that represents an event such that it can be
counted by the CHAP unit. The most common preconditioning is likely
to be a ‘one-shot’ in order to be able to count occurrences.

Read Only. If a register is read only, writes to this register location have
no effect.

Read/Write. A register with this attribute can be read and written

Write Once. Once written, a register with this attribute becomes Read
Only. This Register can only be cleared by a Reset.
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WC (register) Write Clear. A register bit with this attribute can be read and written.

However, a write of 1 clears (sets to 0) the corresponding bit and a write
of 0 has no effect.

11.2 Interface and CSR Description

CAP is a standard logic block provided as part of the IXP Chassis that provides a method of
interfacing to the following:

ARM Advanced Peripheral Bus (APB): This bus supports standard APB peripherals such as
PMU, UART, Timers and GPIO as well as CSRs that are not required to be accessed by the
MEs.

As shown in Figure 119, CAP uses three bus interfaces to support these modes. CAP supports a
target ID of 0101 which ME assemblers should identify as a CSR instruction.

Figure 119. CAP Interface to APB Bus

Source/Target Interfaces

APB Bus >
CSR Command I
B = P CAP | APB Peripheral
CAP CSR Bus -
g »
) CSRs (std or fast)

XScale® Push/Pull Bus

—>
Core Gasket - ‘
[ €————¢

Table 166 shows the XScale and ME instructions used to access devices on these buses and it
shows which buses are used during the operation. For example, to read an APB peripheral such as
a UART CSR, an ME would execute a csr[read] instruction and XScale would execute a Load (1d)
instruction. Data is then moved between the CSR and the XScale/ME by first reading the CSR via
the APB bus and then writing the result to the XScale/ME via the Push Bus.

Bus Masters
(e.g. ME)

Table 166. APB Bus Usage

Accessing Read Operation Write Operation
Access Method: Access Method:
* ME: csrlread] * ME: csr[write]
+ XScale®: Id * XScale: st
APB Peripheral
Bus Usages: Bus Usages:
Read source: APB bus * Read source: Pull Bus
*  Write dest: Push bus *  Write dest: APB bus
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APB Bus Peripheral

The Advanced Peripheral Bus (APB) is part of the Advanced Micro controller Bus Architecture
(AMBA) hierarchy of buses that is optimized for minimal power consumption and reduced design
complexity. PMU needs to operate as an APB peripheral interfacing with rest of the chip via APB
bus. PMU needs to have APB bus interface unit, which can perform a APB bus reads and writes to
enable data transfer to and from the PMU registers.

CAP Description

Selecting the Access Mode

The CAP selects the appropriate access mode based on the COMMAND and ADDRESS fields
from Command Bus.

PMU CSR

Please refer to Intel IXP2400/IXP2800 Programmer's Reference Manual.

CAP Writes

For an APB write, CAP arbitrates for the S Pull Bus, pulls the write data from the source
identified in PP_ID (either a ME transfer register or XScale core write buffer), and puts it into the
CAP Pull Data FIFO. It then drives the address and writes data on to the appropriate bus. CAP
CSRs locally decode the address to match their own. CAP generates a separate APB devices select
signal for each CAP device (up to 15 devices). If the write is to an APB CSR, the Control Logic
maintains valid signaling until the APB_RDY _H signal is returned (The APB RDY signal is an
extension to the APB bus specification specifically added for the IXP Chassis).

CAP supports write operations with burst counts greater than 1. CAP looks at the length field on
the command bus and breaks each count into a separate APB write cycle, incrementing the CSR
number for each bus access.

CAP Reads

For an APB read, CAP drives the address, write, select, and enable signals, waits for the
acknowledge signal (APB_RDY_ H) from APB device, For a CAP CSR read, CAP drives the
address, which controls a tree of multiplexors to select the appropriate CSR. CAP then waits for the
acknowledge signal (CAP_CSR_RD RDY). When the data is returned, CAP then puts the read
data into the Push Data FIFO, arbitrates for the S Push Bus, and then the Push/Pull Arbiter pushes
the data to the destination identified in PP_ID.

Configuration Registers

Because the CHAP unit resides on the APB bus, the offset associated with each of these registers is
relative to the Memory Base Address that configuration software will set in the PMUADR register.
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Each counter has one command, one event, one status, and one data register associated with it.
Each counter is “packaged” with these four registers in a “counter block”. Each implementation
selects the number of counters it will implement, and therefore how many counter blocks (or slices)
it will have. These registers are numbered 0 through N - 1 where N represents the number of
counters - 1. See Figure 120.

Figure 120. Conceptual Diagram of Counter Array
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Performance Measurements

There are several measurements that could be made on each of the hardware blocks. These
measurements together would enable improvements in hardware and software implementation and
architectural issues. The following sections discuss different blocks and their associated
performance measurement events.

XScale®

DRAM Read Head of Queue Latency Histogram

Description

The Intel XScale® core generates a read command or write command to the DRAM primarily to
either push or pull data of the DDRAM. These commands are scheduled to the DRAM through the
push pull arbiter through a command FIFO in the gasket. DRAM read head of queue enables the
PMU to monitor when the read and write commands posted by XScale in the gasket gets fetched
and delivered to DDRAM.
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SRAM Read Head of Queue Latency Histogram

Description:

The XScale core generates a read command or write command to the SRAM primarily to either
push or pull data of the SRAM. These commands are scheduled to the SRAM through the push pull
arbiter through a command FIFO in the gasket. SRAM read head of queue enables the PMU to

monitor when the read and write commands posted by XScale in the gasket gets fetched and
delivered to SRAM.

Interrupts
Description:
Number of interrupts seen

Histogram of time between interrupts

Microengines

Command Fifo number of commands

Description:

This statistics will give the number of the commands issued by the ME in a particular period of
time. It is also can count each different threads.

Control Store Measures

Description:
Count time between two micro store locations (locations can be set by instrumentation software).

Histogram time between two microstore locations (locations can be set by instrumentation
software)

Execution Unit Status

Description:

Histogram of stall time. Histogram of aborted time. Histogram of swapped out time. Histogram of
idle time.

Command Fifo Head of Queue Wait Time
Histogram (Latency)

Description:

This is to measure the latency of a command, which is at the head to the queue and is waiting to be
send out to the destination over the Chassis.
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SRAM

SRAM Commands

Description:

A count of SRAM commands received. These are maskable by command type such as put and get.

SRAM Bytes, Cycles Busy

Description:

This measurement describes the number of bytes transferred and SRAM busy time.
Queue Depth Histogram

Description:

This measurement analyses the different queues such as Ordered, priority, push queue, pull queue,
read lock fail, HW queues and provides the information on utilization.

DDRAM

DRAM Commands

Description:

This measurement lists the total commands issued to the DRAM and they can be counted based on
command type and error type.

DRAM Bytes, Cycles Busy

Description:

This measurement indicates the DRAM busy time and bytes transferred.

Maskable by Read/Write, ME, PCI or XScale®

Description:

This measurement indicates different accesses that are initiated to the DRAM. These measurement
s could be for all the accesses to the memory or can be masked using a specific source such as PCI,
XScale, or ME. This can further measured based on read or write cycles.
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Chassis/Push-Pull

Command Bus utilization

Description:

This statistics will give the number of the command request issued by the different Master in a
particular period of time.

This measurement also indicates how long it take to issue the grant from request being issued by
the different Master.

Push and Pull Bus Utilization.

Description:

This measurement keep track of the number of accesses issued and how long it take to send the
data to destination.

Hash

Number of Accesses by Command type

Description:

This measurement indicates the number of hash accesses issued and this count is maskable based
on command type.

Latency of Histogram

Description:

This monitors the latency through each of the HASH queues.

Scratch

Number of Accesses by Command type

Description:

This measurement indicates the number of Scratch accesses issued and this count is maskable
based on command type.

Number of bytes transfer

Description:

This measurement indicates total number of bytes transferred to or from Scratch.
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Latency of Histogram

Description:

This measurement indicates the latency of performing read or write from the Scratch. Latency is
command executions may also be measured.

PCI

Master Accesses

Description:

This statistics will give the number of Master accesses that were generated by the PCI blocks. This
measurement could be counted based on individual command type.

Slave Accesses

Description:

This statistics will give the number of Slave accesses that were generated by the PCI blocks. This
measurement could be counted based on individual command type.

Master/Slave Read Byte Count

Description:

This statistics will give total the number of bytes of data that were generated by the PCI Master/
Slave reads access. This measurement could be counted based on individual command type.

Master/Slave Write Byte Count

Description:

This statistics will give total the number of bytes of data that were generated by the PCI Master/
Slave write accesses. This measurement could be counted based on individual command type.

Burst Size Histogram

Description:

This statistics will give a histogram of number of various burst size.
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Media Interface

TBUF Occupancy Histogram

Description:

This measurement shows the occupancy rate at different depth of FIFO. This can help in better
utilization of TBUF.

RBUF Occupancy Histogram

Description:

This measurement shows the occupancy rate at different depth of FIFO. This can help in better
utilization of RBUF

Packet/Cell/Frame Count on a Per Port Basis

Description:

This measurement give the count of number of packets or cells or frames transferred in
Transmitting mode.This measurement give the count of number of packets or cells or frames
transferred in the receiving mode.

This may be measured per port basis.

Inter-Arrival Time for Packets on a Per Port Basis

Description:

This measurement can provide information on gap between packets thereby indicating effective
line rate.

Burst Size Histogram

Description

This measurement give the various burst sizes packets being transmitted and received.

Events Monitored in Hardware

Tables in this section describe the events that can be measured, including the name of the event, the
Event Selection Code (ESC), Please refer to Section 11.4 for tables showing event selection codes.

The acronyms in the event names typically represent unit names.

The guidelines for which events a particular component must implement are as follow:
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Queue Statistics Events

Queue Latency

Latency of Queue is an indicator of performance of the control logic in terms of effective execution
of the commands enqueued in to the Control/Command queue or performance of control logic to
effectively transfer data from the Data Queue.

This kind of monitoring needs observation of specific events such as

* Enqueue in to the Queue
This event indicates when an entry was made to the queue.

¢ Dequeue in to the Queue
This event indicates when an entry was removed from the queue. Time period between when a
particular entry was made in to the queue and when the entry was removed from the queue
indicates the latency of the queue for that entry.

* Queue Full Event
This event indicates when the queue has no room for additional entries.

* Queue Empty Event
This event indicates when the queue has no entries

Queue Full and Queue Empty events can be used to determine Queue Utilization and bandwidth
available in the queue to handle more traffic.

Queue Utilization

Utilization of Queue is determined by observing the percentage of time each queue is operating at a
particular threshold level. Based on Queue size multiple threshold values can be predetermined and
monitored. The result of these observations can be used to provide histograms for Queue
utilization. This kind of observation helps us better utilize the available resources in the queue.

Count Events

Hardware Block Execution Count

On each of the hardware blocks events are importance such as number of commands executed, no
of bytes transferred, total amount of clocks block was free, Total amount of time all the Contexts in
the ME was idle can be counted for statistics and to better manage the available resources.

