(1) (30%) Let \(a \) be a positive real number, and let the sequence of real numbers \(x_i \) be given by
\[
x_0 = 1, \quad x_{i+1} = \frac{1}{2} \left(x_i + \frac{a}{x_i} \right) \quad \text{for } i = 0, 1, 2, \ldots
\]
It can be shown mathematically that \(x_i \to \sqrt{a} \) as \(i \to \infty \)
This algorithm is derived from the Newton-Raphson method in numerical analysis. Write a program that reads in the value of \(a \) interactively and uses this algorithm to compute the sequence root of \(a \). As you will see, the program is very efficient. (Nonetheless, it is not the algorithm used by the sqrt() function in the standard library.)
Declare \(x_0 \) and \(x_1 \) to be of type double, and initialize \(x_1 \) to be 1. Inside a loop do the following
\[
x_0 = x_1; \quad /* \text{save the current value of } x_1 */
x_1 = 0.5 * (x_1 + a / x_1); \quad /* \text{compute a new value of } x_1 */
\]
Each time through the loop, print out the values of \(x_i \)

(2) (30%) The constant \(e \), which is the base of the natural logarithms, is given to 41 significant figures by
\[
e = 2.71828 \ 18284 \ 59045 \ 23536 \ 02874 \ 71352 \ 66249 \ 77572
\]
Define
\[
x_n = (1 + \frac{1}{n})^n \quad \text{for } n = 1, 2, \ldots
\]
It can be shown mathematically that \(x_n \to e \) as \(n \to \infty \)
Investigate how to calculate \(e \) to arbitrary precision using this algorithm. You will find that the algorithm is computationally ineffective. (See exercise 36, on page 195)

(3) (40%) In addition to the algorithm given in the previous exercise, the value for \(e \) is also given by the infinite series
\[
e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \ldots
\]
The above algorithm is computationally effective. Use it to compute \(e \) to an arbitrary precision.

(4) Update your report to server, otherwise you will get -10 point.
(5) If you will not submit your report, you get 0 point.
Command Line: (You must use Parameter argc and argv)

Q1: ./hw2_1 a i (Please Follow this Sequence, otherwise you will get -20 point)
Q2: ./hw2_2 n
Q3: ./hw2_3 n

Output:

Q1: print result X_i for top-i loop (get the ten digit after the point)
Q2: print result X_n for top-n loop (get the ten digit after the point)
Q3: print result X_n for top-n loop (get the ten digit after the point)

Example

```bash
> ./hw2_1 2 2
> 1.5000000000
> 1.4166666666
> ./hw2_2 2
> 2.0000000000
> 2.2500000000
> ./hw2_3 2
> 2.0000000000
> 2.5000000000
```

Report

除了要交紙本，也要將 report 以電子檔的形式上傳至 server

電子檔案名格式：HW2.docx

以下為教學，若仍有許多不懂的地方，下次上課後助教再實際操作一次

1. 安裝 FileZilla
2. 連線方式：打開 FileZilla 後>檔案>站台管理員
3. 如圖設定好連線方式後連線
4. 這邊直接確認就好

5. 進到對應的目錄並上傳你的電子檔，一份作業一個電子檔