Design Block Select Definitions

Once an event is defined, its definition must remain consistent between products. If the definition
changes it should have a new event selection code. This document contains the master list of all
ESCs in all CHAP enabled products. Not all of the ESCs in this document are listed in numerical
order. The recommendation is to group like events within the following ESC ranges. See

Table 167.
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Table 167. PMU Design Unit Selection

Target Device Target ID PMU Design Group Block # Description
Null XXX XXX 0000 Null (False) Event
CHAP Counters Internal
Threshold Events
Event bit 0 CHAP Counter 0
0001 Event bit 1 CHAP Counter 1
PMU_Counter XXX XXX (PMU) Event bit 2 CHAP Counter 2
Event bit 3 CHAP Counter 3
Event bit 4 CHAP Counter 4
Event bit 5 CHAP Counter 5
SRAM Group
SRAM_DP1 001 001
SRAM_DPO
_| 001 010 IXP2800 only
SRAM channel 0
SRAM_CH3 SRAM channel 1
001011 SRAM channel 2
SRAM_CH2 0010 SRAM channel 3
001100 (SRAM Group) SRAM d-push
P c one and only one will be SRAM d-pull
RAM_CH1 001 101 selected from same group IXP2400 only
SRAM channel 0
SRAM channel 1
SRAM_CHO 001 110 SRAM d-push
SRAM d-pull
DRAM Group
DRAM_CR1 010 000
DRAM_CRO IXP2800 only
- 010 001
DRAM channel 0
DRAM DPLA DRAM channel 1
- 010010 0011 DRAM channel 2
DRAM d-push
DRAM_DPSA (DRAM) d-pus
010 011 one and only one will be DRAM d-pull
selected from same group IXP2400 only
DRAM_CH2 010 100 DRAM channel 0
DRAM d-push
DRAM_CH1 -
_C 010 101 DRAM d-pull
DRAM_CHO 010 110
0100
XPI 000 001 XPI
(XPI)
SHaC
SHaC 000 010 0101
@ HASH
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Table 167. PMU Design Unit Selection (Continued)

11.4.4

374

INlal.

Target Device Target ID PMU Design Group Block # Description
MSF 000 011 0110 Media
XScale® 000 100 0111 XScale®
PCI 000 101 1000 PCI
ME Cluster 0 Group
IXP2800 only
ME Channel 0
MEOQO
MEO1
MEO7 100 111 MEO02
MEQ6 100 110 MEOQ3
MEO5 100 101 1001 MEO4
MEO4 100 100 (MECO) MEO5
one and only one will be ME06
MEO3 100011 selected from same group MEOQ7
MEQ2 100 010 IXP2400 only
MEO1 100 001 ME Channel 0
MEQO 100 000 MEOO
MEO1
MEOQ2
MEOQ3
ME Cluster 1 Group
IXP2800 only
ME Channel 1
ME10
ME11
ME17 110 111 ME12
ME16 110 110 ME13
ME15 110 101 1010 ME14
ME14 110 100 (MECO) ME15
one and only one will be ME16
ME13 110011 selected from same group ME17
ME12 110010 IXP2400 only
ME11 110 001 ME Channel 1
ME10 110 000 ME10
ME11
ME12
ME13
1011-1111 Reserved
Null Event

Not an actual event. When used as an increment or decrement event, no action will take place.
When used as Command Trigger it will cause command to be triggered immediately after
command register is written to by software. Also called False Event. Not reserved.
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11.4.5 Threshold Events

These are the outputs of the threshold comparators. When the value in a data register is compared
to its corresponding counter value and the condition is true, a threshold event is generated. This
results in:

Pulse on the signal lines that are routed to the events input port (one signal line from each
comparator).

One piece of functionality this enables is to allow for CHAP commands to be completed only when

a Threshold Event occurs. In other words, a Threshold Event can be used as a Command Trigger to
control the execution of any CHAP command (start, stop, sample, etc.). See Table 168.

Table 168. Chap Counter Threshold Events (Design Block # 0001)

c Single
lock pulse/ Burst ot
Mux # Event Name Domain Long Description
pulse
single separate iti
000 Counter 0 Threshold pp & P Ecgisthggrﬁ(;?%mon True on
single separate iti
001 Counter 1 Threshold pp o P Eczsthgﬁﬁg??'t'on True on
single separate iti
010 Counter 2 Threshold pp o P Et\/;ensth&lir?tzrggltlon True on
single separate iti
01 Counter 3 Threshold pp 9 P Ecreer‘sthggr?tg?g't'on True on
single separate iti
100 Counter 4 Threshold pp o P E\;;sth&lirig?iltlon True on
single separate iti
101 Counter 5 Threshold pp o P Et\/;ensth&lir?tzr:dsltlon True on
11.4.6 External Input Events
11.4.6.1  XPI Events Target ID(000001) /
Design Block #(0100)
Table 169. XPI PMU Event List (Sheet 1 of 6)
Single
NE‘:&;‘;'_ Event Name D(c:)lr%gli(n ':I’_lg:g/ Burst Description
pulse
single separate It includes all the read accesses, PMU,
0 XPI_RD_P APB timer, GPIO, UART, and SlowPort.
single separate It includes all the write accesses, PMU,
! XPI_LWR_P APB timer, GPIO, UART, and SlowPort.
9 PMU_RD_P APB single separate It executes the res:ljc;l1 i?ccess to the PMU
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Table 169. XPI PMU Event List (Sheet 2 of 6)

INlal.

3 PMU WR P APB single separate It executes the write access to the PMU
- = unit.
4 UART RD P APB single separate It executes the read access to the UART
- = unit.
5 UART WR P APB single separate It executes the write access to the UART
- = unit.
6 GPIO RD P APB single separate It executes the read access to the GPIO
- = unit.
7 GPIO WR P APB single separate It executes the write access to the GPIO
- = unit.
8 TIMER RD P APB single separate It executes the read access to the Timer
- = unit.
9 TIMER WR P APB single separate It executes the write access to the Timer
- = unit.
single separate It executes the read access to the
10 SPDEV_RD_P APB SlowPort Device.
1 SPDEV WR P APB single separate It executes the write access to the
- = SlowPort Device.
single separate It executes the read access to the
12 SPCSR_RD_P APB SlowPort CSR.
single separate It executes the write access to the
13 SPCSR_WR_P APB SlowPort CSR.
14 TMO UF P APB single separate | It shows the occurrence of timer 1 counter
- = underflow.
15 ™1 UF P APB single separate | It shows the occurrence of timer 2 counter
- = underflow.
16 ™2 UF P APB single separate | It shows the occurrence of timer 3 counter
- = underflow.
17 TM3 UF P APB single separate | It shows the occurrence of timer 4 counter
- = underflow.
single separate It displays the idle state of the state
18 IDLE0_O_P APB machine 0 for the mode 0 of SlowPort.
single separate It enters the start state of the state
10 STARTO_1_P APB machine 0 for the mode 0 of SlowPort.
single separate | It enters the first address state, AD[9:2], of
20 ADDR10_3_P APB the state machine 0 for the mode 0 of
SlowPort.
single separate It enters the second address state,
21 ADDR20_2 P APB AD[17:10], of the state machine O for the
mode 0 of SlowPort.
ADDR30 6 P single separate It enters the third address state,
22 - APB ADJ[24:18], of the state machine 0 for the
mode 0 of SlowPort.
23 SETUPO_4_P APB single separate It enters data setup state of the state
machine 0 for the mode 0 of SlowPort.
single separate It enters data duration state of the state
24 PULWO_5_P APB machine 0 for the mode 0 of SlowPort.
single separate It enters data hold state of the state
25 HOLDO_D_P APB machine 0 for the mode 0 of SlowPort.
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26

TURNAO_C_P

APB

single

separate

It enters the termination state of the state
machine 0 for the mode 0 of SlowPort.

27

IDLE1_0_P

APB

single

separate

It displays the idle state of the state
machine 1 for the mode 1 of SlowPort.

28

START1 1 P

APB

single

separate

It enters the start state of the state
machine 1 for the mode 1 of SlowPort.

29

ADDR11_3 P

APB

single

separate

It enters the first address state, AD[7:0], of
the state machine 1 for the mode 1 of
SlowPort.

30

ADDR21_2_P

APB

single

separate

It enters the second address state,
AD[15:8], of the state machine 1 for the
mode 1 of SlowPort.

31

ADDR31_6_P

APB

single

separate

It enters the second address state,
AD[23:16], of the state machine 1 for the
mode 1 of SlowPort.

32

ADDR41_7_P

APB

single

separate

It enters the second address state,
AD[24], of the state machine 1 for the
mode 1 of SlowPort.

33

WRDATA1_5 P

APB

single

separate

It unpacks the data from the APB bus onto
the SlowPort bus for the state machine 1
for the mode 1 of SlowPort.

34

PULW1 4 P

APB

single

separate

It enters the pulse width of the data
transaction cycle for the state machine 1
for the mode 1 of SlowPort.

35

CHPSEL1_C_P

APB

single

separate

It enters the chip select assertion pulse
width when the state machine 1 is active
for the mode 1 of SlowPort.

36

OUTEN1_E_P

APB

single

separate

It enters the cycle when the OE is
asserted during running on the state
machine 1 for the mode 1 of SlowPort.

37

PKDATA1_F_P

APB

single

separate

It enters the read data packing state when
the state machine 1 is active for the mode
1 of SlowPort.

38

LADATA1_D_P

APB

single

separate

It enters the data capturing cycle when the
state machine 1 is active for the mode 1 of
SlowPort.

39

READY1_ 9 P

APB

single

separate

It enters the acknowledge state to
terminate the read cycle when the state
machine 1 is active for the mode 1 of
SlowPort.

40

TURNA1 8 P

APB

single

separate

It enters the turnaround state of the
transaction when the state machine 1 is
active for the mode 1 of SlowPort.

41

IDLE2_0_P

APB

single

separate

It displays the idle state of the state
machine 2 for the mode 2 of SlowPort.

42

START2_1 P

APB

single

separate

It enters the start state of the state
machine 2 for the mode 2 of SlowPort.

43

ADDR12_3 P

APB

single

separate

It enters the first address state, AD[7:0], of
the state machine 2 for the mode 2 of
SlowPort.

Hardware Reference Manual

377




Intel® IXP2400 Network Processor
Performance Monitor Unit

378

Table 169. XPI PMU Event List (Sheet 4 of 6)
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44

ADDR22_2 P

APB

single

separate

It enters the second address state,
AD[15:8], of the state machine 2 for the
mode 2 of SlowPort.

45

ADDR32_6_P

APB

single

separate

It enters the second address state,
AD[23:16], of the state machine 2 for the
mode 2 of SlowPort.

46

ADDR42_7_P

APB

single

separate

It enters the second address state,
ADJ24], of the state machine 2 for the
mode 2 of SlowPort.

47

WRDATA2_5 P

APB

single

separate

It unpacks the data from the APB bus onto
the SlowPort bus for the state machine 2
for the mode 2 of SlowPort.

48

SETUP2 4 P

APB

single

separate

It enters the pulse width of the data
transaction cycle for the state machine 2
for the mode 2 of SlowPort.

49

PULW2_C_P

APB

single

separate

It enters the pulse width of the data
transaction cycle for the state machine 2
for the mode 2 of SlowPort.

50

HOLD2_E_P

APB

single

separate

It enters the data hold period for the state
machine 2 for the mode 2 of SlowPort.

51

OUTEN2_F_P

APB

single

separate

It starts to assert the OE when the state
machine 2 is active for the mode 2 of
SlowPort.

52

PKDATA2_D_P

APB

single

separate

It enters the read data packing state
during the active state machine 2 for the
mode 2 of SlowPort.

53

LADATA2 9 P

APB

single

separate

It enters the data capturing cycle during
the active state machine 2 for the mode 2
of SlowPort.

54

READY2_B_P

APB

single

separate

It enters the acknowledge state to
terminate the read cycle when the state
machine 2 is active for the mode 2 of
SlowPort.

55

TURNA2_8 P

APB

single

separate

It enters the turnaround state of the
transaction when the state machine 2 is
active for the mode 2 of SlowPort.

56

IDLE3_ 0_P

APB

single

separate

It displays the idle state of the state
machine 3 for the mode 3 of SlowPort.

57

START3_1_P

APB

single

separate

It enters the start state of the state
machine 3 for the mode 3 of SlowPort.

58

ADDR13_3 P

APB

single

separate

It enters the first address state, AD[7:0], of
the state machine 3 for the mode 3 of
SlowPort.

59

ADDR23 2_P

APB

single

separate

It enters the second address state,
AD[15:8], of the state machine 3 for the
mode 3 of SlowPort.

60

ADDR33_6_P

APB

single

separate

It enters the second address state,
ADI[23:16], of the state machine 3 for the
mode 3 of SlowPort.

61

ADDR43 7 P

APB

single

separate

It enters the second address state,
AD[24], of the state machine 3 for the
mode 3 of SlowPort.
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62

WRDATA3_5 P

APB

single

separate

It unpacks the data from the APB bus onto
the SlowPort bus for the state machine 3
for the mode 3 of SlowPort.

63

SETUP3_4 P

APB

single

separate

It enters the pulse width of the data
transaction cycle for the state machine 3
for the mode 3 of SlowPort.

64

PULW3_C_P

APB

single

separate

It enters the pulse width of the data
transaction cycle for the state machine 3
for the mode 3 of SlowPort.

65

HOLD3_E_P

APB

single

separate

It enters the data hold period for the state
machine 3 for the mode 3 of SlowPort.

66

OUTEN3_F_P

APB

single

separate

It starts to assert the OE when the state
machine 3 is active for the mode 3 of
SlowPort.

67

PKDATA3_D_P

APB

single

separate

It enters the read data packing state
during the active state machine 3 for the
mode 3 of SlowPort.

68

LADATA3_B_P

APB

single

separate

It enters the data capturing cycle during
the active state machine 3 for the mode 3
of SlowPort.

69

READY3 9 P

APB

single

separate

It enters the acknowledge state to
terminate the read cycle when the state
machine 3 is active for the mode 3 of
SlowPort.

70

TURNA3 8 P

APB

single

separate

It enters the turnaround state of the
transaction when the state machine 3 is
active for the mode 3 of SlowPort.

71

IDLE4_0_P

APB

single

separate

It displays the idle state of the state
machine 4 for the mode 4 of SlowPort.

72

START4_1_P

APB

single

separate

It enters the start state of the state
machine 4 for the mode 4 of SlowPort.

73

ADDR14_3 P

APB

single

separate

It enters the first address state, AD[7:0], of
the state machine 4 for the mode 4 of
SlowPort.

74

ADDR24_2 P

APB

single

separate

It enters the second address state,
AD[15:8], of the state machine 4 for the
mode 4 of SlowPort.

75

ADDR34_6_P

APB

single

separate

It enters the second address state,
AD[23:16], of the state machine 4 for the
mode 4 of SlowPort.

76

ADDR44_7_P

APB

single

separate

It enters the second address state,
AD[24], of the state machine 4 for the
mode 4 of SlowPort.

77

WRDATA4 5 P

APB

single

separate

It unpacks the data from the APB bus onto
the SlowPort bus for the state machine 4
for the mode 4 of SlowPort.

78

SETUP4_4_P

APB

single

separate

It enters the pulse width of the data
transaction cycle for the state machine 4
for the mode 4 of SlowPort.

79

PULWA4 C_P

APB

single

separate

It enters the pulse width of the data
transaction cycle for the state machine 4
for the mode 4 of SlowPort.
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single separate | It enters the data hold period for the state
80 HOLD4_E_P APB machine 4 for the mode 4 of SlowPort.
single separate It starts to assert the OE when the state
81 OUTEN4_F_P APB machine 4 is active for the mode 4 of
SlowPort.
single separate It enters the read data packing state
82 PKDATA4 D P APB during the active state machine 4 for the
mode 4 of SlowPort.
single separate It enters the data capturing cycle during
83 LADATA4 B P APB the active state machine 4 for the mode 4
of SlowPort.
single separate It enters the acknowledge state to
terminate the read cycle when the state
84 READY4_9_P APB machine 4 is active for the mode 4 of
SlowPort.
single separate It enters the turnaround state of the
85 TURNA4_8 P APB transaction when the state machine 4 is
active for the mode 4 of SlowPort.
11.4.6.2 SHaC Events Target ID(000010) /
Design Block #(0101)
Table 170. SHaC PMU Event List (Sheet 1 of 4)
Single
Event Event Name CIOCI.( pulse/ Burst Description
Number Domain Long
pulse
Scratch single separate )
) Ish_scratch.sh_cmd_ctl.sh_qgcmd_valid_r
0 Cmd_lInlet_Fifo P_CLK oh
Not_Empty
Scratch ) single separate SHTA_CMD_Q_FULL_RPH
1 Cmd_lInlet_Fifo P_CLK
Full
Scratch single separate | sh_scratch.sh_cmd_ctl.sh_scr_cmd_queu
2 Cmd_Inlet_Fifo P_CLK e.shemd_wr_queue_wph
Enqueue
Scratch single separate | gh gcratch.sh_cmd_ctl.sh_adv_cmd_wph
3 Cmd_Inlet_Fifo P_CLK
Dequeue
4 Scratch Cmd_Pipe P CLK single separate sh_scratch.scr_cmd_valid_rph
Not_Empty -
) single separate | sh_scratch.sh_cmd_ctl.sh_cmd_pipe_full
5 Scratch Cmd_Pipe P _CLK _wph
Full
) single separate | sh_scratch.sh_cmd_ctl.sh_adv_cmd_wph
6 ScratchCmd_Pipe | o o : duplicate with event 3
Enqueue -
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. single separate | sh_scratch.sh_cmd_ctl.scr_deq_cmd_pip
7 Scratch Cmd_Pipe P CLK e_wph
Dequeue -
Scratch single separate | sh_scratch.sh_cmd_ctl.scr_pull0_fifo_full_
8 Pull_Data_Fifo 0 P_CLK wph
Full
Scratch single separate | sh_scratch.sh_cmd_ctl.scr_pull1_fifo_full_
9 Pull_Data_Fifo 1 P_CLK wph
Full
Hash single separate | sh_scratch.sh_cmd_ctl.hash_pull0_fifo_fu
10 Pull_Data_Fifo 0 P_CLK II_wph
Full
Hash single separate | sh_scratch.sh_cmd_ctl.hash_pull1_fifo_fu
1 Pull_Data_Fifo 1 P_CLK II_wph
Full
12 pull %C;taz;tcrl;fo 0 P CLK single separate Ish_scratch.scr_pull0_data_valid_rph
ull_| _Fi a
Not_Empty
13 pull %Cgf‘atcgi 00 P CLK single separate | g scratch.sh_scr_take pulld_data_wph
Enqueue -
14 pull %C;taz;tcrl;fo 0 P CLK single separate sh_scratch.scr_read_pull0_data_wph
ull_| _Fi a
Dequeue
15 pull %Cgf‘atcgi o1 P CLK single separate Ish_scratch.scr_pull1_data_valid_rph
Not_Empty -
16 pull %C;ta;‘cg,fo1 P CLK single separate | g gcratch.sh_scr_take_pulll_data_wph
ull_| _Fi a
Enqueue
17 pull %Cgf‘atcgi o1 P CLK single separate sh_scratch.scr_read_pull1_data_wph
Dequeue -
Scratch State single separate sh_scratch.scr_sm_idle_wph
18 Machine Idle P_CLK
Scratch RAM single separate RAM_SCRATCH_WR_WPH
19 Write P_CLK
Scratch RAM single separate RAM_SCRATCH_RD_WPH
20 Read P_CLK
21 Scratch Ring_0 P CLK single separate SHXX_RING_FULL_RPH][0]
Full -
Scratch Ring_1 single separate SHXX_RING_FULL_RPH[1]
22 Full P_CLK
23 Scratch Ring_2 P CLK single separate SHXX_RING_FULL_RPH[2]
Full -
Scratch Ring_3 single separate SHXX_RING_FULL_RPH][3]
24 Full P_CLK
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i single separate SHXX_RING_FULL_RPHI[4
25 Scratcpuﬁlngj P CLK g p _ _ _RPH[4]
26 Scratch Ring_5 P CLK single separate SHXX_RING_FULL_RPH[5]
Full -
i single separate SHXX_RING_FULL_RPHI6
27 Scratcpuﬁlngﬁ P CLK g p _ _ _RPH[E]
28 Scratch Ring_7 P CLK single separate SHXX_RING_FULL_RPH[7]
Full -
i single separate SHXX_RING_FULL_RPH[8
29 Scratcpuﬁlngﬁ P CLK g p _ _ _RPH[8]
30 Scratch Ring_9 P CLK single separate SHXX_RING_FULL_RPH[9]
Full -
i single separate SHXX_RING_FULL_RPH[10
31 Scratcrlllﬁlmg_m P CLK g p _ _ _RPH[10]
32 Scratch Ring_11 P CLK single separate SHXX_RING_FULL_RPH[11]
Full -
i single separate SHXX_RING_FULL_RPH[12
33 Scratcrlllﬁlmg_m P CLK g p _ _ _RPH[12]
34 scratcr']:l:‘\l’ling_13 P CLK single separate SHXX_RING_FULL_RPH[13]
i single separate SHXX_RING_FULL_RPH[14
35 Scratcrlllﬁlmg_m P CLK g p _ _ _RPH[14]
36 scratcr']:l:‘\l’ling_15 P CLK single separate SHXX_RING_FULL_RPH[15]
37 CAP CSR Write P CLK single separate sh_scratch.scr_csr_write_wph
38 CAP CS.R Fast P CLK single separate sh_scratch.SCR_FAST_WRITE_RPH
Write -
39 CAP CSR Read P CLK single separate sh_scratch.scr_csr_read_wph
40 DEQUEUE APB P CLK single separate | sh_scratch.sh_apb_slave.SCR_DEQ_AP
data - B_DATA_WPH
apb_push_cmd_w single separate | sh_scratch.sh_apb_slave.apb_push_cmd
41 P_CLK
ph _wph
42 APB_PUSH_DAT P CLK single separate | sh_scratch.sh_apb_slave.APB_PUSH_D
A_REQ_RPH - ATA_REQ_RPH
APB pull1 FIFO single separate | sh_scratch.sh_apb_slave.apb_deq_pull1_
43 P_CLK
dequeue data_wph
24 apb_deq_pull1_da P CLK single separate | sh_scratch.sh_apb_slave.SCR_APB_TAK
ta_wph - E_PULL1_DATA_WPH
data valid in apb single separate | sh_scratch.sh_apb_slave.apb_pull1_data
45 P_CLK -
pulll FIFO _valid_wph
APB pull0 FIFO single separate | sh_scratch.sh_apb_slave.apb_deq_pull0_
46 P_CLK
dequeue data_wph
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47 lfﬁ&@%ﬂ*ﬁﬁ b ok | TM9 | SeParate | sh scrateh.sh_apb_slave.SCR_APB_TAK
“H - E_PULLO_DATA_WPH
48 data valid in apb P CLK single separate | sh_scratch.sh_apb_slave.apb_pull0_data
pull0 FIFO - _valid_wph
49 CAP APB read P_CLK | single separate sh_scratch.sh_apb_slave.apb_rd_wph
50 CAP APB write P_CLK | single separate sh_scratch.sh_apb_slave.apb_wr_wph
51 APB cmd dequeue | P_CLK single separate | sh_scratch.sh_apb_slave.apb_deq_cmd_
- wph
52 APB CMD FIFO P CLK single separate | sh_scratch.sh_apb_slave.SH_ENQ_APB
enqueue - _CMD_WPH
53 APB CMD FIFO P CLK single separate | sh_scratch.sh_apb_slave.APB_CMD_Q_
FULL - FULL_RPH
54 APB CMD valid P CLK single separate | sh_scratch.sh_apb_slave.apb_cmd_valid
- _wph
55 Pull ;aachFifoo P CLK single separate sh_hash.hash_pull0_data_valid_rph
Not_Empty -
Hash single separate | sh_hash.SCR_HASH_TAKE_DATAO0_RP
56 Pull_Data_Fifo O P_CLK H
Enqueue
57 pull gaiZhF'foo P CLK single separate sh_hash.hash_read_pull0_data_wph
ull_| _Fi a
Dequeue
58 Pull ;aachFifo1 P CLK single separate sh_hash.hash_pull1_data_valid_rph
Not_Empty -
Hash single separate | sh_hash.SCR_HASH_TAKE_DATA1_RP
59 Pull_Data_Fifo 1 P_CLK H
Enqueue
60 pull gaachF'fo1 P CLK single separate sh_hash.hash_read_pull1_data_wph
ull_| _Fi a
Dequeue
61 Hash Active P CLK single separate sh_hash.hash_active_rph
iv a
62 Hash Cmd_Pipe P CLK single separate sh_hash.hash_cmd_valid_p3_rph
Not_Empty -
63 Hash Cmd_Pipe P CLK single separate IHASH_REQ_CMD_WPH
Full -
o Push "I'Daastg Pipe | P_GCLK single | separate IHASH_PUSH_DATA_REQ_RPH
No_t_EmEty -
65 Push %aastg Pipe | P _CLK single separate Ish_hash.hash_adv_push_data_wph
TFull -
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Table 171.

XScale® Events Target ID(000100) /
Design Block #(0111)

XScale® Gasket PMU Event List (Sheet 1 of 4)

Single
NE‘::S(ter Event Name D%Ir?lzli(n pLL;IﬁZI Burst Description
pulse
0 XG_CFIFO_WR_EVEN_XS | C_CLK single separate | XG command FIFO even enqueue
1 XG_CFIFO_WR_ODD_XS C_CLK single separate | XG command FIFO odd enqueue
2 XG_DFIFO_WR_EVEN_XS | C_CLK single separate | XG DRAM data FIFO even enqueue
3 XG_DFIFO_WR_ODD_XS C_CLK single separate | XG DRAM data FIFO odd enqueue
4 XG_SFIFO_WR_EVEN_XS | C_CLK single separate | XG SRAM data FIFO even enqueue
5 XG_SFIFO_WR_ODD_XS C_CLK single separate | XG SRAM data FIFO odd enqueue
6 XG_LCFIFO_WR_EVEN_X | C_CLK single separate | XG lcsr command FIFO even
S enqueue
7 XG_LCFIFO_WR _ODD_XS | C_CLK single separate | XG lcsr command FIFO odd enqueue
8 XG_LDFIFO_WR_EVEN_X | C_CLK single separate | XG Icsr data FIFO even enqueue
S
9 XG_LDFIFO_WR_ODD_XS | C_CLK single separate | XG Icsr data FIFO odd enqueue
10 XG_LCSR_RD_EVEN_XS C_CLK single separate | XG lcsr return data FIFO even
dequeue
11 XG_LCSR_RD_ODD_XS C_CLK single separate | XG Icsr return data FIFO odd dequeue
12 XG_LCSR_RD_OR_XS C_CLK single separate | XG Icsr return data FIFO even_or_odd
dequeue
13 XG_PUFFO_RD_EVEN_XS | C_CLK single separate | XG push fifoO even dequeue
14 XG_PUFFO_RD_ODD_XS C_CLK single separate | XG push fifo0 odd dequeue
15 XG_PUFFO_RD_OR_XS C_CLK single separate | XG push fifoO even_or_odd dequeue
16 XG_PUFF1_RD_EVEN_XS | C_CLK single separate | XG push fifo1 even dequeue
17 XG_PUFF1_RD_ODD_XS C_CLK single separate | XG push fifo1 odd dequeue
18 XG_PUFF1_RD_OR_XS C_CLK single separate | XG push fifo1 even_or_odd dequeue
19 XG_PUFF2_RD_EVEN_XS | C_CLK single separate | XG push fifo2 even dequeue
20 XG_PUFF2_RD_ODD_XS C_CLK single separate | XG push fifo2 odd dequeue
21 XG_PUFF2_RD_OR_XS C_CLK single separate | XG push fifo2 even_or_odd dequeue
22 XG_PUFF3_RD_EVEN_XS | C_CLK single separate | XG push fifo3 even dequeue
23 XG_PUFF3_RD_ODD_XS C_CLK single separate | XG push fifo3 odd dequeue
24 XG_PUFF3_RD_OR_XS C_CLK single separate | XG push fifo3 even_or_odd dequeue
25 XG_PUFF4_RD_EVEN_XS | C_CLK single separate | XG push fifo4 even dequeue
26 XG_PUFF4_RD_ODD_XS C_CLK single separate | XG push fifo4 odd dequeue
27 XG_PUFF4_RD_OR_XS C_CLK single separate | XG push fifo4 even_or_odd dequeue
28 XG_SYNC_ST_XS C_CLK single separate | XG in sync. state
29 reserved
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30 reserved
31 reserved
32 reserved
33 reserved
34 XG_CFIFO_EMPTYN_CPP | P_CLK single separate | XG command FIFO empty flag
35 XG_DFIFO_EMPTYN_CPP | P_CLK single separate | XG DRAM data FIFO empty flag
36 XG_SFIFO_EMPTYN_CPP | P_CLK single separate | XG SRAM data FIFO empty flag
37 XG_LCFIFO_EMPTYN_CP | P_CLK single separate | XG lcsr command FIFO empty flag
P
38 XG_LDFIFO_EMPTYN_CP | P_CLK single separate | XG Icsr data FIFO empty flag
P
39 reserved
40 XG_OFIFO_EMPTYN_CPP | P_CLK single separate | XG cpp command FIFO empty flag
41 XG_OFIFO_FULLN_CPP P_CLK single separate | XG cpp command FIFO full flag
42 XG_DP_EMPTYN_CPP P_CLK single separate | XG DRAM pull data FIFO empty flag
43 XG_SP_EMPTYN_CPP P_CLK single separate | XG SRAM pull data FIFO empty flag
44 XG_HASH_48_CPP P_CLK single separate | hash_48 command on cpp bus
45 XG_HASH_64_CPP P_CLK single separate | hash_64 command on cpp bus
46 XG_HASH_128 CPP P_CLK single separate | hash_128 command on cpp bus
47 XG_LCSR_FIQ_CPP P_CLK single separate | XG FIQ generated by interrupt CSR
48 XG_LCSR_IRQ_CPP P_CLK single separate | XG IRQ generated by interrupt CSR
49 XG_CFIFO_RD_CPP P_CLK single separate | XG command FIFO dequeue
50 XG_DFIFO_RD_CPP P_CLK single separate | XG DRAM data FIFO dequeue
51 XG_SFIFO_RD_CPP P_CLK single separate | XG SRAM data FIFO dequeue
52 XG_LCFIFO_RD_CPP P_CLK single separate | XG lcsr command FIFO dequeue
53 XG_LDFIFO_RD_CPP P_CLK single separate | XG Icsr data FIFO dequeue
54 XG_LCSR_WR_CPP P_CLK single separate | XG Icsr return data FIFO enqueue
55 XG_OFIFO_RD_CPP P_CLK single separate | XG cpp command FIFO dequeue
56 XG_OFIFO_WR_CPP P_CLK single separate | XG cpp command FIFO enqueue
57 XG_DPDATA_WR_CPP P_CLK single separate | XG DRAM pull data FIFO enqueue
58 XG_DPDATA_RD_CPP P_CLK single separate | XG DRAM pull data FIFO dequeue
59 XG_SPDATA_WR_CPP P_CLK single separate | XG SRAM pull data FIFO enqueue
60 XG_SPDATA_RD_CPP P_CLK single separate | XG SRAM pull data FIFO dequeue
61 XG_PUFFO_WR_CPP P_CLK single separate | XG push fifo0 enqueue
62 XG_PUFF1_WR_CPP P_CLK single separate | XG push fifo1 enqueue
63 XG_PUFF2_WR_CPP P_CLK single separate | XG push fifo2 enqueue
64 XG_PUFF3_WR_CPP P_CLK single separate | XG push fifo3 enqueue
65 XG_PUFF4_WR_CPP P_CLK single separate | XG push fifo4 enqueue
66 XG_SRAM_RD_CPP P_CLK single separate | XG SRAM read command on cpp bus
67 XG_SRAM_RD_1_CPP P_CLK single separate | XG SRAM read length=1 on cpp bus
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68 XG_SRAM_RD_8 CPP P_CLK single separate | XG SRAM read length=8 on cpp bus

69 XG_SRAM_WR_CPP P_CLK single separate | XG SRAM write command on cpp bus

70 XG_SRAM_WR_1_CPP P_CLK single separate | XG SRAM write length=1 on cpp bus

71 XG_SRAM_WR_2_CPP P_CLK single separate | XG SRAM write length=2 on cpp bus

72 XG_SRAM_WR_3_CPP P_CLK single separate | XG SRAM write length=3 on cpp bus

73 XG_SRAM_WR_4_CPP P_CLK single separate | XG SRAM write length=4 on cpp bus

74 XG_SRAM_CSR_RD_CPP | P_CLK single separate | XG SRAM csr read command on cpp
bus

75 XG_SRAM_CSR_WR_CPP | P_CLK single separate | XG SRAM csr write command on cpp
bus

76 XG_SRAM_ATOM_CPP P_CLK single separate | XG SRAM atomic command on cpp
bus

77 XG_SRAM_GET_CPP P_CLK single separate | XG SRAM get command on cpp bus

78 XG_SRAM_PUT_CPP P_CLK single separate | XG SRAM put command on cpp bus

79 XG_SRAM_ENQ_CPP P_CLK single separate | XG SRAM enq command on cpp bus

80 XG_SRAM_DEQ_CPP P_CLK single separate | XG SRAM deq command on cpp bus

81 XG_S0_ACC_CPP P_CLK single separate | XG SRAM channel0 access on cpp
bus

82 XG_S1_ACC_CPP P_CLK single separate | XG SRAM channel1 access on cpp
bus

83 XG_S2_ACC_CPP P_CLK single separate | XG SRAM channel2 access on cpp
bus

84 XG_S3_ACC_CPP P_CLK single separate | XG SRAM channel3 access on cpp
bus

85 XG_SCR_RD_CPP P_CLK single separate | XG scratch read command on cpp bus

86 XG_SCR_RD_1_CPP P_CLK single separate | XG scratch read length=1 on cpp bus

87 XG_SCR_RD _8 CPP P_CLK single separate | XG scratch read length=8 on cpp bus

88 XG_SCR_WR_CPP P_CLK single separate | XG scratch write command on cpp
bus

89 XG_SCR_WR_1_CPP P_CLK single separate | XG scratch write length=1 on cpp bus

90 XG_SCR_WR_2_CPP P_CLK single separate | XG scratch write length=2 on cpp bus

91 XG_SCR_WR_3_CPP P_CLK single separate | XG scratch write length=3 on cpp bus

92 XG_SCR_WR_4_CPP P_CLK single separate | XG scratch write length=4 on cpp bus

93 XG_SCR_ATOM_CPP P_CLK single separate | XG scratch atomic command on cpp
bus

94 XG_SCR_GET_CPP P_CLK single separate | XG scratch get command on cpp bus

95 XG_SCR_PUT_CPP P_CLK single separate | XG scratch put command on cpp bus

96 XG_DRAM_RD_CPP P_CLK single separate | XG DRAM read command on cpp bus

97 XG_DRAM_RD_1_CPP P_CLK single separate | XG DRAM read length=1 on cpp bus

98 XG_DRAM_RD_4 CPP P_CLK single separate | XG DRAM read length=4 on cpp bus

99 XG_DRAM_WR_CPP P_CLK single separate | XG DRAM write on cpp bus

100 XG_DRAM_WR_1_CPP P_CLK single separate | XG DRAM write length=1 on cpp bus
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101 XG_DRAM_WR_2_CPP P_CLK single separate | XG DRAM write length=2 on cpp bus
102 XG_DRAM_CSR_RD_CPP | P_CLK single separate | XG DRAM csr read command on cpp
bus
103 XG_DRAM_CSR_WR_CPP | P_CLK single separate | XG DRAM csr write command on cpp
bus
104 XG_MSF_RD_CPP P_CLK single separate | XG msf read command on cpp bus
105 XG_MSF_RD_1_CPP P_CLK single separate | XG msf read length=1 on cpp bus
106 reserved
107 XG_MSF_WR_CPP P_CLK single separate | XG msf write command on cpp bus
108 XG_MSF_WR_1_CPP P_CLK single separate | XG msf write length=1 on cpp bus
109 XG_MSF_WR_2 CPP P_CLK single separate | XG msf write length=2 on cpp bus
110 XG_MSF_WR_3_CPP P_CLK single separate | XG msf write length=3 on cpp bus
111 XG_MSF_WR_4 _CPP P_CLK single separate | XG msf write length=4 on cpp bus
112 XG_PCI_RD_CPP P_CLK single separate | XG pci read command on cpp bus
113 XG_PCI_RD_1_CPP P_CLK single separate | XG pci read length=1 on cpp bus
114 XG_PCI_RD_8 _CPP P_CLK single separate | XG pci read length=8 on cpp bus
115 XG_PCI_WR_CPP P_CLK single separate | XG pci write command on cpp bus
116 XG_PCI_WR_1_CPP P_CLK single separate | XG pci write length=1 on cpp bus
117 XG_PCI_WR_2_CPP P_CLK single separate | XG pci write length=2 on cpp bus
118 XG_PCI_WR_3 CPP P_CLK single separate | XG pci write length=3 on cpp bus
119 XG_PCI_WR_4_CPP P_CLK single separate | XG pci write length=4 on cpp bus
120 XG_CAP_RD_CPP P_CLK single separate | XG cap read command on cpp bus
121 XG_CAP_RD_1_CPP P_CLK single separate | XG cap read length=1 on cpp bus
122 XG_CAP_RD_8 _CPP P_CLK single separate | XG cap read length=8 on cpp bus
123 XG_CAP_WR_CPP P_CLK single separate | XG cap write command on cpp bus
124 XG_CAP_WR_1_CPP P_CLK single separate | XG cap write length=1 on cpp bus
125 reserved
126 reserved
127 reserved
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11.4.6.4

PCI Events Target ID(000101) /

Design Block #(1000)

Table 172. PCI PMU Event List (Sheet 1 of 5)

Event Clock Pulse/ i

Number Event Name Domain Level Burst Description

0 PCI_TGT_AFIFO_FULL C_CLK single | separate | PCl Target Address FIFO Full

1 PCI_TGT_AFIFO_NEMPTY C_CLK single | separate | PCl Target Address FIFO Not
Empty

2 PCI_TGT_AFIFO_WR C_CLK single | separate | PCl Target Address FIFO Write

3 PCI_TGT_AFIFO_RD C_CLK single | separate | PCI Target Address FIFO Read

4 PCI_TGT_RFIFO_FULL C_CLK single | separate | PCl Target Read FIFO Full

5 PCI_TGT_RFIFO_NEMPTY C_CLK single | separate | PCl Target Read FIFO Not
Empty

6 PCI_TGT_RFIFO_WR C_CLK single | separate | PCl Target Read FIFO Write

7 PCI_TGT_RFIFO_RD C_CLK single | separate | PCl Target Read FIFO Read

8 PCI_TGT_WFIFO_FULL C_CLK single | separate | PCI Target Write FIFO Full

9 PCI_TGT_WFIFO_NEMPTY C_CLK single | separate | PCl Target Write FIFO Not
Empty

10 PCI_TGT_WFIFO_WR C_CLK single | separate | PCIl Target Write FIFO Write

11 PCI_TGT_WFIFO_RD C_CLK single | separate | PCIl Target Write FIFO Read

12 PCI_TGT_WBUF_FULL C_CLK single | separate | PCI Target Write Buffer Full

13 PCI_TGT_WBUF_NEMPTY C_CLK single | separate | PCIl Target Write Buffer Not
Empty

14 PCI_TGT_WBUF_WR C_CLK single | separate | PCIl Target Write Buffer Write

15 PCI_TGT_WBUF_RD C_CLK single | separate | PCIl Target Write Buffer Read

16 PCI_MST_AFIFO_FULL C_CLK single | separate | PCl Master Address FIFO Full

17 PCI_MST_AFIFO_NEMPTY C_CLK single | separate | PCl Master Address FIFO Not
Empty

18 PCI_MST_AFIFO_WR C_CLK single | separate | PCl Master Address FIFO Write

19 PCI_MST_AFIFO_RD C_CLK single | separate | PCl Master Address FIFO Read

20 PCI_MST_RFIFO_FULL C_CLK single | separate | PCl Master Read FIFO Full

21 PCI_MST_RFIFO_NEMPTY C_CLK single | separate | PCl Master Read FIFO Not
Empty

22 PCI_MST_RFIFO_WR C_CLK single | separate | PCl Master Read FIFO Write
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23 PCI_MST_RFIFO_RD C_CLK single | separate | PCl Master Read FIFO Read

24 PCI_MST_WFIFO_FULL C_CLK single | separate | PCl Master Write FIFO Full

25 PCI_MST_WFIFO_NEMPTY C_CLK single | separate | PCI Master Write FIFO Not
Empty

26 PCI_MST_WFIFO_WR C_CLK single | separate | PCl Master Write FIFO Write

27 PCI_MST_WFIFO_RD C_CLK single | separate | PCl Master Write FIFO Read

28 PCI_DMA1_BUF_FULL C_CLK single | separate | PCI_DMA_Channel 1

29 PCI_DMA1_BUF_NEMPTY

30 PCI_DMA1_BUF_WR

31 PCI_DMA1_BUF_RD

32 PCI_DMA2_BUF_FULL PCI_DMA_Channel 2

33 PCI_DMA2_BUF_NEMPTY

34 PCI_DMA2_BUF_WR P_CLK single | separate

35 PCI_DMA2_BUF_RD P_CLK single | separate

36 PCI_DMA3 BUF_FULL P_CLK single | separate | PCI_DMA_Channel 3

37 PCI_DMA3_BUF_NEMPTY P_CLK single | separate

38 PCI_DMA3 _BUF_WR P_CLK single | separate

39 PCI_DMA3_BUF_RD P_CLK single | separate

40 PCI_TCMD_FIFO_FULL P_CLK single | separate | PClI TARGET Command Fifo

41 PCI_TCMD_FIFO_NEMPTY P_CLK single | separate

42 PCI_TCMD_FIFO_WR P_CLK single | separate

43 PCI_TCMD_FIFO_RD P_CLK single | separate

44 PCI_TDATA_FIFO_FULL P_CLK single | separate | PCl Push/Pull Data Fifo

45 PCI_TDATA_FIFO_NEMPTY P_CLK single | separate

46 PCI_TDATA_FIFO_WR P_CLK single | separate

47 PCI_TDATA_FIFO_RD P_CLK single | separate

48 PCI_CSR_WRITE P_CLK single | separate | PCl Write to PCI_CSR_BAR

49 PCI_CSR_READ P_CLK single | separate

50 PCI_DRAM_WRITE P_CLK single | separate | PCl Write to PCI_DRAM_BAR

51 PCI_DRAM_READ P_CLK single | separate
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PCI PMU Event List (Sheet 3 of 5)
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52 PCI_DRAM_BURST_WRITE P_CLK single | separate | PCl Burst Write to
PCI_CSR_BAR

53 PCI_DRAM_BURST_READ P_CLK single | separate | PCl Burst Read to
PCI_CSR_BAR

54 PCI_SRAM_WRITE P_CLK single | separate | PCl Write to PCI_SRAM_BAR

55 PCI_SRAM_READ P_CLK single | separate

56 PCI_SRAM_BURST_WRITE P_CLK single | separate | PCIl Burst Write to
PCI_SRAM_BAR

57 PCI_SRAM_BURST_READ P_CLK single | separate

58 PCI_CSR_CMD P_CLK single | separate | PClI CSR Command Generated

59 PCI_CSR_PUSH P_CLK single | separate | PClI CSR Push Command

60 PCI_CSR_PULL P_CLK single | separate | PCI CSR Pull Command

61 PCI_SRAM_CMD P_CLK single | separate | PCI SRAM Command

62 PCI_SRAM_PUSH P_CLK single | separate | PClI SRAM Push Command

63 PCI_SRAM_PULL P_CLK single | separate | PClI SRAM Pull Command

64 PCI_DRAM_CMD P_CLK single | separate | PCI DRAM Command

65 PCI_DRAM_PUSH P_CLK single | separate

66 PCI_DRAM_PULL P_CLK single | separate

67 PCI_CSR_2PCI_WR P_CLK single | separate | PCIl Target Write to PClI local
CSR

68 PCI_CSR_2PCI_RD P_CLK single | separate

69 PCI_CSR_2CFG_WR P_CLK single | separate | PCI Target Write to PCI local
Config CSR

70 PCI_CSR_2CFG_RD P_CLK single | separate

71 PCI_CSR_2SRAM_WR P_CLK single | separate | PCI Target Write to SRAM CSR

72 PCI_CSR_2SRAM_RD P_CLK single | separate

73 PCI_CSR_2DRAM_WR P_CLK single | separate | PCI Target Write to DRAM CSR

74 PCI_CSR_2DRAM_RD P_CLK single | separate

75 PCI_CSR_2CAP_WR P_CLK single | separate | PCI Target Write to CAPCSR

76 PCI_CSR_2CAP_RD P_CLK single | separate

77 PCI_CSR_2MSF_WR P_CLK single | separate | PCI Target Write to MSFCSR

78 PCI_CSR_2MSF_RD P_CLK single | separate

79 PCI_CSR_2SCRAPE_WR P_CLK single | separate | PCI Target Write to Scrape CSR

80 PCI_CSR_2SCRAPE_RD P_CLK single | separate

81 PCI_CSR_2SCRATCH_RING_W | P_CLK single | separate | PCI Target Write to Scratch

R Ring CSR
82 PCI_CSR_2SCRATCH_RING_R | P_CLK single | separate
D
83 PCI_CSR_2SRAM_RING_WR P_CLK single | separate | PCI Target Write to SRAM Ring

CSR
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84 PCI_CSR_2SRAM_RING_RD P_CLK single | separate

85 PCI_XS_LCFG_RD P_CLK single | separate | pc|XScale® Read Local Config
CSR

86 PCI_XS_LCFG_WR P_CLK single | separate

87 PCI_XS_CSR_RD P_CLK single | separate | PCl XScale Read Local CSR

88 PCI_XS_CSR_WR P_CLK single | separate

89 PCI_XS_CFG_RD P_CLK single | separate | PCl XScale Read PCI Bus Con-
fig Space

90 PCI_XS_CFG_WR P_CLK single | separate

91 PCI_XS_MEM_RD P_CLK single | separate | pC| XScale Read PCl Bus
Memory Space

92 PCI_XS_MEM_WR P_CLK single | separate

93 PCI_XS_BURST_RD P_CLK single | separate | PCl XScale Burst Read PCI
Bus Memory Space

94 PCI_XS_BURST_WR P_CLK single | separate

95 PCI_XS_10_RD P_CLK single | separate | PCl XScale Read PCI Bus I/0
Space

96 PCI_XS_10_WR P_CLK single | separate

97 PCI_XS_SPEC P_CLK single | separate | PCl XScale Read PCI Bus as
Special

98 PCI_XS_IACK P_CLK single | separate | PCl XScale Read PCI Bus as
IACK

99 PCI_ME_CSR_RD P_CLK single | separate | PClI ME Read Local CSR

100 PCI_ME_CSR_WR P_CLK single | separate

101 PCI_ME_MEM_RD P_CLK single | separate | PClI ME Read PCI Bus Memory
Space

102 PCI_ME_MEM_WR P_CLK single | separate

103 PCI_ME_BURST_RD P_CLK single | separate | PCI ME Burst Read PCI Bus
Memory Space

104 PCI_ME_BURST_WR P_CLK single | separate

105 PCI_MST_CFG_RD P_CLK single | separate | PCI Initiator Read PCI Bus Con-
fig Space

106 PCI_MST_CFG_WR P_CLK single | separate

107 PCI_MST_MEM_RD P_CLK single | separate | PCI Initiator Read PCI Bus
Memory Space

108 PCI_MST_MEM_WR P_CLK single | separate

109 PCI_MST_BURST_RD P_CLK single | separate | PCI Initiator Burst Read PCI
Bus Memory Space

110 PCI_MST_BURST_WR P_CLK single | separate

111 PCI_MST_IO_READ P_CLK single | separate | PCI Initiator Read PCI Bus I/0
Space

112 PCI_MST_IO_WRITE P_CLK single | separate
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113 PCI_MST_SPEC P_CLK single | separate | PCl Initiator Read PCI Bus As a
Special Cycle

114 PCI_MST_IACK P_CLK single | separate | PClI Initiator Read PCI Bus As
IACK Cycle

115 PCI_MST_READ_LINE P_CLK single | separate | PCI Initiator Read Line Com-
mand to PCI

116 PCI_MST_READ_MULT P_CLK single | separate | PCI Initiator Read Line Multilple
Command to PCI

117 PCI_ARB_REQ[2] P_CLK single | separate | Internal Arbiter PCI Bus
Request 2

118 PCI_ARB_GNTI[2] P_CLK single | separate | Internal Arbiter PCI Bus Grant 2

119 PCI_ARB_REQ[1] P_CLK single | separate

120 PCI_ARB_GNT[1] P_CLK single | separate

121 PCI_ARB_REQI0] P_CLK single | separate

122 PCI_ARB_GNTIO0] P_CLK single | separate

123 PCI_TGT_STATE[4] P_CLK single | separate | PCl Target State Machine State
Bit 4

124 PCI_TGT_STATE[3] P_CLK single | separate

125 PCI_TGT_STATE[2] P_CLK single | separate

126 PCI_TGT_STATE[1] P_CLK single | separate

127 PCI_TGT_STATE[0] P_CLK single | separate

11.4.6.5

Design Block #(1001)

MEOO Events Target ID(100000) /

Table 173. MEOO PMU Event List (Sheet 1 of 2)

Note:

1. All the ME has same event list.
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in ME CSR, This field holds the number of context to be monitored.
The event count will only reflect the events that occurred when this context is executing.

3.T_CLK =2x P_CLK

CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] =001, select context number 1,

CC_Enable[2:0] = 111, select context number 7.

Event Clock Pulse/ o
Number Event Name Domain Level Burst Description
0 ME_FIFO_ENQ_EVEN T_CLK single separate | Even version of Command FIFO
Enqueue (pair with event #8)
1 ME_IDLE_EVEN T_CLK single separate | Even version of No Thread run-
ning in ME (pair with event #9)
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Table 173. MEOO PMU Event List (Sheet 2 of 2)

2 ME_EXECUTING_EVEN T_CLK single separate | Even version of Valid Instruction
(pair with event #10)
3 ME_STALL_EVEN T_CLK single separate | Even version of ME stall caused
by FIFO Full (pair with event #11)
4 ME_CTX_SWAPPING_EVE |T_CLK single separate | Even version of Occurrence of
N context swap (pair with event #12)
5 ME_INST_ABORT_EVEN T_CLK single separate | Even version of Instruction

aborted due to branch taken (pair
with event #13)

6 ME_FIFO_ENQ_ODD T_CLK single separate | Odd version of Command FIFO
Enqueue (pair with event #0)

7 ME_IDLE_ODD T_CLK single separate | Odd version of No Thread running
in ME (pair with event #3)

8 ME_EXECUTING_ODD T_CLK single | separate | Odd version of Valid Instruction
(pair with event #4)

9 ME_STALL_ODD T_CLK single | separate | Odd version of ME stall caused by
FIFO Full (pair with event #5)

10 ME_CTX_SWAPPING_ODD | T_CLK single separate | Odd version of Occurrence of
context swap (pair with event #6)

11 ME_INST_ABORT_ODD T_CLK single separate | Odd version of Instruction aborted
due to branch (pair with event #7)

12 ME_FIFO_DEQ P_CLK single | separate | Command FIFO Dequeue

13 ME_FIFO_NOT_EMPTY P_CLK single separate | Command FIFO NOT Empty

11.4.6.6 MEO1 Events Target ID(100001) /
Design Block #(1001)

Table 174. MEO1 PMU Event List

Event Clock Pulse/ L
Number Event Name Domain | Level Burst Description
Note:

1. All the ME has same event list.
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in ME CSR, This field holds the number of context to be monitored.
The event count will only reflect the events that occurred when this context is executing.

CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,

CC_Enable[2:0] = 111, select context number 7.

3.T CLK =2x P_CLK
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11.4.6.7 MEO2 Events Target ID(100010) /
Design Block #(1001)
Table 175. MEO2 PMU Event List
NE‘:S; Event Name Dil:gi(n T_:I:;/ Burst Description
Note:
1. All the ME has same event list.
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in ME CSR, This field holds the number of context to be monitored.
The event count will only reflect the events that occurred when this context is executing.
CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,
'('j.éiEnable[Z:O] =111, select context number 7.
3.T CLK=2xP CLK
11.4.6.8 MEO3 Events Target ID(100011) / Design Block #(1001)
Table 176. ME0O3 PMU Event List
NE‘:S; Event Name Dil:gi(n T_:I:;/ Burst Description
Note:

1. All the ME has same event list.
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in ME CSR, This field holds the number of context to be monitored.
The event count will only reflect the events that occurred when this context is executing.

CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,

CC_Enable[2:0] = 111, select context number 7.

3.T CLK =2x P_CLK
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11.4.6.9 ME10 Events Target ID(110000) / Design Block #(1010)
Table 177. ME10 PMU Event List
Nli\r,r?&ter Event Name D?)Ir?gi(n T_lélvs;/ Burst Description
Note:
1. All the ME has same event list.
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in ME CSR, This field holds the number of context to be monitored.
The event count will only reflect the events that occurred when this context is executing.
CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,
éé:Enable[Z:O] = 111, select context number 7.
3.T CLK=2xP _CLK
11.4.6.10 ME11 Events Target ID(110001) / Design Block #(1010)
Table 178. ME11 PMU Event List
Nli‘;:gtter Event Name Dillz(;li(n T_Lélvs;/ Burst Description
Note:

1. All the ME has same event list.
2. CC_Enable bit[2:0] is PMU_CTX_Monitor in ME CSR, This field holds the number of context to be monitored.
The event count will only reflect the events that occurred when this context is executing.

CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,

CC_Enable[2:0] = 111, select context number 7.

3.T CLK =2x P_CLK
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11.4.6.11 ME12 Events Target ID(110010) / Design Block #(1010)
Table 179. ME12 PMU Event List
NE‘:Ecter Event Name Dilrc:;li(n T_:I:;/ Burst Description
Note:

1. All the ME has same event list.
2. CC_Enabile bit[2:0] is PMU_CTX_Monitor in ME CSR, This field holds the number of context to be monitored.
The event count will only reflect the events that occurred when this context is executing.

CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,

CC_Enable[2:0] = 111, select context number 7.

3.T CLK =2x P_CLK

11.4.6.12 ME13 Events Target ID(110011) / Design Block #(1010)

Table 180.

ME13 PMU Event List

Event Clock Pulse/ o
Number Event Name Domain | Level Burst Description
Note:

1. All the ME has same event list.
2. CC_Enabile bit[2:0] is PMU_CTX_Monitor in ME CSR, This field holds the number of context to be monitored.
The event count will only reflect the events that occurred when this context is executing.

CC_Enable[2:0] = 000, select context number 0,
CC_Enable[2:0] = 001, select context number 1,

CC_Enable[2:0] = 111, select context number 7.

3.T CLK =2x P_CLK
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11.4.6.13 SRAM DP1 Events Target ID(001001) /

Design Block #(0010)

Table 181. SRAM DP1 PMU Event List

Intel® IXP2400 Network Processor

Performance Monitor Unit

Event
Number

Event Name

Clock
Domain

Pulse/
Level

Burst

Description

Note:

2. S CLK = SRAM clock domain
3. P_CLK = PP clock domain

1. SRAM DP1/DPO0 push/pull arbiter has same event lists.

signals that begin with sps_ correspond to S-Push Arb
signals that begin with spl_ correspond to S-Pull Arb

signals that contain _pc_ (after the unit designation) correspond to the PCI target interface
signals that contain _pc_ (after the unit designation) correspond to the PCI target interface
signals that contain _m_ (after the unit designation) correspond to the MSF target interface
signals that contain _sh  (after the unit designation) correspond to the SHAC target interface
signals that contain _sO  (after the unit designation) correspond to the SRAMO target interface
signals that contain _s1_ (after the unit designation) correspond to the SRAMI1 target interface
signals that contain _s2  (after the unit designation) correspond to the SRAM2 target interface
signals that contain _s3  (after the unit designation) correspond to the SRAM3 target interface

11.4.6.14 SRAM DPO Events Target ID(001010) /

Design Block #(0010)

Table 182. SRAM DP0 PMU Event List

Single
Event Clock pulse/ _—
Number Event Name Domain Long Burst Description

pulse

0 sps_pc_cmd_valid_rph P_CLK | Long separate

1 sps_pc_eng_wph P_CLK | single separate

2 sps_pc_deq_wph P_CLK | single separate

3 sps_pc_pushh_q_full_wp P _CLK Long separate

4 sps_m_cmd_valid_rph P_CLK | Long separate

5 sps_m_enq_wph P_CLK | single separate

6 sps_m_deq_wph P_CLK | single separate

7 sps_m_pusr?_q_full_wp P_CLK Long separate

8 sps_sh_cmd_valid_rph P_CLK | Long separate

9 sps_sh_eng_wph P_CLK | single separate

10 sps_sh_deq_wph P_CLK | single separate

1 sps_sh_pushh_q_full_wp P _CLK Long separate
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12 sps_s0_cmd_valid_rph P_CLK | Long separate
13 sps_s0_eng_wph P_CLK | single separate
14 sps_s0_deq_wph P_CLK | single separate
15 sps_sO_pushh_q_fuII_wp P_CLK Long separate
16 sps_s1_cmd_valid_rph P_CLK | Long separate
17 sps_s1_eng_wph P_CLK | single separate
18 sps_s1_deq_wph P_CLK | single separate
19 sps_s1_pushh_q_full_wp P_CLK Long separate
20 sps_s2_cmd_valid_rph P_CLK | Long separate
21 sps_s2_enqg_wph P_CLK | single separate
22 sps_s2_deq_wph P_CLK | single separate
23 sps_sZ_pushh_q_fu II_wp P_CLK Long separate
24 sps_s3_cmd_valid_rph P_CLK | Long separate
25 sps_s3_eng_wph P_CLK | single separate
26 sps_s3_deq_wph P_CLK | single separate
27 sps_sS_pushh_q_fu II_wp P_CLK Long separate
28 spl_pc_cmd_valid_rph P_CLK | Long separate
29 spl_pc_eng_cmd_wph P_CLK | single separate
30 spl_pc_deq_wph P_CLK | single separate
31 spl_pc_cmgﬁque_fu I_w P_CLK Long separate
32 spl_m_cmd_valid_rph P_CLK | Long separate
33 spl_m_eng_cmd_wph P_CLK | single separate
34 spl_m_deq_wph P_CLK | single separate
35 spl_m_cm%ﬁque_full_w P_CLK Long separate
36 spl_sh_cmd_valid_rph P_CLK | Long separate
37 spl_sh_eng_cmd_wph P_CLK | single separate
38 spl_sh_deq_wph P_CLK | single separate
39 spl_sh_cmgﬁque_fu I_w P_CLK Long separate
40 spl_s0_cmd_valid_rph P_CLK | Long separate
41 spl_s0_eng_cmd_wph P_CLK | single separate
42 spl_s0_deq_wph P_CLK | single separate
43 spl_sO_cmgﬁque_full_w P_CLK Long separate
44 spl_s1_cmd_valid_rph P_CLK | Long separate
45 spl_s1_eng_cmd_wph P_CLK | single separate
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46 spl_s1_deq_wph P_CLK | single separate
47 spl_s1_cmgﬁque_full_w P_CLK Long separate
48 spl_s2_cmd_valid_rph P_CLK | Long separate
49 spl_s2_enqg_cmd_wph P_CLK | single separate
50 spl_s2_deq_wph P_CLK | single separate
51 spI_sZ_cmquue_full_w P_CLK Long separate
52 spl_s3_cmd_valid_rph P_CLK | Long separate
53 spl_s3_eng_cmd_wph P_CLK | single separate
54 spl_s3_deq_wph P_CLK | single separate
55 spl_s3_cmgﬁque_full_w P_CLK Long separate

11.4.6.15 SRAM CH3 Events Target ID(001011) /
Design Block #(0010)

Table 183. SRAM CH3 PMU Event List

Event Clock Pulse/ e
Number Event Name Domain | Level Burst Description
Note:

1. All the SRAM Channel has same event lists.

2. S _CLK = SRAM clock domain
3. P_CLK = PP clock domain

signals that begin with sps_ correspond to S-Push Arb
signals that begin with spl_ correspond to S-Pull Arb

signals that contain _pc_ (after the unit designation) correspond to the PCI target interface
signals that contain _pc_ (after the unit designation) correspond to the PCI target interface
signals that contain _m_ (after the unit designation) correspond to the MSF target interface
signals that contain _sh_ (after the unit designation) correspond to the SHAC target interface
signals that contain _s0_ (after the unit designation) correspond to the SRAMO target interface
signals that contain _s1_ (after the unit designation) correspond to the SRAMI1 target interface
signals that contain _s2  (after the unit designation) correspond to the SRAM?2 target interface
signals that contain _s3_ (after the unit designation) correspond to the SRAM3 target interface
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11.4.6.16

Table 184.

SRAM CH2 Events Target ID(001100) /
Design Block #(0010)

SRAM CH3 PMU Event List

Event Clock Pulse/ i
Number Event Name Domain Level Burst Description
Note:

1. All the SRAM Channel has same event lists.

2. S _CLK = SRAM clock domain
3. P_CLK = PP clock domain

signals that begin with sps_ correspond to S-Push Arb
signals that begin with spl_ correspond to S-Pull Arb

signals that contain _pc_ (after the unit designation) correspond to the PCI target interface
signals that contain _pc_ (after the unit designation) correspond to the PCI target interface
signals that contain _m_ (after the unit designation) correspond to the MSF target interface
signals that contain _sh_ (after the unit designation) correspond to the SHAC target interface
signals that contain _sO_ (after the unit designation) correspond to the SRAMO target interface
signals that contain _s1_ (after the unit designation) correspond to the SRAMI target interface
signals that contain _s2_ (after the unit designation) correspond to the SRAM?2 target interface

signals that contain _s3_ (after the unit designation) correspond to the SRAM3 target interface

11.4.6.17 SRAM CH1 Events Target ID(001101) /

Table 185.

400

Design Block #(0010)

SRAM CH3 PMU Event List

Event Clock Pulse/ i
Number Event Name Domain | Level Burst Description
Note:

1. All the SRAM Channel has same event lists.

2. S _CLK = SRAM clock domain
3. P_CLK = PP clock domain

signals that begin with sps_ correspond to S-Push Arb
signals that begin with spl_ correspond to S-Pull Arb

signals that contain _pc_ (after the unit designation) correspond to the PCI target interface
signals that contain _pc_ (after the unit designation) correspond to the PCI target interface
signals that contain _m_ (after the unit designation) correspond to the MSF target interface
signals that contain _sh_ (after the unit designation) correspond to the SHAC target interface
signals that contain _s0O_ (after the unit designation) correspond to the SRAMO target interface
signals that contain _s1_ (after the unit designation) correspond to the SRAMI target interface
signals that contain _s2_ (after the unit designation) correspond to the SRAM?2 target interface
signals that contain _s3_ (after the unit designation) correspond to the SRAM3 target interface
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11.4.6.18 SRAM CHO Events Target ID(001110) /
Design Block #(0010)

Table 186. SRAM CHO PMU Event List (Sheet 1 of 3)

Single
Event Clock pulse/ o
Number Event Name Domain Long Burst Description
pulse

0 QDR I/O Read S_CLK | single separate | QDR I/O Read

1 QDR 1/O Write S CLK | single separate | QDR I/O Write

2 Read Cmd Dis- P CLK single separate | Read Cmd Dispatched
patched

3 Write Cmd Dis- P CLK single separate | Write Cmd Dispatched
patched

4 Swap Cmd Dis- P CLK single separate | Swap Cmd Dispatched
patched

5 Set Dispatched P_CLK | single separate | Set Dispatched

6 Clear Cmd Dis- P CLK single separate | Clear Cmd Dispatched
patched

7 Add Cmd Dis- P CLK single separate | Add Cmd Dispatched
patched

8 Sub Cmd Dis- P CLK single separate | Sub Cmd Dispatched
patched -

9 Incr Cmd Dis- P CLK single separate | Incr Cmd Dispatched
patched -

10 Decr Cmd Dis- P CLK single separate | Decr Cmd Dispatched
patched -

1 Ring Cmd Dis- P CLK single separate | Ring Cmd Dispatched
patched

12 Jour Cmd Dis- P CLK single separate | Jour Cmd Dispatched
patched

13 Deq Cmd Dis- P CLK single separate | Deq Cmd Dispatched
patched

14 Eng Cmd Dis- P CLK single separate | Enq Cmd Dispatched
patched -

15 CSR Cmd Dis- P CLK single separate | CSR Cmd Dispatched
patched -
WQDesc Cmd single separate | WQDesc Cmd Dispatched

16 . P_CLK
Dispatched -

17 RQDesc Cmd Dis- P CLK single separate | RQDesc Cmd Dispatched
patched

18 FIFO Deque — P CLK single separate | FIFO Deque — CmdAO Inlet Q
CmdAO Inlet Q -
FIFO Enque — single separate | FIFO Enque — CmdAO Inlet Q

19 CmdAO Inlet Q P_CLK
FIFO Valid — long separate | FIFO Valid — CmdAO Inlet Q

20 CmdAOQ Inlet Q P_CLK
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FIFO Full — long separate | FIFO Full — CmdA1 Inlet Q
21 CmdA1 Inlet Q P_CLK
FIFO Deque — single separate | FIFO Deque — CmdA1 Inlet Q
22| cmdA1 Inlet Q P_CLK
FIFO Enque — single separate | FIFO Enque — CmdA1 Inlet Q
23 CmdA1 Inlet Q P_CLK
FIFO Valid — long separate | FIFO Valid — CmdA1 Inlet Q
24 CmdA1 Inlet Q P_CLK
FIFO Full — long separate | FIFO Full — CmdA1 Inlet Q
25 CmdA1 Inlet Q P_CLK
26 FIFO Deque — Wr S CLK single separate | FIFO Deque — WrCmd Q
Cmd Q -
27 FIFO Enque — Wr P CLK single separate | FIFO Enque — Wr Cmd Q
Cmd Q -
28 FIFO Valid —Wr S_CLK long separate | FIFO Valid —Wr Cmd Q
Cmd Q
29 FIFO Full —Wr P CLK long separate | FIFO Full —Wr Cmd Q
Cmd Q
30 FIFO Deque - S CLK single separate | FIFO Deque — Queue Cmd Q
Queue Cmd Q -
31 FIFO Enque — P CLK single separate | FIFO Enque — Queue Cmd Q
Queue Cmd Q -
32 FIFO Valid — S CLK long separate | FIFO Valid — Queue Cmd Q
Queue Cmd Q -
33 FIFO Full — P CLK long separate | FIFO Full — Queue Cmd Q
Queue Cmd Q
34 FIFO Deque — Rd S _CLK single separate | FIFO Deque — Rd Cmd Q
Cmd Q
35 FIFO Enque — Rd P CLK single separate | FIFO Enque — Rd Cmd Q
Cmd Q
36 FIFO Valid — Rd S CLK long separate | FIFO Valid —Rd Cmd Q
Cmd Q -
37 FIFO Full — Rd P CLK long separate | FIFO Full —Rd Cmd Q
Cmd Q -
38 FIFO Deque — S _CLK single separate | FIFO Deque — Oref Cmd Q
Oref Cmd Q
FIFO Enque — single separate | FIFO Enque — Oref Cmd Q
3 | orfcmda P_CLK
40 FIFO Valid — Oref S_CLK long separate | FIFO Valid — Oref Cmd Q
Cmd Q
41 FIFO Full — Oref P CLK long separate | FIFO Full — Oref Cmd Q
Cmd Q
FIFO Deque — single separate | FIFO Deque — SPO Pull Data Q
42 SPO Pull Data Q S_CLK
FIFO Enque — single separate _
43 SPO Pull Data Q P_CLK 1= FIFO Enque — SPO Pull Data Q
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44 | FIFOValid =SPO | o o |long | separate FIFO Valid — SPO Pull Data Q
Pull Data Q -

45 | FIFOFUl=SPO | (o | long separate FIFO Full — SPO Pull Data Q
Pull Data Q
FIFO Deque — single separate

46 SP1 Pull Data Q S CLK FIFO Deque — SP1 Pull Data Q
FIFO Enque — single separate

47 SP1 Pull Data Q P_CLK FIFO Enque — SP1 Pull Data Q

4g | FIFOValid =SP1 o o ¢ | long separate FIFO Valid — SP1 Pull Data Q
Pull Data Q -

49 | FIFOFull =SP1 p cLK |'ong separate FIFO Full — SP1 Pull Data Q
Pull Data Q -
FIFO Deque — single separate

50 | bush ID/Data Q P_CLK FIFO Deque — Push ID/Data Q
FIFO Enque — single separate

51 Push ID/Data Q S CLK FIFO Enque — Push ID/Data Q

5p |FIFOValid —Push | o o | long separate FIFO Valid — Push ID/Data Q
ID/Data Q

53 | IFOFul —Push | o o | long separate FIFO Full — Push ID/Data Q
ID/Data Q -
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11.4.6.19 1XP2400 DRAM Events Target ID(010000) /
Design Block #(0011)

Table 187. IXP2400 DRAM PMU Event List (Sheet 1 of 3)

Event Event Name Clock Domain Pulse/ Burst Description
Number Level
inlet_cmdq_enq .
0 P_CLK Single | Separate Inlet Command Queue Enqueue
Inlet Command Queue Dequeue
1 inlet_cmdq_deq d2_CLK Single | Separate 9
2 mIet_cmpdt)c;_notem d2_CLK Single | Separate Inlet Command Queue Not Empty
3 inlet_cmdq_full P_CLK Single | Separate Inlet Command Queue Full
4 bnkO_opg_enq d2_CLK Single | Separate Bank0 Op Queue Enqueue
5 bnk0_opqg_deq d2_CLK Single | Separate Bank0 Op Queue Dequeue
6 bnkO_optc;_notemp d2_CLK Single | Separate Bank0 Op Queue Not Empty
7 bnk0_opq_full d2_CLK Single | Separate Bank0 Op Queue Full
8 bnk1_opg_enq d2_CLK Single | Separate Bank1 Op Queue Enqueue
9 bnk1_opg_deq d2_CLK Single | Separate Bank1 Op Queue Dequeue
10 bnk1_op®_notemp d2_CLK Single | Separate Bank1 Op Queue Not Empty
11 bnk1_opq_full d2_CLK Single | Separate Bank1 Op Queue Full
12 bnk2_opg_enq d2_CLK Single | Separate Bank2 Op Queue Enqueue
13 bnk2_opqg_deq d2_CLK Single | Separate Bank2 Op Queue Dequeue
14 bnk2_opg_notemp d2_CLK Single | Separate Bank2 Op Queue Not Empty
15 bnk2_opq_full d2_CLK Single | Separate Bank2 Op Queue Full
16 bnk3_opg_enq d2_CLK Single | Separate Bank3 Op Queue Enqueue
17 bnk3_opg_deq d2_CLK Single | Separate Bank3 Op Queue Dequeue
18 bnk3_op§_notemp d2_CLK Single | Separate Bank3 Op Queue Not Empty
19 bnk3_opq_full d2_CLK Single | Separate Bank3 Op Queue Full
20 push_cmdqg_enq d2_CLK Single | Separate Push Command Queue Enqueue
21 push_cmdq_deq P_CLK Single | Separate Push Command Queue Dequeue
22 push_;rr;(tj;q_note P_CLK Single | Separate | Push Command Queue Not Empty
Push Data Queue Enqueue
23 push_dataq_enq d2_CLK Single | Separate 9
) Push Data Queue Dequeue
24 push_dataq_deq P_CLK Single | Separate
25 push_%a;?ﬁ_note P_CLK Single | Separate Push Data Queue Not Empty
26 pull_cmdqg_enq d2_CLK Single | Separate Pull Command Queue Enqueue
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27 pull_cmdqg_deq P_CLK Single | Separate Pull Command Queue Dequeue
28 pull_cmdg_notem P_CLK Single | Separate SeparatePull Command Queue Not
pty Empty
29 pull_cmdq_full d2_CLK Single | Separate Pull Command Queue Full
30 pull_dataq_enq P_CLK Single | Separate Pull Data Queue Enqueue
31 pull_dataq_deq d2_CLK Single | Separate Pull Data Queue Dequeue
32 pulI_datpatc;/_notem d2_CLK Single | Separate Pull Data Queue Not Empty
33 pull_dataq_full P_CLK Single | Separate Pull Data Queue Full
34 bnkO_dataq_enq d2_CLK Single | Separate BankO Data Queue Enqueue
BankO0 Data Queue Dequeue
35 bnkO_dataq_deq d2_CLK Single | Separate 9
36 bnkO_?na;?yq_note d2_CLK Single | Separate BankO Data Queue Not Empty
37 bnkO_dataq_full d2_CLK Single | Separate BankO Data Queue Full
38 bnk1_dataq_enq d2_CLK Single | Separate Bank1 Data Queue Enqueue
39 bnk1_dataq_deq d2_CLK Single | Separate Bank1 Data Queue Dequeue
40 bnk1_(rjna;?ﬁ_note d2_CLK Single | Separate Bank1 Data Queue Not Empty
41 bnk1_dataq_full d2_CLK Single | Separate Bank1 Data Queue Full
42 bnk2_dataq_enq d2_CLK Single | Separate Bank2 Data Queue Enqueue
43 bnk2_dataq_deq d2_CLK Single | Separate Bank2 Data Queue Dequeue
44 bnk2_?na;?yq_note d2_CLK Single | Separate Bank2 Data Queue Not Empty
45 bnk2_dataq_full d2_CLK Single | Separate Bank2 Data Queue Full
46 bnk3_dataq_enq d2_CLK Single | Separate Bank3 Data Queue Enqueue
47 bnk3_dataq_deq d2_CLK Single | Separate Separate%ankf& Data Queue
equeue
48 bnk3_?na;?yq_note d2_CLK Single | Separate Bank3 Data Queue Not Empty
49 bnk3_dataq_full d2_CLK Single | Separate Bank3 Data Queue Full
50 pendmgapullq_en d2_CLK Single | Separate Pending Pull Queue Enqueue
51 pendmgapullq_de d2_CLK Single | Separate Pending Pull Queue Dequeue
52 pendlné]nqgij;lq_not d2_CLK Single | Separate Pending Pull Queue Not Empty
53 | dram gcivale bn d2_CLK Single | Separate DRAM Activate BankOside0
54 dramﬁl;té\;a(;[e_bn d2_CLK Single | Separate DRAM Activate Bank1sideO
55 | dram gciivale bn d2_CLK Single | Separate DRAM Activate Bank2side0
56 | dram_activate_bn d2_CLK Single | Separate DRAM Activate Bank3side0

k3side0
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dram_activate_bn

57 Koside 1 d2_CLK Single | Separate DRAM Activate BankOside1
s | dram activate bn d2_CLK Single | Separate DRAM Activate Bank1sidef
59 dramig;té";te—b” d2_CLK Single | Separate DRAM Activate Bank2side1
60 dramiggit(ij\gte_bn d2_CLK Single | Separate DRAM Activate Bank3side1
61 dram—rzae%—b”k‘)s‘ d2_CLK Single | Separate DRAM Read Bank0side0
62 dram—rzae%—b”k“‘ d2_CLK Single | Separate DRAM Read Bank1side0
63 | dram_read bnkzsi d2_CLK Single | Separate DRAM Read Bank2side0
64 dram_rzz%_bnk%i d2_CLK Single | Separate DRAM Read Bank3side0
65 | dram-read bnk0si d2_CLK Single | Separate DRAM Read BankOside1
66 dfam—rzae‘i—b”k“i d2_CLK Single | Separate DRAM Read Bank1side1
67 | dram_read bnicsi d2_CLK Single | Separate DRAM Read Bank2side1
6g | dram_read bnk3si d2_CLK Single | Separate DRAM Read Bank3side1
6o | dram_write_bnk0s d2_CLK Single | Separate DRAM Write BankOside0
70 | dram_write_bnkis d2_CLK Single | Separate DRAM Write Bank1side0
71 | dram_write_bnk2s d2_CLK Single | Separate DRAM Write Bank2side0
72 | dram_write_bnk3s d2_CLK Single | Separate DRAM Write Bank3side0
73 dram_v;léieﬁ_bnkOS d2_CLK Single | Separate DRAM Write BankOside1
74 | dram_write_bnkis d2_CLK Single | Separate DRAM Write Bank1side1
75 | dram_write_bnk2s d2_CLK Single | Separate DRAM Write Bank2side1
76 dram_v;léiet}(?_bnk% d2_CLK Single | Separate DRAM Write Bank3side1
77 dram_partialwrite d2_CLK Single | Separate DRAM Partial Write

78 dram_rd_data_vld d2_CLK Single | Separate DRAM Read Data Valid
79 dram_wr_data_vld d2_CLK Single | Separate SeparateDRAM Write Data Valid
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Software Support

Introduction

An important part of a performance monitoring architecture is the software that allows the counters to
be programmed, data to be collected and analyzed. Just as the hardware aspect of the performance
monitoring architecture is expected to span generations, the software tools must span generations of
product as well. A tool being designed to handle this is known as PLATUNE. PLATUNE is a stand-
alone utility that is just starting to be tested. PLATUNE is also designed to be a VTUNE plug in and is
scheduled to be included in VTUNE 6.0 (VTUNE 5.0 was released in early 2001).

PLATUNE runs on an IA32 PC under a Microsoft* Windows* operating system, and is appropriate
for performance monitoring of PCs. The Intel® IXP2400 network processor is unique in the following
respects:

* No Windows operating system; there may be no operating system.
* No disk for recording data.

* No console or GUL

* No IA32 processor.

¢ Events monitored that are specific to network processors.

Mode of Operation

One possible way to make use of PLATUNE on network processors is to run PLATUNE standalone
on the XScale core. PLATUNE has a script-driven mode that can be used on network processors. The
data collected can be kept in the XScale memory or dumped over the PCI interface. Once the data has
been collected, VTUNE can transfer it to a PC for analysis with the PLATUNE plug-in.
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